Abstract

We demonstrate InGaN/GaN superluminescent diodes with broadened emission spectra fabricated on surface-shaped bulk GaN (0001) substrates. The patterning changes the local vicinal angle linearly along the device waveguide, which results in an indium incorporation profile in InGaN quantum wells. The structure was investigated by microphotoluminescence mapping, showing a shift of central emission wavelength from 413 nm to 430 nm. Spectral full width at half maximum of processed superluminescent diodes is equal to 6.1 nm, while the reference chips show 3.4 nm. This approach may open the path for using nitride devices in applications requiring broad emission spectrum and high beam quality, such as optical coherence tomography.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
InAlGaN superluminescent diodes fabricated on patterned substrates: an alternative semiconductor broadband emitter

Anna Kafar, Szymon Stanczyk, Marcin Sarzynski, Szymon Grzanka, Jakub Goss, Irina Makarowa, Anna Nowakowska-Siwinska, Tadek Suski, and Piotr Perlin
Photon. Res. 5(2) A30-A34 (2017)

Using tunnel junctions to grow monolithically integrated optically pumped semipolar III-nitride yellow quantum wells on top of electrically injected blue quantum wells

Stacy J. Kowsz, Erin C. Young, Benjamin P. Yonkee, Christopher D. Pynn, Robert M. Farrell, James S. Speck, Steven P. DenBaars, and Shuji Nakamura
Opt. Express 25(4) 3841-3849 (2017)

High-speed 405-nm superluminescent diode (SLD) with 807-MHz modulation bandwidth

Chao Shen, Changmin Lee, Tien Khee Ng, Shuji Nakamura, James S. Speck, Steven P. DenBaars, Ahmed Y. Alyamani, Munir M. El-Desouki, and Boon S. Ooi
Opt. Express 24(18) 20281-20286 (2016)

References

  • View by:
  • |
  • |
  • |

  1. C. F. Lin and B. L. Lee, “Extremely broadband AlGaAs/GaAs superluminescent diodes,” Appl. Phys. Lett. 71(12), 1598–1600 (1997).
    [Crossref]
  2. Z. Z. Sun, D. Ding, Q. Gong, W. Zhou, B. Xu, and Z. G. Wang, “Quantum-dot superluminescent diode: A proposal for an ultra-wide output spectrum,” Opt. Quantum Electron. 31(12), 1235–1246 (1999).
    [Crossref]
  3. N. Liu, P. Jin, and Z. G. Wang, “InAs/GaAs quantum-dot superluminescent diodes with 110nm bandwidth,” Electron. Lett. 41(25), 1400–1402 (2005).
    [Crossref]
  4. Y. C. Yoo, I. K. Han, and J. I. Lee, “High power broadband superluminescent diodes with chirped multiple quantum dots,” Electron. Lett. 43(19), 1045–1047 (2007).
    [Crossref]
  5. L. H. Li, M. Rossetti, A. Fiore, L. Occhi, and C. Velez, “Wide emission spectrum from superluminescent diodes with chirped quantum dot multilayers,” Electron. Lett. 41(1), 41–43 (2005).
    [Crossref]
  6. S. Chen, K. Zhou, Z. Zhang, J. R. Orchard, D. T. D. Childs, M. Hugues, O. Wada, and R. A. Hogg, “Hybrid quantum well/quantum dot structure for broad spectral bandwidth emitters,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1900209 (2013).
    [Crossref]
  7. S. Chen, W. Li, Z. Zhang, D. Childs, K. Zhou, J. Orchard, K. Kennedy, M. Hugues, E. Clarke, I. Ross, O. Wada, and R. Hogg, “GaAs-based superluminescent light-emitting diodes with 290-nm emission bandwidth by using hybrid quantum well/quantum dot structures,” Nanoscale Res. Lett. 10(1), 1049 (2015).
    [Crossref] [PubMed]
  8. V. Jayaraman, E. Hall, and D. Leonard, “Direct multi-lateral wafer bonding for new functionality in photonic integrated circuits,” Conference on Optoelectronic and Microelectronic Materials and Devices 2006, 180–183 (2006).
    [Crossref]
  9. E. Feltin, A. Castiglia, G. Cosendey, L. Sulmoni, J.-F. Carlin, N. Grandjean, M. Rossetti, J. Dorsaz, V. Laino, M. Duelk, and C. Velez, “Broadband blue superluminescent light-emitting diodes based on GaN,” Appl. Phys. Lett. 95(8), 081107 (2009).
    [Crossref]
  10. M. T. Hardy, K. M. Kelchner, Y. D. Lin, P. S. Hsu, K. Fujito, H. Ohta, J. S. Speck, S. Nakamura, and S. P. DenBaars, “m-Plane GaN-based blue superluminescent diodes fabricated using selective chemical wet etching,” Appl. Phys. Express 2(12), 121004 (2009).
    [Crossref]
  11. H. Ohno, K. Orita, M. Kawaguchi, K. Yamanaka, and S. Takigawa, “200mW GaN-based superluminescent diode with a novel waveguide structure,” Photonics Conference (PHO) 2011 IEEE, 505–506 (2011).
    [Crossref]
  12. F. Kopp, T. Lermer, C. Eichler, and U. Strauss, “Cyan superluminescent light-emitting diode based on InGaN quantum wells,” Appl. Phys. Express 5(8), 082105 (2012).
    [Crossref]
  13. A. Kafar, S. Stanczyk, S. Grzanka, R. Czernecki, M. Leszczynski, T. Suski, and P. Perlin, “Cavity suppression in nitride based superluminescent diodes,” J. Appl. Phys. 111(8), 083106 (2012).
    [Crossref]
  14. K. Holc, L. Marona, R. Czernecki, M. Bockowski, T. Suski, S. Najda, and P. Perlin, “Temperature dependence of superluminescence in InGaN-based superluminescent light emitting diode structures,” J. Appl. Phys. 108(1), 013110 (2010).
    [Crossref]
  15. F. Kopp, C. Eichler, A. Lell, S. Tautz, J. Ristic, B. Stojetz, C. Hoss, T. Weig, U. T. Schwarz, and U. Strauss, “Blue superluminescent light-emitting diodes with output power above 100 mW for picoprojection,” Jpn. J. Appl. Phys. 52(8S), 08JH07 (2013).
    [Crossref]
  16. A. Kafar, S. Stanczyk, G. Targowski, T. Oto, I. Makarowa, P. Wisniewski, T. Suski, and P. Perlin, “High-optical-power InGaN superluminescent diodes with “j-shape” waveguide,” Appl. Phys. Express 6(9), 092102 (2013).
    [Crossref]
  17. A. Kafar, S. Stanczyk, P. Wisniewski, T. Oto, I. Makarowa, G. Targowski, T. Suski, and P. Perlin, “Design and optimization of InGaN superluminescent diodes,” Phys. Status Solidi., A Appl. Mater. Sci. 212(5), 997–1004 (2015).
    [Crossref]
  18. U. T. Schwarz, H. Braun, K. Kojima, M. Funato, Y. Kawakami, S. Nagahama, and T. Mukai, “Investigation and comparison of optical gain spectra of (Al,In)GaN laser diodes emitting in the 375 nm to 470 nm spectral range,” Proc. SPIE 6485, 648506 (2007).
    [Crossref]
  19. M. Goano, E. Bellotti, E. Ghillino, C. Garetto, G. Ghione, and K. F. Brennan, “Band structure nonlocal pseudopotential calculation of the III-nitride wurtzite phase materials system. Part II. Ternary alloys AlxGa1−xN, InxGa1−xN, and InxAl1−xN,” J. Appl. Phys. 88(11), 6476–6482 (2000).
    [Crossref]
  20. M. Sarzynski, T. Suski, G. Staszczak, A. Khachapuridze, J. Z. Domagala, R. Czernecki, J. Plesiewicz, J. Pawlowska, S. P. Najda, M. Bockowski, P. Perlin, and M. Leszczynski, “Lateral control of indium content and wavelength of III–nitride diode lasers by means of GaN substrate patterning,” Appl. Phys. Express 5(2), 021001 (2012).
    [Crossref]
  21. M. Sarzynski, M. Leszczynski, M. Krysko, J. Z. Domagala, R. Czernecki, and T. Suski, “Influence of GaN substrate off-cut on properties of InGaN and AlGaN layers,” Cryst. Res. Technol. 47(3), 321–328 (2012).
    [Crossref]
  22. R. Dwilinski, R. Doradzinski, J. Garczynski, L. P. Sierzputowski, A. Puchalski, Y. Kanbara, K. Yagi, H. Minakuchi, and H. Hayashi, “Excellent crystallinity of truly bulk ammonothermal GaN,” J. Cryst. Growth 310(17), 3911–3916 (2008).
    [Crossref]
  23. S. Staczyk, T. Czyszanowski, A. Kafar, J. Goss, S. Grzanka, E. Grzanka, R. Czernecki, A. Bojarska, G. Targowski, M. Leszczyski, T. Suski, R. Kucharski, and P. Perlin, “Graded-index separate confinement heterostructure InGaN laser diodes,” Appl. Phys. Lett. 103(26), 261107 (2013).
    [Crossref]
  24. G. A. Alphonse, “Design of high-power superluminescent diodes with low spectral modulation,” Proc. SPIE 4648, 125–138 (2002).
    [Crossref]
  25. B. W. Hakki and T. L. Paoli, “Gain spectra in GaAs double-heterostructure injection lasers,” J. Appl. Phys. 46(3), 1299–1306 (1975).
    [Crossref]
  26. P. Perlin, G. Franssen, J. Szeszko, R. Czernecki, G. Targowski, M. Krysko, S. Grzanka, G. Nowak, E. Litwin-Staszewska, R. Piotrzkowski, M. Leszczynski, B. Łucznik, I. Grzegory, R. Jakieła, M. Albrecht, and T. Suski, “Nitride-based quantum structures and devices on modified GaN substrates,” Phys. Status Solidi., A Appl. Mater. Sci. 206(6), 1130–1134 (2009).
    [Crossref]

2015 (2)

S. Chen, W. Li, Z. Zhang, D. Childs, K. Zhou, J. Orchard, K. Kennedy, M. Hugues, E. Clarke, I. Ross, O. Wada, and R. Hogg, “GaAs-based superluminescent light-emitting diodes with 290-nm emission bandwidth by using hybrid quantum well/quantum dot structures,” Nanoscale Res. Lett. 10(1), 1049 (2015).
[Crossref] [PubMed]

A. Kafar, S. Stanczyk, P. Wisniewski, T. Oto, I. Makarowa, G. Targowski, T. Suski, and P. Perlin, “Design and optimization of InGaN superluminescent diodes,” Phys. Status Solidi., A Appl. Mater. Sci. 212(5), 997–1004 (2015).
[Crossref]

2013 (4)

F. Kopp, C. Eichler, A. Lell, S. Tautz, J. Ristic, B. Stojetz, C. Hoss, T. Weig, U. T. Schwarz, and U. Strauss, “Blue superluminescent light-emitting diodes with output power above 100 mW for picoprojection,” Jpn. J. Appl. Phys. 52(8S), 08JH07 (2013).
[Crossref]

A. Kafar, S. Stanczyk, G. Targowski, T. Oto, I. Makarowa, P. Wisniewski, T. Suski, and P. Perlin, “High-optical-power InGaN superluminescent diodes with “j-shape” waveguide,” Appl. Phys. Express 6(9), 092102 (2013).
[Crossref]

