Abstract

Nanolaminate metamaterials recently attracted a lot of attention as a novel second-order nonlinear material that can be used in integrated photonic circuits. Here, we explore theoretically and numerically the opportunity to enhance the nonlinear response from such nanolaminates by exploiting Fano resonances supported in grating-coupled waveguides. The enhancement factor of the radiated second harmonic signal compared to a flat nanolaminate can reach values as large as 35 for gold gratings and even 7000 for MgF2 gratings. For the MgF2 grating, extremely high-Q Fano resonances are excited in such all-dielectric system that result in strong local fields in the nonlinear waveguide layer to boost the nonlinear conversion. A significant portion of the nonlinear signal is also strongly coupled to a dark waveguide mode, which remains guided in the nanolaminate. The strong excitation of a dark mode at the second harmonic frequency provides a viable method for utilizing second-order nonlinearities for light generation and manipulation in integrated photonic circuits.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Enhancement of second-harmonic generation from silicon nitride with gold gratings

Tingyin Ning, Chunlei Tan, Tapio Niemi, Martti Kauranen, and Goëry Genty
Opt. Express 23(24) 30695-30700 (2015)

Plasmonic enhancement of second harmonic generation from nonlinear RbTiOPO4 crystals by aggregates of silver nanostructures

Laura Sánchez-García, Christos Tserkezis, Mariola O Ramírez, Pablo Molina, Joan J. Carvajal, Magdalena Aguiló, Francesc Díaz, Javier Aizpurua, and Luisa E. Bausá
Opt. Express 24(8) 8491-8500 (2016)

Doubly resonant metallic nanostructure for high conversion efficiency of second harmonic generation

Sinjeung Park, Jae W. Hahn, and Jae Yong Lee
Opt. Express 20(5) 4856-4870 (2012)

References

  • View by:
  • |
  • |
  • |

  1. R. W. Boyd, Nonlinear Optics (Elsevier Science, 2008).
  2. T.-D. Kim, J. Luo, J.-W. Ka, S. Hau, Y. Tian, Z. Shi, N. M. Tucker, S.-H. Jang, J.-W. Kang, and A. K.-Y. Jen, “Ultralarge and thermally stable electro-optic activities from Diels-Alder crosslinkable polymers containing binary chromophore systems,” Adv. Mater. 18(22), 3038–3042 (2006).
    [Crossref]
  3. K. Yadav, C. L. Callender, C. W. Smelser, C. Ledderhof, C. Blanchetiere, S. Jacob, and J. Albert, “Giant enhancement of the second harmonic generation efficiency in poled multilayered silica glass structures,” Opt. Express 19(27), 26975–26983 (2011).
    [Crossref] [PubMed]
  4. M. Zdanowicz, J. Harra, J. M. Mäkelä, E. Heinonen, T. Ning, M. Kauranen, and G. Genty, “Second-harmonic response of multilayer nanocomposites of silver-decorated nanoparticles and silica,” Sci. Rep. 4, 5745 (2014).
    [Crossref] [PubMed]
  5. F. B. P. Niesler, N. Feth, S. Linden, and M. Wegener, “Second-harmonic optical spectroscopy on split-ring-resonator arrays,” Opt. Lett. 36(9), 1533–1535 (2011).
    [Crossref] [PubMed]
  6. R. Czaplicki, H. Husu, R. Siikanen, J. Mäkitalo, M. Kauranen, J. Laukkanen, J. Lehtolahti, and M. Kuittinen, “Enhancement of second-harmonic generation from metal nanoparticles by passive elements,” Phys. Rev. Lett. 110(9), 093902 (2013).
    [Crossref] [PubMed]
  7. L. Luo, I. Chatzakis, J. Wang, F. B. P. Niesler, M. Wegener, T. Koschny, and C. M. Soukoulis, “Broadband terahertz generation from metamaterials,” Nat. Commun. 5(3055), 3055 (2014).
    [PubMed]
  8. M. Celebrano, X. Wu, M. Baselli, S. Großmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duò, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10(5), 412–417 (2015).
    [Crossref] [PubMed]
  9. J. Butet, P.-F. Brevet, and O. J. F. Martin, “Optical second harmonic generation in plasmonic nanostructures: From fundamental principles to advanced applications,” ACS Nano 9(11), 10545–10562 (2015).
    [Crossref] [PubMed]
  10. J. Lee, M. Tymchenko, C. Argyropoulos, P.-Y. Chen, F. Lu, F. Demmerle, G. Boehm, M.-C. Amann, A. Alù, and M. A. Belkin, “Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions,” Nature 511(7507), 65–69 (2014).
    [Crossref] [PubMed]
  11. L. Alloatti, C. Kieninger, A. Froelich, M. Lauermann, T. Frenzel, K. Köhnle, W. Freude, J. Leuthold, M. Wegener, and C. Koos, “Second-order nonlinear optical metamaterials: ABC-type nanolaminates,” Appl. Phys. Lett. 107(12), 121903 (2015).
    [Crossref]
  12. S. Clemmen, A. Hermans, E. Solano, J. Dendooven, K. Koskinen, M. Kauranen, E. Brainis, C. Detavernier, and R. Baets, “Atomic layer deposited second-order nonlinear optical metamaterial for back-end integration with CMOS-compatible nanophotonic circuitry,” Opt. Lett. 40(22), 5371–5374 (2015).
    [Crossref] [PubMed]
  13. B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009).
    [Crossref]
  14. D. de Ceglia, G. D’Aguanno, N. Mattiucci, M. A. Vincenti, and M. Scalora, “Enhanced second-harmonic generation from resonant GaAs gratings,” Opt. Lett. 36(5), 704–706 (2011).
    [Crossref] [PubMed]
  15. S. B. Hasan, C. Rockstuhl, T. Pertsch, and F. Lederer, “Second-order nonlinear frequency conversion processes in plasmonic slot waveguides,” J. Opt. Soc. Am. B 29(7), 1606–1611 (2012).
    [Crossref]
  16. Y. Sun, Z. Zheng, J. Cheng, G. Sun, and G. Qiao, “Highly efficient second harmonic generation in hyperbolic metamaterial slot waveguides with large phase matching tolerance,” Opt. Express 23(5), 6370–6378 (2015).
    [Crossref] [PubMed]
  17. A. Saari, G. Genty, M. Siltanen, P. Karvinen, P. Vahimaa, M. Kuittinen, and M. Kauranen, “Giant enhancement of second-harmonic generation in multiple diffraction orders from sub-wavelength resonant waveguide grating,” Opt. Express 18(12), 12298–12303 (2010).
    [Crossref] [PubMed]
  18. T. Ning, H. Pietarinen, O. Hyvärinen, R. Kumar, T. Kaplas, M. Kauranen, and G. Genty, “Efficient second-harmonic generation in silicon nitride resonant waveguide gratings,” Opt. Lett. 37(20), 4269–4271 (2012).
    [Crossref] [PubMed]
  19. J. H. Lin, C.-Y. Tseng, C.-T. Lee, J. F. Young, H.-C. Kan, and C. C. Hsu, “Strong guided mode resonant local field enhanced visible harmonic generation in an azo-polymer resonant waveguide grating,” Opt. Express 22(3), 2790–2797 (2014).
    [Crossref] [PubMed]
  20. M. H. Luong, T. T. N. Nguyen, C. T. Nguyen, I. Ledoux-Rak, and N. D. Lai, “Study of all-polymer-based waveguide resonant gratings and their applications for optimization of second-harmonic generation,” J. Phys. D Appl. Phys. 48(36), 365302 (2015).
    [Crossref]
  21. T. Utikal, T. Zentgraf, T. Paul, C. Rockstuhl, F. Lederer, M. Lippitz, and H. Giessen, “Towards the origin of the nonlinear response in hybrid plasmonic systems,” Phys. Rev. Lett. 106(13), 133901 (2011).
    [Crossref] [PubMed]
  22. T. Ning, C. Tan, T. Niemi, M. Kauranen, and G. Genty, “Enhancement of second-harmonic generation from silicon nitride with gold gratings,” Opt. Express 23(24), 30695–30700 (2015).
    [Crossref] [PubMed]
  23. S. G. Tikhodeev, A. L. Yablonskii, E. A. Muljarov, N. A. Gippius, and T. Ishihara, “Quasiguided modes and optical properties of photonic crystal slabs,” Phys. Rev. B 66(4), 045102 (2002).
    [Crossref]
  24. J. Butet and O. J. F. Martin, “Evaluation of the nonlinear response of plasmonic metasurfaces: Miller’s rule, nonlinear effective susceptibility method, and full-wave computation,” J. Opt. Soc. Am. B 33(2), A8–A15 (2016).
    [Crossref]
  25. G. E. Arnaoutakis, J. Marques-Hueso, A. Ivaturi, S. Fischer, J. C. Goldschmidt, K. W. Krämer, and B. S. Richards, “Enhanced energy conversion of up-conversion solar cells by the integration of compound parabolic concentrating optics,” Sol. Energy Mater. Sol. Cells 140, 217–223 (2015).
    [Crossref]
  26. S. B. Hasan, F. Lederer, and C. Rockstuhl, “Nonlinear plasmonic antennas,” Mater. Today 17(10), 478–485 (2014).
    [Crossref]
  27. M. Mesch, B. Metzger, M. Hentschel, and H. Giessen, “Nonlinear plasmonic sensing,” Nano Lett. (posted 6 April 2016, in press).
  28. A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, 2005).
  29. C. Kieninger, Effective Bulk Second-Order Nonlinearity in ABC-Type Nanolaminate Optical Metamaterials, (Master thesis, Karlsruhe Institute of Technology, 2015).
  30. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  31. H. H. Li, “Refractive index of alkaline earth halides and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9(1), 161–289 (1980).
    [Crossref]
  32. I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am. 55(10), 1205–1209 (1965).
    [Crossref]
  33. M. A. Alsunaidi, H. M. Al-Mudhaffar, and H. M. Masoudi, “Vectorial FDTD technique for the analysis of optical second-harmonic generation,” IEEE Photonics Technol. Lett. 21(5), 310–312 (2009).
    [Crossref]
  34. C. M. Reinke, A. Jafarpour, B. Momeni, M. Soltani, S. Khorasani, A. Adibi, Y. Xu, and R. K. Lee, “Nonlinear finite-difference time-domain method for the simulation of anisotropic, χ(2), and χ(3) optical effects,” J. Lightwave Technol. 24(1), 624–634 (2006).
    [Crossref]
  35. M. Balasubrahmaniyam, T. Abhilash, A. R. Ganesan, and S. Kasiviswanathan, “Effective medium-based plasmonic waveguides for tailoring dispersion,” IEEE Photonics Technol. Lett. 27(18), 1965–1968 (2015).
    [Crossref]
  36. B. Gallinet and O. J. F. Martin, “Influence of electromagnetic interactions on the line shape of plasmonic Fano resonances,” ACS Nano 5(11), 8999–9008 (2011).
    [Crossref] [PubMed]
  37. R. Alaee, D. Lehr, R. Filter, F. Lederer, E.-B. Kley, C. Rockstuhl, and A. Tünnermann, “Scattering dark states in multiresonant concentric plasmonic nanorings,” ACS Photonics 2(8), 1085–1090 (2015).
    [Crossref]
  38. B. Metzger, L. Gui, J. Fuchs, D. Floess, M. Hentschel, and H. Giessen, “Strong enhancement of second harmonic emission by plasmonic resonances at the second harmonic wavelength,” Nano Lett. 15(6), 3917–3922 (2015).
    [Crossref] [PubMed]
  39. T. Zentgraf, S. Zhang, R. F. Oulton, and X. Zhang, “Ultranarrow coupling-induced transparency bands in hybrid plasmonic systems,” Phys. Rev. B 80(19), 195415 (2009).
    [Crossref]
  40. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
    [Crossref] [PubMed]
  41. J. Pomplun, S. Burger, L. Zschiedrich, and F. Schmidt, “Adaptive finite element method for simulation of optical nano structures,” Phys. Status Solidi 244(10), 3419–3434 (2007).
    [Crossref]
  42. A. Abass, S. R.-K. Rodriguez, J. G. Rivas, and B. Maes, “Tailoring dispersion and eigenfield profiles of plasmonic surface lattice resonances,” ACS Photonics 1(1), 61–68 (2014).
    [Crossref]

