Abstract

A core chip of optofluidic variable optical attenuator (VOA) is reported. The chip, with a simple structure, utilizes microfluid and compressed air to regulate the optical attenuation, and it can be expanded to form a number of VOAs by using different microfluidic driving technologies. Three VOAs based on this chip and different driving technologies are introduced. The theoretical and experimental results show that the proposed chip possesses the advantages of large optical attenuation range (> 50dB) and low insertion loss (0.55 dB). Moreover it is a broadband optical device which can be operated in visible and near infrared wavelengths. The proposed chip provides a new method for seeking miniaturized VOAs with good performances, and it is promising to develop a number of different VOAs.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optofluidic variable optical attenuator controlled by electricity

Jing Wan, Fenglan Xue, Chengjie Liu, Shaoqiang Huang, Shuzheng Fan, and Fangren Hu
Appl. Opt. 57(28) 8114-8118 (2018)

2 × 2 optofluidic switch chip with an air shutter

Peng Xu, Jing Wan, Simo Zhang, Yixin Duan, Boyu Chen, and Sheng Zhang
Appl. Opt. 58(17) 4637-4641 (2019)

Graphene based on-chip variable optical attenuator operating at 855 nm wavelength

Muhammad Mohsin, Daniel Schall, Martin Otto, Bartos Chmielak, Caroline Porschatis, Jens Bolten, and Daniel Neumaier
Opt. Express 25(25) 31660-31669 (2017)

References

  • View by:
  • |
  • |
  • |

  1. N. Dávila, E. Merced, and N. Sepulveda, “Electronically variable optical attenuator enabled by self-sensing in vanadium dioxide,” IEEE Photonics Technol. Lett. 26(10), 1011–1014 (2014).
    [Crossref]
  2. P. Wei, C. Cheng, X. F. Wang, X. Shan, and X. Sun, “A high-performance hybrid current transformer based on a fast variable optical attenuator,” IEEE Trans. Power Deliv. 29(6), 2656–2663 (2014).
    [Crossref]
  3. S. Rudra, R. V. Hoof, and J. D. Coster, “A 2D MEMS grating based CMOS compatible poly-SiGe variable optical attenuator,” Microelectron. Eng. 105, 8–12 (2013).
    [Crossref]
  4. G. Zhu, B. Y. Wei, L. Y. Shi, X. W. Lin, W. Hu, Z. D. Huang, and Y. Q. Lu, “A fast response variable optical attenuator based on blue phase liquid crystal,” Opt. Express 21(5), 5332–5337 (2013).
    [Crossref] [PubMed]
  5. A. Unamuno, R. Blue, and D. Uttamchandani, “Modeling and characterization of a vernier latching MEMS variable optical attenuator,” J. Microelectromech. Syst. 22(5), 1229–1241 (2013).
    [Crossref]
  6. K. H. Koh, B. W. Soon, J. M. Tsai, A. J. Danner, and C. Lee, “Study of hybrid driven micromirrors for 3-D variable optical attenuator applications,” Opt. Express 20(19), 21598–21611 (2012).
    [Crossref] [PubMed]
  7. K. Leosson, T. Rosenzveig, P. G. Hermannsson, and A. Boltasseva, “Compact plasmonic variable optical attenuator,” Opt. Express 16(20), 15546–15552 (2008).
    [Crossref] [PubMed]
  8. S. A. Reza and N. A. Riza, “A liquid lens-based on broadband variable fiber optical attenuator,” Opt. Commun. 282(7), 1298–1303 (2009).
    [Crossref]
  9. X. Tang, R. J. Li, J. K. Liao, H. Li, J. Li, and Y. Liu, “A scheme for variable optofluidic attenuator: Design and simulation the corresponding,” Opt. Commun. 305, 175–179 (2013).
    [Crossref]
  10. A. Dudus, R. Blue, and M. Zagnoni, “Modeling and characterization of an electrowetting-based single-mode fiber variable optical attenuator,” IEEE J. Sel. Top. Quantum Electron. 21(4), 4500209 (2015).
  11. J. Hrdlička, P. Červenka, M. Přibyl, and D. Šnita, “Mathematical modeling of AC electroosmosis in microfluidic and nanofluidic chips using equilibrium and non-equilibrium approaches,” J. Appl. Electrochem. 40(5), 967–980 (2010).
    [Crossref]
  12. J. J. Sha and L. Y. Hou, “Research on the driving-methods of microfluidic system,” Micronanoelectron. Tech. 43(12), 586–591 (2006).
  13. G. L. Liu, J. Kim, Y. Lu, and L. P. Lee, “Optofluidic control using photothermal nanoparticles,” Nat. Mater. 5(1), 27–32 (2006).
    [Crossref] [PubMed]
  14. J. Wan, Y. Zuo, Z. B. Wang, F. Yan, L. Ge, and Z. C. Liang, “Magnetohydrodynamic microfluidic drive of ionic liquids,” J. Microelectromech. Syst. 23(6), 1463–1470 (2014).
    [Crossref]
  15. A. S. Basu and Y. B. Gianchandani, “Virtual microfluidic traps, filters, channels and pumps using Marangoni flows,” J. Micromech. Microeng. 18(11), 115031 (2008).
    [Crossref]
  16. H. H. Shen, L. Y. Chung, and D. J. Yao, “Improving the dielectric properties of an electrowetting-on-dielectric microfluidic device with a low-pressure chemical vapor deposited Si3N4 dielectric layer,” Biomicrofluidics 9(2), 022403 (2015).
    [Crossref] [PubMed]
  17. M. R. Javed, S. Chen, H.-K. Kim, L. Wei, J. Czernin, C.-J. C. Kim, R. Michael van Dam, and P. Y. Keng, “Efficient radiosynthesis of 3′-deoxy-3′-18F-fluorothymidine using electrowetting-on-dielectric digital microfluidic chip,” J. Nucl. Med. 55(2), 321–328 (2014).
    [Crossref] [PubMed]
  18. D. Yang, M. Piech, N. S. Bell, D. Gust, S. Vail, A. A. Garcia, J. Schneider, C. D. Park, M. A. Hayes, and S. T. Picraux, “Photon control of liquid motion on reversibly photoresponsive surfaces,” Langmuir 23(21), 10864–10872 (2007).
    [Crossref] [PubMed]
  19. R. D. Schroll, R. Wunenburger, A. Casner, W. W. Zhang, and J. P. Delville, “Liquid Transport Due to Light Scattering,” Phys. Rev. Lett. 98(13), 133601 (2007).
    [Crossref] [PubMed]
  20. A. Mazzalai, D. Balma, N. Chidambaram, R. Matloub, and P. Muralt, “Characterization and fatigue of the converse piezoelectric effect in PZT films for MEMS applications,” J. Microelectromech. Syst. 24(4), 831–838 (2015).
    [Crossref]