S. Chen, K. Zhou, Z. Zhang, J. R. Orchard, D. T. D. Childs, M. Hugues, O. Wada, and R. A. Hogg, “Hybrid quantum well/quantum dot structure for broad spectral bandwidth emitters,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1900209 (2013).
[Crossref]

S. Staczyk, T. Czyszanowski, A. Kafar, J. Goss, S. Grzanka, E. Grzanka, R. Czernecki, A. Bojarska, G. Targowski, M. Leszczyski, T. Suski, R. Kucharski, and P. Perlin, “Graded-index separate confinement heterostructure InGaN laser diodes,” Appl. Phys. Lett. 103(26), 261107 (2013).
[Crossref]

2012 (4)

F. Kopp, T. Lermer, C. Eichler, and U. Strauss, “Cyan superluminescent light-emitting diode based on InGaN quantum wells,” Appl. Phys. Express 5(8), 082105 (2012).
[Crossref]

A. Kafar, S. Stanczyk, S. Grzanka, R. Czernecki, M. Leszczynski, T. Suski, and P. Perlin, “Cavity suppression in nitride based superluminescent diodes,” J. Appl. Phys. 111(8), 083106 (2012).
[Crossref]

M. Sarzynski, T. Suski, G. Staszczak, A. Khachapuridze, J. Z. Domagala, R. Czernecki, J. Plesiewicz, J. Pawlowska, S. P. Najda, M. Bockowski, P. Perlin, and M. Leszczynski, “Lateral control of indium content and wavelength of III–nitride diode lasers by means of GaN substrate patterning,” Appl. Phys. Express 5(2), 021001 (2012).
[Crossref]

M. Sarzynski, M. Leszczynski, M. Krysko, J. Z. Domagala, R. Czernecki, and T. Suski, “Influence of GaN substrate off-cut on properties of InGaN and AlGaN layers,” Cryst. Res. Technol. 47(3), 321–328 (2012).
[Crossref]

2010 (1)

K. Holc, L. Marona, R. Czernecki, M. Bockowski, T. Suski, S. Najda, and P. Perlin, “Temperature dependence of superluminescence in InGaN-based superluminescent light emitting diode structures,” J. Appl. Phys. 108(1), 013110 (2010).
[Crossref]

2009 (3)

E. Feltin, A. Castiglia, G. Cosendey, L. Sulmoni, J.-F. Carlin, N. Grandjean, M. Rossetti, J. Dorsaz, V. Laino, M. Duelk, and C. Velez, “Broadband blue superluminescent light-emitting diodes based on GaN,” Appl. Phys. Lett. 95(8), 081107 (2009).
[Crossref]

M. T. Hardy, K. M. Kelchner, Y. D. Lin, P. S. Hsu, K. Fujito, H. Ohta, J. S. Speck, S. Nakamura, and S. P. DenBaars, “m-Plane GaN-based blue superluminescent diodes fabricated using selective chemical wet etching,” Appl. Phys. Express 2(12), 121004 (2009).
[Crossref]

P. Perlin, G. Franssen, J. Szeszko, R. Czernecki, G. Targowski, M. Krysko, S. Grzanka, G. Nowak, E. Litwin-Staszewska, R. Piotrzkowski, M. Leszczynski, B. Łucznik, I. Grzegory, R. Jakieła, M. Albrecht, and T. Suski, “Nitride-based quantum structures and devices on modified GaN substrates,” Phys. Status Solidi., A Appl. Mater. Sci. 206(6), 1130–1134 (2009).
[Crossref]

2008 (1)

R. Dwilinski, R. Doradzinski, J. Garczynski, L. P. Sierzputowski, A. Puchalski, Y. Kanbara, K. Yagi, H. Minakuchi, and H. Hayashi, “Excellent crystallinity of truly bulk ammonothermal GaN,” J. Cryst. Growth 310(17), 3911–3916 (2008).
[Crossref]

2007 (2)

U. T. Schwarz, H. Braun, K. Kojima, M. Funato, Y. Kawakami, S. Nagahama, and T. Mukai, “Investigation and comparison of optical gain spectra of (Al,In)GaN laser diodes emitting in the 375 nm to 470 nm spectral range,” Proc. SPIE 6485, 648506 (2007).
[Crossref]

Y. C. Yoo, I. K. Han, and J. I. Lee, “High power broadband superluminescent diodes with chirped multiple quantum dots,” Electron. Lett. 43(19), 1045–1047 (2007).
[Crossref]

2005 (2)

L. H. Li, M. Rossetti, A. Fiore, L. Occhi, and C. Velez, “Wide emission spectrum from superluminescent diodes with chirped quantum dot multilayers,” Electron. Lett. 41(1), 41–43 (2005).
[Crossref]

N. Liu, P. Jin, and Z. G. Wang, “InAs/GaAs quantum-dot superluminescent diodes with 110nm bandwidth,” Electron. Lett. 41(25), 1400–1402 (2005).
[Crossref]

2002 (1)

G. A. Alphonse, “Design of high-power superluminescent diodes with low spectral modulation,” Proc. SPIE 4648, 125–138 (2002).
[Crossref]

2000 (1)

M. Goano, E. Bellotti, E. Ghillino, C. Garetto, G. Ghione, and K. F. Brennan, “Band structure nonlocal pseudopotential calculation of the III-nitride wurtzite phase materials system. Part II. Ternary alloys AlxGa1−xN, InxGa1−xN, and InxAl1−xN,” J. Appl. Phys. 88(11), 6476–6482 (2000).
[Crossref]

1999 (1)

Z. Z. Sun, D. Ding, Q. Gong, W. Zhou, B. Xu, and Z. G. Wang, “Quantum-dot superluminescent diode: A proposal for an ultra-wide output spectrum,” Opt. Quantum Electron. 31(12), 1235–1246 (1999).
[Crossref]

1997 (1)

C. F. Lin and B. L. Lee, “Extremely broadband AlGaAs/GaAs superluminescent diodes,” Appl. Phys. Lett. 71(12), 1598–1600 (1997).
[Crossref]

1975 (1)

B. W. Hakki and T. L. Paoli, “Gain spectra in GaAs double-heterostructure injection lasers,” J. Appl. Phys. 46(3), 1299–1306 (1975).
[Crossref]

Albrecht, M.

P. Perlin, G. Franssen, J. Szeszko, R. Czernecki, G. Targowski, M. Krysko, S. Grzanka, G. Nowak, E. Litwin-Staszewska, R. Piotrzkowski, M. Leszczynski, B. Łucznik, I. Grzegory, R. Jakieła, M. Albrecht, and T. Suski, “Nitride-based quantum structures and devices on modified GaN substrates,” Phys. Status Solidi., A Appl. Mater. Sci. 206(6), 1130–1134 (2009).
[Crossref]

Alphonse, G. A.

G. A. Alphonse, “Design of high-power superluminescent diodes with low spectral modulation,” Proc. SPIE 4648, 125–138 (2002).
[Crossref]

Bellotti, E.

M. Goano, E. Bellotti, E. Ghillino, C. Garetto, G. Ghione, and K. F. Brennan, “Band structure nonlocal pseudopotential calculation of the III-nitride wurtzite phase materials system. Part II. Ternary alloys AlxGa1−xN, InxGa1−xN, and InxAl1−xN,” J. Appl. Phys. 88(11), 6476–6482 (2000).
[Crossref]

Bockowski, M.

M. Sarzynski, T. Suski, G. Staszczak, A. Khachapuridze, J. Z. Domagala, R. Czernecki, J. Plesiewicz, J. Pawlowska, S. P. Najda, M. Bockowski, P. Perlin, and M. Leszczynski, “Lateral control of indium content and wavelength of III–nitride diode lasers by means of GaN substrate patterning,” Appl. Phys. Express 5(2), 021001 (2012).
[Crossref]

K. Holc, L. Marona, R. Czernecki, M. Bockowski, T. Suski, S. Najda, and P. Perlin, “Temperature dependence of superluminescence in InGaN-based superluminescent light emitting diode structures,” J. Appl. Phys. 108(1), 013110 (2010).
[Crossref]

Bojarska, A.

S. Staczyk, T. Czyszanowski, A. Kafar, J. Goss, S. Grzanka, E. Grzanka, R. Czernecki, A. Bojarska, G. Targowski, M. Leszczyski, T. Suski, R. Kucharski, and P. Perlin, “Graded-index separate confinement heterostructure InGaN laser diodes,” Appl. Phys. Lett. 103(26), 261107 (2013).
[Crossref]

Braun, H.

U. T. Schwarz, H. Braun, K. Kojima, M. Funato, Y. Kawakami, S. Nagahama, and T. Mukai, “Investigation and comparison of optical gain spectra of (Al,In)GaN laser diodes emitting in the 375 nm to 470 nm spectral range,” Proc. SPIE 6485, 648506 (2007).
[Crossref]

Brennan, K. F.

M. Goano, E. Bellotti, E. Ghillino, C. Garetto, G. Ghione, and K. F. Brennan, “Band structure nonlocal pseudopotential calculation of the III-nitride wurtzite phase materials system. Part II. Ternary alloys AlxGa1−xN, InxGa1−xN, and InxAl1−xN,” J. Appl. Phys. 88(11), 6476–6482 (2000).
[Crossref]

Carlin, J.-F.

E. Feltin, A. Castiglia, G. Cosendey, L. Sulmoni, J.-F. Carlin, N. Grandjean, M. Rossetti, J. Dorsaz, V. Laino, M. Duelk, and C. Velez, “Broadband blue superluminescent light-emitting diodes based on GaN,” Appl. Phys. Lett. 95(8), 081107 (2009).
[Crossref]

Castiglia, A.

E. Feltin, A. Castiglia, G. Cosendey, L. Sulmoni, J.-F. Carlin, N. Grandjean, M. Rossetti, J. Dorsaz, V. Laino, M. Duelk, and C. Velez, “Broadband blue superluminescent light-emitting diodes based on GaN,” Appl. Phys. Lett. 95(8), 081107 (2009).
[Crossref]

Chen, S.

S. Chen, W. Li, Z. Zhang, D. Childs, K. Zhou, J. Orchard, K. Kennedy, M. Hugues, E. Clarke, I. Ross, O. Wada, and R. Hogg, “GaAs-based superluminescent light-emitting diodes with 290-nm emission bandwidth by using hybrid quantum well/quantum dot structures,” Nanoscale Res. Lett. 10(1), 1049 (2015).
[Crossref] [PubMed]

S. Chen, K. Zhou, Z. Zhang, J. R. Orchard, D. T. D. Childs, M. Hugues, O. Wada, and R. A. Hogg, “Hybrid quantum well/quantum dot structure for broad spectral bandwidth emitters,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1900209 (2013).
[Crossref]

Childs, D.

S. Chen, W. Li, Z. Zhang, D. Childs, K. Zhou, J. Orchard, K. Kennedy, M. Hugues, E. Clarke, I. Ross, O. Wada, and R. Hogg, “GaAs-based superluminescent light-emitting diodes with 290-nm emission bandwidth by using hybrid quantum well/quantum dot structures,” Nanoscale Res. Lett. 10(1), 1049 (2015).
[Crossref] [PubMed]

Childs, D. T. D.

S. Chen, K. Zhou, Z. Zhang, J. R. Orchard, D. T. D. Childs, M. Hugues, O. Wada, and R. A. Hogg, “Hybrid quantum well/quantum dot structure for broad spectral bandwidth emitters,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1900209 (2013).
[Crossref]

Clarke, E.