2016 (1)

2015 (11)

G. E. Arnaoutakis, J. Marques-Hueso, A. Ivaturi, S. Fischer, J. C. Goldschmidt, K. W. Krämer, and B. S. Richards, “Enhanced energy conversion of up-conversion solar cells by the integration of compound parabolic concentrating optics,” Sol. Energy Mater. Sol. Cells 140, 217–223 (2015).
[Crossref]

M. H. Luong, T. T. N. Nguyen, C. T. Nguyen, I. Ledoux-Rak, and N. D. Lai, “Study of all-polymer-based waveguide resonant gratings and their applications for optimization of second-harmonic generation,” J. Phys. D Appl. Phys. 48(36), 365302 (2015).
[Crossref]

T. Ning, C. Tan, T. Niemi, M. Kauranen, and G. Genty, “Enhancement of second-harmonic generation from silicon nitride with gold gratings,” Opt. Express 23(24), 30695–30700 (2015).
[Crossref] [PubMed]

M. Balasubrahmaniyam, T. Abhilash, A. R. Ganesan, and S. Kasiviswanathan, “Effective medium-based plasmonic waveguides for tailoring dispersion,” IEEE Photonics Technol. Lett. 27(18), 1965–1968 (2015).
[Crossref]

R. Alaee, D. Lehr, R. Filter, F. Lederer, E.-B. Kley, C. Rockstuhl, and A. Tünnermann, “Scattering dark states in multiresonant concentric plasmonic nanorings,” ACS Photonics 2(8), 1085–1090 (2015).
[Crossref]

B. Metzger, L. Gui, J. Fuchs, D. Floess, M. Hentschel, and H. Giessen, “Strong enhancement of second harmonic emission by plasmonic resonances at the second harmonic wavelength,” Nano Lett. 15(6), 3917–3922 (2015).
[Crossref] [PubMed]

M. Celebrano, X. Wu, M. Baselli, S. Großmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duò, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10(5), 412–417 (2015).
[Crossref] [PubMed]

J. Butet, P.-F. Brevet, and O. J. F. Martin, “Optical second harmonic generation in plasmonic nanostructures: From fundamental principles to advanced applications,” ACS Nano 9(11), 10545–10562 (2015).
[Crossref] [PubMed]

L. Alloatti, C. Kieninger, A. Froelich, M. Lauermann, T. Frenzel, K. Köhnle, W. Freude, J. Leuthold, M. Wegener, and C. Koos, “Second-order nonlinear optical metamaterials: ABC-type nanolaminates,” Appl. Phys. Lett. 107(12), 121903 (2015).
[Crossref]

S. Clemmen, A. Hermans, E. Solano, J. Dendooven, K. Koskinen, M. Kauranen, E. Brainis, C. Detavernier, and R. Baets, “Atomic layer deposited second-order nonlinear optical metamaterial for back-end integration with CMOS-compatible nanophotonic circuitry,” Opt. Lett. 40(22), 5371–5374 (2015).
[Crossref] [PubMed]

Y. Sun, Z. Zheng, J. Cheng, G. Sun, and G. Qiao, “Highly efficient second harmonic generation in hyperbolic metamaterial slot waveguides with large phase matching tolerance,” Opt. Express 23(5), 6370–6378 (2015).
[Crossref] [PubMed]

2014 (6)

J. H. Lin, C.-Y. Tseng, C.-T. Lee, J. F. Young, H.-C. Kan, and C. C. Hsu, “Strong guided mode resonant local field enhanced visible harmonic generation in an azo-polymer resonant waveguide grating,” Opt. Express 22(3), 2790–2797 (2014).
[Crossref] [PubMed]

J. Lee, M. Tymchenko, C. Argyropoulos, P.-Y. Chen, F. Lu, F. Demmerle, G. Boehm, M.-C. Amann, A. Alù, and M. A. Belkin, “Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions,” Nature 511(7507), 65–69 (2014).
[Crossref] [PubMed]

L. Luo, I. Chatzakis, J. Wang, F. B. P. Niesler, M. Wegener, T. Koschny, and C. M. Soukoulis, “Broadband terahertz generation from metamaterials,” Nat. Commun. 5(3055), 3055 (2014).
[PubMed]

M. Zdanowicz, J. Harra, J. M. Mäkelä, E. Heinonen, T. Ning, M. Kauranen, and G. Genty, “Second-harmonic response of multilayer nanocomposites of silver-decorated nanoparticles and silica,” Sci. Rep. 4, 5745 (2014).
[Crossref] [PubMed]

S. B. Hasan, F. Lederer, and C. Rockstuhl, “Nonlinear plasmonic antennas,” Mater. Today 17(10), 478–485 (2014).
[Crossref]

A. Abass, S. R.-K. Rodriguez, J. G. Rivas, and B. Maes, “Tailoring dispersion and eigenfield profiles of plasmonic surface lattice resonances,” ACS Photonics 1(1), 61–68 (2014).
[Crossref]

2013 (1)

R. Czaplicki, H. Husu, R. Siikanen, J. Mäkitalo, M. Kauranen, J. Laukkanen, J. Lehtolahti, and M. Kuittinen, “Enhancement of second-harmonic generation from metal nanoparticles by passive elements,” Phys. Rev. Lett. 110(9), 093902 (2013).
[Crossref] [PubMed]

2012 (2)

2011 (5)

2010 (2)

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

A. Saari, G. Genty, M. Siltanen, P. Karvinen, P. Vahimaa, M. Kuittinen, and M. Kauranen, “Giant enhancement of second-harmonic generation in multiple diffraction orders from sub-wavelength resonant waveguide grating,” Opt. Express 18(12), 12298–12303 (2010).
[Crossref] [PubMed]

2009 (3)

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009).
[Crossref]

T. Zentgraf, S. Zhang, R. F. Oulton, and X. Zhang, “Ultranarrow coupling-induced transparency bands in hybrid plasmonic systems,” Phys. Rev. B 80(19), 195415 (2009).
[Crossref]

M. A. Alsunaidi, H. M. Al-Mudhaffar, and H. M. Masoudi, “Vectorial FDTD technique for the analysis of optical second-harmonic generation,” IEEE Photonics Technol. Lett. 21(5), 310–312 (2009).
[Crossref]