2015 (3)

A. Dudus, R. Blue, and M. Zagnoni, “Modeling and characterization of an electrowetting-based single-mode fiber variable optical attenuator,” IEEE J. Sel. Top. Quantum Electron. 21(4), 4500209 (2015).

H. H. Shen, L. Y. Chung, and D. J. Yao, “Improving the dielectric properties of an electrowetting-on-dielectric microfluidic device with a low-pressure chemical vapor deposited Si3N4 dielectric layer,” Biomicrofluidics 9(2), 022403 (2015).
[Crossref] [PubMed]

A. Mazzalai, D. Balma, N. Chidambaram, R. Matloub, and P. Muralt, “Characterization and fatigue of the converse piezoelectric effect in PZT films for MEMS applications,” J. Microelectromech. Syst. 24(4), 831–838 (2015).
[Crossref]

2014 (4)

M. R. Javed, S. Chen, H.-K. Kim, L. Wei, J. Czernin, C.-J. C. Kim, R. Michael van Dam, and P. Y. Keng, “Efficient radiosynthesis of 3′-deoxy-3′-18F-fluorothymidine using electrowetting-on-dielectric digital microfluidic chip,” J. Nucl. Med. 55(2), 321–328 (2014).
[Crossref] [PubMed]

J. Wan, Y. Zuo, Z. B. Wang, F. Yan, L. Ge, and Z. C. Liang, “Magnetohydrodynamic microfluidic drive of ionic liquids,” J. Microelectromech. Syst. 23(6), 1463–1470 (2014).
[Crossref]

N. Dávila, E. Merced, and N. Sepulveda, “Electronically variable optical attenuator enabled by self-sensing in vanadium dioxide,” IEEE Photonics Technol. Lett. 26(10), 1011–1014 (2014).
[Crossref]

P. Wei, C. Cheng, X. F. Wang, X. Shan, and X. Sun, “A high-performance hybrid current transformer based on a fast variable optical attenuator,” IEEE Trans. Power Deliv. 29(6), 2656–2663 (2014).
[Crossref]

2013 (4)

S. Rudra, R. V. Hoof, and J. D. Coster, “A 2D MEMS grating based CMOS compatible poly-SiGe variable optical attenuator,” Microelectron. Eng. 105, 8–12 (2013).
[Crossref]

G. Zhu, B. Y. Wei, L. Y. Shi, X. W. Lin, W. Hu, Z. D. Huang, and Y. Q. Lu, “A fast response variable optical attenuator based on blue phase liquid crystal,” Opt. Express 21(5), 5332–5337 (2013).
[Crossref] [PubMed]

A. Unamuno, R. Blue, and D. Uttamchandani, “Modeling and characterization of a vernier latching MEMS variable optical attenuator,” J. Microelectromech. Syst. 22(5), 1229–1241 (2013).
[Crossref]

X. Tang, R. J. Li, J. K. Liao, H. Li, J. Li, and Y. Liu, “A scheme for variable optofluidic attenuator: Design and simulation the corresponding,” Opt. Commun. 305, 175–179 (2013).
[Crossref]

2012 (1)

2010 (1)

J. Hrdlička, P. Červenka, M. Přibyl, and D. Šnita, “Mathematical modeling of AC electroosmosis in microfluidic and nanofluidic chips using equilibrium and non-equilibrium approaches,” J. Appl. Electrochem. 40(5), 967–980 (2010).
[Crossref]

2009 (1)

S. A. Reza and N. A. Riza, “A liquid lens-based on broadband variable fiber optical attenuator,” Opt. Commun. 282(7), 1298–1303 (2009).
[Crossref]

2008 (2)

A. S. Basu and Y. B. Gianchandani, “Virtual microfluidic traps, filters, channels and pumps using Marangoni flows,” J. Micromech. Microeng. 18(11), 115031 (2008).
[Crossref]