S. Chen, W. Li, Z. Zhang, D. Childs, K. Zhou, J. Orchard, K. Kennedy, M. Hugues, E. Clarke, I. Ross, O. Wada, and R. Hogg, “GaAs-based superluminescent light-emitting diodes with 290-nm emission bandwidth by using hybrid quantum well/quantum dot structures,” Nanoscale Res. Lett. 10(1), 1049 (2015).
[Crossref] [PubMed]

Cosendey, G.

E. Feltin, A. Castiglia, G. Cosendey, L. Sulmoni, J.-F. Carlin, N. Grandjean, M. Rossetti, J. Dorsaz, V. Laino, M. Duelk, and C. Velez, “Broadband blue superluminescent light-emitting diodes based on GaN,” Appl. Phys. Lett. 95(8), 081107 (2009).
[Crossref]

Czernecki, R.

S. Staczyk, T. Czyszanowski, A. Kafar, J. Goss, S. Grzanka, E. Grzanka, R. Czernecki, A. Bojarska, G. Targowski, M. Leszczyski, T. Suski, R. Kucharski, and P. Perlin, “Graded-index separate confinement heterostructure InGaN laser diodes,” Appl. Phys. Lett. 103(26), 261107 (2013).
[Crossref]

A. Kafar, S. Stanczyk, S. Grzanka, R. Czernecki, M. Leszczynski, T. Suski, and P. Perlin, “Cavity suppression in nitride based superluminescent diodes,” J. Appl. Phys. 111(8), 083106 (2012).
[Crossref]

M. Sarzynski, T. Suski, G. Staszczak, A. Khachapuridze, J. Z. Domagala, R. Czernecki, J. Plesiewicz, J. Pawlowska, S. P. Najda, M. Bockowski, P. Perlin, and M. Leszczynski, “Lateral control of indium content and wavelength of III–nitride diode lasers by means of GaN substrate patterning,” Appl. Phys. Express 5(2), 021001 (2012).
[Crossref]

M. Sarzynski, M. Leszczynski, M. Krysko, J. Z. Domagala, R. Czernecki, and T. Suski, “Influence of GaN substrate off-cut on properties of InGaN and AlGaN layers,” Cryst. Res. Technol. 47(3), 321–328 (2012).
[Crossref]

K. Holc, L. Marona, R. Czernecki, M. Bockowski, T. Suski, S. Najda, and P. Perlin, “Temperature dependence of superluminescence in InGaN-based superluminescent light emitting diode structures,” J. Appl. Phys. 108(1), 013110 (2010).
[Crossref]

P. Perlin, G. Franssen, J. Szeszko, R. Czernecki, G. Targowski, M. Krysko, S. Grzanka, G. Nowak, E. Litwin-Staszewska, R. Piotrzkowski, M. Leszczynski, B. Łucznik, I. Grzegory, R. Jakieła, M. Albrecht, and T. Suski, “Nitride-based quantum structures and devices on modified GaN substrates,” Phys. Status Solidi., A Appl. Mater. Sci. 206(6), 1130–1134 (2009).
[Crossref]

Czyszanowski, T.

S. Staczyk, T. Czyszanowski, A. Kafar, J. Goss, S. Grzanka, E. Grzanka, R. Czernecki, A. Bojarska, G. Targowski, M. Leszczyski, T. Suski, R. Kucharski, and P. Perlin, “Graded-index separate confinement heterostructure InGaN laser diodes,” Appl. Phys. Lett. 103(26), 261107 (2013).
[Crossref]

DenBaars, S. P.

M. T. Hardy, K. M. Kelchner, Y. D. Lin, P. S. Hsu, K. Fujito, H. Ohta, J. S. Speck, S. Nakamura, and S. P. DenBaars, “m-Plane GaN-based blue superluminescent diodes fabricated using selective chemical wet etching,” Appl. Phys. Express 2(12), 121004 (2009).
[Crossref]

Ding, D.

Z. Z. Sun, D. Ding, Q. Gong, W. Zhou, B. Xu, and Z. G. Wang, “Quantum-dot superluminescent diode: A proposal for an ultra-wide output spectrum,” Opt. Quantum Electron. 31(12), 1235–1246 (1999).
[Crossref]

Domagala, J. Z.

M. Sarzynski, M. Leszczynski, M. Krysko, J. Z. Domagala, R. Czernecki, and T. Suski, “Influence of GaN substrate off-cut on properties of InGaN and AlGaN layers,” Cryst. Res. Technol. 47(3), 321–328 (2012).
[Crossref]

M. Sarzynski, T. Suski, G. Staszczak, A. Khachapuridze, J. Z. Domagala, R. Czernecki, J. Plesiewicz, J. Pawlowska, S. P. Najda, M. Bockowski, P. Perlin, and M. Leszczynski, “Lateral control of indium content and wavelength of III–nitride diode lasers by means of GaN substrate patterning,” Appl. Phys. Express 5(2), 021001 (2012).
[Crossref]

Doradzinski, R.

R. Dwilinski, R. Doradzinski, J. Garczynski, L. P. Sierzputowski, A. Puchalski, Y. Kanbara, K. Yagi, H. Minakuchi, and H. Hayashi, “Excellent crystallinity of truly bulk ammonothermal GaN,” J. Cryst. Growth 310(17), 3911–3916 (2008).
[Crossref]

Dorsaz, J.

E. Feltin, A. Castiglia, G. Cosendey, L. Sulmoni, J.-F. Carlin, N. Grandjean, M. Rossetti, J. Dorsaz, V. Laino, M. Duelk, and C. Velez, “Broadband blue superluminescent light-emitting diodes based on GaN,” Appl. Phys. Lett. 95(8), 081107 (2009).
[Crossref]

Duelk, M.

E. Feltin, A. Castiglia, G. Cosendey, L. Sulmoni, J.-F. Carlin, N. Grandjean, M. Rossetti, J. Dorsaz, V. Laino, M. Duelk, and C. Velez, “Broadband blue superluminescent light-emitting diodes based on GaN,” Appl. Phys. Lett. 95(8), 081107 (2009).
[Crossref]

Dwilinski, R.

R. Dwilinski, R. Doradzinski, J. Garczynski, L. P. Sierzputowski, A. Puchalski, Y. Kanbara, K. Yagi, H. Minakuchi, and H. Hayashi, “Excellent crystallinity of truly bulk ammonothermal GaN,” J. Cryst. Growth 310(17), 3911–3916 (2008).
[Crossref]

Eichler, C.

F. Kopp, C. Eichler, A. Lell, S. Tautz, J. Ristic, B. Stojetz, C. Hoss, T. Weig, U. T. Schwarz, and U. Strauss, “Blue superluminescent light-emitting diodes with output power above 100 mW for picoprojection,” Jpn. J. Appl. Phys. 52(8S), 08JH07 (2013).
[Crossref]

F. Kopp, T. Lermer, C. Eichler, and U. Strauss, “Cyan superluminescent light-emitting diode based on InGaN quantum wells,” Appl. Phys. Express 5(8), 082105 (2012).
[Crossref]

Feltin, E.

E. Feltin, A. Castiglia, G. Cosendey, L. Sulmoni, J.-F. Carlin, N. Grandjean, M. Rossetti, J. Dorsaz, V. Laino, M. Duelk, and C. Velez, “Broadband blue superluminescent light-emitting diodes based on GaN,” Appl. Phys. Lett. 95(8), 081107 (2009).
[Crossref]

Fiore, A.

L. H. Li, M. Rossetti, A. Fiore, L. Occhi, and C. Velez, “Wide emission spectrum from superluminescent diodes with chirped quantum dot multilayers,” Electron. Lett. 41(1), 41–43 (2005).
[Crossref]

Franssen, G.

P. Perlin, G. Franssen, J. Szeszko, R. Czernecki, G. Targowski, M. Krysko, S. Grzanka, G. Nowak, E. Litwin-Staszewska, R. Piotrzkowski, M. Leszczynski, B. Łucznik, I. Grzegory, R. Jakieła, M. Albrecht, and T. Suski, “Nitride-based quantum structures and devices on modified GaN substrates,” Phys. Status Solidi., A Appl. Mater. Sci. 206(6), 1130–1134 (2009).
[Crossref]

Fujito, K.

M. T. Hardy, K. M. Kelchner, Y. D. Lin, P. S. Hsu, K. Fujito, H. Ohta, J. S. Speck, S. Nakamura, and S. P. DenBaars, “m-Plane GaN-based blue superluminescent diodes fabricated using selective chemical wet etching,” Appl. Phys. Express 2(12), 121004 (2009).
[Crossref]

Funato, M.

U. T. Schwarz, H. Braun, K. Kojima, M. Funato, Y. Kawakami, S. Nagahama, and T. Mukai, “Investigation and comparison of optical gain spectra of (Al,In)GaN laser diodes emitting in the 375 nm to 470 nm spectral range,” Proc. SPIE 6485, 648506 (2007).
[Crossref]

Garczynski, J.

R. Dwilinski, R. Doradzinski, J. Garczynski, L. P. Sierzputowski, A. Puchalski, Y. Kanbara, K. Yagi, H. Minakuchi, and H. Hayashi, “Excellent crystallinity of truly bulk ammonothermal GaN,” J. Cryst. Growth 310(17), 3911–3916 (2008).
[Crossref]

Garetto, C.

M. Goano, E. Bellotti, E. Ghillino, C. Garetto, G. Ghione, and K. F. Brennan, “Band structure nonlocal pseudopotential calculation of the III-nitride wurtzite phase materials system. Part II. Ternary alloys AlxGa1−xN, InxGa1−xN, and InxAl1−xN,” J. Appl. Phys. 88(11), 6476–6482 (2000).
[Crossref]

Ghillino, E.

M. Goano, E. Bellotti, E. Ghillino, C. Garetto, G. Ghione, and K. F. Brennan, “Band structure nonlocal pseudopotential calculation of the III-nitride wurtzite phase materials system. Part II. Ternary alloys AlxGa1−xN, InxGa1−xN, and InxAl1−xN,” J. Appl. Phys. 88(11), 6476–6482 (2000).
[Crossref]

Ghione, G.

M. Goano, E. Bellotti, E. Ghillino, C. Garetto, G. Ghione, and K. F. Brennan, “Band structure nonlocal pseudopotential calculation of the III-nitride wurtzite phase materials system. Part II. Ternary alloys AlxGa1−xN, InxGa1−xN, and InxAl1−xN,” J. Appl. Phys. 88(11), 6476–6482 (2000).
[Crossref]

Goano, M.

M. Goano, E. Bellotti, E. Ghillino, C. Garetto, G. Ghione, and K. F. Brennan, “Band structure nonlocal pseudopotential calculation of the III-nitride wurtzite phase materials system. Part II. Ternary alloys AlxGa1−xN, InxGa1−xN, and InxAl1−xN,” J. Appl. Phys. 88(11), 6476–6482 (2000).
[Crossref]

Gong, Q.

Z. Z. Sun, D. Ding, Q. Gong, W. Zhou, B. Xu, and Z. G. Wang, “Quantum-dot superluminescent diode: A proposal for an ultra-wide output spectrum,” Opt. Quantum Electron. 31(12), 1235–1246 (1999).
[Crossref]

Goss, J.

S. Staczyk, T. Czyszanowski, A. Kafar, J. Goss, S. Grzanka, E. Grzanka, R. Czernecki, A. Bojarska, G. Targowski, M. Leszczyski, T. Suski, R. Kucharski, and P. Perlin, “Graded-index separate confinement heterostructure InGaN laser diodes,” Appl. Phys. Lett. 103(26), 261107 (2013).
[Crossref]

Grandjean, N.