2007 (1)

J. Pomplun, S. Burger, L. Zschiedrich, and F. Schmidt, “Adaptive finite element method for simulation of optical nano structures,” Phys. Status Solidi 244(10), 3419–3434 (2007).
[Crossref]

2006 (2)

C. M. Reinke, A. Jafarpour, B. Momeni, M. Soltani, S. Khorasani, A. Adibi, Y. Xu, and R. K. Lee, “Nonlinear finite-difference time-domain method for the simulation of anisotropic, χ(2), and χ(3) optical effects,” J. Lightwave Technol. 24(1), 624–634 (2006).
[Crossref]

T.-D. Kim, J. Luo, J.-W. Ka, S. Hau, Y. Tian, Z. Shi, N. M. Tucker, S.-H. Jang, J.-W. Kang, and A. K.-Y. Jen, “Ultralarge and thermally stable electro-optic activities from Diels-Alder crosslinkable polymers containing binary chromophore systems,” Adv. Mater. 18(22), 3038–3042 (2006).
[Crossref]

2002 (1)

S. G. Tikhodeev, A. L. Yablonskii, E. A. Muljarov, N. A. Gippius, and T. Ishihara, “Quasiguided modes and optical properties of photonic crystal slabs,” Phys. Rev. B 66(4), 045102 (2002).
[Crossref]

1980 (1)

H. H. Li, “Refractive index of alkaline earth halides and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9(1), 161–289 (1980).
[Crossref]

1965 (1)

Abass, A.

A. Abass, S. R.-K. Rodriguez, J. G. Rivas, and B. Maes, “Tailoring dispersion and eigenfield profiles of plasmonic surface lattice resonances,” ACS Photonics 1(1), 61–68 (2014).
[Crossref]

Abhilash, T.

M. Balasubrahmaniyam, T. Abhilash, A. R. Ganesan, and S. Kasiviswanathan, “Effective medium-based plasmonic waveguides for tailoring dispersion,” IEEE Photonics Technol. Lett. 27(18), 1965–1968 (2015).
[Crossref]

Adibi, A.

Alaee, R.

R. Alaee, D. Lehr, R. Filter, F. Lederer, E.-B. Kley, C. Rockstuhl, and A. Tünnermann, “Scattering dark states in multiresonant concentric plasmonic nanorings,” ACS Photonics 2(8), 1085–1090 (2015).
[Crossref]

Albert, J.

Alloatti, L.

L. Alloatti, C. Kieninger, A. Froelich, M. Lauermann, T. Frenzel, K. Köhnle, W. Freude, J. Leuthold, M. Wegener, and C. Koos, “Second-order nonlinear optical metamaterials: ABC-type nanolaminates,” Appl. Phys. Lett. 107(12), 121903 (2015).
[Crossref]

Al-Mudhaffar, H. M.

M. A. Alsunaidi, H. M. Al-Mudhaffar, and H. M. Masoudi, “Vectorial FDTD technique for the analysis of optical second-harmonic generation,” IEEE Photonics Technol. Lett. 21(5), 310–312 (2009).
[Crossref]

Alsunaidi, M. A.

M. A. Alsunaidi, H. M. Al-Mudhaffar, and H. M. Masoudi, “Vectorial FDTD technique for the analysis of optical second-harmonic generation,” IEEE Photonics Technol. Lett. 21(5), 310–312 (2009).
[Crossref]

Alù, A.

J. Lee, M. Tymchenko, C. Argyropoulos, P.-Y. Chen, F. Lu, F. Demmerle, G. Boehm, M.-C. Amann, A. Alù, and M. A. Belkin, “Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions,” Nature 511(7507), 65–69 (2014).
[Crossref] [PubMed]

Amann, M.-C.

J. Lee, M. Tymchenko, C. Argyropoulos, P.-Y. Chen, F. Lu, F. Demmerle, G. Boehm, M.-C. Amann, A. Alù, and M. A. Belkin, “Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions,” Nature 511(7507), 65–69 (2014).
[Crossref] [PubMed]

Argyropoulos, C.

J. Lee, M. Tymchenko, C. Argyropoulos, P.-Y. Chen, F. Lu, F. Demmerle, G. Boehm, M.-C. Amann, A. Alù, and M. A. Belkin, “Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions,” Nature 511(7507), 65–69 (2014).
[Crossref] [PubMed]

Arnaoutakis, G. E.

G. E. Arnaoutakis, J. Marques-Hueso, A. Ivaturi, S. Fischer, J. C. Goldschmidt, K. W. Krämer, and B. S. Richards, “Enhanced energy conversion of up-conversion solar cells by the integration of compound parabolic concentrating optics,” Sol. Energy Mater. Sol. Cells 140, 217–223 (2015).
[Crossref]

Baets, R.

Balasubrahmaniyam, M.

M. Balasubrahmaniyam, T. Abhilash, A. R. Ganesan, and S. Kasiviswanathan, “Effective medium-based plasmonic waveguides for tailoring dispersion,” IEEE Photonics Technol. Lett. 27(18), 1965–1968 (2015).
[Crossref]

Baselli, M.

M. Celebrano, X. Wu, M. Baselli, S. Großmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duò, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10(5), 412–417 (2015).
[Crossref] [PubMed]

Belkin, M. A.

J. Lee, M. Tymchenko, C. Argyropoulos, P.-Y. Chen, F. Lu, F. Demmerle, G. Boehm, M.-C. Amann, A. Alù, and M. A. Belkin, “Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions,” Nature 511(7507), 65–69 (2014).
[Crossref] [PubMed]

Biagioni, P.

M. Celebrano, X. Wu, M. Baselli, S. Großmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duò, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10(5), 412–417 (2015).
[Crossref] [PubMed]

Blanchetiere, C.

Boehm, G.

J. Lee, M. Tymchenko, C. Argyropoulos, P.-Y. Chen, F. Lu, F. Demmerle, G. Boehm, M.-C. Amann, A. Alù, and M. A. Belkin, “Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions,” Nature 511(7507), 65–69 (2014).
[Crossref] [PubMed]

Brainis, E.

Brevet, P.-F.

J. Butet, P.-F. Brevet, and O. J. F. Martin, “Optical second harmonic generation in plasmonic nanostructures: From fundamental principles to advanced applications,” ACS Nano 9(11), 10545–10562 (2015).
[Crossref] [PubMed]

Burger, S.

J. Pomplun, S. Burger, L. Zschiedrich, and F. Schmidt, “Adaptive finite element method for simulation of optical nano structures,” Phys. Status Solidi 244(10), 3419–3434 (2007).
[Crossref]

Butet, J.

J. Butet and O. J. F. Martin, “Evaluation of the nonlinear response of plasmonic metasurfaces: Miller’s rule, nonlinear effective susceptibility method, and full-wave computation,” J. Opt. Soc. Am. B 33(2), A8–A15 (2016).
[Crossref]

J. Butet, P.-F. Brevet, and O. J. F. Martin, “Optical second harmonic generation in plasmonic nanostructures: From fundamental principles to advanced applications,” ACS Nano 9(11), 10545–10562 (2015).
[Crossref] [PubMed]

Callender, C. L.

Celebrano, M.

M. Celebrano, X. Wu, M. Baselli, S. Großmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duò, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10(5), 412–417 (2015).
[Crossref] [PubMed]

Cerullo, G.

M. Celebrano, X. Wu, M. Baselli, S. Großmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duò, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10(5), 412–417 (2015).
[Crossref] [PubMed]

Chatzakis, I.

L. Luo, I. Chatzakis, J. Wang, F. B. P. Niesler, M. Wegener, T. Koschny, and C. M. Soukoulis, “Broadband terahertz generation from metamaterials,” Nat. Commun. 5(3055), 3055 (2014).
[PubMed]

Chen, P.-Y.

J. Lee, M. Tymchenko, C. Argyropoulos, P.-Y. Chen, F. Lu, F. Demmerle, G. Boehm, M.-C. Amann, A. Alù, and M. A. Belkin, “Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions,” Nature 511(7507), 65–69 (2014).
[Crossref] [PubMed]

Cheng, J.

Chong, C. T.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Ciccacci, F.

M. Celebrano, X. Wu, M. Baselli, S. Großmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duò, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10(5), 412–417 (2015).
[Crossref] [PubMed]

Clemmen, S.

Corcoran, B.

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009).
[Crossref]

Czaplicki, R.

R. Czaplicki, H. Husu, R. Siikanen, J. Mäkitalo, M. Kauranen, J. Laukkanen, J. Lehtolahti, and M. Kuittinen, “Enhancement of second-harmonic generation from metal nanoparticles by passive elements,” Phys. Rev. Lett. 110(9), 093902 (2013).
[Crossref] [PubMed]

D’Aguanno, G.

De Angelis, C.

M. Celebrano, X. Wu, M. Baselli, S. Großmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duò, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10(5), 412–417 (2015).
[Crossref] [PubMed]

de Ceglia, D.

Demmerle, F.

J. Lee, M. Tymchenko, C. Argyropoulos, P.-Y. Chen, F. Lu, F. Demmerle, G. Boehm, M.-C. Amann, A. Alù, and M. A. Belkin, “Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions,” Nature 511(7507), 65–69 (2014).
[Crossref] [PubMed]

Dendooven, J.

