Abstract

This work reports electrothermal MEMS parallel plate-rotation (PPR) for a single-imager based stereoscopic endoscope. A thin optical plate was directly connected to an electrothermal MEMS microactuator with bimorph structures of thin silicon and aluminum layers. The fabricated MEMS PPR device precisely rotates an transparent optical plate up to 37° prior to an endoscopic camera and creates the binocular disparities, comparable to those from binocular cameras with a baseline distance over 100 μm. The anaglyph 3D images and disparity maps were successfully achieved by extracting the local binocular disparities from two optical images captured at the relative positions. The physical volume of MEMS PPR is well fit in 3.4 mm x 3.3 mm x 1 mm. This method provides a new direction for compact stereoscopic 3D endoscopic imaging systems.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical coherence tomography endoscopic probe based on a tilted MEMS mirror

Can Duan, Quentin Tanguy, Antonio Pozzi, and Huikai Xie
Biomed. Opt. Express 7(9) 3345-3354 (2016)

Single-channel stereoscopic video imaging modality based on transparent rotating deflector

Edalat Radfar, Won Hyuk Jang, Leila Freidoony, Jihoon Park, Kichul Kwon, and Byungjo Jung
Opt. Express 23(21) 27661-27671 (2015)

3D In Vivo optical coherence tomography based on a low-voltage, large-scan-range 2D MEMS mirror

Jingjing Sun, Shuguang Guo, Lei Wu, Lin Liu, Se-Woon Choe, Brian S. Sorg, and Huikai Xie
Opt. Express 18(12) 12065-12075 (2010)

References

  • View by:
  • |
  • |
  • |

  1. M. F. Catalano, J. Van Dam, R. Bedford, R. M. Cothren, and M. V. Sivak., “Preliminary evaluation of the prototype stereoscopic endoscope: precise three-dimensional measurement system,” Gastrointest. Endosc. 39(1), 23–28 (1993).
    [Crossref] [PubMed]
  2. N. Taffinder, S. G. T. Smith, J. Huber, R. C. G. Russell, and A. Darzi, “The effect of a second-generation 3D endoscope on the laparoscopic precision of novices and experienced surgeons,” Surg. Endosc. 13(11), 1087–1092 (1999).
    [Crossref] [PubMed]
  3. D. Lee and I. Kweon, “A novel stereo camera system by a biprism,” IEEE Trans. Robot. Autom. 16(5), 528–541 (2000).
    [Crossref]
  4. A. Yaron, M. Shechterman, and N. Horesh, “Blur spot limitations in distal endoscope sensors,” Proc. SPIE 6055, 605509 (2006).
    [Crossref]
  5. L. Lipton, “Polarizing aperture stereoscopic cinema camera,” Opt. Eng. 51(7), 073202 (2012).
    [Crossref]
  6. A. B. Greening and T. N. Mitchell, “Stereoscopic viewing system using a two dimensional lens system,” U.S. Patent 5,828,487 (Oct 27, 1998).
  7. W. Teoh and X. Zhang, “An inexpensive stereoscopic vision system for robots,” in Proceedings of IEEE International Conference on Robotics and Automation (IEEE, 1984), pp. 186–189.
    [Crossref]
  8. S. Y. Bae, R. Korniski, A. Ream, H. Shahinian, and H. M. Manohara, “New technique of three-dimensional imaging through a 3-mm single lens camera,” Opt. Eng. 51(2), 021106 (2012).
    [Crossref]
  9. Y. Nishimoto and Y. Shirai, “A feature-based stereo model using small disparities,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 1987), pp. 192–196.
  10. C. Gao and N. Ahuja, “Single camera stereo using planar parallel plate,” in Proceedings of the 17th International Conference on Pattern Recognition (IEEE, 2004), pp. 108–111.
  11. W. Choi, V. Rubtsov, and C.-J. C. Kim, “Miniature flipping disk device for size measurement of objects through endoscope,” J. Microelectromech. Syst. 21(4), 926–933 (2012).
    [Crossref]
  12. T. Shibata, J. Kim, D. M. Hoffman, and M. S. Banks, “The zone of comfort: Predicting visual discomfort with stereo displays,” J. Vis. 11(8), 11 (2011).
    [Crossref] [PubMed]
  13. K. Jia, S. Pal, and H. Xie, “An electrothermal tip-tilt-piston micromirror based on folded dual S-shaped bimorphs,” J. Microelectromech. Syst. 18(5), 1004–1015 (2009).
    [Crossref]
  14. A. Jain, A. Kopa, Y. Pan, G. K. Fedder, and H. Xie, “A two-axis electrothermal micromirror for endoscopic optical coherence tomography,” IEEE J. Sel. Top. Quantum Eletron. 10(3), 636–642 (2004).
    [Crossref]
  15. W. Peng, “Optimization of thermally actuated bimorph cantilevers for maximum deflection,” in Proceedings of Nanotech 2003 (NSTI, 2003), pp. 376–379.
  16. H. C. Park, C. Song, and K. H. Jeong, “Micromachined lens microstages for two-dimensional forward optical scanning,” Opt. Express 18(15), 16133–16138 (2010).
    [Crossref] [PubMed]
  17. Y. J. Oh, J. J. Kim, and K. H. Jeong, “Biologically inspired biophotonic surfaces with self-antireflection,” Small 10(13), 2558–2563 (2014).
    [Crossref] [PubMed]
  18. Q. Yang, “A Non-Local Cost Aggregation Method for Stereo Matching,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2012), pp. 1402–1409.
  19. D. Comaniciu and P. Meer, “Mean shift: a robust approach toward feature space analysis,” IEEE Trans. Pattern Anal. 24(5), 603–619 (2002).
    [Crossref]
  20. X. Mei, X. Sun, W. Dong, H. Wang, and X. Zhang, “Segment-Tree based Cost Aggregation for Stereo Matching,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2013), pp. 313–320.
    [Crossref]