E. Feltin, A. Castiglia, G. Cosendey, L. Sulmoni, J.-F. Carlin, N. Grandjean, M. Rossetti, J. Dorsaz, V. Laino, M. Duelk, and C. Velez, “Broadband blue superluminescent light-emitting diodes based on GaN,” Appl. Phys. Lett. 95(8), 081107 (2009).
[Crossref]

Grzanka, E.

S. Staczyk, T. Czyszanowski, A. Kafar, J. Goss, S. Grzanka, E. Grzanka, R. Czernecki, A. Bojarska, G. Targowski, M. Leszczyski, T. Suski, R. Kucharski, and P. Perlin, “Graded-index separate confinement heterostructure InGaN laser diodes,” Appl. Phys. Lett. 103(26), 261107 (2013).
[Crossref]

Grzanka, S.

S. Staczyk, T. Czyszanowski, A. Kafar, J. Goss, S. Grzanka, E. Grzanka, R. Czernecki, A. Bojarska, G. Targowski, M. Leszczyski, T. Suski, R. Kucharski, and P. Perlin, “Graded-index separate confinement heterostructure InGaN laser diodes,” Appl. Phys. Lett. 103(26), 261107 (2013).
[Crossref]

A. Kafar, S. Stanczyk, S. Grzanka, R. Czernecki, M. Leszczynski, T. Suski, and P. Perlin, “Cavity suppression in nitride based superluminescent diodes,” J. Appl. Phys. 111(8), 083106 (2012).
[Crossref]

P. Perlin, G. Franssen, J. Szeszko, R. Czernecki, G. Targowski, M. Krysko, S. Grzanka, G. Nowak, E. Litwin-Staszewska, R. Piotrzkowski, M. Leszczynski, B. Łucznik, I. Grzegory, R. Jakieła, M. Albrecht, and T. Suski, “Nitride-based quantum structures and devices on modified GaN substrates,” Phys. Status Solidi., A Appl. Mater. Sci. 206(6), 1130–1134 (2009).
[Crossref]

Grzegory, I.

P. Perlin, G. Franssen, J. Szeszko, R. Czernecki, G. Targowski, M. Krysko, S. Grzanka, G. Nowak, E. Litwin-Staszewska, R. Piotrzkowski, M. Leszczynski, B. Łucznik, I. Grzegory, R. Jakieła, M. Albrecht, and T. Suski, “Nitride-based quantum structures and devices on modified GaN substrates,” Phys. Status Solidi., A Appl. Mater. Sci. 206(6), 1130–1134 (2009).
[Crossref]

Hakki, B. W.

B. W. Hakki and T. L. Paoli, “Gain spectra in GaAs double-heterostructure injection lasers,” J. Appl. Phys. 46(3), 1299–1306 (1975).
[Crossref]

Han, I. K.

Y. C. Yoo, I. K. Han, and J. I. Lee, “High power broadband superluminescent diodes with chirped multiple quantum dots,” Electron. Lett. 43(19), 1045–1047 (2007).
[Crossref]

Hardy, M. T.

M. T. Hardy, K. M. Kelchner, Y. D. Lin, P. S. Hsu, K. Fujito, H. Ohta, J. S. Speck, S. Nakamura, and S. P. DenBaars, “m-Plane GaN-based blue superluminescent diodes fabricated using selective chemical wet etching,” Appl. Phys. Express 2(12), 121004 (2009).
[Crossref]

Hayashi, H.

R. Dwilinski, R. Doradzinski, J. Garczynski, L. P. Sierzputowski, A. Puchalski, Y. Kanbara, K. Yagi, H. Minakuchi, and H. Hayashi, “Excellent crystallinity of truly bulk ammonothermal GaN,” J. Cryst. Growth 310(17), 3911–3916 (2008).
[Crossref]

Hogg, R.

S. Chen, W. Li, Z. Zhang, D. Childs, K. Zhou, J. Orchard, K. Kennedy, M. Hugues, E. Clarke, I. Ross, O. Wada, and R. Hogg, “GaAs-based superluminescent light-emitting diodes with 290-nm emission bandwidth by using hybrid quantum well/quantum dot structures,” Nanoscale Res. Lett. 10(1), 1049 (2015).
[Crossref] [PubMed]

Hogg, R. A.

S. Chen, K. Zhou, Z. Zhang, J. R. Orchard, D. T. D. Childs, M. Hugues, O. Wada, and R. A. Hogg, “Hybrid quantum well/quantum dot structure for broad spectral bandwidth emitters,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1900209 (2013).
[Crossref]

Holc, K.

K. Holc, L. Marona, R. Czernecki, M. Bockowski, T. Suski, S. Najda, and P. Perlin, “Temperature dependence of superluminescence in InGaN-based superluminescent light emitting diode structures,” J. Appl. Phys. 108(1), 013110 (2010).
[Crossref]

Hoss, C.

F. Kopp, C. Eichler, A. Lell, S. Tautz, J. Ristic, B. Stojetz, C. Hoss, T. Weig, U. T. Schwarz, and U. Strauss, “Blue superluminescent light-emitting diodes with output power above 100 mW for picoprojection,” Jpn. J. Appl. Phys. 52(8S), 08JH07 (2013).
[Crossref]

Hsu, P. S.

M. T. Hardy, K. M. Kelchner, Y. D. Lin, P. S. Hsu, K. Fujito, H. Ohta, J. S. Speck, S. Nakamura, and S. P. DenBaars, “m-Plane GaN-based blue superluminescent diodes fabricated using selective chemical wet etching,” Appl. Phys. Express 2(12), 121004 (2009).
[Crossref]

Hugues, M.

S. Chen, W. Li, Z. Zhang, D. Childs, K. Zhou, J. Orchard, K. Kennedy, M. Hugues, E. Clarke, I. Ross, O. Wada, and R. Hogg, “GaAs-based superluminescent light-emitting diodes with 290-nm emission bandwidth by using hybrid quantum well/quantum dot structures,” Nanoscale Res. Lett. 10(1), 1049 (2015).
[Crossref] [PubMed]

S. Chen, K. Zhou, Z. Zhang, J. R. Orchard, D. T. D. Childs, M. Hugues, O. Wada, and R. A. Hogg, “Hybrid quantum well/quantum dot structure for broad spectral bandwidth emitters,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1900209 (2013).
[Crossref]

Jakiela, R.

P. Perlin, G. Franssen, J. Szeszko, R. Czernecki, G. Targowski, M. Krysko, S. Grzanka, G. Nowak, E. Litwin-Staszewska, R. Piotrzkowski, M. Leszczynski, B. Łucznik, I. Grzegory, R. Jakieła, M. Albrecht, and T. Suski, “Nitride-based quantum structures and devices on modified GaN substrates,” Phys. Status Solidi., A Appl. Mater. Sci. 206(6), 1130–1134 (2009).
[Crossref]

Jin, P.

N. Liu, P. Jin, and Z. G. Wang, “InAs/GaAs quantum-dot superluminescent diodes with 110nm bandwidth,” Electron. Lett. 41(25), 1400–1402 (2005).
[Crossref]

Kafar, A.

A. Kafar, S. Stanczyk, P. Wisniewski, T. Oto, I. Makarowa, G. Targowski, T. Suski, and P. Perlin, “Design and optimization of InGaN superluminescent diodes,” Phys. Status Solidi., A Appl. Mater. Sci. 212(5), 997–1004 (2015).
[Crossref]

A. Kafar, S. Stanczyk, G. Targowski, T. Oto, I. Makarowa, P. Wisniewski, T. Suski, and P. Perlin, “High-optical-power InGaN superluminescent diodes with “j-shape” waveguide,” Appl. Phys. Express 6(9), 092102 (2013).
[Crossref]

S. Staczyk, T. Czyszanowski, A. Kafar, J. Goss, S. Grzanka, E. Grzanka, R. Czernecki, A. Bojarska, G. Targowski, M. Leszczyski, T. Suski, R. Kucharski, and P. Perlin, “Graded-index separate confinement heterostructure InGaN laser diodes,” Appl. Phys. Lett. 103(26), 261107 (2013).
[Crossref]

A. Kafar, S. Stanczyk, S. Grzanka, R. Czernecki, M. Leszczynski, T. Suski, and P. Perlin, “Cavity suppression in nitride based superluminescent diodes,” J. Appl. Phys. 111(8), 083106 (2012).
[Crossref]

Kanbara, Y.

R. Dwilinski, R. Doradzinski, J. Garczynski, L. P. Sierzputowski, A. Puchalski, Y. Kanbara, K. Yagi, H. Minakuchi, and H. Hayashi, “Excellent crystallinity of truly bulk ammonothermal GaN,” J. Cryst. Growth 310(17), 3911–3916 (2008).
[Crossref]

Kawakami, Y.

U. T. Schwarz, H. Braun, K. Kojima, M. Funato, Y. Kawakami, S. Nagahama, and T. Mukai, “Investigation and comparison of optical gain spectra of (Al,In)GaN laser diodes emitting in the 375 nm to 470 nm spectral range,” Proc. SPIE 6485, 648506 (2007).
[Crossref]

Kelchner, K. M.

M. T. Hardy, K. M. Kelchner, Y. D. Lin, P. S. Hsu, K. Fujito, H. Ohta, J. S. Speck, S. Nakamura, and S. P. DenBaars, “m-Plane GaN-based blue superluminescent diodes fabricated using selective chemical wet etching,” Appl. Phys. Express 2(12), 121004 (2009).
[Crossref]

Kennedy, K.

S. Chen, W. Li, Z. Zhang, D. Childs, K. Zhou, J. Orchard, K. Kennedy, M. Hugues, E. Clarke, I. Ross, O. Wada, and R. Hogg, “GaAs-based superluminescent light-emitting diodes with 290-nm emission bandwidth by using hybrid quantum well/quantum dot structures,” Nanoscale Res. Lett. 10(1), 1049 (2015).
[Crossref] [PubMed]

Khachapuridze, A.

M. Sarzynski, T. Suski, G. Staszczak, A. Khachapuridze, J. Z. Domagala, R. Czernecki, J. Plesiewicz, J. Pawlowska, S. P. Najda, M. Bockowski, P. Perlin, and M. Leszczynski, “Lateral control of indium content and wavelength of III–nitride diode lasers by means of GaN substrate patterning,” Appl. Phys. Express 5(2), 021001 (2012).
[Crossref]

Kojima, K.

U. T. Schwarz, H. Braun, K. Kojima, M. Funato, Y. Kawakami, S. Nagahama, and T. Mukai, “Investigation and comparison of optical gain spectra of (Al,In)GaN laser diodes emitting in the 375 nm to 470 nm spectral range,” Proc. SPIE 6485, 648506 (2007).
[Crossref]

Kopp, F.

F. Kopp, C. Eichler, A. Lell, S. Tautz, J. Ristic, B. Stojetz, C. Hoss, T. Weig, U. T. Schwarz, and U. Strauss, “Blue superluminescent light-emitting diodes with output power above 100 mW for picoprojection,” Jpn. J. Appl. Phys. 52(8S), 08JH07 (2013).
[Crossref]

F. Kopp, T. Lermer, C. Eichler, and U. Strauss, “Cyan superluminescent light-emitting diode based on InGaN quantum wells,” Appl. Phys. Express 5(8), 082105 (2012).
[Crossref]

Krysko, M.