Detavernier, C.

Duò, L.

M. Celebrano, X. Wu, M. Baselli, S. Großmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duò, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10(5), 412–417 (2015).
[Crossref] [PubMed]

Eggleton, B. J.

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009).
[Crossref]

Feth, N.

Filter, R.

R. Alaee, D. Lehr, R. Filter, F. Lederer, E.-B. Kley, C. Rockstuhl, and A. Tünnermann, “Scattering dark states in multiresonant concentric plasmonic nanorings,” ACS Photonics 2(8), 1085–1090 (2015).
[Crossref]

Finazzi, M.

M. Celebrano, X. Wu, M. Baselli, S. Großmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duò, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10(5), 412–417 (2015).
[Crossref] [PubMed]

Fischer, S.

G. E. Arnaoutakis, J. Marques-Hueso, A. Ivaturi, S. Fischer, J. C. Goldschmidt, K. W. Krämer, and B. S. Richards, “Enhanced energy conversion of up-conversion solar cells by the integration of compound parabolic concentrating optics,” Sol. Energy Mater. Sol. Cells 140, 217–223 (2015).
[Crossref]

Floess, D.

B. Metzger, L. Gui, J. Fuchs, D. Floess, M. Hentschel, and H. Giessen, “Strong enhancement of second harmonic emission by plasmonic resonances at the second harmonic wavelength,” Nano Lett. 15(6), 3917–3922 (2015).
[Crossref] [PubMed]

Frenzel, T.

L. Alloatti, C. Kieninger, A. Froelich, M. Lauermann, T. Frenzel, K. Köhnle, W. Freude, J. Leuthold, M. Wegener, and C. Koos, “Second-order nonlinear optical metamaterials: ABC-type nanolaminates,” Appl. Phys. Lett. 107(12), 121903 (2015).
[Crossref]

Freude, W.

L. Alloatti, C. Kieninger, A. Froelich, M. Lauermann, T. Frenzel, K. Köhnle, W. Freude, J. Leuthold, M. Wegener, and C. Koos, “Second-order nonlinear optical metamaterials: ABC-type nanolaminates,” Appl. Phys. Lett. 107(12), 121903 (2015).
[Crossref]

Froelich, A.

L. Alloatti, C. Kieninger, A. Froelich, M. Lauermann, T. Frenzel, K. Köhnle, W. Freude, J. Leuthold, M. Wegener, and C. Koos, “Second-order nonlinear optical metamaterials: ABC-type nanolaminates,” Appl. Phys. Lett. 107(12), 121903 (2015).
[Crossref]

Fuchs, J.

B. Metzger, L. Gui, J. Fuchs, D. Floess, M. Hentschel, and H. Giessen, “Strong enhancement of second harmonic emission by plasmonic resonances at the second harmonic wavelength,” Nano Lett. 15(6), 3917–3922 (2015).
[Crossref] [PubMed]

Gallinet, B.

B. Gallinet and O. J. F. Martin, “Influence of electromagnetic interactions on the line shape of plasmonic Fano resonances,” ACS Nano 5(11), 8999–9008 (2011).
[Crossref] [PubMed]

Ganesan, A. R.

M. Balasubrahmaniyam, T. Abhilash, A. R. Ganesan, and S. Kasiviswanathan, “Effective medium-based plasmonic waveguides for tailoring dispersion,” IEEE Photonics Technol. Lett. 27(18), 1965–1968 (2015).
[Crossref]

Genty, G.

Giessen, H.

B. Metzger, L. Gui, J. Fuchs, D. Floess, M. Hentschel, and H. Giessen, “Strong enhancement of second harmonic emission by plasmonic resonances at the second harmonic wavelength,” Nano Lett. 15(6), 3917–3922 (2015).
[Crossref] [PubMed]

T. Utikal, T. Zentgraf, T. Paul, C. Rockstuhl, F. Lederer, M. Lippitz, and H. Giessen, “Towards the origin of the nonlinear response in hybrid plasmonic systems,” Phys. Rev. Lett. 106(13), 133901 (2011).
[Crossref] [PubMed]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Gippius, N. A.

S. G. Tikhodeev, A. L. Yablonskii, E. A. Muljarov, N. A. Gippius, and T. Ishihara, “Quasiguided modes and optical properties of photonic crystal slabs,” Phys. Rev. B 66(4), 045102 (2002).
[Crossref]

Goldschmidt, J. C.

G. E. Arnaoutakis, J. Marques-Hueso, A. Ivaturi, S. Fischer, J. C. Goldschmidt, K. W. Krämer, and B. S. Richards, “Enhanced energy conversion of up-conversion solar cells by the integration of compound parabolic concentrating optics,” Sol. Energy Mater. Sol. Cells 140, 217–223 (2015).
[Crossref]

Grillet, C.

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009).
[Crossref]

Großmann, S.

M. Celebrano, X. Wu, M. Baselli, S. Großmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duò, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10(5), 412–417 (2015).
[Crossref] [PubMed]

Gui, L.

B. Metzger, L. Gui, J. Fuchs, D. Floess, M. Hentschel, and H. Giessen, “Strong enhancement of second harmonic emission by plasmonic resonances at the second harmonic wavelength,” Nano Lett. 15(6), 3917–3922 (2015).
[Crossref] [PubMed]

Halas, N. J.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Harra, J.

M. Zdanowicz, J. Harra, J. M. Mäkelä, E. Heinonen, T. Ning, M. Kauranen, and G. Genty, “Second-harmonic response of multilayer nanocomposites of silver-decorated nanoparticles and silica,” Sci. Rep. 4, 5745 (2014).
[Crossref] [PubMed]

Hasan, S. B.

Hau, S.

T.-D. Kim, J. Luo, J.-W. Ka, S. Hau, Y. Tian, Z. Shi, N. M. Tucker, S.-H. Jang, J.-W. Kang, and A. K.-Y. Jen, “Ultralarge and thermally stable electro-optic activities from Diels-Alder crosslinkable polymers containing binary chromophore systems,” Adv. Mater. 18(22), 3038–3042 (2006).
[Crossref]

Hecht, B.

M. Celebrano, X. Wu, M. Baselli, S. Großmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duò, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10(5), 412–417 (2015).
[Crossref] [PubMed]

Heinonen, E.

M. Zdanowicz, J. Harra, J. M. Mäkelä, E. Heinonen, T. Ning, M. Kauranen, and G. Genty, “Second-harmonic response of multilayer nanocomposites of silver-decorated nanoparticles and silica,” Sci. Rep. 4, 5745 (2014).
[Crossref] [PubMed]

Hentschel, M.

B. Metzger, L. Gui, J. Fuchs, D. Floess, M. Hentschel, and H. Giessen, “Strong enhancement of second harmonic emission by plasmonic resonances at the second harmonic wavelength,” Nano Lett. 15(6), 3917–3922 (2015).
[Crossref] [PubMed]

Hermans, A.

Hsu, C. C.

Husu, H.

R. Czaplicki, H. Husu, R. Siikanen, J. Mäkitalo, M. Kauranen, J. Laukkanen, J. Lehtolahti, and M. Kuittinen, “Enhancement of second-harmonic generation from metal nanoparticles by passive elements,” Phys. Rev. Lett. 110(9), 093902 (2013).
[Crossref] [PubMed]

Hyvärinen, O.

Ishihara, T.

S. G. Tikhodeev, A. L. Yablonskii, E. A. Muljarov, N. A. Gippius, and T. Ishihara, “Quasiguided modes and optical properties of photonic crystal slabs,” Phys. Rev. B 66(4), 045102 (2002).
[Crossref]

Ivaturi, A.

G. E. Arnaoutakis, J. Marques-Hueso, A. Ivaturi, S. Fischer, J. C. Goldschmidt, K. W. Krämer, and B. S. Richards, “Enhanced energy conversion of up-conversion solar cells by the integration of compound parabolic concentrating optics,” Sol. Energy Mater. Sol. Cells 140, 217–223 (2015).
[Crossref]

Jacob, S.

Jafarpour, A.

Jang, S.-H.

T.-D. Kim, J. Luo, J.-W. Ka, S. Hau, Y. Tian, Z. Shi, N. M. Tucker, S.-H. Jang, J.-W. Kang, and A. K.-Y. Jen, “Ultralarge and thermally stable electro-optic activities from Diels-Alder crosslinkable polymers containing binary chromophore systems,” Adv. Mater. 18(22), 3038–3042 (2006).
[Crossref]

Jen, A. K.-Y.

T.-D. Kim, J. Luo, J.-W. Ka, S. Hau, Y. Tian, Z. Shi, N. M. Tucker, S.-H. Jang, J.-W. Kang, and A. K.-Y. Jen, “Ultralarge and thermally stable electro-optic activities from Diels-Alder crosslinkable polymers containing binary chromophore systems,” Adv. Mater. 18(22), 3038–3042 (2006).
[Crossref]

Ka, J.-W.

T.-D. Kim, J. Luo, J.-W. Ka, S. Hau, Y. Tian, Z. Shi, N. M. Tucker, S.-H. Jang, J.-W. Kang, and A. K.-Y. Jen, “Ultralarge and thermally stable electro-optic activities from Diels-Alder crosslinkable polymers containing binary chromophore systems,” Adv. Mater. 18(22), 3038–3042 (2006).
[Crossref]

Kan, H.-C.