2014 (1)

Y. J. Oh, J. J. Kim, and K. H. Jeong, “Biologically inspired biophotonic surfaces with self-antireflection,” Small 10(13), 2558–2563 (2014).
[Crossref] [PubMed]

2012 (3)

L. Lipton, “Polarizing aperture stereoscopic cinema camera,” Opt. Eng. 51(7), 073202 (2012).
[Crossref]

S. Y. Bae, R. Korniski, A. Ream, H. Shahinian, and H. M. Manohara, “New technique of three-dimensional imaging through a 3-mm single lens camera,” Opt. Eng. 51(2), 021106 (2012).
[Crossref]

W. Choi, V. Rubtsov, and C.-J. C. Kim, “Miniature flipping disk device for size measurement of objects through endoscope,” J. Microelectromech. Syst. 21(4), 926–933 (2012).
[Crossref]

2011 (1)

T. Shibata, J. Kim, D. M. Hoffman, and M. S. Banks, “The zone of comfort: Predicting visual discomfort with stereo displays,” J. Vis. 11(8), 11 (2011).
[Crossref] [PubMed]

2010 (1)

2009 (1)

K. Jia, S. Pal, and H. Xie, “An electrothermal tip-tilt-piston micromirror based on folded dual S-shaped bimorphs,” J. Microelectromech. Syst. 18(5), 1004–1015 (2009).
[Crossref]

2006 (1)

A. Yaron, M. Shechterman, and N. Horesh, “Blur spot limitations in distal endoscope sensors,” Proc. SPIE 6055, 605509 (2006).
[Crossref]

2004 (1)

A. Jain, A. Kopa, Y. Pan, G. K. Fedder, and H. Xie, “A two-axis electrothermal micromirror for endoscopic optical coherence tomography,” IEEE J. Sel. Top. Quantum Eletron. 10(3), 636–642 (2004).
[Crossref]

2002 (1)

D. Comaniciu and P. Meer, “Mean shift: a robust approach toward feature space analysis,” IEEE Trans. Pattern Anal. 24(5), 603–619 (2002).
[Crossref]

2000 (1)

D. Lee and I. Kweon, “A novel stereo camera system by a biprism,” IEEE Trans. Robot. Autom. 16(5), 528–541 (2000).
[Crossref]

1999 (1)

N. Taffinder, S. G. T. Smith, J. Huber, R. C. G. Russell, and A. Darzi, “The effect of a second-generation 3D endoscope on the laparoscopic precision of novices and experienced surgeons,” Surg. Endosc. 13(11), 1087–1092 (1999).
[Crossref] [PubMed]

1993 (1)

M. F. Catalano, J. Van Dam, R. Bedford, R. M. Cothren, and M. V. Sivak., “Preliminary evaluation of the prototype stereoscopic endoscope: precise three-dimensional measurement system,” Gastrointest. Endosc. 39(1), 23–28 (1993).
[Crossref] [PubMed]

Ahuja, N.

