Abstract

In this work, the design methodology and experimental investigation of compact and lightweight dispersive coatings, comprised by multiple layers of anisotropic metasurfaces, which are capable of cloaking radiators at multiple frequencies are presented. To determine the required surface electromagnetic properties for each layer, an analytical model is developed for predicting the scattering from a cylinder surrounded by multiple layers of anisotropic metasurfaces subject to plane-wave illumination at a general oblique incidence angle. Particularly, two different metasurface coating solutions with different dispersive properties are designed to provide more than 10 dB scattering width suppression at two pre-selected frequencies within a field-of-view (FOV) of ± 20° off normal incidence. Both coating designs implemented using metasurfaces are fabricated and measured, experimentally demonstrating the simultaneous suppression of mutual coupling and quasi-three-dimensional radiation blockage at the two pre-selected frequency ranges. At the same time, the functionality of the coated monopole is still well-maintained. The performance comparison further sheds light on how the optimal performance can be obtained by properly exploiting the dispersion of each metasurface layer of the coating. In addition, the cloaking effect is retained even when the distance between the radiators is significantly reduced. The concept and general design methodology presented here can be extended for applications that would benefit from cloaking multi-spectral terahertz as well as optical antennas.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Enhancement of bandwidth and angle response of metasurface cloaking through adding antireflective moth-eye-like microstructure

Xufeng Jing, Chengfei Chu, Chenxia Li, Haiyong Gan, Yingwei He, Xincui Gui, and Zhi Hong
Opt. Express 27(15) 21766-21777 (2019)

Multi-frequency metasurface carpet cloaks

Chan Wang, Yihao Yang, Qianghu Liu, Dachuan Liang, Bin Zheng, Hongsheng Chen, Zhiwei Xu, and Huaping Wang
Opt. Express 26(11) 14123-14131 (2018)

Cloaking a sensor for three-dimensional Maxwell’s equations: transformation optics approach

Xudong Chen and Gunther Uhlmann
Opt. Express 19(21) 20518-20530 (2011)

