Abstract

A large extinction ratio optical shutter has been demonstrated using electrowetting liquids. The device is based on switching between a liquid-liquid interface curvature that produces total internal reflection and one that does not. The interface radius of curvature can be tuned continuously from 9 mm at 0 V to −45 mm at 26 V. Extinction ratios from 55.8 to 66.5 dB were measured. The device shows promise for ultracold chip-scale atomic clocks.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Electrowetting-actuated optical switch based on total internal reflection

Chao Liu, Di Wang, Li-Xiao Yao, Lei Li, and Qiong-Hua Wang
Appl. Opt. 54(10) 2672-2676 (2015)

Electrowetting driven optical switch and tunable aperture

C. U. Murade, J. M. Oh, D. van den Ende, and F. Mugele
Opt. Express 19(16) 15525-15531 (2011)

Simulation of electrowetting lens and prism arrays for wavefront compensation

Juliet T. Gopinath, Victor M. Bright, Carol C. Cogswell, Robert D. Niederriter, Alexander Watson, Ramzi Zahreddine, and Robert H. Cormack
Appl. Opt. 51(27) 6618-6623 (2012)

References

  • View by:
  • |
  • |
  • |

  1. J. Huo, K. Liu, and X. Chen, “1 x 2 precise electro-optic switch in periodically poled lithium niobate,” Opt. Express 18(15), 15603–15608 (2010).
    [Crossref] [PubMed]
  2. W. J. Schwenger and J. M. Higbie, “High-speed acousto-optic shutter with no optical frequency shift,” Rev. Sci. Instrum. 83(8), 083110 (2012).
    [Crossref] [PubMed]
  3. H. Veladi, R. R. A. Syms, and H. Zou, “Low power, high extinction electrothermal MEMS iris VOA,” Proc. SPIE 6186, 61860J (2006).
    [Crossref]
  4. A. Braslau, M. Deutsch, P. S. Pershan, A. H. Weiss, J. Als-Nielsen, and J. Bohr, “Surface roughness of water measured by x-ray refelctivity,” Phys. Rev. Lett. 54(2), 114–117 (1985).
    [Crossref] [PubMed]
  5. L. Li, C. Liu, and Q. H. Wang, “Optical switch based on tunable aperture,” Opt. Lett. 37(16), 3306–3308 (2012).
    [Crossref] [PubMed]
  6. H. Ren, S. Xu, and S.-T. Wu, “Optical switch based on variable aperture,” Opt. Lett. 37(9), 1421–1423 (2012).
    [Crossref] [PubMed]
  7. D.-Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y.-H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82(19), 3171 (2003).
    [Crossref]
  8. L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442(7102), 551–554 (2006).
    [Crossref] [PubMed]
  9. A. Schultz, J. Heikenfeld, H. S. Kang, and W. Cheng, “1000:1 contrast ratio transmissive electrowetting displays,” J. Disp. Technol. 7(11), 583–585 (2011).
    [Crossref]
  10. C.-C. Yu, J.-R. Ho, and J.-W. J. Cheng, “Tunable liquid iris actuated using electrowetting effect,” Opt. Eng. 53(5), 057106 (2014).
    [Crossref]
  11. J. Heikenfeld and A. J. Steckl, “High-transmission electrowetting light valves,” Appl. Phys. Lett. 86(15), 151121 (2005).
    [Crossref]
  12. C. Liu, L. Li, and Q.-H. Wang, “Bidirectional optical switch based on electrowetting,” J. Appl. Phys. 113(19), 193106 (2013).
    [Crossref]
  13. P. Müller, D. Kopp, A. Llobera, and H. Zappe, “Optofluidic router based on tunable liquid-liquid mirrors,” Lab Chip 14(4), 737–743 (2014).
    [Crossref] [PubMed]
  14. C. Liu, D. Wang, L.-X. Yao, L. Li, and Q.-H. Wang, “Electrowetting-actuated optical switch based on total internal reflection,” Appl. Opt. 54(10), 2672–2676 (2015).
    [Crossref] [PubMed]
  15. C. U. Murade, D. van der Ende, and F. Mugele, “High speed adaptive liquid microlens array,” Opt. Express 20(16), 18180–18187 (2012).
    [Crossref] [PubMed]
  16. S. Terrab, A. M. Watson, C. Roath, J. T. Gopinath, and V. M. Bright, “Adaptive electrowetting lens-prism element,” Opt. Express 23(20), 25838–25845 (2015).
    [Crossref] [PubMed]
  17. M. Frieder and J.-C. Baret, “Electrowetting: from basics to applications,” J. Phys. Condens. Matter 17(28), R705–R774 (2005).
    [Crossref]