C. Gao and N. Ahuja, “Single camera stereo using planar parallel plate,” in Proceedings of the 17th International Conference on Pattern Recognition (IEEE, 2004), pp. 108–111.

Bae, S. Y.

S. Y. Bae, R. Korniski, A. Ream, H. Shahinian, and H. M. Manohara, “New technique of three-dimensional imaging through a 3-mm single lens camera,” Opt. Eng. 51(2), 021106 (2012).
[Crossref]

Banks, M. S.

T. Shibata, J. Kim, D. M. Hoffman, and M. S. Banks, “The zone of comfort: Predicting visual discomfort with stereo displays,” J. Vis. 11(8), 11 (2011).
[Crossref] [PubMed]

Bedford, R.

M. F. Catalano, J. Van Dam, R. Bedford, R. M. Cothren, and M. V. Sivak., “Preliminary evaluation of the prototype stereoscopic endoscope: precise three-dimensional measurement system,” Gastrointest. Endosc. 39(1), 23–28 (1993).
[Crossref] [PubMed]

Catalano, M. F.

M. F. Catalano, J. Van Dam, R. Bedford, R. M. Cothren, and M. V. Sivak., “Preliminary evaluation of the prototype stereoscopic endoscope: precise three-dimensional measurement system,” Gastrointest. Endosc. 39(1), 23–28 (1993).
[Crossref] [PubMed]

Choi, W.

W. Choi, V. Rubtsov, and C.-J. C. Kim, “Miniature flipping disk device for size measurement of objects through endoscope,” J. Microelectromech. Syst. 21(4), 926–933 (2012).
[Crossref]

Comaniciu, D.

D. Comaniciu and P. Meer, “Mean shift: a robust approach toward feature space analysis,” IEEE Trans. Pattern Anal. 24(5), 603–619 (2002).
[Crossref]

Cothren, R. M.

M. F. Catalano, J. Van Dam, R. Bedford, R. M. Cothren, and M. V. Sivak., “Preliminary evaluation of the prototype stereoscopic endoscope: precise three-dimensional measurement system,” Gastrointest. Endosc. 39(1), 23–28 (1993).
[Crossref] [PubMed]

Darzi, A.

N. Taffinder, S. G. T. Smith, J. Huber, R. C. G. Russell, and A. Darzi, “The effect of a second-generation 3D endoscope on the laparoscopic precision of novices and experienced surgeons,” Surg. Endosc. 13(11), 1087–1092 (1999).
[Crossref] [PubMed]

Dong, W.

X. Mei, X. Sun, W. Dong, H. Wang, and X. Zhang, “Segment-Tree based Cost Aggregation for Stereo Matching,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2013), pp. 313–320.
[Crossref]

Fedder, G. K.

A. Jain, A. Kopa, Y. Pan, G. K. Fedder, and H. Xie, “A two-axis electrothermal micromirror for endoscopic optical coherence tomography,” IEEE J. Sel. Top. Quantum Eletron. 10(3), 636–642 (2004).
[Crossref]

Gao, C.

C. Gao and N. Ahuja, “Single camera stereo using planar parallel plate,” in Proceedings of the 17th International Conference on Pattern Recognition (IEEE, 2004), pp. 108–111.

Hoffman, D. M.

T. Shibata, J. Kim, D. M. Hoffman, and M. S. Banks, “The zone of comfort: Predicting visual discomfort with stereo displays,” J. Vis. 11(8), 11 (2011).
[Crossref] [PubMed]

Horesh, N.