References

  • View by:
  • |
  • |
  • |

  1. B. Zhang, “Electrodynamics of transformation-based invisibility cloaking,” Light Sci. Appl. 1(10), e32 (2012).
    [Crossref]
  2. P. Y. Chen, J. Soric, and A. Alù, “Invisibility and cloaking based on scattering cancellation,” Adv. Mater. 24(44), OP281–OP304 (2012).
    [PubMed]
  3. U. Leonhardt, “Optical conformal mapping,” Science 312(5781), 1777–1780 (2006).
    [Crossref] [PubMed]
  4. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
    [Crossref] [PubMed]
  5. A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(1), 016623 (2005).
    [Crossref] [PubMed]
  6. A. Alù, “Mantle cloak: invisibility induced by a surface,” Phys. Rev. B 80(24), 245115 (2009).
    [Crossref]
  7. S. Tretyakov, P. Alitalo, O. Luukkonen, and C. Simovski, “Broadband electromagnetic cloaking of long cylindrical objects,” Phys. Rev. Lett. 103(10), 103905 (2009).
    [Crossref] [PubMed]
  8. P. Alitalo and S. A. Tretyakov, “Broadband electromagnetic cloaking realized with transmission-line and waveguiding structures,” Proc. IEEE 99(10), 1646–1659 (2011).
    [Crossref]
  9. D. H. Werner and D.-H. Kwon, Transformation Electromagnetics and Metamaterials: Fundamental Principles and Applications (Springer, 2014).
  10. M. Kerker, “Invisible bodies,” J. Opt. Soc. Am. 65(4), 376–379 (1975).
    [Crossref]
  11. C.-W. Qiu, L. Hu, X. Xu, and Y. Feng, “Spherical cloaking with homogeneous isotropic multilayered structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 79(4), 047602 (2009).
    [Crossref] [PubMed]
  12. P. Y. Chen and A. Alù, “Mantle cloaking using thin patterned metasurfaces,” Phys. Rev. B 84(20), 205110 (2011).
    [Crossref]
  13. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
    [Crossref] [PubMed]
  14. R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
    [Crossref] [PubMed]
  15. J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
    [Crossref] [PubMed]
  16. J. H. Lee, J. Blair, V. A. Tamma, Q. Wu, S. J. Rhee, C. J. Summers, and W. Park, “Direct visualization of optical frequency invisibility cloak based on silicon nanorod array,” Opt. Express 17(15), 12922–12928 (2009).
    [Crossref] [PubMed]
  17. H. F. Ma and T. J. Cui, “Three-dimensional broadband ground-plane cloak made of metamaterials,” Nat. Commun. 1(3), 21 (2010).
    [Crossref] [PubMed]
  18. N. Landy and D. R. Smith, “A full-parameter unidirectional metamaterial cloak for microwaves,” Nat. Mater. 12(1), 25–28 (2012).
    [Crossref] [PubMed]
  19. D. Rainwater, A. Kerkhoff, K. Melin, J. C. Soric, G. Moreno, and A. Alù, “Experimental verification of three-dimensional plasmonic cloaking in free-space,” New J. Phys. 14(1), 013054 (2012).
    [Crossref]
  20. S. Xu, X. Cheng, S. Xi, R. Zhang, H. O. Moser, Z. Shen, Y. Xu, Z. Huang, X. Zhang, F. Yu, B. Zhang, and H. Chen, “Experimental demonstration of a free-space cylindrical cloak without superluminal propagation,” Phys. Rev. Lett. 109(22), 223903 (2012).
    [Crossref] [PubMed]
  21. J. C. Soric, P. Y. Chen, A. Kerkhoff, D. Rainwater, K. Melin, and A. Alù, “Demonstration of an ultralow profile cloak for scattering suppression of a finite-length rod in free space,” New J. Phys. 15(3), 033037 (2013).
    [Crossref]
  22. A. Alù and N. Engheta, “Multifrequency optical invisibility cloak with layered plasmonic shells,” Phys. Rev. Lett. 100(11), 113901 (2008).
    [Crossref] [PubMed]
  23. H. Wang and X. Zhang, “Achieving multifrequency transperancy with cylindrical plasmonic cloak,” J. Appl. Phys. 106(5), 053302 (2009).
    [Crossref]
  24. Y. Gao, J. P. Huang, and K. W. Yu, “Multifrequency cloak with multishell by using transformation medium,” J. Appl. Phys. 105(12), 124505 (2009).
    [Crossref]
  25. M. Farhat, C. Rockstuhl, and H. Bağcı, “A 3D tunable and multi-frequency graphene plasmonic cloak,” Opt. Express 21(10), 12592–12603 (2013).
    [Crossref] [PubMed]
  26. J. C. Soric, A. Monti, A. Toscano, F. Bilotti, and A. Alù, “Multiband and wideband bilayer mantle cloaks,” IEEE Trans. Antenn. Propag. 63(7), 3235–3240 (2015).
    [Crossref]
  27. F. Monticone and A. Alù, “Do cloaked objects really scatter less?” Phys. Rev. X 3(4), 041005 (2013).
    [Crossref]
  28. Y. Huang, Y. Feng, and T. Jiang, “Electromagnetic cloaking by layered structure of homogeneous isotropic materials,” Opt. Express 15(18), 11133–11141 (2007).
    [Crossref] [PubMed]
  29. F. Monticone, C. Argyropoulos, and A. Alù, “Layered plasmonic cloaks to tailor the optical scattering at the nanoscale,” Sci. Rep. 2, 912 (2012).