K. Leosson, T. Rosenzveig, P. G. Hermannsson, and A. Boltasseva, “Compact plasmonic variable optical attenuator,” Opt. Express 16(20), 15546–15552 (2008).
[Crossref] [PubMed]

2007 (2)

D. Yang, M. Piech, N. S. Bell, D. Gust, S. Vail, A. A. Garcia, J. Schneider, C. D. Park, M. A. Hayes, and S. T. Picraux, “Photon control of liquid motion on reversibly photoresponsive surfaces,” Langmuir 23(21), 10864–10872 (2007).
[Crossref] [PubMed]

R. D. Schroll, R. Wunenburger, A. Casner, W. W. Zhang, and J. P. Delville, “Liquid Transport Due to Light Scattering,” Phys. Rev. Lett. 98(13), 133601 (2007).
[Crossref] [PubMed]

2006 (2)

J. J. Sha and L. Y. Hou, “Research on the driving-methods of microfluidic system,” Micronanoelectron. Tech. 43(12), 586–591 (2006).

G. L. Liu, J. Kim, Y. Lu, and L. P. Lee, “Optofluidic control using photothermal nanoparticles,” Nat. Mater. 5(1), 27–32 (2006).
[Crossref] [PubMed]

Balma, D.

A. Mazzalai, D. Balma, N. Chidambaram, R. Matloub, and P. Muralt, “Characterization and fatigue of the converse piezoelectric effect in PZT films for MEMS applications,” J. Microelectromech. Syst. 24(4), 831–838 (2015).
[Crossref]

Basu, A. S.

A. S. Basu and Y. B. Gianchandani, “Virtual microfluidic traps, filters, channels and pumps using Marangoni flows,” J. Micromech. Microeng. 18(11), 115031 (2008).
[Crossref]

Bell, N. S.

D. Yang, M. Piech, N. S. Bell, D. Gust, S. Vail, A. A. Garcia, J. Schneider, C. D. Park, M. A. Hayes, and S. T. Picraux, “Photon control of liquid motion on reversibly photoresponsive surfaces,” Langmuir 23(21), 10864–10872 (2007).
[Crossref] [PubMed]

Blue, R.

A. Dudus, R. Blue, and M. Zagnoni, “Modeling and characterization of an electrowetting-based single-mode fiber variable optical attenuator,” IEEE J. Sel. Top. Quantum Electron. 21(4), 4500209 (2015).

A. Unamuno, R. Blue, and D. Uttamchandani, “Modeling and characterization of a vernier latching MEMS variable optical attenuator,” J. Microelectromech. Syst. 22(5), 1229–1241 (2013).
[Crossref]

Boltasseva, A.

Casner, A.

R. D. Schroll, R. Wunenburger, A. Casner, W. W. Zhang, and J. P. Delville, “Liquid Transport Due to Light Scattering,” Phys. Rev. Lett. 98(13), 133601 (2007).
[Crossref] [PubMed]

Cervenka, P.

J. Hrdlička, P. Červenka, M. Přibyl, and D. Šnita, “Mathematical modeling of AC electroosmosis in microfluidic and nanofluidic chips using equilibrium and non-equilibrium approaches,” J. Appl. Electrochem. 40(5), 967–980 (2010).
[Crossref]

Chen, S.

M. R. Javed, S. Chen, H.-K. Kim, L. Wei, J. Czernin, C.-J. C. Kim, R. Michael van Dam, and P. Y. Keng, “Efficient radiosynthesis of 3′-deoxy-3′-18F-fluorothymidine using electrowetting-on-dielectric digital microfluidic chip,” J. Nucl. Med. 55(2), 321–328 (2014).
[Crossref] [PubMed]

Cheng, C.

P. Wei, C. Cheng, X. F. Wang, X. Shan, and X. Sun, “A high-performance hybrid current transformer based on a fast variable optical attenuator,” IEEE Trans. Power Deliv. 29(6), 2656–2663 (2014).
[Crossref]

Chidambaram, N.

A. Mazzalai, D. Balma, N. Chidambaram, R. Matloub, and P. Muralt, “Characterization and fatigue of the converse piezoelectric effect in PZT films for MEMS applications,” J. Microelectromech. Syst. 24(4), 831–838 (2015).
[Crossref]

Chung, L. Y.

H. H. Shen, L. Y. Chung, and D. J. Yao, “Improving the dielectric properties of an electrowetting-on-dielectric microfluidic device with a low-pressure chemical vapor deposited Si3N4 dielectric layer,” Biomicrofluidics 9(2), 022403 (2015).
[Crossref] [PubMed]

Coster, J. D.

S. Rudra, R. V. Hoof, and J. D. Coster, “A 2D MEMS grating based CMOS compatible poly-SiGe variable optical attenuator,” Microelectron. Eng. 105, 8–12 (2013).
[Crossref]

Czernin, J.

M. R. Javed, S. Chen, H.-K. Kim, L. Wei, J. Czernin, C.-J. C. Kim, R. Michael van Dam, and P. Y. Keng, “Efficient radiosynthesis of 3′-deoxy-3′-18F-fluorothymidine using electrowetting-on-dielectric digital microfluidic chip,” J. Nucl. Med. 55(2), 321–328 (2014).
[Crossref] [PubMed]

Danner, A. J.

Dávila, N.