Kang, J.-W.

T.-D. Kim, J. Luo, J.-W. Ka, S. Hau, Y. Tian, Z. Shi, N. M. Tucker, S.-H. Jang, J.-W. Kang, and A. K.-Y. Jen, “Ultralarge and thermally stable electro-optic activities from Diels-Alder crosslinkable polymers containing binary chromophore systems,” Adv. Mater. 18(22), 3038–3042 (2006).
[Crossref]

Kaplas, T.

Karvinen, P.

Kasiviswanathan, S.

M. Balasubrahmaniyam, T. Abhilash, A. R. Ganesan, and S. Kasiviswanathan, “Effective medium-based plasmonic waveguides for tailoring dispersion,” IEEE Photonics Technol. Lett. 27(18), 1965–1968 (2015).
[Crossref]

Kauranen, M.

S. Clemmen, A. Hermans, E. Solano, J. Dendooven, K. Koskinen, M. Kauranen, E. Brainis, C. Detavernier, and R. Baets, “Atomic layer deposited second-order nonlinear optical metamaterial for back-end integration with CMOS-compatible nanophotonic circuitry,” Opt. Lett. 40(22), 5371–5374 (2015).
[Crossref] [PubMed]

T. Ning, C. Tan, T. Niemi, M. Kauranen, and G. Genty, “Enhancement of second-harmonic generation from silicon nitride with gold gratings,” Opt. Express 23(24), 30695–30700 (2015).
[Crossref] [PubMed]

M. Zdanowicz, J. Harra, J. M. Mäkelä, E. Heinonen, T. Ning, M. Kauranen, and G. Genty, “Second-harmonic response of multilayer nanocomposites of silver-decorated nanoparticles and silica,” Sci. Rep. 4, 5745 (2014).
[Crossref] [PubMed]

R. Czaplicki, H. Husu, R. Siikanen, J. Mäkitalo, M. Kauranen, J. Laukkanen, J. Lehtolahti, and M. Kuittinen, “Enhancement of second-harmonic generation from metal nanoparticles by passive elements,” Phys. Rev. Lett. 110(9), 093902 (2013).
[Crossref] [PubMed]

T. Ning, H. Pietarinen, O. Hyvärinen, R. Kumar, T. Kaplas, M. Kauranen, and G. Genty, “Efficient second-harmonic generation in silicon nitride resonant waveguide gratings,” Opt. Lett. 37(20), 4269–4271 (2012).
[Crossref] [PubMed]

A. Saari, G. Genty, M. Siltanen, P. Karvinen, P. Vahimaa, M. Kuittinen, and M. Kauranen, “Giant enhancement of second-harmonic generation in multiple diffraction orders from sub-wavelength resonant waveguide grating,” Opt. Express 18(12), 12298–12303 (2010).
[Crossref] [PubMed]

Khorasani, S.

Kieninger, C.

L. Alloatti, C. Kieninger, A. Froelich, M. Lauermann, T. Frenzel, K. Köhnle, W. Freude, J. Leuthold, M. Wegener, and C. Koos, “Second-order nonlinear optical metamaterials: ABC-type nanolaminates,” Appl. Phys. Lett. 107(12), 121903 (2015).
[Crossref]

Kim, T.-D.

T.-D. Kim, J. Luo, J.-W. Ka, S. Hau, Y. Tian, Z. Shi, N. M. Tucker, S.-H. Jang, J.-W. Kang, and A. K.-Y. Jen, “Ultralarge and thermally stable electro-optic activities from Diels-Alder crosslinkable polymers containing binary chromophore systems,” Adv. Mater. 18(22), 3038–3042 (2006).
[Crossref]

Kley, E.-B.

R. Alaee, D. Lehr, R. Filter, F. Lederer, E.-B. Kley, C. Rockstuhl, and A. Tünnermann, “Scattering dark states in multiresonant concentric plasmonic nanorings,” ACS Photonics 2(8), 1085–1090 (2015).
[Crossref]

Köhnle, K.

L. Alloatti, C. Kieninger, A. Froelich, M. Lauermann, T. Frenzel, K. Köhnle, W. Freude, J. Leuthold, M. Wegener, and C. Koos, “Second-order nonlinear optical metamaterials: ABC-type nanolaminates,” Appl. Phys. Lett. 107(12), 121903 (2015).
[Crossref]

Koos, C.

L. Alloatti, C. Kieninger, A. Froelich, M. Lauermann, T. Frenzel, K. Köhnle, W. Freude, J. Leuthold, M. Wegener, and C. Koos, “Second-order nonlinear optical metamaterials: ABC-type nanolaminates,” Appl. Phys. Lett. 107(12), 121903 (2015).
[Crossref]

Koschny, T.

L. Luo, I. Chatzakis, J. Wang, F. B. P. Niesler, M. Wegener, T. Koschny, and C. M. Soukoulis, “Broadband terahertz generation from metamaterials,” Nat. Commun. 5(3055), 3055 (2014).
[PubMed]

Koskinen, K.

Krämer, K. W.

G. E. Arnaoutakis, J. Marques-Hueso, A. Ivaturi, S. Fischer, J. C. Goldschmidt, K. W. Krämer, and B. S. Richards, “Enhanced energy conversion of up-conversion solar cells by the integration of compound parabolic concentrating optics,” Sol. Energy Mater. Sol. Cells 140, 217–223 (2015).
[Crossref]

Krauss, T. F.

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009).
[Crossref]

Kuittinen, M.

R. Czaplicki, H. Husu, R. Siikanen, J. Mäkitalo, M. Kauranen, J. Laukkanen, J. Lehtolahti, and M. Kuittinen, “Enhancement of second-harmonic generation from metal nanoparticles by passive elements,” Phys. Rev. Lett. 110(9), 093902 (2013).
[Crossref] [PubMed]

A. Saari, G. Genty, M. Siltanen, P. Karvinen, P. Vahimaa, M. Kuittinen, and M. Kauranen, “Giant enhancement of second-harmonic generation in multiple diffraction orders from sub-wavelength resonant waveguide grating,” Opt. Express 18(12), 12298–12303 (2010).
[Crossref] [PubMed]

Kumar, R.

Lai, N. D.

M. H. Luong, T. T. N. Nguyen, C. T. Nguyen, I. Ledoux-Rak, and N. D. Lai, “Study of all-polymer-based waveguide resonant gratings and their applications for optimization of second-harmonic generation,” J. Phys. D Appl. Phys. 48(36), 365302 (2015).
[Crossref]

Lauermann, M.

L. Alloatti, C. Kieninger, A. Froelich, M. Lauermann, T. Frenzel, K. Köhnle, W. Freude, J. Leuthold, M. Wegener, and C. Koos, “Second-order nonlinear optical metamaterials: ABC-type nanolaminates,” Appl. Phys. Lett. 107(12), 121903 (2015).
[Crossref]

Laukkanen, J.

R. Czaplicki, H. Husu, R. Siikanen, J. Mäkitalo, M. Kauranen, J. Laukkanen, J. Lehtolahti, and M. Kuittinen, “Enhancement of second-harmonic generation from metal nanoparticles by passive elements,” Phys. Rev. Lett. 110(9), 093902 (2013).
[Crossref] [PubMed]

Ledderhof, C.

Lederer, F.

R. Alaee, D. Lehr, R. Filter, F. Lederer, E.-B. Kley, C. Rockstuhl, and A. Tünnermann, “Scattering dark states in multiresonant concentric plasmonic nanorings,” ACS Photonics 2(8), 1085–1090 (2015).
[Crossref]

S. B. Hasan, F. Lederer, and C. Rockstuhl, “Nonlinear plasmonic antennas,” Mater. Today 17(10), 478–485 (2014).
[Crossref]

S. B. Hasan, C. Rockstuhl, T. Pertsch, and F. Lederer, “Second-order nonlinear frequency conversion processes in plasmonic slot waveguides,” J. Opt. Soc. Am. B 29(7), 1606–1611 (2012).
[Crossref]

T. Utikal, T. Zentgraf, T. Paul, C. Rockstuhl, F. Lederer, M. Lippitz, and H. Giessen, “Towards the origin of the nonlinear response in hybrid plasmonic systems,” Phys. Rev. Lett. 106(13), 133901 (2011).
[Crossref] [PubMed]

Ledoux-Rak, I.

M. H. Luong, T. T. N. Nguyen, C. T. Nguyen, I. Ledoux-Rak, and N. D. Lai, “Study of all-polymer-based waveguide resonant gratings and their applications for optimization of second-harmonic generation,” J. Phys. D Appl. Phys. 48(36), 365302 (2015).
[Crossref]

Lee, C.-T.

Lee, J.

J. Lee, M. Tymchenko, C. Argyropoulos, P.-Y. Chen, F. Lu, F. Demmerle, G. Boehm, M.-C. Amann, A. Alù, and M. A. Belkin, “Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions,” Nature 511(7507), 65–69 (2014).
[Crossref] [PubMed]

Lee, R. K.

Lehr, D.