2015 (2)

2014 (2)

P. Müller, D. Kopp, A. Llobera, and H. Zappe, “Optofluidic router based on tunable liquid-liquid mirrors,” Lab Chip 14(4), 737–743 (2014).
[Crossref] [PubMed]

C.-C. Yu, J.-R. Ho, and J.-W. J. Cheng, “Tunable liquid iris actuated using electrowetting effect,” Opt. Eng. 53(5), 057106 (2014).
[Crossref]

2013 (1)

C. Liu, L. Li, and Q.-H. Wang, “Bidirectional optical switch based on electrowetting,” J. Appl. Phys. 113(19), 193106 (2013).
[Crossref]

2012 (4)

2011 (1)

A. Schultz, J. Heikenfeld, H. S. Kang, and W. Cheng, “1000:1 contrast ratio transmissive electrowetting displays,” J. Disp. Technol. 7(11), 583–585 (2011).
[Crossref]

2010 (1)

2006 (2)

L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442(7102), 551–554 (2006).
[Crossref] [PubMed]

H. Veladi, R. R. A. Syms, and H. Zou, “Low power, high extinction electrothermal MEMS iris VOA,” Proc. SPIE 6186, 61860J (2006).
[Crossref]

2005 (2)

J. Heikenfeld and A. J. Steckl, “High-transmission electrowetting light valves,” Appl. Phys. Lett. 86(15), 151121 (2005).
[Crossref]

M. Frieder and J.-C. Baret, “Electrowetting: from basics to applications,” J. Phys. Condens. Matter 17(28), R705–R774 (2005).
[Crossref]

2003 (1)

D.-Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y.-H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82(19), 3171 (2003).
[Crossref]

1985 (1)

A. Braslau, M. Deutsch, P. S. Pershan, A. H. Weiss, J. Als-Nielsen, and J. Bohr, “Surface roughness of water measured by x-ray refelctivity,” Phys. Rev. Lett. 54(2), 114–117 (1985).
[Crossref] [PubMed]

Agarwal, A. K.

L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442(7102), 551–554 (2006).
[Crossref] [PubMed]

Als-Nielsen, J.

A. Braslau, M. Deutsch, P. S. Pershan, A. H. Weiss, J. Als-Nielsen, and J. Bohr, “Surface roughness of water measured by x-ray refelctivity,” Phys. Rev. Lett. 54(2), 114–117 (1985).
[Crossref] [PubMed]

Baret, J.-C.

M. Frieder and J.-C. Baret, “Electrowetting: from basics to applications,” J. Phys. Condens. Matter 17(28), R705–R774 (2005).
[Crossref]

Beebe, D. J.

L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442(7102), 551–554 (2006).
[Crossref] [PubMed]

Berdichevsky, Y.

D.-Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y.-H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82(19), 3171 (2003).
[Crossref]

Bohr, J.

A. Braslau, M. Deutsch, P. S. Pershan, A. H. Weiss, J. Als-Nielsen, and J. Bohr, “Surface roughness of water measured by x-ray refelctivity,” Phys. Rev. Lett. 54(2), 114–117 (1985).
[Crossref] [PubMed]

Braslau, A.

A. Braslau, M. Deutsch, P. S. Pershan, A. H. Weiss, J. Als-Nielsen, and J. Bohr, “Surface roughness of water measured by x-ray refelctivity,” Phys. Rev. Lett. 54(2), 114–117 (1985).
[Crossref] [PubMed]

Bright, V. M.

Chen, X.

Cheng, J.-W. J.

C.-C. Yu, J.-R. Ho, and J.-W. J. Cheng, “Tunable liquid iris actuated using electrowetting effect,” Opt. Eng. 53(5), 057106 (2014).
[Crossref]

Cheng, W.

A. Schultz, J. Heikenfeld, H. S. Kang, and W. Cheng, “1000:1 contrast ratio transmissive electrowetting displays,” J. Disp. Technol. 7(11), 583–585 (2011).
[Crossref]

Choi, J.

D.-Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y.-H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82(19), 3171 (2003).
[Crossref]

Deutsch, M.

A. Braslau, M. Deutsch, P. S. Pershan, A. H. Weiss, J. Als-Nielsen, and J. Bohr, “Surface roughness of water measured by x-ray refelctivity,” Phys. Rev. Lett. 54(2), 114–117 (1985).
[Crossref] [PubMed]

Dong, L.

L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442(7102), 551–554 (2006).
[Crossref] [PubMed]

Frieder, M.

M. Frieder and J.-C. Baret, “Electrowetting: from basics to applications,” J. Phys. Condens. Matter 17(28), R705–R774 (2005).
[Crossref]

Gopinath, J. T.