N. Dávila, E. Merced, and N. Sepulveda, “Electronically variable optical attenuator enabled by self-sensing in vanadium dioxide,” IEEE Photonics Technol. Lett. 26(10), 1011–1014 (2014).
[Crossref]

Delville, J. P.

R. D. Schroll, R. Wunenburger, A. Casner, W. W. Zhang, and J. P. Delville, “Liquid Transport Due to Light Scattering,” Phys. Rev. Lett. 98(13), 133601 (2007).
[Crossref] [PubMed]

Dudus, A.

A. Dudus, R. Blue, and M. Zagnoni, “Modeling and characterization of an electrowetting-based single-mode fiber variable optical attenuator,” IEEE J. Sel. Top. Quantum Electron. 21(4), 4500209 (2015).

Garcia, A. A.

D. Yang, M. Piech, N. S. Bell, D. Gust, S. Vail, A. A. Garcia, J. Schneider, C. D. Park, M. A. Hayes, and S. T. Picraux, “Photon control of liquid motion on reversibly photoresponsive surfaces,” Langmuir 23(21), 10864–10872 (2007).
[Crossref] [PubMed]

Ge, L.

J. Wan, Y. Zuo, Z. B. Wang, F. Yan, L. Ge, and Z. C. Liang, “Magnetohydrodynamic microfluidic drive of ionic liquids,” J. Microelectromech. Syst. 23(6), 1463–1470 (2014).
[Crossref]

Gianchandani, Y. B.

A. S. Basu and Y. B. Gianchandani, “Virtual microfluidic traps, filters, channels and pumps using Marangoni flows,” J. Micromech. Microeng. 18(11), 115031 (2008).
[Crossref]

Gust, D.

D. Yang, M. Piech, N. S. Bell, D. Gust, S. Vail, A. A. Garcia, J. Schneider, C. D. Park, M. A. Hayes, and S. T. Picraux, “Photon control of liquid motion on reversibly photoresponsive surfaces,” Langmuir 23(21), 10864–10872 (2007).
[Crossref] [PubMed]

Hayes, M. A.

D. Yang, M. Piech, N. S. Bell, D. Gust, S. Vail, A. A. Garcia, J. Schneider, C. D. Park, M. A. Hayes, and S. T. Picraux, “Photon control of liquid motion on reversibly photoresponsive surfaces,” Langmuir 23(21), 10864–10872 (2007).
[Crossref] [PubMed]

Hermannsson, P. G.

Hoof, R. V.

S. Rudra, R. V. Hoof, and J. D. Coster, “A 2D MEMS grating based CMOS compatible poly-SiGe variable optical attenuator,” Microelectron. Eng. 105, 8–12 (2013).
[Crossref]

Hou, L. Y.

J. J. Sha and L. Y. Hou, “Research on the driving-methods of microfluidic system,” Micronanoelectron. Tech. 43(12), 586–591 (2006).

Hrdlicka, J.

J. Hrdlička, P. Červenka, M. Přibyl, and D. Šnita, “Mathematical modeling of AC electroosmosis in microfluidic and nanofluidic chips using equilibrium and non-equilibrium approaches,” J. Appl. Electrochem. 40(5), 967–980 (2010).
[Crossref]

Hu, W.

Huang, Z. D.

Javed, M. R.

M. R. Javed, S. Chen, H.-K. Kim, L. Wei, J. Czernin, C.-J. C. Kim, R. Michael van Dam, and P. Y. Keng, “Efficient radiosynthesis of 3′-deoxy-3′-18F-fluorothymidine using electrowetting-on-dielectric digital microfluidic chip,” J. Nucl. Med. 55(2), 321–328 (2014).
[Crossref] [PubMed]

Keng, P. Y.

M. R. Javed, S. Chen, H.-K. Kim, L. Wei, J. Czernin, C.-J. C. Kim, R. Michael van Dam, and P. Y. Keng, “Efficient radiosynthesis of 3′-deoxy-3′-18F-fluorothymidine using electrowetting-on-dielectric digital microfluidic chip,” J. Nucl. Med. 55(2), 321–328 (2014).
[Crossref] [PubMed]

Kim, C.-J. C.

M. R. Javed, S. Chen, H.-K. Kim, L. Wei, J. Czernin, C.-J. C. Kim, R. Michael van Dam, and P. Y. Keng, “Efficient radiosynthesis of 3′-deoxy-3′-18F-fluorothymidine using electrowetting-on-dielectric digital microfluidic chip,” J. Nucl. Med. 55(2), 321–328 (2014).
[Crossref] [PubMed]

Kim, H.-K.

M. R. Javed, S. Chen, H.-K. Kim, L. Wei, J. Czernin, C.-J. C. Kim, R. Michael van Dam, and P. Y. Keng, “Efficient radiosynthesis of 3′-deoxy-3′-18F-fluorothymidine using electrowetting-on-dielectric digital microfluidic chip,” J. Nucl. Med. 55(2), 321–328 (2014).
[Crossref] [PubMed]

Kim, J.

G. L. Liu, J. Kim, Y. Lu, and L. P. Lee, “Optofluidic control using photothermal nanoparticles,” Nat. Mater. 5(1), 27–32 (2006).
[Crossref] [PubMed]

Koh, K. H.

Lee, C.

Lee, L. P.

G. L. Liu, J. Kim, Y. Lu, and L. P. Lee, “Optofluidic control using photothermal nanoparticles,” Nat. Mater. 5(1), 27–32 (2006).
[Crossref] [PubMed]

Leosson, K.