A. Yaron, M. Shechterman, and N. Horesh, “Blur spot limitations in distal endoscope sensors,” Proc. SPIE 6055, 605509 (2006).
[Crossref]

Huber, J.

N. Taffinder, S. G. T. Smith, J. Huber, R. C. G. Russell, and A. Darzi, “The effect of a second-generation 3D endoscope on the laparoscopic precision of novices and experienced surgeons,” Surg. Endosc. 13(11), 1087–1092 (1999).
[Crossref] [PubMed]

Jain, A.

A. Jain, A. Kopa, Y. Pan, G. K. Fedder, and H. Xie, “A two-axis electrothermal micromirror for endoscopic optical coherence tomography,” IEEE J. Sel. Top. Quantum Eletron. 10(3), 636–642 (2004).
[Crossref]

Jeong, K. H.

Y. J. Oh, J. J. Kim, and K. H. Jeong, “Biologically inspired biophotonic surfaces with self-antireflection,” Small 10(13), 2558–2563 (2014).
[Crossref] [PubMed]

H. C. Park, C. Song, and K. H. Jeong, “Micromachined lens microstages for two-dimensional forward optical scanning,” Opt. Express 18(15), 16133–16138 (2010).
[Crossref] [PubMed]

Jia, K.

K. Jia, S. Pal, and H. Xie, “An electrothermal tip-tilt-piston micromirror based on folded dual S-shaped bimorphs,” J. Microelectromech. Syst. 18(5), 1004–1015 (2009).
[Crossref]

Kim, C.-J. C.

W. Choi, V. Rubtsov, and C.-J. C. Kim, “Miniature flipping disk device for size measurement of objects through endoscope,” J. Microelectromech. Syst. 21(4), 926–933 (2012).
[Crossref]

Kim, J.

T. Shibata, J. Kim, D. M. Hoffman, and M. S. Banks, “The zone of comfort: Predicting visual discomfort with stereo displays,” J. Vis. 11(8), 11 (2011).
[Crossref] [PubMed]

Kim, J. J.

Y. J. Oh, J. J. Kim, and K. H. Jeong, “Biologically inspired biophotonic surfaces with self-antireflection,” Small 10(13), 2558–2563 (2014).
[Crossref] [PubMed]

Kopa, A.

A. Jain, A. Kopa, Y. Pan, G. K. Fedder, and H. Xie, “A two-axis electrothermal micromirror for endoscopic optical coherence tomography,” IEEE J. Sel. Top. Quantum Eletron. 10(3), 636–642 (2004).
[Crossref]

Korniski, R.

S. Y. Bae, R. Korniski, A. Ream, H. Shahinian, and H. M. Manohara, “New technique of three-dimensional imaging through a 3-mm single lens camera,” Opt. Eng. 51(2), 021106 (2012).
[Crossref]

Kweon, I.

D. Lee and I. Kweon, “A novel stereo camera system by a biprism,” IEEE Trans. Robot. Autom. 16(5), 528–541 (2000).
[Crossref]

Lee, D.

D. Lee and I. Kweon, “A novel stereo camera system by a biprism,” IEEE Trans. Robot. Autom. 16(5), 528–541 (2000).
[Crossref]

Lipton, L.

L. Lipton, “Polarizing aperture stereoscopic cinema camera,” Opt. Eng. 51(7), 073202 (2012).
[Crossref]

Manohara, H. M.

S. Y. Bae, R. Korniski, A. Ream, H. Shahinian, and H. M. Manohara, “New technique of three-dimensional imaging through a 3-mm single lens camera,” Opt. Eng. 51(2), 021106 (2012).
[Crossref]

Meer, P.

D. Comaniciu and P. Meer, “Mean shift: a robust approach toward feature space analysis,” IEEE Trans. Pattern Anal. 24(5), 603–619 (2002).
[Crossref]

Mei, X.

X. Mei, X. Sun, W. Dong, H. Wang, and X. Zhang, “Segment-Tree based Cost Aggregation for Stereo Matching,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2013), pp. 313–320.
[Crossref]

Nishimoto, Y.

Y. Nishimoto and Y. Shirai, “A feature-based stereo model using small disparities,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 1987), pp. 192–196.