M. Sarzynski, M. Leszczynski, M. Krysko, J. Z. Domagala, R. Czernecki, and T. Suski, “Influence of GaN substrate off-cut on properties of InGaN and AlGaN layers,” Cryst. Res. Technol. 47(3), 321–328 (2012).
[Crossref]

P. Perlin, G. Franssen, J. Szeszko, R. Czernecki, G. Targowski, M. Krysko, S. Grzanka, G. Nowak, E. Litwin-Staszewska, R. Piotrzkowski, M. Leszczynski, B. Łucznik, I. Grzegory, R. Jakieła, M. Albrecht, and T. Suski, “Nitride-based quantum structures and devices on modified GaN substrates,” Phys. Status Solidi., A Appl. Mater. Sci. 206(6), 1130–1134 (2009).
[Crossref]

Kucharski, R.

S. Staczyk, T. Czyszanowski, A. Kafar, J. Goss, S. Grzanka, E. Grzanka, R. Czernecki, A. Bojarska, G. Targowski, M. Leszczyski, T. Suski, R. Kucharski, and P. Perlin, “Graded-index separate confinement heterostructure InGaN laser diodes,” Appl. Phys. Lett. 103(26), 261107 (2013).
[Crossref]

Laino, V.

E. Feltin, A. Castiglia, G. Cosendey, L. Sulmoni, J.-F. Carlin, N. Grandjean, M. Rossetti, J. Dorsaz, V. Laino, M. Duelk, and C. Velez, “Broadband blue superluminescent light-emitting diodes based on GaN,” Appl. Phys. Lett. 95(8), 081107 (2009).
[Crossref]

Lee, B. L.

C. F. Lin and B. L. Lee, “Extremely broadband AlGaAs/GaAs superluminescent diodes,” Appl. Phys. Lett. 71(12), 1598–1600 (1997).
[Crossref]

Lee, J. I.

Y. C. Yoo, I. K. Han, and J. I. Lee, “High power broadband superluminescent diodes with chirped multiple quantum dots,” Electron. Lett. 43(19), 1045–1047 (2007).
[Crossref]

Lell, A.

F. Kopp, C. Eichler, A. Lell, S. Tautz, J. Ristic, B. Stojetz, C. Hoss, T. Weig, U. T. Schwarz, and U. Strauss, “Blue superluminescent light-emitting diodes with output power above 100 mW for picoprojection,” Jpn. J. Appl. Phys. 52(8S), 08JH07 (2013).
[Crossref]

Lermer, T.

F. Kopp, T. Lermer, C. Eichler, and U. Strauss, “Cyan superluminescent light-emitting diode based on InGaN quantum wells,” Appl. Phys. Express 5(8), 082105 (2012).
[Crossref]

Leszczynski, M.

A. Kafar, S. Stanczyk, S. Grzanka, R. Czernecki, M. Leszczynski, T. Suski, and P. Perlin, “Cavity suppression in nitride based superluminescent diodes,” J. Appl. Phys. 111(8), 083106 (2012).
[Crossref]

M. Sarzynski, M. Leszczynski, M. Krysko, J. Z. Domagala, R. Czernecki, and T. Suski, “Influence of GaN substrate off-cut on properties of InGaN and AlGaN layers,” Cryst. Res. Technol. 47(3), 321–328 (2012).
[Crossref]

M. Sarzynski, T. Suski, G. Staszczak, A. Khachapuridze, J. Z. Domagala, R. Czernecki, J. Plesiewicz, J. Pawlowska, S. P. Najda, M. Bockowski, P. Perlin, and M. Leszczynski, “Lateral control of indium content and wavelength of III–nitride diode lasers by means of GaN substrate patterning,” Appl. Phys. Express 5(2), 021001 (2012).
[Crossref]

P. Perlin, G. Franssen, J. Szeszko, R. Czernecki, G. Targowski, M. Krysko, S. Grzanka, G. Nowak, E. Litwin-Staszewska, R. Piotrzkowski, M. Leszczynski, B. Łucznik, I. Grzegory, R. Jakieła, M. Albrecht, and T. Suski, “Nitride-based quantum structures and devices on modified GaN substrates,” Phys. Status Solidi., A Appl. Mater. Sci. 206(6), 1130–1134 (2009).
[Crossref]

Leszczyski, M.

S. Staczyk, T. Czyszanowski, A. Kafar, J. Goss, S. Grzanka, E. Grzanka, R. Czernecki, A. Bojarska, G. Targowski, M. Leszczyski, T. Suski, R. Kucharski, and P. Perlin, “Graded-index separate confinement heterostructure InGaN laser diodes,” Appl. Phys. Lett. 103(26), 261107 (2013).
[Crossref]

Li, L. H.

L. H. Li, M. Rossetti, A. Fiore, L. Occhi, and C. Velez, “Wide emission spectrum from superluminescent diodes with chirped quantum dot multilayers,” Electron. Lett. 41(1), 41–43 (2005).
[Crossref]

Li, W.

S. Chen, W. Li, Z. Zhang, D. Childs, K. Zhou, J. Orchard, K. Kennedy, M. Hugues, E. Clarke, I. Ross, O. Wada, and R. Hogg, “GaAs-based superluminescent light-emitting diodes with 290-nm emission bandwidth by using hybrid quantum well/quantum dot structures,” Nanoscale Res. Lett. 10(1), 1049 (2015).
[Crossref] [PubMed]

Lin, C. F.

C. F. Lin and B. L. Lee, “Extremely broadband AlGaAs/GaAs superluminescent diodes,” Appl. Phys. Lett. 71(12), 1598–1600 (1997).
[Crossref]

Lin, Y. D.

M. T. Hardy, K. M. Kelchner, Y. D. Lin, P. S. Hsu, K. Fujito, H. Ohta, J. S. Speck, S. Nakamura, and S. P. DenBaars, “m-Plane GaN-based blue superluminescent diodes fabricated using selective chemical wet etching,” Appl. Phys. Express 2(12), 121004 (2009).
[Crossref]

Litwin-Staszewska, E.

P. Perlin, G. Franssen, J. Szeszko, R. Czernecki, G. Targowski, M. Krysko, S. Grzanka, G. Nowak, E. Litwin-Staszewska, R. Piotrzkowski, M. Leszczynski, B. Łucznik, I. Grzegory, R. Jakieła, M. Albrecht, and T. Suski, “Nitride-based quantum structures and devices on modified GaN substrates,” Phys. Status Solidi., A Appl. Mater. Sci. 206(6), 1130–1134 (2009).
[Crossref]

Liu, N.

N. Liu, P. Jin, and Z. G. Wang, “InAs/GaAs quantum-dot superluminescent diodes with 110nm bandwidth,” Electron. Lett. 41(25), 1400–1402 (2005).
[Crossref]

Lucznik, B.

P. Perlin, G. Franssen, J. Szeszko, R. Czernecki, G. Targowski, M. Krysko, S. Grzanka, G. Nowak, E. Litwin-Staszewska, R. Piotrzkowski, M. Leszczynski, B. Łucznik, I. Grzegory, R. Jakieła, M. Albrecht, and T. Suski, “Nitride-based quantum structures and devices on modified GaN substrates,” Phys. Status Solidi., A Appl. Mater. Sci. 206(6), 1130–1134 (2009).
[Crossref]

Makarowa, I.

A. Kafar, S. Stanczyk, P. Wisniewski, T. Oto, I. Makarowa, G. Targowski, T. Suski, and P. Perlin, “Design and optimization of InGaN superluminescent diodes,” Phys. Status Solidi., A Appl. Mater. Sci. 212(5), 997–1004 (2015).
[Crossref]

A. Kafar, S. Stanczyk, G. Targowski, T. Oto, I. Makarowa, P. Wisniewski, T. Suski, and P. Perlin, “High-optical-power InGaN superluminescent diodes with “j-shape” waveguide,” Appl. Phys. Express 6(9), 092102 (2013).
[Crossref]

Marona, L.

K. Holc, L. Marona, R. Czernecki, M. Bockowski, T. Suski, S. Najda, and P. Perlin, “Temperature dependence of superluminescence in InGaN-based superluminescent light emitting diode structures,” J. Appl. Phys. 108(1), 013110 (2010).
[Crossref]

Minakuchi, H.

R. Dwilinski, R. Doradzinski, J. Garczynski, L. P. Sierzputowski, A. Puchalski, Y. Kanbara, K. Yagi, H. Minakuchi, and H. Hayashi, “Excellent crystallinity of truly bulk ammonothermal GaN,” J. Cryst. Growth 310(17), 3911–3916 (2008).
[Crossref]

Mukai, T.

U. T. Schwarz, H. Braun, K. Kojima, M. Funato, Y. Kawakami, S. Nagahama, and T. Mukai, “Investigation and comparison of optical gain spectra of (Al,In)GaN laser diodes emitting in the 375 nm to 470 nm spectral range,” Proc. SPIE 6485, 648506 (2007).
[Crossref]

Nagahama, S.

U. T. Schwarz, H. Braun, K. Kojima, M. Funato, Y. Kawakami, S. Nagahama, and T. Mukai, “Investigation and comparison of optical gain spectra of (Al,In)GaN laser diodes emitting in the 375 nm to 470 nm spectral range,” Proc. SPIE 6485, 648506 (2007).
[Crossref]

Najda, S.

K. Holc, L. Marona, R. Czernecki, M. Bockowski, T. Suski, S. Najda, and P. Perlin, “Temperature dependence of superluminescence in InGaN-based superluminescent light emitting diode structures,” J. Appl. Phys. 108(1), 013110 (2010).
[Crossref]

Najda, S. P.

M. Sarzynski, T. Suski, G. Staszczak, A. Khachapuridze, J. Z. Domagala, R. Czernecki, J. Plesiewicz, J. Pawlowska, S. P. Najda, M. Bockowski, P. Perlin, and M. Leszczynski, “Lateral control of indium content and wavelength of III–nitride diode lasers by means of GaN substrate patterning,” Appl. Phys. Express 5(2), 021001 (2012).
[Crossref]

Nakamura, S.

M. T. Hardy, K. M. Kelchner, Y. D. Lin, P. S. Hsu, K. Fujito, H. Ohta, J. S. Speck, S. Nakamura, and S. P. DenBaars, “m-Plane GaN-based blue superluminescent diodes fabricated using selective chemical wet etching,” Appl. Phys. Express 2(12), 121004 (2009).
[Crossref]

Nowak, G.

P. Perlin, G. Franssen, J. Szeszko, R. Czernecki, G. Targowski, M. Krysko, S. Grzanka, G. Nowak, E. Litwin-Staszewska, R. Piotrzkowski, M. Leszczynski, B. Łucznik, I. Grzegory, R. Jakieła, M. Albrecht, and T. Suski, “Nitride-based quantum structures and devices on modified GaN substrates,” Phys. Status Solidi., A Appl. Mater. Sci. 206(6), 1130–1134 (2009).
[Crossref]

Occhi, L.

L. H. Li, M. Rossetti, A. Fiore, L. Occhi, and C. Velez, “Wide emission spectrum from superluminescent diodes with chirped quantum dot multilayers,” Electron. Lett. 41(1), 41–43 (2005).
[Crossref]

Ohta, H.

M. T. Hardy, K. M. Kelchner, Y. D. Lin, P. S. Hsu, K. Fujito, H. Ohta, J. S. Speck, S. Nakamura, and S. P. DenBaars, “m-Plane GaN-based blue superluminescent diodes fabricated using selective chemical wet etching,” Appl. Phys. Express 2(12), 121004 (2009).
[Crossref]

Orchard, J.