Li, H.

X. Tang, R. J. Li, J. K. Liao, H. Li, J. Li, and Y. Liu, “A scheme for variable optofluidic attenuator: Design and simulation the corresponding,” Opt. Commun. 305, 175–179 (2013).
[Crossref]

Li, J.

X. Tang, R. J. Li, J. K. Liao, H. Li, J. Li, and Y. Liu, “A scheme for variable optofluidic attenuator: Design and simulation the corresponding,” Opt. Commun. 305, 175–179 (2013).
[Crossref]

Li, R. J.

X. Tang, R. J. Li, J. K. Liao, H. Li, J. Li, and Y. Liu, “A scheme for variable optofluidic attenuator: Design and simulation the corresponding,” Opt. Commun. 305, 175–179 (2013).
[Crossref]

Liang, Z. C.

J. Wan, Y. Zuo, Z. B. Wang, F. Yan, L. Ge, and Z. C. Liang, “Magnetohydrodynamic microfluidic drive of ionic liquids,” J. Microelectromech. Syst. 23(6), 1463–1470 (2014).
[Crossref]

Liao, J. K.

X. Tang, R. J. Li, J. K. Liao, H. Li, J. Li, and Y. Liu, “A scheme for variable optofluidic attenuator: Design and simulation the corresponding,” Opt. Commun. 305, 175–179 (2013).
[Crossref]

Lin, X. W.

Liu, G. L.

G. L. Liu, J. Kim, Y. Lu, and L. P. Lee, “Optofluidic control using photothermal nanoparticles,” Nat. Mater. 5(1), 27–32 (2006).
[Crossref] [PubMed]

Liu, Y.

X. Tang, R. J. Li, J. K. Liao, H. Li, J. Li, and Y. Liu, “A scheme for variable optofluidic attenuator: Design and simulation the corresponding,” Opt. Commun. 305, 175–179 (2013).
[Crossref]

Lu, Y.

G. L. Liu, J. Kim, Y. Lu, and L. P. Lee, “Optofluidic control using photothermal nanoparticles,” Nat. Mater. 5(1), 27–32 (2006).
[Crossref] [PubMed]

Lu, Y. Q.

Matloub, R.

A. Mazzalai, D. Balma, N. Chidambaram, R. Matloub, and P. Muralt, “Characterization and fatigue of the converse piezoelectric effect in PZT films for MEMS applications,” J. Microelectromech. Syst. 24(4), 831–838 (2015).
[Crossref]

Mazzalai, A.

A. Mazzalai, D. Balma, N. Chidambaram, R. Matloub, and P. Muralt, “Characterization and fatigue of the converse piezoelectric effect in PZT films for MEMS applications,” J. Microelectromech. Syst. 24(4), 831–838 (2015).
[Crossref]

Merced, E.

N. Dávila, E. Merced, and N. Sepulveda, “Electronically variable optical attenuator enabled by self-sensing in vanadium dioxide,” IEEE Photonics Technol. Lett. 26(10), 1011–1014 (2014).
[Crossref]

Michael van Dam, R.

M. R. Javed, S. Chen, H.-K. Kim, L. Wei, J. Czernin, C.-J. C. Kim, R. Michael van Dam, and P. Y. Keng, “Efficient radiosynthesis of 3′-deoxy-3′-18F-fluorothymidine using electrowetting-on-dielectric digital microfluidic chip,” J. Nucl. Med. 55(2), 321–328 (2014).
[Crossref] [PubMed]

Muralt, P.

A. Mazzalai, D. Balma, N. Chidambaram, R. Matloub, and P. Muralt, “Characterization and fatigue of the converse piezoelectric effect in PZT films for MEMS applications,” J. Microelectromech. Syst. 24(4), 831–838 (2015).
[Crossref]

Park, C. D.

D. Yang, M. Piech, N. S. Bell, D. Gust, S. Vail, A. A. Garcia, J. Schneider, C. D. Park, M. A. Hayes, and S. T. Picraux, “Photon control of liquid motion on reversibly photoresponsive surfaces,” Langmuir 23(21), 10864–10872 (2007).
[Crossref] [PubMed]

Picraux, S. T.

D. Yang, M. Piech, N. S. Bell, D. Gust, S. Vail, A. A. Garcia, J. Schneider, C. D. Park, M. A. Hayes, and S. T. Picraux, “Photon control of liquid motion on reversibly photoresponsive surfaces,” Langmuir 23(21), 10864–10872 (2007).
[Crossref] [PubMed]

Piech, M.

D. Yang, M. Piech, N. S. Bell, D. Gust, S. Vail, A. A. Garcia, J. Schneider, C. D. Park, M. A. Hayes, and S. T. Picraux, “Photon control of liquid motion on reversibly photoresponsive surfaces,” Langmuir 23(21), 10864–10872 (2007).
[Crossref] [PubMed]

Pribyl, M.

J. Hrdlička, P. Červenka, M. Přibyl, and D. Šnita, “Mathematical modeling of AC electroosmosis in microfluidic and nanofluidic chips using equilibrium and non-equilibrium approaches,” J. Appl. Electrochem. 40(5), 967–980 (2010).
[Crossref]

Reza, S. A.