Heikenfeld, J.

A. Schultz, J. Heikenfeld, H. S. Kang, and W. Cheng, “1000:1 contrast ratio transmissive electrowetting displays,” J. Disp. Technol. 7(11), 583–585 (2011).
[Crossref]

J. Heikenfeld and A. J. Steckl, “High-transmission electrowetting light valves,” Appl. Phys. Lett. 86(15), 151121 (2005).
[Crossref]

Higbie, J. M.

W. J. Schwenger and J. M. Higbie, “High-speed acousto-optic shutter with no optical frequency shift,” Rev. Sci. Instrum. 83(8), 083110 (2012).
[Crossref] [PubMed]

Ho, J.-R.

C.-C. Yu, J.-R. Ho, and J.-W. J. Cheng, “Tunable liquid iris actuated using electrowetting effect,” Opt. Eng. 53(5), 057106 (2014).
[Crossref]

Huo, J.

Jiang, H.

L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442(7102), 551–554 (2006).
[Crossref] [PubMed]

Kang, H. S.

A. Schultz, J. Heikenfeld, H. S. Kang, and W. Cheng, “1000:1 contrast ratio transmissive electrowetting displays,” J. Disp. Technol. 7(11), 583–585 (2011).
[Crossref]

Kopp, D.

P. Müller, D. Kopp, A. Llobera, and H. Zappe, “Optofluidic router based on tunable liquid-liquid mirrors,” Lab Chip 14(4), 737–743 (2014).
[Crossref] [PubMed]

Li, L.

Lien, V.

D.-Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y.-H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82(19), 3171 (2003).
[Crossref]

Liu, C.

Liu, K.

Llobera, A.

P. Müller, D. Kopp, A. Llobera, and H. Zappe, “Optofluidic router based on tunable liquid-liquid mirrors,” Lab Chip 14(4), 737–743 (2014).
[Crossref] [PubMed]

Lo, Y.-H.

D.-Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y.-H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82(19), 3171 (2003).
[Crossref]

Mugele, F.

Müller, P.

P. Müller, D. Kopp, A. Llobera, and H. Zappe, “Optofluidic router based on tunable liquid-liquid mirrors,” Lab Chip 14(4), 737–743 (2014).
[Crossref] [PubMed]

Murade, C. U.

Pershan, P. S.

A. Braslau, M. Deutsch, P. S. Pershan, A. H. Weiss, J. Als-Nielsen, and J. Bohr, “Surface roughness of water measured by x-ray refelctivity,” Phys. Rev. Lett. 54(2), 114–117 (1985).
[Crossref] [PubMed]

Ren, H.

Roath, C.

Schultz, A.

A. Schultz, J. Heikenfeld, H. S. Kang, and W. Cheng, “1000:1 contrast ratio transmissive electrowetting displays,” J. Disp. Technol. 7(11), 583–585 (2011).
[Crossref]

Schwenger, W. J.

W. J. Schwenger and J. M. Higbie, “High-speed acousto-optic shutter with no optical frequency shift,” Rev. Sci. Instrum. 83(8), 083110 (2012).
[Crossref] [PubMed]

Steckl, A. J.

J. Heikenfeld and A. J. Steckl, “High-transmission electrowetting light valves,” Appl. Phys. Lett. 86(15), 151121 (2005).
[Crossref]

Syms, R. R. A.

H. Veladi, R. R. A. Syms, and H. Zou, “Low power, high extinction electrothermal MEMS iris VOA,” Proc. SPIE 6186, 61860J (2006).
[Crossref]

Terrab, S.

van der Ende, D.

Veladi, H.

H. Veladi, R. R. A. Syms, and H. Zou, “Low power, high extinction electrothermal MEMS iris VOA,” Proc. SPIE 6186, 61860J (2006).
[Crossref]

Wang, D.

Wang, Q. H.

Wang, Q.-H.

Watson, A. M.

Weiss, A. H.

A. Braslau, M. Deutsch, P. S. Pershan, A. H. Weiss, J. Als-Nielsen, and J. Bohr, “Surface roughness of water measured by x-ray refelctivity,” Phys. Rev. Lett. 54(2), 114–117 (1985).
[Crossref] [PubMed]

Wu, S.-T.

Xu, S.

Yao, L.-X.

Yu, C.-C.

C.-C. Yu, J.-R. Ho, and J.-W. J. Cheng, “Tunable liquid iris actuated using electrowetting effect,” Opt. Eng. 53(5), 057106 (2014).
[Crossref]

Zappe, H.