    [Crossref] [PubMed]
  30. A. Alù and N. Engheta, “Cloaking a sensor,” Phys. Rev. Lett. 102(23), 233901 (2009).
    [Crossref] [PubMed]
  31. D.-H. Kwon and D. H. Werner, “Restoration of antenna parameters in scattering environments using electromagnetic cloaking,” Appl. Phys. Lett. 92(11), 113507 (2008).
    [Crossref]
  32. A. Monti, J. Soric, A. Alù, A. Toscano, L. Vegni, and F. Bilotti, “Overcoming mutual blockage between neighboring dipole antennas using a low-profile patterned metasurface,” IEEE Antennas Wirel. Propag. Lett. 11, 1414–1417 (2012).
    [Crossref]
  33. H. M. Bernety and A. B. Yakovlev, “Reduction of mutual coupling between neighboring strip dipole antennas using confocal elliptical metasurface cloaks,” IEEE Trans. Antenn. Propag. 63(4), 1554–1563 (2015).
    [Crossref]
  34. J. Soric, A. Monti, A. Toscano, F. Bilotti, and A. Alù, “Dual-polarized reduction of dipole antenna blockage using mantle cloaks,” IEEE Trans. Antenn. Propag. 63(11), 4827–4834 (2015).
    [Crossref]
  35. Z. H. Jiang, P. E. Sieber, L. Kang, and D. H. Werner, “Restoring intrinsic properties of electromagnetic radiators using ultra-lightweight integrated metasurface cloaks,” Adv. Funct. Mater. 25(29), 4708–4716 (2015).
    [Crossref]
  36. E. F. Kuester, M. A. Mohamed, M. Piket-May, and C. L. Holloway, “Averaged transition conditions for electromagnetic fields at a metafilm,” IEEE Trans. Antenn. Propag. 51(10), 2641–2651 (2003).
    [Crossref]
  37. C. A. Balanis, Advanced Engineering Electromagnetics (Wiley, 1989).
  38. C. L. Holloway, M. A. Mohamed, E. F. Kuester, and A. Dienstfrey, “Reflection and transmission properties of a metafilm: with an application to a controllable surface composed of resonant particles,” IEEE Trans. Electromagn. Compat. 47(4), 853–865 (2005).
    [Crossref]
  39. Z. H. Jiang and D. H. Werner, “Exploiting metasurface anisotropy for achieving near-perfect low-profile cloaks beyond the quasi-static limit,” J. Phys. D Appl. Phys. 46(50), 505306 (2013).
    [Crossref]
  40. L. D. Landau, L. P. Pitaevskii, and E. M. Lifshitz, Electrodynamics of Continuous Media, 2nd ed. (Elsevier, 1984).
  41. Z. H. Jiang and D. H. Werner, “Quasi-three-dimensional angle-tolerant electromagnetic illusion using ultrathin metasurface coatings,” Adv. Funct. Mater. 24(48), 7728–7736 (2014).
    [Crossref]
  42. Z. H. Jiang, Q. Wu, D. E. Brocker, P. E. Sieber, and D. H. Werner, “A low-profile high-gain substrate integrated waveguide slot antenna enabled by an ultrathin anisotropic zero-index metamaterial coating,” IEEE Trans. Antenn. Propag. 62(3), 1173–1184 (2014).
    [Crossref]
  43. Z. H. Jiang, D. E. Brocker, P. E. Sieber, and D. H. Werner, “A compact, low-profile metasurface-enabled antenna for wearable medical body-area network devices,” IEEE Trans. Antenn. Propag. 62(8), 4021–4030 (2014).
    [Crossref]
  44. F. Bilotti, A. Toscano, and L. Vegni, “Design of spiral and multiple split-ring resonators for the realization of miniaturized metamaterial samples,” IEEE Trans. Antenn. Propag. 55(8), 2258–2267 (2007).
    [Crossref]
  45. Z. H. Jiang, M. D. Gregory, and D. H. Werner, “A broadband monopole antenna enabled by an ultrathin anisotropic metamaterial coating,” IEEE Antennas Wirel. Propag. Lett. 10, 1543–1546 (2011).
    [Crossref]
  46. P.-Y. Chen and A. Alù, “Atomically thin surface cloak using graphene monolayers,” ACS Nano 5(7), 5855–5863 (2011).
    [Crossref] [PubMed]
  47. S. Mühlig, M. Farhat, C. Rockstuhl, and F. Lederer, “Cloaking dielectric spherical objects by a shell of metallic nanoparticles,” Phys. Rev. B 83(19), 195116 (2011).
    [Crossref]
  48. A. Monti, F. Bilotti, and A. Toscano, “Optical cloaking of cylindrical objects by using covers made of core-shell nanoparticles,” Opt. Lett. 36(23), 4479–4481 (2011).
    [Crossref] [PubMed]
  49. M. Farhat, S. Mühlig, C. Rockstuhl, and F. Lederer, “Scattering cancellation of the magnetic dipole field from macroscopic spheres,” Opt. Express 20(13), 13896–13906 (2012).
    [Crossref] [PubMed]
  50. S. Mühlig, A. Cunningham, J. Dintinger, M. Farhat, S. B. Hasan, T. Scharf, T. Bürgi, F. Lederer, and C. Rockstuhl, “A self-assembled three-dimensional cloak in the visible,” Sci. Rep. 3, 2328 (2013).
    [Crossref] [PubMed]
  51. A. Monti, A. Alù, A. Toscano, and F. Bilotti, “Optical invisibility through metasurfaces made of plasmonic nanoparticles,” J. Appl. Phys. 117(12), 123103 (2015).
    [Crossref]