Oh, Y. J.

Y. J. Oh, J. J. Kim, and K. H. Jeong, “Biologically inspired biophotonic surfaces with self-antireflection,” Small 10(13), 2558–2563 (2014).
[Crossref] [PubMed]

Pal, S.

K. Jia, S. Pal, and H. Xie, “An electrothermal tip-tilt-piston micromirror based on folded dual S-shaped bimorphs,” J. Microelectromech. Syst. 18(5), 1004–1015 (2009).
[Crossref]

Pan, Y.

A. Jain, A. Kopa, Y. Pan, G. K. Fedder, and H. Xie, “A two-axis electrothermal micromirror for endoscopic optical coherence tomography,” IEEE J. Sel. Top. Quantum Eletron. 10(3), 636–642 (2004).
[Crossref]

Park, H. C.

Peng, W.

W. Peng, “Optimization of thermally actuated bimorph cantilevers for maximum deflection,” in Proceedings of Nanotech 2003 (NSTI, 2003), pp. 376–379.

Ream, A.

S. Y. Bae, R. Korniski, A. Ream, H. Shahinian, and H. M. Manohara, “New technique of three-dimensional imaging through a 3-mm single lens camera,” Opt. Eng. 51(2), 021106 (2012).
[Crossref]

Rubtsov, V.

W. Choi, V. Rubtsov, and C.-J. C. Kim, “Miniature flipping disk device for size measurement of objects through endoscope,” J. Microelectromech. Syst. 21(4), 926–933 (2012).
[Crossref]

Russell, R. C. G.

N. Taffinder, S. G. T. Smith, J. Huber, R. C. G. Russell, and A. Darzi, “The effect of a second-generation 3D endoscope on the laparoscopic precision of novices and experienced surgeons,” Surg. Endosc. 13(11), 1087–1092 (1999).
[Crossref] [PubMed]

Shahinian, H.

S. Y. Bae, R. Korniski, A. Ream, H. Shahinian, and H. M. Manohara, “New technique of three-dimensional imaging through a 3-mm single lens camera,” Opt. Eng. 51(2), 021106 (2012).
[Crossref]

Shechterman, M.

A. Yaron, M. Shechterman, and N. Horesh, “Blur spot limitations in distal endoscope sensors,” Proc. SPIE 6055, 605509 (2006).
[Crossref]

Shibata, T.

T. Shibata, J. Kim, D. M. Hoffman, and M. S. Banks, “The zone of comfort: Predicting visual discomfort with stereo displays,” J. Vis. 11(8), 11 (2011).
[Crossref] [PubMed]

Shirai, Y.

Y. Nishimoto and Y. Shirai, “A feature-based stereo model using small disparities,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 1987), pp. 192–196.

Sivak, M. V.

M. F. Catalano, J. Van Dam, R. Bedford, R. M. Cothren, and M. V. Sivak., “Preliminary evaluation of the prototype stereoscopic endoscope: precise three-dimensional measurement system,” Gastrointest. Endosc. 39(1), 23–28 (1993).
[Crossref] [PubMed]

Smith, S. G. T.

N. Taffinder, S. G. T. Smith, J. Huber, R. C. G. Russell, and A. Darzi, “The effect of a second-generation 3D endoscope on the laparoscopic precision of novices and experienced surgeons,” Surg. Endosc. 13(11), 1087–1092 (1999).
[Crossref] [PubMed]

Song, C.

Sun, X.

X. Mei, X. Sun, W. Dong, H. Wang, and X. Zhang, “Segment-Tree based Cost Aggregation for Stereo Matching,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2013), pp. 313–320.
[Crossref]

Taffinder, N.

N. Taffinder, S. G. T. Smith, J. Huber, R. C. G. Russell, and A. Darzi, “The effect of a second-generation 3D endoscope on the laparoscopic precision of novices and experienced surgeons,” Surg. Endosc. 13(11), 1087–1092 (1999).
[Crossref] [PubMed]

Teoh, W.

W. Teoh and X. Zhang, “An inexpensive stereoscopic vision system for robots,” in Proceedings of IEEE International Conference on Robotics and Automation (IEEE, 1984), pp. 186–189.
[Crossref]

Van Dam, J.