P. Müller, D. Kopp, A. Llobera, and H. Zappe, “Optofluidic router based on tunable liquid-liquid mirrors,” Lab Chip 14(4), 737–743 (2014).
[Crossref] [PubMed]

Zhang, D.-Y.

D.-Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y.-H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82(19), 3171 (2003).
[Crossref]

Zou, H.

H. Veladi, R. R. A. Syms, and H. Zou, “Low power, high extinction electrothermal MEMS iris VOA,” Proc. SPIE 6186, 61860J (2006).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

J. Heikenfeld and A. J. Steckl, “High-transmission electrowetting light valves,” Appl. Phys. Lett. 86(15), 151121 (2005).
[Crossref]

D.-Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y.-H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82(19), 3171 (2003).
[Crossref]

J. Appl. Phys. (1)

C. Liu, L. Li, and Q.-H. Wang, “Bidirectional optical switch based on electrowetting,” J. Appl. Phys. 113(19), 193106 (2013).
[Crossref]

J. Disp. Technol. (1)

A. Schultz, J. Heikenfeld, H. S. Kang, and W. Cheng, “1000:1 contrast ratio transmissive electrowetting displays,” J. Disp. Technol. 7(11), 583–585 (2011).
[Crossref]

J. Phys. Condens. Matter (1)

M. Frieder and J.-C. Baret, “Electrowetting: from basics to applications,” J. Phys. Condens. Matter 17(28), R705–R774 (2005).
[Crossref]

Lab Chip (1)

P. Müller, D. Kopp, A. Llobera, and H. Zappe, “Optofluidic router based on tunable liquid-liquid mirrors,” Lab Chip 14(4), 737–743 (2014).
[Crossref] [PubMed]

Nature (1)

L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442(7102), 551–554 (2006).
[Crossref] [PubMed]

Opt. Eng. (1)

C.-C. Yu, J.-R. Ho, and J.-W. J. Cheng, “Tunable liquid iris actuated using electrowetting effect,” Opt. Eng. 53(5), 057106 (2014).
[Crossref]

Opt. Express (3)

Opt. Lett. (2)

Phys. Rev. Lett. (1)

A. Braslau, M. Deutsch, P. S. Pershan, A. H. Weiss, J. Als-Nielsen, and J. Bohr, “Surface roughness of water measured by x-ray refelctivity,” Phys. Rev. Lett. 54(2), 114–117 (1985).
[Crossref] [PubMed]

Proc. SPIE (1)

H. Veladi, R. R. A. Syms, and H. Zou, “Low power, high extinction electrothermal MEMS iris VOA,” Proc. SPIE 6186, 61860J (2006).
[Crossref]

Rev. Sci. Instrum. (1)

W. J. Schwenger and J. M. Higbie, “High-speed acousto-optic shutter with no optical frequency shift,” Rev. Sci. Instrum. 83(8), 083110 (2012).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (IZO) Indium zinc oxide a) Design for shutter, based on an electrowetting lens in glass tube. By changing the applied voltage, the lens radius can switch from 9 mm to −45 mm. b) A glass substrate with platinum electrode is bonded with glass frit to a tube coated with IZO (300 nm), Parylene C dielectric (1 µm) and Teflon AF 1600 hydrophobic layer (100 nm). The photographs show a shutter device at 0 V with an initial lens radius of 9 mm and at 20 V with an infinite radius of curvature.
Fig. 2
Fig. 2 Fabrication of the optical shutter devices. (a) We start with a glass tube and glass substrate. (b-d) A platinum wire is placed between the tube and substrate, and glass frit is used to bond the two together. (e) The substrate is masked with Kapton tape outside the tube and a Teflon plug inside the tube. The glass tube is coated with indium zinc oxide (IZO). (f) The assembled tubes are coated with Parylene dielectric (VSI Parylene) and finished inside with a dip coat of Teflon AF hydrophobic layer.
Fig. 3
Fig. 3 Optical setup for measuring extinction ratio and response time of the shutter. The 780 nm laser diode is spatially filtered and then focused by a long focal length lens to minimize spot size incident on the liquid-liquid interface. The correct angle of incidence is achieved using a pair of mirrors. Both the transmitted and totally internally reflected beam states are then passed through respective spatial filters to photodetectors.
Fig. 4
Fig. 4 Total internal reflection (TIR) a) TIR and transmitted beam detected optical power versus applied voltage. The TIR beam exhibits 66 dB of extinction ratio. b) TIR and transmitted beam MATLAB theoretical results.
Fig. 5
Fig. 5 Contact angle vs. voltage of curved interface. The shaded area indicates where total internal reflection (TIR) can be achieved with our setup. The non-TIR region indicates where none of the incident beam is internally reflected.

Metrics