2015 (5)

J. C. Soric, A. Monti, A. Toscano, F. Bilotti, and A. Alù, “Multiband and wideband bilayer mantle cloaks,” IEEE Trans. Antenn. Propag. 63(7), 3235–3240 (2015).
[Crossref]

H. M. Bernety and A. B. Yakovlev, “Reduction of mutual coupling between neighboring strip dipole antennas using confocal elliptical metasurface cloaks,” IEEE Trans. Antenn. Propag. 63(4), 1554–1563 (2015).
[Crossref]

J. Soric, A. Monti, A. Toscano, F. Bilotti, and A. Alù, “Dual-polarized reduction of dipole antenna blockage using mantle cloaks,” IEEE Trans. Antenn. Propag. 63(11), 4827–4834 (2015).
[Crossref]

Z. H. Jiang, P. E. Sieber, L. Kang, and D. H. Werner, “Restoring intrinsic properties of electromagnetic radiators using ultra-lightweight integrated metasurface cloaks,” Adv. Funct. Mater. 25(29), 4708–4716 (2015).
[Crossref]

A. Monti, A. Alù, A. Toscano, and F. Bilotti, “Optical invisibility through metasurfaces made of plasmonic nanoparticles,” J. Appl. Phys. 117(12), 123103 (2015).
[Crossref]

2014 (3)

Z. H. Jiang and D. H. Werner, “Quasi-three-dimensional angle-tolerant electromagnetic illusion using ultrathin metasurface coatings,” Adv. Funct. Mater. 24(48), 7728–7736 (2014).
[Crossref]

Z. H. Jiang, Q. Wu, D. E. Brocker, P. E. Sieber, and D. H. Werner, “A low-profile high-gain substrate integrated waveguide slot antenna enabled by an ultrathin anisotropic zero-index metamaterial coating,” IEEE Trans. Antenn. Propag. 62(3), 1173–1184 (2014).
[Crossref]

Z. H. Jiang, D. E. Brocker, P. E. Sieber, and D. H. Werner, “A compact, low-profile metasurface-enabled antenna for wearable medical body-area network devices,” IEEE Trans. Antenn. Propag. 62(8), 4021–4030 (2014).
[Crossref]

2013 (5)

S. Mühlig, A. Cunningham, J. Dintinger, M. Farhat, S. B. Hasan, T. Scharf, T. Bürgi, F. Lederer, and C. Rockstuhl, “A self-assembled three-dimensional cloak in the visible,” Sci. Rep. 3, 2328 (2013).
[Crossref] [PubMed]

M. Farhat, C. Rockstuhl, and H. Bağcı, “A 3D tunable and multi-frequency graphene plasmonic cloak,” Opt. Express 21(10), 12592–12603 (2013).
[Crossref] [PubMed]

Z. H. Jiang and D. H. Werner, “Exploiting metasurface anisotropy for achieving near-perfect low-profile cloaks beyond the quasi-static limit,” J. Phys. D Appl. Phys. 46(50), 505306 (2013).
[Crossref]

F. Monticone and A. Alù, “Do cloaked objects really scatter less?” Phys. Rev. X 3(4), 041005 (2013).
[Crossref]

J. C. Soric, P. Y. Chen, A. Kerkhoff, D. Rainwater, K. Melin, and A. Alù, “Demonstration of an ultralow profile cloak for scattering suppression of a finite-length rod in free space,” New J. Phys. 15(3), 033037 (2013).
[Crossref]

2012 (8)

F. Monticone, C. Argyropoulos, and A. Alù, “Layered plasmonic cloaks to tailor the optical scattering at the nanoscale,” Sci. Rep. 2, 912 (2012).
[Crossref] [PubMed]

A. Monti, J. Soric, A. Alù, A. Toscano, L. Vegni, and F. Bilotti, “Overcoming mutual blockage between neighboring dipole antennas using a low-profile patterned metasurface,” IEEE Antennas Wirel. Propag. Lett. 11, 1414–1417 (2012).
[Crossref]

B. Zhang, “Electrodynamics of transformation-based invisibility cloaking,” Light Sci. Appl. 1(10), e32 (2012).
[Crossref]

P. Y. Chen, J. Soric, and A. Alù, “Invisibility and cloaking based on scattering cancellation,” Adv. Mater. 24(44), OP281–OP304 (2012).
[PubMed]