R. Alaee, D. Lehr, R. Filter, F. Lederer, E.-B. Kley, C. Rockstuhl, and A. Tünnermann, “Scattering dark states in multiresonant concentric plasmonic nanorings,” ACS Photonics 2(8), 1085–1090 (2015).
[Crossref]

Lehtolahti, J.

R. Czaplicki, H. Husu, R. Siikanen, J. Mäkitalo, M. Kauranen, J. Laukkanen, J. Lehtolahti, and M. Kuittinen, “Enhancement of second-harmonic generation from metal nanoparticles by passive elements,” Phys. Rev. Lett. 110(9), 093902 (2013).
[Crossref] [PubMed]

Leuthold, J.

L. Alloatti, C. Kieninger, A. Froelich, M. Lauermann, T. Frenzel, K. Köhnle, W. Freude, J. Leuthold, M. Wegener, and C. Koos, “Second-order nonlinear optical metamaterials: ABC-type nanolaminates,” Appl. Phys. Lett. 107(12), 121903 (2015).
[Crossref]

Li, H. H.

H. H. Li, “Refractive index of alkaline earth halides and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9(1), 161–289 (1980).
[Crossref]

Lin, J. H.

Linden, S.

Lippitz, M.

T. Utikal, T. Zentgraf, T. Paul, C. Rockstuhl, F. Lederer, M. Lippitz, and H. Giessen, “Towards the origin of the nonlinear response in hybrid plasmonic systems,” Phys. Rev. Lett. 106(13), 133901 (2011).
[Crossref] [PubMed]

Locatelli, A.

M. Celebrano, X. Wu, M. Baselli, S. Großmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duò, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10(5), 412–417 (2015).
[Crossref] [PubMed]

Lu, F.

J. Lee, M. Tymchenko, C. Argyropoulos, P.-Y. Chen, F. Lu, F. Demmerle, G. Boehm, M.-C. Amann, A. Alù, and M. A. Belkin, “Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions,” Nature 511(7507), 65–69 (2014).
[Crossref] [PubMed]

Luk’yanchuk, B.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Luo, J.

T.-D. Kim, J. Luo, J.-W. Ka, S. Hau, Y. Tian, Z. Shi, N. M. Tucker, S.-H. Jang, J.-W. Kang, and A. K.-Y. Jen, “Ultralarge and thermally stable electro-optic activities from Diels-Alder crosslinkable polymers containing binary chromophore systems,” Adv. Mater. 18(22), 3038–3042 (2006).
[Crossref]

Luo, L.

L. Luo, I. Chatzakis, J. Wang, F. B. P. Niesler, M. Wegener, T. Koschny, and C. M. Soukoulis, “Broadband terahertz generation from metamaterials,” Nat. Commun. 5(3055), 3055 (2014).
[PubMed]

Luong, M. H.

M. H. Luong, T. T. N. Nguyen, C. T. Nguyen, I. Ledoux-Rak, and N. D. Lai, “Study of all-polymer-based waveguide resonant gratings and their applications for optimization of second-harmonic generation,” J. Phys. D Appl. Phys. 48(36), 365302 (2015).
[Crossref]

Maes, B.

A. Abass, S. R.-K. Rodriguez, J. G. Rivas, and B. Maes, “Tailoring dispersion and eigenfield profiles of plasmonic surface lattice resonances,” ACS Photonics 1(1), 61–68 (2014).
[Crossref]

Maier, S. A.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Mäkelä, J. M.

M. Zdanowicz, J. Harra, J. M. Mäkelä, E. Heinonen, T. Ning, M. Kauranen, and G. Genty, “Second-harmonic response of multilayer nanocomposites of silver-decorated nanoparticles and silica,” Sci. Rep. 4, 5745 (2014).
[Crossref] [PubMed]

Mäkitalo, J.

R. Czaplicki, H. Husu, R. Siikanen, J. Mäkitalo, M. Kauranen, J. Laukkanen, J. Lehtolahti, and M. Kuittinen, “Enhancement of second-harmonic generation from metal nanoparticles by passive elements,” Phys. Rev. Lett. 110(9), 093902 (2013).
[Crossref] [PubMed]

Malitson, I. H.

Marques-Hueso, J.

G. E. Arnaoutakis, J. Marques-Hueso, A. Ivaturi, S. Fischer, J. C. Goldschmidt, K. W. Krämer, and B. S. Richards, “Enhanced energy conversion of up-conversion solar cells by the integration of compound parabolic concentrating optics,” Sol. Energy Mater. Sol. Cells 140, 217–223 (2015).
[Crossref]

Martin, O. J. F.

J. Butet and O. J. F. Martin, “Evaluation of the nonlinear response of plasmonic metasurfaces: Miller’s rule, nonlinear effective susceptibility method, and full-wave computation,” J. Opt. Soc. Am. B 33(2), A8–A15 (2016).
[Crossref]

J. Butet, P.-F. Brevet, and O. J. F. Martin, “Optical second harmonic generation in plasmonic nanostructures: From fundamental principles to advanced applications,” ACS Nano 9(11), 10545–10562 (2015).
[Crossref] [PubMed]

B. Gallinet and O. J. F. Martin, “Influence of electromagnetic interactions on the line shape of plasmonic Fano resonances,” ACS Nano 5(11), 8999–9008 (2011).
[Crossref] [PubMed]

Masoudi, H. M.

M. A. Alsunaidi, H. M. Al-Mudhaffar, and H. M. Masoudi, “Vectorial FDTD technique for the analysis of optical second-harmonic generation,” IEEE Photonics Technol. Lett. 21(5), 310–312 (2009).
[Crossref]

Mattiucci, N.

Metzger, B.

B. Metzger, L. Gui, J. Fuchs, D. Floess, M. Hentschel, and H. Giessen, “Strong enhancement of second harmonic emission by plasmonic resonances at the second harmonic wavelength,” Nano Lett. 15(6), 3917–3922 (2015).
[Crossref] [PubMed]

Momeni, B.

Monat, C.

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009).
[Crossref]

Moss, D. J.

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009).
[Crossref]

Muljarov, E. A.

S. G. Tikhodeev, A. L. Yablonskii, E. A. Muljarov, N. A. Gippius, and T. Ishihara, “Quasiguided modes and optical properties of photonic crystal slabs,” Phys. Rev. B 66(4), 045102 (2002).
[Crossref]

Nguyen, C. T.

M. H. Luong, T. T. N. Nguyen, C. T. Nguyen, I. Ledoux-Rak, and N. D. Lai, “Study of all-polymer-based waveguide resonant gratings and their applications for optimization of second-harmonic generation,” J. Phys. D Appl. Phys. 48(36), 365302 (2015).
[Crossref]

Nguyen, T. T. N.

M. H. Luong, T. T. N. Nguyen, C. T. Nguyen, I. Ledoux-Rak, and N. D. Lai, “Study of all-polymer-based waveguide resonant gratings and their applications for optimization of second-harmonic generation,” J. Phys. D Appl. Phys. 48(36), 365302 (2015).
[Crossref]

Niemi, T.

Niesler, F. B. P.

L. Luo, I. Chatzakis, J. Wang, F. B. P. Niesler, M. Wegener, T. Koschny, and C. M. Soukoulis, “Broadband terahertz generation from metamaterials,” Nat. Commun. 5(3055), 3055 (2014).
[PubMed]

F. B. P. Niesler, N. Feth, S. Linden, and M. Wegener, “Second-harmonic optical spectroscopy on split-ring-resonator arrays,” Opt. Lett. 36(9), 1533–1535 (2011).
[Crossref] [PubMed]

Ning, T.

Nordlander, P.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

O’Faolain, L.

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009).
[Crossref]

Osellame, R.

M. Celebrano, X. Wu, M. Baselli, S. Großmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duò, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10(5), 412–417 (2015).
[Crossref] [PubMed]

Oulton, R. F.

T. Zentgraf, S. Zhang, R. F. Oulton, and X. Zhang, “Ultranarrow coupling-induced transparency bands in hybrid plasmonic systems,” Phys. Rev. B 80(19), 195415 (2009).
[Crossref]

Paul, T.

T. Utikal, T. Zentgraf, T. Paul, C. Rockstuhl, F. Lederer, M. Lippitz, and H. Giessen, “Towards the origin of the nonlinear response in hybrid plasmonic systems,” Phys. Rev. Lett. 106(13), 133901 (2011).
[Crossref] [PubMed]

Pertsch, T.

Pietarinen, H.

Pomplun, J.

J. Pomplun, S. Burger, L. Zschiedrich, and F. Schmidt, “Adaptive finite element method for simulation of optical nano structures,” Phys. Status Solidi 244(10), 3419–3434 (2007).
[Crossref]

Qiao, G.

Reinke, C. M.

Richards, B. S.

G. E. Arnaoutakis, J. Marques-Hueso, A. Ivaturi, S. Fischer, J. C. Goldschmidt, K. W. Krämer, and B. S. Richards, “Enhanced energy conversion of up-conversion solar cells by the integration of compound parabolic concentrating optics,” Sol. Energy Mater. Sol. Cells 140, 217–223 (2015).
[Crossref]

Rivas, J. G.

A. Abass, S. R.-K. Rodriguez, J. G. Rivas, and B. Maes, “Tailoring dispersion and eigenfield profiles of plasmonic surface lattice resonances,” ACS Photonics 1(1), 61–68 (2014).
[Crossref]

Rockstuhl, C.