S. A. Reza and N. A. Riza, “A liquid lens-based on broadband variable fiber optical attenuator,” Opt. Commun. 282(7), 1298–1303 (2009).
[Crossref]

Riza, N. A.

S. A. Reza and N. A. Riza, “A liquid lens-based on broadband variable fiber optical attenuator,” Opt. Commun. 282(7), 1298–1303 (2009).
[Crossref]

Rosenzveig, T.

Rudra, S.

S. Rudra, R. V. Hoof, and J. D. Coster, “A 2D MEMS grating based CMOS compatible poly-SiGe variable optical attenuator,” Microelectron. Eng. 105, 8–12 (2013).
[Crossref]

Schneider, J.

D. Yang, M. Piech, N. S. Bell, D. Gust, S. Vail, A. A. Garcia, J. Schneider, C. D. Park, M. A. Hayes, and S. T. Picraux, “Photon control of liquid motion on reversibly photoresponsive surfaces,” Langmuir 23(21), 10864–10872 (2007).
[Crossref] [PubMed]

Schroll, R. D.

R. D. Schroll, R. Wunenburger, A. Casner, W. W. Zhang, and J. P. Delville, “Liquid Transport Due to Light Scattering,” Phys. Rev. Lett. 98(13), 133601 (2007).
[Crossref] [PubMed]

Sepulveda, N.

N. Dávila, E. Merced, and N. Sepulveda, “Electronically variable optical attenuator enabled by self-sensing in vanadium dioxide,” IEEE Photonics Technol. Lett. 26(10), 1011–1014 (2014).
[Crossref]

Sha, J. J.

J. J. Sha and L. Y. Hou, “Research on the driving-methods of microfluidic system,” Micronanoelectron. Tech. 43(12), 586–591 (2006).

Shan, X.

P. Wei, C. Cheng, X. F. Wang, X. Shan, and X. Sun, “A high-performance hybrid current transformer based on a fast variable optical attenuator,” IEEE Trans. Power Deliv. 29(6), 2656–2663 (2014).
[Crossref]

Shen, H. H.

H. H. Shen, L. Y. Chung, and D. J. Yao, “Improving the dielectric properties of an electrowetting-on-dielectric microfluidic device with a low-pressure chemical vapor deposited Si3N4 dielectric layer,” Biomicrofluidics 9(2), 022403 (2015).
[Crossref] [PubMed]

Shi, L. Y.

Šnita, D.

J. Hrdlička, P. Červenka, M. Přibyl, and D. Šnita, “Mathematical modeling of AC electroosmosis in microfluidic and nanofluidic chips using equilibrium and non-equilibrium approaches,” J. Appl. Electrochem. 40(5), 967–980 (2010).
[Crossref]

Soon, B. W.

Sun, X.

P. Wei, C. Cheng, X. F. Wang, X. Shan, and X. Sun, “A high-performance hybrid current transformer based on a fast variable optical attenuator,” IEEE Trans. Power Deliv. 29(6), 2656–2663 (2014).
[Crossref]

Tang, X.

X. Tang, R. J. Li, J. K. Liao, H. Li, J. Li, and Y. Liu, “A scheme for variable optofluidic attenuator: Design and simulation the corresponding,” Opt. Commun. 305, 175–179 (2013).
[Crossref]

Tsai, J. M.

Unamuno, A.

A. Unamuno, R. Blue, and D. Uttamchandani, “Modeling and characterization of a vernier latching MEMS variable optical attenuator,” J. Microelectromech. Syst. 22(5), 1229–1241 (2013).
[Crossref]

Uttamchandani, D.

A. Unamuno, R. Blue, and D. Uttamchandani, “Modeling and characterization of a vernier latching MEMS variable optical attenuator,” J. Microelectromech. Syst. 22(5), 1229–1241 (2013).
[Crossref]

Vail, S.

D. Yang, M. Piech, N. S. Bell, D. Gust, S. Vail, A. A. Garcia, J. Schneider, C. D. Park, M. A. Hayes, and S. T. Picraux, “Photon control of liquid motion on reversibly photoresponsive surfaces,” Langmuir 23(21), 10864–10872 (2007).
[Crossref] [PubMed]

Wan, J.

J. Wan, Y. Zuo, Z. B. Wang, F. Yan, L. Ge, and Z. C. Liang, “Magnetohydrodynamic microfluidic drive of ionic liquids,” J. Microelectromech. Syst. 23(6), 1463–1470 (2014).
[Crossref]

Wang, X. F.

P. Wei, C. Cheng, X. F. Wang, X. Shan, and X. Sun, “A high-performance hybrid current transformer based on a fast variable optical attenuator,” IEEE Trans. Power Deliv. 29(6), 2656–2663 (2014).
[Crossref]

Wang, Z. B.

J. Wan, Y. Zuo, Z. B. Wang, F. Yan, L. Ge, and Z. C. Liang, “Magnetohydrodynamic microfluidic drive of ionic liquids,” J. Microelectromech. Syst. 23(6), 1463–1470 (2014).
[Crossref]

Wei, B. Y.

Wei, L.

M. R. Javed, S. Chen, H.-K. Kim, L. Wei, J. Czernin, C.-J. C. Kim, R. Michael van Dam, and P. Y. Keng, “Efficient radiosynthesis of 3′-deoxy-3′-18F-fluorothymidine using electrowetting-on-dielectric digital microfluidic chip,” J. Nucl. Med. 55(2), 321–328 (2014).
[Crossref] [PubMed]

Wei, P.