S. Chen, W. Li, Z. Zhang, D. Childs, K. Zhou, J. Orchard, K. Kennedy, M. Hugues, E. Clarke, I. Ross, O. Wada, and R. Hogg, “GaAs-based superluminescent light-emitting diodes with 290-nm emission bandwidth by using hybrid quantum well/quantum dot structures,” Nanoscale Res. Lett. 10(1), 1049 (2015).
[Crossref] [PubMed]

Orchard, J. R.

S. Chen, K. Zhou, Z. Zhang, J. R. Orchard, D. T. D. Childs, M. Hugues, O. Wada, and R. A. Hogg, “Hybrid quantum well/quantum dot structure for broad spectral bandwidth emitters,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1900209 (2013).
[Crossref]

Oto, T.

A. Kafar, S. Stanczyk, P. Wisniewski, T. Oto, I. Makarowa, G. Targowski, T. Suski, and P. Perlin, “Design and optimization of InGaN superluminescent diodes,” Phys. Status Solidi., A Appl. Mater. Sci. 212(5), 997–1004 (2015).
[Crossref]

A. Kafar, S. Stanczyk, G. Targowski, T. Oto, I. Makarowa, P. Wisniewski, T. Suski, and P. Perlin, “High-optical-power InGaN superluminescent diodes with “j-shape” waveguide,” Appl. Phys. Express 6(9), 092102 (2013).
[Crossref]

Paoli, T. L.

B. W. Hakki and T. L. Paoli, “Gain spectra in GaAs double-heterostructure injection lasers,” J. Appl. Phys. 46(3), 1299–1306 (1975).
[Crossref]

Pawlowska, J.

M. Sarzynski, T. Suski, G. Staszczak, A. Khachapuridze, J. Z. Domagala, R. Czernecki, J. Plesiewicz, J. Pawlowska, S. P. Najda, M. Bockowski, P. Perlin, and M. Leszczynski, “Lateral control of indium content and wavelength of III–nitride diode lasers by means of GaN substrate patterning,” Appl. Phys. Express 5(2), 021001 (2012).
[Crossref]

Perlin, P.

A. Kafar, S. Stanczyk, P. Wisniewski, T. Oto, I. Makarowa, G. Targowski, T. Suski, and P. Perlin, “Design and optimization of InGaN superluminescent diodes,” Phys. Status Solidi., A Appl. Mater. Sci. 212(5), 997–1004 (2015).
[Crossref]

A. Kafar, S. Stanczyk, G. Targowski, T. Oto, I. Makarowa, P. Wisniewski, T. Suski, and P. Perlin, “High-optical-power InGaN superluminescent diodes with “j-shape” waveguide,” Appl. Phys. Express 6(9), 092102 (2013).
[Crossref]

S. Staczyk, T. Czyszanowski, A. Kafar, J. Goss, S. Grzanka, E. Grzanka, R. Czernecki, A. Bojarska, G. Targowski, M. Leszczyski, T. Suski, R. Kucharski, and P. Perlin, “Graded-index separate confinement heterostructure InGaN laser diodes,” Appl. Phys. Lett. 103(26), 261107 (2013).
[Crossref]

M. Sarzynski, T. Suski, G. Staszczak, A. Khachapuridze, J. Z. Domagala, R. Czernecki, J. Plesiewicz, J. Pawlowska, S. P. Najda, M. Bockowski, P. Perlin, and M. Leszczynski, “Lateral control of indium content and wavelength of III–nitride diode lasers by means of GaN substrate patterning,” Appl. Phys. Express 5(2), 021001 (2012).
[Crossref]

A. Kafar, S. Stanczyk, S. Grzanka, R. Czernecki, M. Leszczynski, T. Suski, and P. Perlin, “Cavity suppression in nitride based superluminescent diodes,” J. Appl. Phys. 111(8), 083106 (2012).
[Crossref]

K. Holc, L. Marona, R. Czernecki, M. Bockowski, T. Suski, S. Najda, and P. Perlin, “Temperature dependence of superluminescence in InGaN-based superluminescent light emitting diode structures,” J. Appl. Phys. 108(1), 013110 (2010).
[Crossref]

P. Perlin, G. Franssen, J. Szeszko, R. Czernecki, G. Targowski, M. Krysko, S. Grzanka, G. Nowak, E. Litwin-Staszewska, R. Piotrzkowski, M. Leszczynski, B. Łucznik, I. Grzegory, R. Jakieła, M. Albrecht, and T. Suski, “Nitride-based quantum structures and devices on modified GaN substrates,” Phys. Status Solidi., A Appl. Mater. Sci. 206(6), 1130–1134 (2009).
[Crossref]

Piotrzkowski, R.

P. Perlin, G. Franssen, J. Szeszko, R. Czernecki, G. Targowski, M. Krysko, S. Grzanka, G. Nowak, E. Litwin-Staszewska, R. Piotrzkowski, M. Leszczynski, B. Łucznik, I. Grzegory, R. Jakieła, M. Albrecht, and T. Suski, “Nitride-based quantum structures and devices on modified GaN substrates,” Phys. Status Solidi., A Appl. Mater. Sci. 206(6), 1130–1134 (2009).
[Crossref]

Plesiewicz, J.

M. Sarzynski, T. Suski, G. Staszczak, A. Khachapuridze, J. Z. Domagala, R. Czernecki, J. Plesiewicz, J. Pawlowska, S. P. Najda, M. Bockowski, P. Perlin, and M. Leszczynski, “Lateral control of indium content and wavelength of III–nitride diode lasers by means of GaN substrate patterning,” Appl. Phys. Express 5(2), 021001 (2012).
[Crossref]

Puchalski, A.

R. Dwilinski, R. Doradzinski, J. Garczynski, L. P. Sierzputowski, A. Puchalski, Y. Kanbara, K. Yagi, H. Minakuchi, and H. Hayashi, “Excellent crystallinity of truly bulk ammonothermal GaN,” J. Cryst. Growth 310(17), 3911–3916 (2008).
[Crossref]

Ristic, J.

F. Kopp, C. Eichler, A. Lell, S. Tautz, J. Ristic, B. Stojetz, C. Hoss, T. Weig, U. T. Schwarz, and U. Strauss, “Blue superluminescent light-emitting diodes with output power above 100 mW for picoprojection,” Jpn. J. Appl. Phys. 52(8S), 08JH07 (2013).
[Crossref]

Ross, I.

S. Chen, W. Li, Z. Zhang, D. Childs, K. Zhou, J. Orchard, K. Kennedy, M. Hugues, E. Clarke, I. Ross, O. Wada, and R. Hogg, “GaAs-based superluminescent light-emitting diodes with 290-nm emission bandwidth by using hybrid quantum well/quantum dot structures,” Nanoscale Res. Lett. 10(1), 1049 (2015).
[Crossref] [PubMed]

Rossetti, M.

E. Feltin, A. Castiglia, G. Cosendey, L. Sulmoni, J.-F. Carlin, N. Grandjean, M. Rossetti, J. Dorsaz, V. Laino, M. Duelk, and C. Velez, “Broadband blue superluminescent light-emitting diodes based on GaN,” Appl. Phys. Lett. 95(8), 081107 (2009).
[Crossref]

L. H. Li, M. Rossetti, A. Fiore, L. Occhi, and C. Velez, “Wide emission spectrum from superluminescent diodes with chirped quantum dot multilayers,” Electron. Lett. 41(1), 41–43 (2005).
[Crossref]

Sarzynski, M.

M. Sarzynski, M. Leszczynski, M. Krysko, J. Z. Domagala, R. Czernecki, and T. Suski, “Influence of GaN substrate off-cut on properties of InGaN and AlGaN layers,” Cryst. Res. Technol. 47(3), 321–328 (2012).
[Crossref]

M. Sarzynski, T. Suski, G. Staszczak, A. Khachapuridze, J. Z. Domagala, R. Czernecki, J. Plesiewicz, J. Pawlowska, S. P. Najda, M. Bockowski, P. Perlin, and M. Leszczynski, “Lateral control of indium content and wavelength of III–nitride diode lasers by means of GaN substrate patterning,” Appl. Phys. Express 5(2), 021001 (2012).
[Crossref]

Schwarz, U. T.

F. Kopp, C. Eichler, A. Lell, S. Tautz, J. Ristic, B. Stojetz, C. Hoss, T. Weig, U. T. Schwarz, and U. Strauss, “Blue superluminescent light-emitting diodes with output power above 100 mW for picoprojection,” Jpn. J. Appl. Phys. 52(8S), 08JH07 (2013).
[Crossref]

U. T. Schwarz, H. Braun, K. Kojima, M. Funato, Y. Kawakami, S. Nagahama, and T. Mukai, “Investigation and comparison of optical gain spectra of (Al,In)GaN laser diodes emitting in the 375 nm to 470 nm spectral range,” Proc. SPIE 6485, 648506 (2007).
[Crossref]

Sierzputowski, L. P.

R. Dwilinski, R. Doradzinski, J. Garczynski, L. P. Sierzputowski, A. Puchalski, Y. Kanbara, K. Yagi, H. Minakuchi, and H. Hayashi, “Excellent crystallinity of truly bulk ammonothermal GaN,” J. Cryst. Growth 310(17), 3911–3916 (2008).
[Crossref]

Speck, J. S.

M. T. Hardy, K. M. Kelchner, Y. D. Lin, P. S. Hsu, K. Fujito, H. Ohta, J. S. Speck, S. Nakamura, and S. P. DenBaars, “m-Plane GaN-based blue superluminescent diodes fabricated using selective chemical wet etching,” Appl. Phys. Express 2(12), 121004 (2009).
[Crossref]

Staczyk, S.

S. Staczyk, T. Czyszanowski, A. Kafar, J. Goss, S. Grzanka, E. Grzanka, R. Czernecki, A. Bojarska, G. Targowski, M. Leszczyski, T. Suski, R. Kucharski, and P. Perlin, “Graded-index separate confinement heterostructure InGaN laser diodes,” Appl. Phys. Lett. 103(26), 261107 (2013).
[Crossref]

Stanczyk, S.

A. Kafar, S. Stanczyk, P. Wisniewski, T. Oto, I. Makarowa, G. Targowski, T. Suski, and P. Perlin, “Design and optimization of InGaN superluminescent diodes,” Phys. Status Solidi., A Appl. Mater. Sci. 212(5), 997–1004 (2015).
[Crossref]

A. Kafar, S. Stanczyk, G. Targowski, T. Oto, I. Makarowa, P. Wisniewski, T. Suski, and P. Perlin, “High-optical-power InGaN superluminescent diodes with “j-shape” waveguide,” Appl. Phys. Express 6(9), 092102 (2013).
[Crossref]

A. Kafar, S. Stanczyk, S. Grzanka, R. Czernecki, M. Leszczynski, T. Suski, and P. Perlin, “Cavity suppression in nitride based superluminescent diodes,” J. Appl. Phys. 111(8), 083106 (2012).
[Crossref]

Staszczak, G.

M. Sarzynski, T. Suski, G. Staszczak, A. Khachapuridze, J. Z. Domagala, R. Czernecki, J. Plesiewicz, J. Pawlowska, S. P. Najda, M. Bockowski, P. Perlin, and M. Leszczynski, “Lateral control of indium content and wavelength of III–nitride diode lasers by means of GaN substrate patterning,” Appl. Phys. Express 5(2), 021001 (2012).
[Crossref]

Stojetz, B.