M. F. Catalano, J. Van Dam, R. Bedford, R. M. Cothren, and M. V. Sivak., “Preliminary evaluation of the prototype stereoscopic endoscope: precise three-dimensional measurement system,” Gastrointest. Endosc. 39(1), 23–28 (1993).
[Crossref] [PubMed]

Wang, H.

X. Mei, X. Sun, W. Dong, H. Wang, and X. Zhang, “Segment-Tree based Cost Aggregation for Stereo Matching,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2013), pp. 313–320.
[Crossref]

Xie, H.

K. Jia, S. Pal, and H. Xie, “An electrothermal tip-tilt-piston micromirror based on folded dual S-shaped bimorphs,” J. Microelectromech. Syst. 18(5), 1004–1015 (2009).
[Crossref]

A. Jain, A. Kopa, Y. Pan, G. K. Fedder, and H. Xie, “A two-axis electrothermal micromirror for endoscopic optical coherence tomography,” IEEE J. Sel. Top. Quantum Eletron. 10(3), 636–642 (2004).
[Crossref]

Yang, Q.

Q. Yang, “A Non-Local Cost Aggregation Method for Stereo Matching,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2012), pp. 1402–1409.

Yaron, A.

A. Yaron, M. Shechterman, and N. Horesh, “Blur spot limitations in distal endoscope sensors,” Proc. SPIE 6055, 605509 (2006).
[Crossref]

Zhang, X.

W. Teoh and X. Zhang, “An inexpensive stereoscopic vision system for robots,” in Proceedings of IEEE International Conference on Robotics and Automation (IEEE, 1984), pp. 186–189.
[Crossref]

X. Mei, X. Sun, W. Dong, H. Wang, and X. Zhang, “Segment-Tree based Cost Aggregation for Stereo Matching,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2013), pp. 313–320.
[Crossref]

Gastrointest. Endosc. (1)

M. F. Catalano, J. Van Dam, R. Bedford, R. M. Cothren, and M. V. Sivak., “Preliminary evaluation of the prototype stereoscopic endoscope: precise three-dimensional measurement system,” Gastrointest. Endosc. 39(1), 23–28 (1993).
[Crossref] [PubMed]

IEEE J. Sel. Top. Quantum Eletron. (1)

A. Jain, A. Kopa, Y. Pan, G. K. Fedder, and H. Xie, “A two-axis electrothermal micromirror for endoscopic optical coherence tomography,” IEEE J. Sel. Top. Quantum Eletron. 10(3), 636–642 (2004).
[Crossref]

IEEE Trans. Pattern Anal. (1)

D. Comaniciu and P. Meer, “Mean shift: a robust approach toward feature space analysis,” IEEE Trans. Pattern Anal. 24(5), 603–619 (2002).
[Crossref]

IEEE Trans. Robot. Autom. (1)

D. Lee and I. Kweon, “A novel stereo camera system by a biprism,” IEEE Trans. Robot. Autom. 16(5), 528–541 (2000).
[Crossref]

J. Microelectromech. Syst. (2)

W. Choi, V. Rubtsov, and C.-J. C. Kim, “Miniature flipping disk device for size measurement of objects through endoscope,” J. Microelectromech. Syst. 21(4), 926–933 (2012).
[Crossref]

K. Jia, S. Pal, and H. Xie, “An electrothermal tip-tilt-piston micromirror based on folded dual S-shaped bimorphs,” J. Microelectromech. Syst. 18(5), 1004–1015 (2009).
[Crossref]

J. Vis. (1)

T. Shibata, J. Kim, D. M. Hoffman, and M. S. Banks, “The zone of comfort: Predicting visual discomfort with stereo displays,” J. Vis. 11(8), 11 (2011).
[Crossref] [PubMed]

Opt. Eng. (2)

L. Lipton, “Polarizing aperture stereoscopic cinema camera,” Opt. Eng. 51(7), 073202 (2012).
[Crossref]

S. Y. Bae, R. Korniski, A. Ream, H. Shahinian, and H. M. Manohara, “New technique of three-dimensional imaging through a 3-mm single lens camera,” Opt. Eng. 51(2), 021106 (2012).
[Crossref]