R. Alaee, D. Lehr, R. Filter, F. Lederer, E.-B. Kley, C. Rockstuhl, and A. Tünnermann, “Scattering dark states in multiresonant concentric plasmonic nanorings,” ACS Photonics 2(8), 1085–1090 (2015).
[Crossref]

S. B. Hasan, F. Lederer, and C. Rockstuhl, “Nonlinear plasmonic antennas,” Mater. Today 17(10), 478–485 (2014).
[Crossref]

S. B. Hasan, C. Rockstuhl, T. Pertsch, and F. Lederer, “Second-order nonlinear frequency conversion processes in plasmonic slot waveguides,” J. Opt. Soc. Am. B 29(7), 1606–1611 (2012).
[Crossref]

T. Utikal, T. Zentgraf, T. Paul, C. Rockstuhl, F. Lederer, M. Lippitz, and H. Giessen, “Towards the origin of the nonlinear response in hybrid plasmonic systems,” Phys. Rev. Lett. 106(13), 133901 (2011).
[Crossref] [PubMed]

Rodriguez, S. R.-K.

A. Abass, S. R.-K. Rodriguez, J. G. Rivas, and B. Maes, “Tailoring dispersion and eigenfield profiles of plasmonic surface lattice resonances,” ACS Photonics 1(1), 61–68 (2014).
[Crossref]

Saari, A.

Scalora, M.

Schmidt, F.

J. Pomplun, S. Burger, L. Zschiedrich, and F. Schmidt, “Adaptive finite element method for simulation of optical nano structures,” Phys. Status Solidi 244(10), 3419–3434 (2007).
[Crossref]

Shi, Z.

T.-D. Kim, J. Luo, J.-W. Ka, S. Hau, Y. Tian, Z. Shi, N. M. Tucker, S.-H. Jang, J.-W. Kang, and A. K.-Y. Jen, “Ultralarge and thermally stable electro-optic activities from Diels-Alder crosslinkable polymers containing binary chromophore systems,” Adv. Mater. 18(22), 3038–3042 (2006).
[Crossref]

Siikanen, R.

R. Czaplicki, H. Husu, R. Siikanen, J. Mäkitalo, M. Kauranen, J. Laukkanen, J. Lehtolahti, and M. Kuittinen, “Enhancement of second-harmonic generation from metal nanoparticles by passive elements,” Phys. Rev. Lett. 110(9), 093902 (2013).
[Crossref] [PubMed]

Siltanen, M.

Smelser, C. W.

Solano, E.

Soltani, M.

Soukoulis, C. M.

L. Luo, I. Chatzakis, J. Wang, F. B. P. Niesler, M. Wegener, T. Koschny, and C. M. Soukoulis, “Broadband terahertz generation from metamaterials,” Nat. Commun. 5(3055), 3055 (2014).
[PubMed]

Sun, G.

Sun, Y.

Tan, C.

Tian, Y.

T.-D. Kim, J. Luo, J.-W. Ka, S. Hau, Y. Tian, Z. Shi, N. M. Tucker, S.-H. Jang, J.-W. Kang, and A. K.-Y. Jen, “Ultralarge and thermally stable electro-optic activities from Diels-Alder crosslinkable polymers containing binary chromophore systems,” Adv. Mater. 18(22), 3038–3042 (2006).
[Crossref]

Tikhodeev, S. G.

S. G. Tikhodeev, A. L. Yablonskii, E. A. Muljarov, N. A. Gippius, and T. Ishihara, “Quasiguided modes and optical properties of photonic crystal slabs,” Phys. Rev. B 66(4), 045102 (2002).
[Crossref]

Tseng, C.-Y.

Tucker, N. M.

T.-D. Kim, J. Luo, J.-W. Ka, S. Hau, Y. Tian, Z. Shi, N. M. Tucker, S.-H. Jang, J.-W. Kang, and A. K.-Y. Jen, “Ultralarge and thermally stable electro-optic activities from Diels-Alder crosslinkable polymers containing binary chromophore systems,” Adv. Mater. 18(22), 3038–3042 (2006).
[Crossref]

Tünnermann, A.

R. Alaee, D. Lehr, R. Filter, F. Lederer, E.-B. Kley, C. Rockstuhl, and A. Tünnermann, “Scattering dark states in multiresonant concentric plasmonic nanorings,” ACS Photonics 2(8), 1085–1090 (2015).
[Crossref]

Tymchenko, M.

J. Lee, M. Tymchenko, C. Argyropoulos, P.-Y. Chen, F. Lu, F. Demmerle, G. Boehm, M.-C. Amann, A. Alù, and M. A. Belkin, “Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions,” Nature 511(7507), 65–69 (2014).
[Crossref] [PubMed]

Utikal, T.

T. Utikal, T. Zentgraf, T. Paul, C. Rockstuhl, F. Lederer, M. Lippitz, and H. Giessen, “Towards the origin of the nonlinear response in hybrid plasmonic systems,” Phys. Rev. Lett. 106(13), 133901 (2011).
[Crossref] [PubMed]

Vahimaa, P.

Vincenti, M. A.

Wang, J.

L. Luo, I. Chatzakis, J. Wang, F. B. P. Niesler, M. Wegener, T. Koschny, and C. M. Soukoulis, “Broadband terahertz generation from metamaterials,” Nat. Commun. 5(3055), 3055 (2014).
[PubMed]

Wegener, M.

L. Alloatti, C. Kieninger, A. Froelich, M. Lauermann, T. Frenzel, K. Köhnle, W. Freude, J. Leuthold, M. Wegener, and C. Koos, “Second-order nonlinear optical metamaterials: ABC-type nanolaminates,” Appl. Phys. Lett. 107(12), 121903 (2015).
[Crossref]

L. Luo, I. Chatzakis, J. Wang, F. B. P. Niesler, M. Wegener, T. Koschny, and C. M. Soukoulis, “Broadband terahertz generation from metamaterials,” Nat. Commun. 5(3055), 3055 (2014).
[PubMed]

F. B. P. Niesler, N. Feth, S. Linden, and M. Wegener, “Second-harmonic optical spectroscopy on split-ring-resonator arrays,” Opt. Lett. 36(9), 1533–1535 (2011).
[Crossref] [PubMed]

White, T. P.

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009).
[Crossref]

Wu, X.

M. Celebrano, X. Wu, M. Baselli, S. Großmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duò, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10(5), 412–417 (2015).
[Crossref] [PubMed]

Xu, Y.

Yablonskii, A. L.

S. G. Tikhodeev, A. L. Yablonskii, E. A. Muljarov, N. A. Gippius, and T. Ishihara, “Quasiguided modes and optical properties of photonic crystal slabs,” Phys. Rev. B 66(4), 045102 (2002).
[Crossref]

Yadav, K.

Young, J. F.

Zdanowicz, M.

M. Zdanowicz, J. Harra, J. M. Mäkelä, E. Heinonen, T. Ning, M. Kauranen, and G. Genty, “Second-harmonic response of multilayer nanocomposites of silver-decorated nanoparticles and silica,” Sci. Rep. 4, 5745 (2014).
[Crossref] [PubMed]

Zentgraf, T.

T. Utikal, T. Zentgraf, T. Paul, C. Rockstuhl, F. Lederer, M. Lippitz, and H. Giessen, “Towards the origin of the nonlinear response in hybrid plasmonic systems,” Phys. Rev. Lett. 106(13), 133901 (2011).
[Crossref] [PubMed]

T. Zentgraf, S. Zhang, R. F. Oulton, and X. Zhang, “Ultranarrow coupling-induced transparency bands in hybrid plasmonic systems,” Phys. Rev. B 80(19), 195415 (2009).
[Crossref]

Zhang, S.

T. Zentgraf, S. Zhang, R. F. Oulton, and X. Zhang, “Ultranarrow coupling-induced transparency bands in hybrid plasmonic systems,” Phys. Rev. B 80(19), 195415 (2009).
[Crossref]

Zhang, X.

T. Zentgraf, S. Zhang, R. F. Oulton, and X. Zhang, “Ultranarrow coupling-induced transparency bands in hybrid plasmonic systems,” Phys. Rev. B 80(19), 195415 (2009).
[Crossref]

Zheludev, N. I.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Zheng, Z.

Zschiedrich, L.