F. Kopp, C. Eichler, A. Lell, S. Tautz, J. Ristic, B. Stojetz, C. Hoss, T. Weig, U. T. Schwarz, and U. Strauss, “Blue superluminescent light-emitting diodes with output power above 100 mW for picoprojection,” Jpn. J. Appl. Phys. 52(8S), 08JH07 (2013).
[Crossref]

Strauss, U.

F. Kopp, C. Eichler, A. Lell, S. Tautz, J. Ristic, B. Stojetz, C. Hoss, T. Weig, U. T. Schwarz, and U. Strauss, “Blue superluminescent light-emitting diodes with output power above 100 mW for picoprojection,” Jpn. J. Appl. Phys. 52(8S), 08JH07 (2013).
[Crossref]

F. Kopp, T. Lermer, C. Eichler, and U. Strauss, “Cyan superluminescent light-emitting diode based on InGaN quantum wells,” Appl. Phys. Express 5(8), 082105 (2012).
[Crossref]

Sulmoni, L.

E. Feltin, A. Castiglia, G. Cosendey, L. Sulmoni, J.-F. Carlin, N. Grandjean, M. Rossetti, J. Dorsaz, V. Laino, M. Duelk, and C. Velez, “Broadband blue superluminescent light-emitting diodes based on GaN,” Appl. Phys. Lett. 95(8), 081107 (2009).
[Crossref]

Sun, Z. Z.

Z. Z. Sun, D. Ding, Q. Gong, W. Zhou, B. Xu, and Z. G. Wang, “Quantum-dot superluminescent diode: A proposal for an ultra-wide output spectrum,” Opt. Quantum Electron. 31(12), 1235–1246 (1999).
[Crossref]

Suski, T.

A. Kafar, S. Stanczyk, P. Wisniewski, T. Oto, I. Makarowa, G. Targowski, T. Suski, and P. Perlin, “Design and optimization of InGaN superluminescent diodes,” Phys. Status Solidi., A Appl. Mater. Sci. 212(5), 997–1004 (2015).
[Crossref]

A. Kafar, S. Stanczyk, G. Targowski, T. Oto, I. Makarowa, P. Wisniewski, T. Suski, and P. Perlin, “High-optical-power InGaN superluminescent diodes with “j-shape” waveguide,” Appl. Phys. Express 6(9), 092102 (2013).
[Crossref]

S. Staczyk, T. Czyszanowski, A. Kafar, J. Goss, S. Grzanka, E. Grzanka, R. Czernecki, A. Bojarska, G. Targowski, M. Leszczyski, T. Suski, R. Kucharski, and P. Perlin, “Graded-index separate confinement heterostructure InGaN laser diodes,” Appl. Phys. Lett. 103(26), 261107 (2013).
[Crossref]

M. Sarzynski, T. Suski, G. Staszczak, A. Khachapuridze, J. Z. Domagala, R. Czernecki, J. Plesiewicz, J. Pawlowska, S. P. Najda, M. Bockowski, P. Perlin, and M. Leszczynski, “Lateral control of indium content and wavelength of III–nitride diode lasers by means of GaN substrate patterning,” Appl. Phys. Express 5(2), 021001 (2012).
[Crossref]

M. Sarzynski, M. Leszczynski, M. Krysko, J. Z. Domagala, R. Czernecki, and T. Suski, “Influence of GaN substrate off-cut on properties of InGaN and AlGaN layers,” Cryst. Res. Technol. 47(3), 321–328 (2012).
[Crossref]

A. Kafar, S. Stanczyk, S. Grzanka, R. Czernecki, M. Leszczynski, T. Suski, and P. Perlin, “Cavity suppression in nitride based superluminescent diodes,” J. Appl. Phys. 111(8), 083106 (2012).
[Crossref]

K. Holc, L. Marona, R. Czernecki, M. Bockowski, T. Suski, S. Najda, and P. Perlin, “Temperature dependence of superluminescence in InGaN-based superluminescent light emitting diode structures,” J. Appl. Phys. 108(1), 013110 (2010).
[Crossref]

P. Perlin, G. Franssen, J. Szeszko, R. Czernecki, G. Targowski, M. Krysko, S. Grzanka, G. Nowak, E. Litwin-Staszewska, R. Piotrzkowski, M. Leszczynski, B. Łucznik, I. Grzegory, R. Jakieła, M. Albrecht, and T. Suski, “Nitride-based quantum structures and devices on modified GaN substrates,” Phys. Status Solidi., A Appl. Mater. Sci. 206(6), 1130–1134 (2009).
[Crossref]

Szeszko, J.

P. Perlin, G. Franssen, J. Szeszko, R. Czernecki, G. Targowski, M. Krysko, S. Grzanka, G. Nowak, E. Litwin-Staszewska, R. Piotrzkowski, M. Leszczynski, B. Łucznik, I. Grzegory, R. Jakieła, M. Albrecht, and T. Suski, “Nitride-based quantum structures and devices on modified GaN substrates,” Phys. Status Solidi., A Appl. Mater. Sci. 206(6), 1130–1134 (2009).
[Crossref]

Targowski, G.

A. Kafar, S. Stanczyk, P. Wisniewski, T. Oto, I. Makarowa, G. Targowski, T. Suski, and P. Perlin, “Design and optimization of InGaN superluminescent diodes,” Phys. Status Solidi., A Appl. Mater. Sci. 212(5), 997–1004 (2015).
[Crossref]

A. Kafar, S. Stanczyk, G. Targowski, T. Oto, I. Makarowa, P. Wisniewski, T. Suski, and P. Perlin, “High-optical-power InGaN superluminescent diodes with “j-shape” waveguide,” Appl. Phys. Express 6(9), 092102 (2013).
[Crossref]

S. Staczyk, T. Czyszanowski, A. Kafar, J. Goss, S. Grzanka, E. Grzanka, R. Czernecki, A. Bojarska, G. Targowski, M. Leszczyski, T. Suski, R. Kucharski, and P. Perlin, “Graded-index separate confinement heterostructure InGaN laser diodes,” Appl. Phys. Lett. 103(26), 261107 (2013).
[Crossref]

P. Perlin, G. Franssen, J. Szeszko, R. Czernecki, G. Targowski, M. Krysko, S. Grzanka, G. Nowak, E. Litwin-Staszewska, R. Piotrzkowski, M. Leszczynski, B. Łucznik, I. Grzegory, R. Jakieła, M. Albrecht, and T. Suski, “Nitride-based quantum structures and devices on modified GaN substrates,” Phys. Status Solidi., A Appl. Mater. Sci. 206(6), 1130–1134 (2009).
[Crossref]

Tautz, S.

F. Kopp, C. Eichler, A. Lell, S. Tautz, J. Ristic, B. Stojetz, C. Hoss, T. Weig, U. T. Schwarz, and U. Strauss, “Blue superluminescent light-emitting diodes with output power above 100 mW for picoprojection,” Jpn. J. Appl. Phys. 52(8S), 08JH07 (2013).
[Crossref]

Velez, C.

E. Feltin, A. Castiglia, G. Cosendey, L. Sulmoni, J.-F. Carlin, N. Grandjean, M. Rossetti, J. Dorsaz, V. Laino, M. Duelk, and C. Velez, “Broadband blue superluminescent light-emitting diodes based on GaN,” Appl. Phys. Lett. 95(8), 081107 (2009).
[Crossref]

L. H. Li, M. Rossetti, A. Fiore, L. Occhi, and C. Velez, “Wide emission spectrum from superluminescent diodes with chirped quantum dot multilayers,” Electron. Lett. 41(1), 41–43 (2005).
[Crossref]

Wada, O.

S. Chen, W. Li, Z. Zhang, D. Childs, K. Zhou, J. Orchard, K. Kennedy, M. Hugues, E. Clarke, I. Ross, O. Wada, and R. Hogg, “GaAs-based superluminescent light-emitting diodes with 290-nm emission bandwidth by using hybrid quantum well/quantum dot structures,” Nanoscale Res. Lett. 10(1), 1049 (2015).
[Crossref] [PubMed]

S. Chen, K. Zhou, Z. Zhang, J. R. Orchard, D. T. D. Childs, M. Hugues, O. Wada, and R. A. Hogg, “Hybrid quantum well/quantum dot structure for broad spectral bandwidth emitters,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1900209 (2013).
[Crossref]

Wang, Z. G.

N. Liu, P. Jin, and Z. G. Wang, “InAs/GaAs quantum-dot superluminescent diodes with 110nm bandwidth,” Electron. Lett. 41(25), 1400–1402 (2005).
[Crossref]

Z. Z. Sun, D. Ding, Q. Gong, W. Zhou, B. Xu, and Z. G. Wang, “Quantum-dot superluminescent diode: A proposal for an ultra-wide output spectrum,” Opt. Quantum Electron. 31(12), 1235–1246 (1999).
[Crossref]

Weig, T.

F. Kopp, C. Eichler, A. Lell, S. Tautz, J. Ristic, B. Stojetz, C. Hoss, T. Weig, U. T. Schwarz, and U. Strauss, “Blue superluminescent light-emitting diodes with output power above 100 mW for picoprojection,” Jpn. J. Appl. Phys. 52(8S), 08JH07 (2013).
[Crossref]

Wisniewski, P.

A. Kafar, S. Stanczyk, P. Wisniewski, T. Oto, I. Makarowa, G. Targowski, T. Suski, and P. Perlin, “Design and optimization of InGaN superluminescent diodes,” Phys. Status Solidi., A Appl. Mater. Sci. 212(5), 997–1004 (2015).
[Crossref]

A. Kafar, S. Stanczyk, G. Targowski, T. Oto, I. Makarowa, P. Wisniewski, T. Suski, and P. Perlin, “High-optical-power InGaN superluminescent diodes with “j-shape” waveguide,” Appl. Phys. Express 6(9), 092102 (2013).
[Crossref]

Xu, B.

Z. Z. Sun, D. Ding, Q. Gong, W. Zhou, B. Xu, and Z. G. Wang, “Quantum-dot superluminescent diode: A proposal for an ultra-wide output spectrum,” Opt. Quantum Electron. 31(12), 1235–1246 (1999).
[Crossref]

Yagi, K.

R. Dwilinski, R. Doradzinski, J. Garczynski, L. P. Sierzputowski, A. Puchalski, Y. Kanbara, K. Yagi, H. Minakuchi, and H. Hayashi, “Excellent crystallinity of truly bulk ammonothermal GaN,” J. Cryst. Growth 310(17), 3911–3916 (2008).
[Crossref]

Yoo, Y. C.

Y. C. Yoo, I. K. Han, and J. I. Lee, “High power broadband superluminescent diodes with chirped multiple quantum dots,” Electron. Lett. 43(19), 1045–1047 (2007).
[Crossref]

Zhang, Z.

S. Chen, W. Li, Z. Zhang, D. Childs, K. Zhou, J. Orchard, K. Kennedy, M. Hugues, E. Clarke, I. Ross, O. Wada, and R. Hogg, “GaAs-based superluminescent light-emitting diodes with 290-nm emission bandwidth by using hybrid quantum well/quantum dot structures,” Nanoscale Res. Lett. 10(1), 1049 (2015).
[Crossref] [PubMed]

S. Chen, K. Zhou, Z. Zhang, J. R. Orchard, D. T. D. Childs, M. Hugues, O. Wada, and R. A. Hogg, “Hybrid quantum well/quantum dot structure for broad spectral bandwidth emitters,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1900209 (2013).
[Crossref]

Zhou, K.