N. Landy and D. R. Smith, “A full-parameter unidirectional metamaterial cloak for microwaves,” Nat. Mater. 12(1), 25–28 (2012).
[Crossref] [PubMed]

D. Rainwater, A. Kerkhoff, K. Melin, J. C. Soric, G. Moreno, and A. Alù, “Experimental verification of three-dimensional plasmonic cloaking in free-space,” New J. Phys. 14(1), 013054 (2012).
[Crossref]

S. Xu, X. Cheng, S. Xi, R. Zhang, H. O. Moser, Z. Shen, Y. Xu, Z. Huang, X. Zhang, F. Yu, B. Zhang, and H. Chen, “Experimental demonstration of a free-space cylindrical cloak without superluminal propagation,” Phys. Rev. Lett. 109(22), 223903 (2012).
[Crossref] [PubMed]

M. Farhat, S. Mühlig, C. Rockstuhl, and F. Lederer, “Scattering cancellation of the magnetic dipole field from macroscopic spheres,” Opt. Express 20(13), 13896–13906 (2012).
[Crossref] [PubMed]

2011 (6)

Z. H. Jiang, M. D. Gregory, and D. H. Werner, “A broadband monopole antenna enabled by an ultrathin anisotropic metamaterial coating,” IEEE Antennas Wirel. Propag. Lett. 10, 1543–1546 (2011).
[Crossref]

P.-Y. Chen and A. Alù, “Atomically thin surface cloak using graphene monolayers,” ACS Nano 5(7), 5855–5863 (2011).
[Crossref] [PubMed]

S. Mühlig, M. Farhat, C. Rockstuhl, and F. Lederer, “Cloaking dielectric spherical objects by a shell of metallic nanoparticles,” Phys. Rev. B 83(19), 195116 (2011).
[Crossref]

A. Monti, F. Bilotti, and A. Toscano, “Optical cloaking of cylindrical objects by using covers made of core-shell nanoparticles,” Opt. Lett. 36(23), 4479–4481 (2011).
[Crossref] [PubMed]

P. Y. Chen and A. Alù, “Mantle cloaking using thin patterned metasurfaces,” Phys. Rev. B 84(20), 205110 (2011).
[Crossref]

P. Alitalo and S. A. Tretyakov, “Broadband electromagnetic cloaking realized with transmission-line and waveguiding structures,” Proc. IEEE 99(10), 1646–1659 (2011).
[Crossref]

2010 (1)

H. F. Ma and T. J. Cui, “Three-dimensional broadband ground-plane cloak made of metamaterials,” Nat. Commun. 1(3), 21 (2010).
[Crossref] [PubMed]

2009 (9)

C.-W. Qiu, L. Hu, X. Xu, and Y. Feng, “Spherical cloaking with homogeneous isotropic multilayered structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 79(4), 047602 (2009).
[Crossref] [PubMed]

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[Crossref] [PubMed]

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
[Crossref] [PubMed]

J. H. Lee, J. Blair, V. A. Tamma, Q. Wu, S. J. Rhee, C. J. Summers, and W. Park, “Direct visualization of optical frequency invisibility cloak based on silicon nanorod array,” Opt. Express 17(15), 12922–12928 (2009).
[Crossref] [PubMed]

A. Alù, “Mantle cloak: invisibility induced by a surface,” Phys. Rev. B 80(24), 245115 (2009).
[Crossref]

S. Tretyakov, P. Alitalo, O. Luukkonen, and C. Simovski, “Broadband electromagnetic cloaking of long cylindrical objects,” Phys. Rev. Lett. 103(10), 103905 (2009).
[Crossref] [PubMed]

A. Alù and N. Engheta, “Cloaking a sensor,” Phys. Rev. Lett. 102(23), 233901 (2009).
[Crossref] [PubMed]

H. Wang and X. Zhang, “Achieving multifrequency transperancy with cylindrical plasmonic cloak,” J. Appl. Phys. 106(5), 053302 (2009).
[Crossref]

Y. Gao, J. P. Huang, and K. W. Yu, “Multifrequency cloak with multishell by using transformation medium,” J. Appl. Phys. 105(12), 124505 (2009).
[Crossref]

2008 (2)

A. Alù and N. Engheta, “Multifrequency optical invisibility cloak with layered plasmonic shells,” Phys. Rev. Lett. 100(11), 113901 (2008).
[Crossref] [PubMed]