Opt. Express (1)

Proc. SPIE (1)

A. Yaron, M. Shechterman, and N. Horesh, “Blur spot limitations in distal endoscope sensors,” Proc. SPIE 6055, 605509 (2006).
[Crossref]

Small (1)

Y. J. Oh, J. J. Kim, and K. H. Jeong, “Biologically inspired biophotonic surfaces with self-antireflection,” Small 10(13), 2558–2563 (2014).
[Crossref] [PubMed]

Surg. Endosc. (1)

N. Taffinder, S. G. T. Smith, J. Huber, R. C. G. Russell, and A. Darzi, “The effect of a second-generation 3D endoscope on the laparoscopic precision of novices and experienced surgeons,” Surg. Endosc. 13(11), 1087–1092 (1999).
[Crossref] [PubMed]

Other (7)

Y. Nishimoto and Y. Shirai, “A feature-based stereo model using small disparities,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 1987), pp. 192–196.

C. Gao and N. Ahuja, “Single camera stereo using planar parallel plate,” in Proceedings of the 17th International Conference on Pattern Recognition (IEEE, 2004), pp. 108–111.

A. B. Greening and T. N. Mitchell, “Stereoscopic viewing system using a two dimensional lens system,” U.S. Patent 5,828,487 (Oct 27, 1998).

W. Teoh and X. Zhang, “An inexpensive stereoscopic vision system for robots,” in Proceedings of IEEE International Conference on Robotics and Automation (IEEE, 1984), pp. 186–189.
[Crossref]

Q. Yang, “A Non-Local Cost Aggregation Method for Stereo Matching,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2012), pp. 1402–1409.

X. Mei, X. Sun, W. Dong, H. Wang, and X. Zhang, “Segment-Tree based Cost Aggregation for Stereo Matching,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2013), pp. 313–320.
[Crossref]

W. Peng, “Optimization of thermally actuated bimorph cantilevers for maximum deflection,” in Proceedings of Nanotech 2003 (NSTI, 2003), pp. 376–379.

Supplementary Material (1)

NameDescription
» Visualization 1: MP4 (401 KB)      This video shows electrothermal actuation in dynamic mode.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

MEMS Parallel Plate Rotation: (a) Schematic configuration of MEMS PPR device. The device comprises a transparent optical plate and an electrothermal MEMS actuator with bimorph structure. (b) Working principle of a single lens and single detector with electrothermal MEMS parallel-plate-rotation for stereoscopic endoscopy. A thin optical plate can be either dynamically or statically rotated with electrothermal actuation under low operating voltages. The plate rotation creates binocular disparities for depth cues, comparable to those from binocular cameras.

Fig. 2
Fig. 2

(a) Microfabrication procedure of the electrothermal microactuator depicted as the cross-section schematics along the line a-a′. (b) SEM image of the fabricated microactuator. (c) Optical image of the MEMS PPR device with anti-reflective glass plate.

Fig. 3
Fig. 3

(a) Mechanical rotation angle of the bimorph plate depending on the applied voltage in static mode. (b) Resonant frequency shift after the optical plate mount. (c) Snapshot of electrothermal actuation with the rotational angle of 37 degree at 14.4 Vpp with resonance frequency (see Visualization 1).

Fig. 4
Fig. 4

Stereoscopic imaging with a lens, MEMS PPR and high-speed camera. The rotation axis of the plate is set to be horizontal. (a) Original image at 90 mm, disparity map at (b) 65 mm, (c) 90 mm, (d) 100 mm. (e) Disparities vs. object distance. (f) The paper including the word, ‘STARWARS’ was reconstructed to (g) anaglyph 3D image and (h) disparity map by binocular images from MEMS PPR. The paper is slightly tilted in front of MEMS PPR therefore the bottom word is close and the top word is far. The relative disparities are scaled in color.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

b=tsinθ[ 1 1 sin 2 θ n 2 sin 2 θ ]
θ= ctw (1+t) 2 c 2 t 4 w 2 +4c t 3 w+6c t 2 w+4ctw+1 3ΔαΔTL t Si + t Al

Metrics