P. Wei, C. Cheng, X. F. Wang, X. Shan, and X. Sun, “A high-performance hybrid current transformer based on a fast variable optical attenuator,” IEEE Trans. Power Deliv. 29(6), 2656–2663 (2014).
[Crossref]

Wunenburger, R.

R. D. Schroll, R. Wunenburger, A. Casner, W. W. Zhang, and J. P. Delville, “Liquid Transport Due to Light Scattering,” Phys. Rev. Lett. 98(13), 133601 (2007).
[Crossref] [PubMed]

Yan, F.

J. Wan, Y. Zuo, Z. B. Wang, F. Yan, L. Ge, and Z. C. Liang, “Magnetohydrodynamic microfluidic drive of ionic liquids,” J. Microelectromech. Syst. 23(6), 1463–1470 (2014).
[Crossref]

Yang, D.

D. Yang, M. Piech, N. S. Bell, D. Gust, S. Vail, A. A. Garcia, J. Schneider, C. D. Park, M. A. Hayes, and S. T. Picraux, “Photon control of liquid motion on reversibly photoresponsive surfaces,” Langmuir 23(21), 10864–10872 (2007).
[Crossref] [PubMed]

Yao, D. J.

H. H. Shen, L. Y. Chung, and D. J. Yao, “Improving the dielectric properties of an electrowetting-on-dielectric microfluidic device with a low-pressure chemical vapor deposited Si3N4 dielectric layer,” Biomicrofluidics 9(2), 022403 (2015).
[Crossref] [PubMed]

Zagnoni, M.

A. Dudus, R. Blue, and M. Zagnoni, “Modeling and characterization of an electrowetting-based single-mode fiber variable optical attenuator,” IEEE J. Sel. Top. Quantum Electron. 21(4), 4500209 (2015).

Zhang, W. W.

R. D. Schroll, R. Wunenburger, A. Casner, W. W. Zhang, and J. P. Delville, “Liquid Transport Due to Light Scattering,” Phys. Rev. Lett. 98(13), 133601 (2007).
[Crossref] [PubMed]

Zhu, G.

Zuo, Y.

J. Wan, Y. Zuo, Z. B. Wang, F. Yan, L. Ge, and Z. C. Liang, “Magnetohydrodynamic microfluidic drive of ionic liquids,” J. Microelectromech. Syst. 23(6), 1463–1470 (2014).
[Crossref]

Biomicrofluidics (1)

H. H. Shen, L. Y. Chung, and D. J. Yao, “Improving the dielectric properties of an electrowetting-on-dielectric microfluidic device with a low-pressure chemical vapor deposited Si3N4 dielectric layer,” Biomicrofluidics 9(2), 022403 (2015).
[Crossref] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

A. Dudus, R. Blue, and M. Zagnoni, “Modeling and characterization of an electrowetting-based single-mode fiber variable optical attenuator,” IEEE J. Sel. Top. Quantum Electron. 21(4), 4500209 (2015).

IEEE Photonics Technol. Lett. (1)

N. Dávila, E. Merced, and N. Sepulveda, “Electronically variable optical attenuator enabled by self-sensing in vanadium dioxide,” IEEE Photonics Technol. Lett. 26(10), 1011–1014 (2014).
[Crossref]

IEEE Trans. Power Deliv. (1)

P. Wei, C. Cheng, X. F. Wang, X. Shan, and X. Sun, “A high-performance hybrid current transformer based on a fast variable optical attenuator,” IEEE Trans. Power Deliv. 29(6), 2656–2663 (2014).
[Crossref]

J. Appl. Electrochem. (1)

J. Hrdlička, P. Červenka, M. Přibyl, and D. Šnita, “Mathematical modeling of AC electroosmosis in microfluidic and nanofluidic chips using equilibrium and non-equilibrium approaches,” J. Appl. Electrochem. 40(5), 967–980 (2010).
[Crossref]

J. Microelectromech. Syst. (3)

A. Unamuno, R. Blue, and D. Uttamchandani, “Modeling and characterization of a vernier latching MEMS variable optical attenuator,” J. Microelectromech. Syst. 22(5), 1229–1241 (2013).
[Crossref]

J. Wan, Y. Zuo, Z. B. Wang, F. Yan, L. Ge, and Z. C. Liang, “Magnetohydrodynamic microfluidic drive of ionic liquids,” J. Microelectromech. Syst. 23(6), 1463–1470 (2014).
[Crossref]

A. Mazzalai, D. Balma, N. Chidambaram, R. Matloub, and P. Muralt, “Characterization and fatigue of the converse piezoelectric effect in PZT films for MEMS applications,” J. Microelectromech. Syst. 24(4), 831–838 (2015).
[Crossref]

J. Micromech. Microeng. (1)

A. S. Basu and Y. B. Gianchandani, “Virtual microfluidic traps, filters, channels and pumps using Marangoni flows,” J. Micromech. Microeng. 18(11), 115031 (2008).
[Crossref]

J. Nucl. Med. (1)

M. R. Javed, S. Chen, H.-K. Kim, L. Wei, J. Czernin, C.-J. C. Kim, R. Michael van Dam, and P. Y. Keng, “Efficient radiosynthesis of 3′-deoxy-3′-18F-fluorothymidine using electrowetting-on-dielectric digital microfluidic chip,” J. Nucl. Med. 55(2), 321–328 (2014).
[Crossref] [PubMed]