J. Pomplun, S. Burger, L. Zschiedrich, and F. Schmidt, “Adaptive finite element method for simulation of optical nano structures,” Phys. Status Solidi 244(10), 3419–3434 (2007).
[Crossref]

ACS Nano (2)

J. Butet, P.-F. Brevet, and O. J. F. Martin, “Optical second harmonic generation in plasmonic nanostructures: From fundamental principles to advanced applications,” ACS Nano 9(11), 10545–10562 (2015).
[Crossref] [PubMed]

B. Gallinet and O. J. F. Martin, “Influence of electromagnetic interactions on the line shape of plasmonic Fano resonances,” ACS Nano 5(11), 8999–9008 (2011).
[Crossref] [PubMed]

ACS Photonics (2)

R. Alaee, D. Lehr, R. Filter, F. Lederer, E.-B. Kley, C. Rockstuhl, and A. Tünnermann, “Scattering dark states in multiresonant concentric plasmonic nanorings,” ACS Photonics 2(8), 1085–1090 (2015).
[Crossref]

A. Abass, S. R.-K. Rodriguez, J. G. Rivas, and B. Maes, “Tailoring dispersion and eigenfield profiles of plasmonic surface lattice resonances,” ACS Photonics 1(1), 61–68 (2014).
[Crossref]

Adv. Mater. (1)

T.-D. Kim, J. Luo, J.-W. Ka, S. Hau, Y. Tian, Z. Shi, N. M. Tucker, S.-H. Jang, J.-W. Kang, and A. K.-Y. Jen, “Ultralarge and thermally stable electro-optic activities from Diels-Alder crosslinkable polymers containing binary chromophore systems,” Adv. Mater. 18(22), 3038–3042 (2006).
[Crossref]

Appl. Phys. Lett. (1)

L. Alloatti, C. Kieninger, A. Froelich, M. Lauermann, T. Frenzel, K. Köhnle, W. Freude, J. Leuthold, M. Wegener, and C. Koos, “Second-order nonlinear optical metamaterials: ABC-type nanolaminates,” Appl. Phys. Lett. 107(12), 121903 (2015).
[Crossref]

IEEE Photonics Technol. Lett. (2)

M. A. Alsunaidi, H. M. Al-Mudhaffar, and H. M. Masoudi, “Vectorial FDTD technique for the analysis of optical second-harmonic generation,” IEEE Photonics Technol. Lett. 21(5), 310–312 (2009).
[Crossref]

M. Balasubrahmaniyam, T. Abhilash, A. R. Ganesan, and S. Kasiviswanathan, “Effective medium-based plasmonic waveguides for tailoring dispersion,” IEEE Photonics Technol. Lett. 27(18), 1965–1968 (2015).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (2)

J. Phys. Chem. Ref. Data (1)

H. H. Li, “Refractive index of alkaline earth halides and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9(1), 161–289 (1980).
[Crossref]

J. Phys. D Appl. Phys. (1)

M. H. Luong, T. T. N. Nguyen, C. T. Nguyen, I. Ledoux-Rak, and N. D. Lai, “Study of all-polymer-based waveguide resonant gratings and their applications for optimization of second-harmonic generation,” J. Phys. D Appl. Phys. 48(36), 365302 (2015).
[Crossref]

Mater. Today (1)

S. B. Hasan, F. Lederer, and C. Rockstuhl, “Nonlinear plasmonic antennas,” Mater. Today 17(10), 478–485 (2014).
[Crossref]

Nano Lett. (1)

B. Metzger, L. Gui, J. Fuchs, D. Floess, M. Hentschel, and H. Giessen, “Strong enhancement of second harmonic emission by plasmonic resonances at the second harmonic wavelength,” Nano Lett. 15(6), 3917–3922 (2015).
[Crossref] [PubMed]

Nat. Commun. (1)

L. Luo, I. Chatzakis, J. Wang, F. B. P. Niesler, M. Wegener, T. Koschny, and C. M. Soukoulis, “Broadband terahertz generation from metamaterials,” Nat. Commun. 5(3055), 3055 (2014).
[PubMed]

Nat. Mater. (1)

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

M. Celebrano, X. Wu, M. Baselli, S. Großmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duò, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10(5), 412–417 (2015).
[Crossref] [PubMed]

Nat. Photonics (1)

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009).
[Crossref]

Nature (1)

J. Lee, M. Tymchenko, C. Argyropoulos, P.-Y. Chen, F. Lu, F. Demmerle, G. Boehm, M.-C. Amann, A. Alù, and M. A. Belkin, “Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions,” Nature 511(7507), 65–69 (2014).
[Crossref] [PubMed]

Opt. Express (5)

Opt. Lett. (4)

Phys. Rev. B (2)

S. G. Tikhodeev, A. L. Yablonskii, E. A. Muljarov, N. A. Gippius, and T. Ishihara, “Quasiguided modes and optical properties of photonic crystal slabs,” Phys. Rev. B 66(4), 045102 (2002).
[Crossref]

T. Zentgraf, S. Zhang, R. F. Oulton, and X. Zhang, “Ultranarrow coupling-induced transparency bands in hybrid plasmonic systems,” Phys. Rev. B 80(19), 195415 (2009).
[Crossref]

Phys. Rev. Lett. (2)

T. Utikal, T. Zentgraf, T. Paul, C. Rockstuhl, F. Lederer, M. Lippitz, and H. Giessen, “Towards the origin of the nonlinear response in hybrid plasmonic systems,” Phys. Rev. Lett. 106(13), 133901 (2011).
[Crossref] [PubMed]

R. Czaplicki, H. Husu, R. Siikanen, J. Mäkitalo, M. Kauranen, J. Laukkanen, J. Lehtolahti, and M. Kuittinen, “Enhancement of second-harmonic generation from metal nanoparticles by passive elements,” Phys. Rev. Lett. 110(9), 093902 (2013).
[Crossref] [PubMed]

Phys. Status Solidi (1)

J. Pomplun, S. Burger, L. Zschiedrich, and F. Schmidt, “Adaptive finite element method for simulation of optical nano structures,” Phys. Status Solidi 244(10), 3419–3434 (2007).
[Crossref]

Sci. Rep. (1)

M. Zdanowicz, J. Harra, J. M. Mäkelä, E. Heinonen, T. Ning, M. Kauranen, and G. Genty, “Second-harmonic response of multilayer nanocomposites of silver-decorated nanoparticles and silica,” Sci. Rep. 4, 5745 (2014).
[Crossref] [PubMed]

Sol. Energy Mater. Sol. Cells (1)

G. E. Arnaoutakis, J. Marques-Hueso, A. Ivaturi, S. Fischer, J. C. Goldschmidt, K. W. Krämer, and B. S. Richards, “Enhanced energy conversion of up-conversion solar cells by the integration of compound parabolic concentrating optics,” Sol. Energy Mater. Sol. Cells 140, 217–223 (2015).
[Crossref]

Other (5)

R. W. Boyd, Nonlinear Optics (Elsevier Science, 2008).

M. Mesch, B. Metzger, M. Hentschel, and H. Giessen, “Nonlinear plasmonic sensing,” Nano Lett. (posted 6 April 2016, in press).

A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, 2005).

C. Kieninger, Effective Bulk Second-Order Nonlinearity in ABC-Type Nanolaminate Optical Metamaterials, (Master thesis, Karlsruhe Institute of Technology, 2015).

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Scheme of the hybrid structure. The periodic nanostrips are embedded in the nanolaminate metamaterial with h = 30 nm for Au and h = 60 nm for MgF2. (b) Illustration of the mechanism of the SHG enhancement in our structure. Light at the fundamental wavelength impinges onto the hybrid system and excites the quasi-guided mode in the nanolaminates (red-horizontal arrows). Transmitted and reflected partial waves as indicated by the downward- and upward-red arrows, respectively. The guided field interacts with the nonlinear medium and generates the SH signal.

Fig. 2
Fig. 2

Transmission spectra for Au-grating samples in the range of (a) SHG and (b) FW, respectively, where the dots point out the spectral positions of (a) the SHG emission peaks and (b) the corresponding fundamental excitations. The black-dashed curves in (b) show the Fano fits of the spectra. (c) The SH enhancement spectra for Au-grating samples with the inset showing the integration value of |Ez|2 inside the nonlinear media.

Fig. 3
Fig. 3

Electric-field distributions at the fundamental wavelength of the SH emission peak for a Au-grating with w = 70 nm.

Fig. 4
Fig. 4

Transmission spectra for MgF2-grating samples in the range of (a) SHG and (b) FW, respectively, where the dots point out the spectral positions of (a) the SHG emission peaks and (b) the corresponding fundamental excitations. The black-dashed curves in (b) show the Fano fits of the spectra. (c) The SH enhancement spectra for MgF2-grating samples with the inset showing the integration value of |Ez|2 inside the nonlinear media.

Fig. 5
Fig. 5

Near-field distributions for (a) the 2nd quasi-guided mode, (b) the SHG emission peak of MgF2-grating with w = 80 nm, and (c) the 2nd dark waveguide mode, respectively. (a) and (b) are calculated by the FDTD program under plane wave excitation, and (c) is calculated by the eigenmode solver.

Tables (2)

Tables Icon

Table 1 Parameters of Drude-Lorentz model for Dispersive Materials.

Tables Icon

Table 2 Parameters of the Fano line shape fitting spectra for Au-grating and MgF2-grating samples.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ε r ( ω )= ε ω d 2 ω 2 +i γ d ω + j=1 2 A Lj ω Lj 2 ω Lj 2 i γ Lj ω ω 2 ,
× H ( r , t)= ε 0 ε ( r ) t E ( r , t)+ J d ( r , t)+ i J L i ( r , t) + t P (2) ( r , t)
P (2) ( r , t)= ε 0 χ (2) ( r ) E ( r , t) E ( r , t)=2 ε 0 [ d ]( r ) E ( r , t) E ( r , t),
T fit (ν)=1 σ a (ν) σ s (ν)=1[ ( ν 2 ν a 2 2 W a ν a + a F ) 2 +d ( ν 2 ν a 2 2 W a ν a ) 2 +1 ][ a 2 ( ν 2 ν s 2 2 W s ν s )+1 ],

Metrics