S. Chen, W. Li, Z. Zhang, D. Childs, K. Zhou, J. Orchard, K. Kennedy, M. Hugues, E. Clarke, I. Ross, O. Wada, and R. Hogg, “GaAs-based superluminescent light-emitting diodes with 290-nm emission bandwidth by using hybrid quantum well/quantum dot structures,” Nanoscale Res. Lett. 10(1), 1049 (2015).
[Crossref] [PubMed]

S. Chen, K. Zhou, Z. Zhang, J. R. Orchard, D. T. D. Childs, M. Hugues, O. Wada, and R. A. Hogg, “Hybrid quantum well/quantum dot structure for broad spectral bandwidth emitters,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1900209 (2013).
[Crossref]

Zhou, W.

Z. Z. Sun, D. Ding, Q. Gong, W. Zhou, B. Xu, and Z. G. Wang, “Quantum-dot superluminescent diode: A proposal for an ultra-wide output spectrum,” Opt. Quantum Electron. 31(12), 1235–1246 (1999).
[Crossref]

Appl. Phys. Express (4)

M. T. Hardy, K. M. Kelchner, Y. D. Lin, P. S. Hsu, K. Fujito, H. Ohta, J. S. Speck, S. Nakamura, and S. P. DenBaars, “m-Plane GaN-based blue superluminescent diodes fabricated using selective chemical wet etching,” Appl. Phys. Express 2(12), 121004 (2009).
[Crossref]

F. Kopp, T. Lermer, C. Eichler, and U. Strauss, “Cyan superluminescent light-emitting diode based on InGaN quantum wells,” Appl. Phys. Express 5(8), 082105 (2012).
[Crossref]

A. Kafar, S. Stanczyk, G. Targowski, T. Oto, I. Makarowa, P. Wisniewski, T. Suski, and P. Perlin, “High-optical-power InGaN superluminescent diodes with “j-shape” waveguide,” Appl. Phys. Express 6(9), 092102 (2013).
[Crossref]

M. Sarzynski, T. Suski, G. Staszczak, A. Khachapuridze, J. Z. Domagala, R. Czernecki, J. Plesiewicz, J. Pawlowska, S. P. Najda, M. Bockowski, P. Perlin, and M. Leszczynski, “Lateral control of indium content and wavelength of III–nitride diode lasers by means of GaN substrate patterning,” Appl. Phys. Express 5(2), 021001 (2012).
[Crossref]

Appl. Phys. Lett. (3)

S. Staczyk, T. Czyszanowski, A. Kafar, J. Goss, S. Grzanka, E. Grzanka, R. Czernecki, A. Bojarska, G. Targowski, M. Leszczyski, T. Suski, R. Kucharski, and P. Perlin, “Graded-index separate confinement heterostructure InGaN laser diodes,” Appl. Phys. Lett. 103(26), 261107 (2013).
[Crossref]

E. Feltin, A. Castiglia, G. Cosendey, L. Sulmoni, J.-F. Carlin, N. Grandjean, M. Rossetti, J. Dorsaz, V. Laino, M. Duelk, and C. Velez, “Broadband blue superluminescent light-emitting diodes based on GaN,” Appl. Phys. Lett. 95(8), 081107 (2009).
[Crossref]

C. F. Lin and B. L. Lee, “Extremely broadband AlGaAs/GaAs superluminescent diodes,” Appl. Phys. Lett. 71(12), 1598–1600 (1997).
[Crossref]

Cryst. Res. Technol. (1)

M. Sarzynski, M. Leszczynski, M. Krysko, J. Z. Domagala, R. Czernecki, and T. Suski, “Influence of GaN substrate off-cut on properties of InGaN and AlGaN layers,” Cryst. Res. Technol. 47(3), 321–328 (2012).
[Crossref]

Electron. Lett. (3)

N. Liu, P. Jin, and Z. G. Wang, “InAs/GaAs quantum-dot superluminescent diodes with 110nm bandwidth,” Electron. Lett. 41(25), 1400–1402 (2005).
[Crossref]

Y. C. Yoo, I. K. Han, and J. I. Lee, “High power broadband superluminescent diodes with chirped multiple quantum dots,” Electron. Lett. 43(19), 1045–1047 (2007).
[Crossref]

L. H. Li, M. Rossetti, A. Fiore, L. Occhi, and C. Velez, “Wide emission spectrum from superluminescent diodes with chirped quantum dot multilayers,” Electron. Lett. 41(1), 41–43 (2005).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

S. Chen, K. Zhou, Z. Zhang, J. R. Orchard, D. T. D. Childs, M. Hugues, O. Wada, and R. A. Hogg, “Hybrid quantum well/quantum dot structure for broad spectral bandwidth emitters,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1900209 (2013).
[Crossref]

J. Appl. Phys. (4)

M. Goano, E. Bellotti, E. Ghillino, C. Garetto, G. Ghione, and K. F. Brennan, “Band structure nonlocal pseudopotential calculation of the III-nitride wurtzite phase materials system. Part II. Ternary alloys AlxGa1−xN, InxGa1−xN, and InxAl1−xN,” J. Appl. Phys. 88(11), 6476–6482 (2000).
[Crossref]

A. Kafar, S. Stanczyk, S. Grzanka, R. Czernecki, M. Leszczynski, T. Suski, and P. Perlin, “Cavity suppression in nitride based superluminescent diodes,” J. Appl. Phys. 111(8), 083106 (2012).
[Crossref]

K. Holc, L. Marona, R. Czernecki, M. Bockowski, T. Suski, S. Najda, and P. Perlin, “Temperature dependence of superluminescence in InGaN-based superluminescent light emitting diode structures,” J. Appl. Phys. 108(1), 013110 (2010).
[Crossref]

B. W. Hakki and T. L. Paoli, “Gain spectra in GaAs double-heterostructure injection lasers,” J. Appl. Phys. 46(3), 1299–1306 (1975).
[Crossref]

J. Cryst. Growth (1)

R. Dwilinski, R. Doradzinski, J. Garczynski, L. P. Sierzputowski, A. Puchalski, Y. Kanbara, K. Yagi, H. Minakuchi, and H. Hayashi, “Excellent crystallinity of truly bulk ammonothermal GaN,” J. Cryst. Growth 310(17), 3911–3916 (2008).
[Crossref]

Jpn. J. Appl. Phys. (1)

F. Kopp, C. Eichler, A. Lell, S. Tautz, J. Ristic, B. Stojetz, C. Hoss, T. Weig, U. T. Schwarz, and U. Strauss, “Blue superluminescent light-emitting diodes with output power above 100 mW for picoprojection,” Jpn. J. Appl. Phys. 52(8S), 08JH07 (2013).
[Crossref]

Nanoscale Res. Lett. (1)

S. Chen, W. Li, Z. Zhang, D. Childs, K. Zhou, J. Orchard, K. Kennedy, M. Hugues, E. Clarke, I. Ross, O. Wada, and R. Hogg, “GaAs-based superluminescent light-emitting diodes with 290-nm emission bandwidth by using hybrid quantum well/quantum dot structures,” Nanoscale Res. Lett. 10(1), 1049 (2015).
[Crossref] [PubMed]

Opt. Quantum Electron. (1)

Z. Z. Sun, D. Ding, Q. Gong, W. Zhou, B. Xu, and Z. G. Wang, “Quantum-dot superluminescent diode: A proposal for an ultra-wide output spectrum,” Opt. Quantum Electron. 31(12), 1235–1246 (1999).
[Crossref]

Phys. Status Solidi., A Appl. Mater. Sci. (2)

A. Kafar, S. Stanczyk, P. Wisniewski, T. Oto, I. Makarowa, G. Targowski, T. Suski, and P. Perlin, “Design and optimization of InGaN superluminescent diodes,” Phys. Status Solidi., A Appl. Mater. Sci. 212(5), 997–1004 (2015).
[Crossref]

P. Perlin, G. Franssen, J. Szeszko, R. Czernecki, G. Targowski, M. Krysko, S. Grzanka, G. Nowak, E. Litwin-Staszewska, R. Piotrzkowski, M. Leszczynski, B. Łucznik, I. Grzegory, R. Jakieła, M. Albrecht, and T. Suski, “Nitride-based quantum structures and devices on modified GaN substrates,” Phys. Status Solidi., A Appl. Mater. Sci. 206(6), 1130–1134 (2009).
[Crossref]

Proc. SPIE (2)

G. A. Alphonse, “Design of high-power superluminescent diodes with low spectral modulation,” Proc. SPIE 4648, 125–138 (2002).
[Crossref]

U. T. Schwarz, H. Braun, K. Kojima, M. Funato, Y. Kawakami, S. Nagahama, and T. Mukai, “Investigation and comparison of optical gain spectra of (Al,In)GaN laser diodes emitting in the 375 nm to 470 nm spectral range,” Proc. SPIE 6485, 648506 (2007).
[Crossref]

Other (2)

H. Ohno, K. Orita, M. Kawaguchi, K. Yamanaka, and S. Takigawa, “200mW GaN-based superluminescent diode with a novel waveguide structure,” Photonics Conference (PHO) 2011 IEEE, 505–506 (2011).
[Crossref]

V. Jayaraman, E. Hall, and D. Leonard, “Direct multi-lateral wafer bonding for new functionality in photonic integrated circuits,” Conference on Optoelectronic and Microelectronic Materials and Devices 2006, 180–183 (2006).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Scheme of the proposed method of spectral broadening: (a) top view of the superluminescent diode chip, (b) spatial change in indium content, (c) bandgap for three selected positions in the chip.
Fig. 2
Fig. 2 Subsequent fabrication steps of substrate pattern: (a) deposition of photoresist, (b) exposure to light with spatially varying doses, (c) photoresist development, (d) transfer of the pattern onto the substrate by dry etching. (e) Scheme of the proposed shape of the substrate pattern, characterized by smooth change of vicinal angle across a single chip area. It provides a spatial difference of indium incorporation during the epitaxy of InGaN quantum well layers according to the design shown in Fig. 1.
Fig. 3
Fig. 3 Characterization of the patterned substrate shape: (a) profilometer scans parallel to the m-plane and (b) corresponding change in the vicinal angle.
Fig. 4
Fig. 4 Scheme of the fabricated epitaxial structure (a) and a TEM image of the active region (b).
Fig. 5
Fig. 5 X-ray diffraction results measured in the flat (a) and patterned (b) region of the crystal.
Fig. 6
Fig. 6 Characterization of the epitaxial structure fabricated on the patterned substrate. Panel (a) shows an optical microscope image with Nomarski interference contrast, where the designed inclined plane is marked with the white dashed line. Panel (b) presents a microphotoluminescence map of this area, proving that the indium content decreases along the waveguide (schematically marked by the white lines).
Fig. 7
Fig. 7 Comparison of emission spectra of a superluminescent diode fabricated on a patterned substrate and a reference diode fabricated on flat area of the same substrate. The spectra were taken under current operation of 100 mA (a) and 400 mA (b).
Fig. 8
Fig. 8 Comparison of FWHM (a) and modulation depth (b) dependences on current, measured for devices presented in Fig. 5. For 400 mA full width at half maximum was increased from 3.4 nm to 6.1 nm.
Fig. 9
Fig. 9 Comparison of light-current (a) and current-voltage (b) dependences of described devices shown in Fig. 7. The superluminescent diode with spectral broadening is characterised by a significantly lower optical power than the reference device, but also by significantly lower operating voltage.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

P o p t = P s p exp [ ( g α ) L ] ,

Metrics