Langmuir (1)

D. Yang, M. Piech, N. S. Bell, D. Gust, S. Vail, A. A. Garcia, J. Schneider, C. D. Park, M. A. Hayes, and S. T. Picraux, “Photon control of liquid motion on reversibly photoresponsive surfaces,” Langmuir 23(21), 10864–10872 (2007).
[Crossref] [PubMed]

Microelectron. Eng. (1)

S. Rudra, R. V. Hoof, and J. D. Coster, “A 2D MEMS grating based CMOS compatible poly-SiGe variable optical attenuator,” Microelectron. Eng. 105, 8–12 (2013).
[Crossref]

Micronanoelectron. Tech. (1)

J. J. Sha and L. Y. Hou, “Research on the driving-methods of microfluidic system,” Micronanoelectron. Tech. 43(12), 586–591 (2006).

Nat. Mater. (1)

G. L. Liu, J. Kim, Y. Lu, and L. P. Lee, “Optofluidic control using photothermal nanoparticles,” Nat. Mater. 5(1), 27–32 (2006).
[Crossref] [PubMed]

Opt. Commun. (2)

S. A. Reza and N. A. Riza, “A liquid lens-based on broadband variable fiber optical attenuator,” Opt. Commun. 282(7), 1298–1303 (2009).
[Crossref]

X. Tang, R. J. Li, J. K. Liao, H. Li, J. Li, and Y. Liu, “A scheme for variable optofluidic attenuator: Design and simulation the corresponding,” Opt. Commun. 305, 175–179 (2013).
[Crossref]

Opt. Express (3)

Phys. Rev. Lett. (1)

R. D. Schroll, R. Wunenburger, A. Casner, W. W. Zhang, and J. P. Delville, “Liquid Transport Due to Light Scattering,” Phys. Rev. Lett. 98(13), 133601 (2007).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Structure diagram of the chip. (a) Basic structure; (b) Horizontal fluid-drive chip; (c) Vertical fluid-drive chip, where: 1-cover, 2- transparent square medium, 3-incident collimator, 4-microchannel, 5-exit collimator, 6-substrate, 7- liquid storage tank, 8-pump.
Fig. 2
Fig. 2 Principe sketch of the VOA chip
Fig. 3
Fig. 3 Horizontal fluid-drive VOAs. (a) VOA with a pneumatic pump; (b) VOA with a piezoelectric ceramics
Fig. 4
Fig. 4 Vertical fluid-drive VOA. (a) Chip structure; (b) Electromagnetic pump, where:1-square medium, 2-microchannel, 3-hole, 4-working layer, 5-exit collimator, 6-incident collimator, 7-absorbing-light membrane, 8-cover, 9- filling-liquid hole, 10-tube, 11- liquid storage tank and electromagnetic pump, 12-hole for the electric wire heads, 13- electromagnet, 14- permanent magnet wafer, 15- liquid storage tank, 16- electric wire, 17- electric wire heads, 18-substrate.
Fig. 5
Fig. 5 Light intensity distribution at the receiving face of the exit collimator. (a) x directional distribution; (b) y directional distribution.
Fig. 6
Fig. 6 3D light intensity distribution on the exit collimator, where the x coordinate of the liquid head face in the microchannel (ax): (a) ax = ω0; (b) ax = 0; (c) ax = −1/2 ω0; (d) ax = -ω0 .
Fig. 7
Fig. 7 Diagram of the experimental set up.
Fig. 8
Fig. 8 Experimental photos of the output laser spot. (a) 100% of the laser beam arrives at the solid-liquid interface and penetrates through the microchannel; (b) More than a half of the laser beam arrives at the solid-liquid interface and penetrates through the microchannel; (c) Less than a half of the laser beam arrives at the solid-liquid interface and penetrates through the microchannel; (d) Only the edge of the laser beam arrives at the solid-liquid interface and penetrates through the microchannel, all the laser is almost reflected at the microchannel.
Fig. 9
Fig. 9 Experimental output power and attenuation. (a) Output power versus shift of liquid head face; (b) Attenuation versus shift of liquid head face.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

φ 0 (x,y,z)= A 0 ω(z) exp( x 2 + y 2 ω 2 (z) )exp{ i[k(z+ x 2 + y 2 2R(z) ) tan 1 ( λz π ω 0 2 )] }
M( x )={ 1, x< a x 0, x> a x
φ 1 (x,y,z)= φ 0 M(x)={ φ 0 (x,y,z) 0 x< a x x> a x
φ(x,y,z)= φ( k x , k y ) exp{i[ k x x+ k y y+ ( k 2 k x 2 k y 2 ) 1 2 z]}d k x d k y
φ 2 (x,y,z)=2 A 0 π π e ik a x (1+i) k 2 kz ω 0 2 2i z 2 exp(ikz)exp( k y 2 k ω 0 2 2iz ) ax exp( x 2 ω 0 2 )exp[ ik 2z (x x ) 2 ] d x
IL=I L 1 +I L 2 =10lg | S φ 0 φ 1 *dS | 2 S | φ 0 | 2 dS× S | φ 1 | 2 dS 10lg | S φ 0 φ 2 *dS | 2 S | φ 0 | 2 dS× S | φ 2 | 2 dS

Metrics