D.-H. Kwon and D. H. Werner, “Restoration of antenna parameters in scattering environments using electromagnetic cloaking,” Appl. Phys. Lett. 92(11), 113507 (2008).
[Crossref]

2007 (2)

Y. Huang, Y. Feng, and T. Jiang, “Electromagnetic cloaking by layered structure of homogeneous isotropic materials,” Opt. Express 15(18), 11133–11141 (2007).
[Crossref] [PubMed]

F. Bilotti, A. Toscano, and L. Vegni, “Design of spiral and multiple split-ring resonators for the realization of miniaturized metamaterial samples,” IEEE Trans. Antenn. Propag. 55(8), 2258–2267 (2007).
[Crossref]

2006 (3)

U. Leonhardt, “Optical conformal mapping,” Science 312(5781), 1777–1780 (2006).
[Crossref] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

2005 (2)

A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(1), 016623 (2005).
[Crossref] [PubMed]

C. L. Holloway, M. A. Mohamed, E. F. Kuester, and A. Dienstfrey, “Reflection and transmission properties of a metafilm: with an application to a controllable surface composed of resonant particles,” IEEE Trans. Electromagn. Compat. 47(4), 853–865 (2005).
[Crossref]

2003 (1)

E. F. Kuester, M. A. Mohamed, M. Piket-May, and C. L. Holloway, “Averaged transition conditions for electromagnetic fields at a metafilm,” IEEE Trans. Antenn. Propag. 51(10), 2641–2651 (2003).
[Crossref]

1975 (1)

Alitalo, P.

P. Alitalo and S. A. Tretyakov, “Broadband electromagnetic cloaking realized with transmission-line and waveguiding structures,” Proc. IEEE 99(10), 1646–1659 (2011).
[Crossref]

S. Tretyakov, P. Alitalo, O. Luukkonen, and C. Simovski, “Broadband electromagnetic cloaking of long cylindrical objects,” Phys. Rev. Lett. 103(10), 103905 (2009).
[Crossref] [PubMed]

Alù, A.

J. Soric, A. Monti, A. Toscano, F. Bilotti, and A. Alù, “Dual-polarized reduction of dipole antenna blockage using mantle cloaks,” IEEE Trans. Antenn. Propag. 63(11), 4827–4834 (2015).
[Crossref]

J. C. Soric, A. Monti, A. Toscano, F. Bilotti, and A. Alù, “Multiband and wideband bilayer mantle cloaks,” IEEE Trans. Antenn. Propag. 63(7), 3235–3240 (2015).
[Crossref]

A. Monti, A. Alù, A. Toscano, and F. Bilotti, “Optical invisibility through metasurfaces made of plasmonic nanoparticles,” J. Appl. Phys. 117(12), 123103 (2015).
[Crossref]

F. Monticone and A. Alù, “Do cloaked objects really scatter less?” Phys. Rev. X 3(4), 041005 (2013).
[Crossref]

J. C. Soric, P. Y. Chen, A. Kerkhoff, D. Rainwater, K. Melin, and A. Alù, “Demonstration of an ultralow profile cloak for scattering suppression of a finite-length rod in free space,” New J. Phys. 15(3), 033037 (2013).
[Crossref]

D. Rainwater, A. Kerkhoff, K. Melin, J. C. Soric, G. Moreno, and A. Alù, “Experimental verification of three-dimensional plasmonic cloaking in free-space,” New J. Phys. 14(1), 013054 (2012).
[Crossref]

P. Y. Chen, J. Soric, and A. Alù, “Invisibility and cloaking based on scattering cancellation,” Adv. Mater. 24(44), OP281–OP304 (2012).
[PubMed]

F. Monticone, C. Argyropoulos, and A. Alù, “Layered plasmonic cloaks to tailor the optical scattering at the nanoscale,” Sci. Rep. 2, 912 (2012).
[Crossref] [PubMed]

A. Monti, J. Soric, A. Alù, A. Toscano, L. Vegni, and F. Bilotti, “Overcoming mutual blockage between neighboring dipole antennas using a low-profile patterned metasurface,” IEEE Antennas Wirel. Propag. Lett. 11, 1414–1417 (2012).
[Crossref]

P.-Y. Chen and A. Alù, “Atomically thin surface cloak using graphene monolayers,” ACS Nano 5(7), 5855–5863 (2011).
[Crossref] [PubMed]

P. Y. Chen and A. Alù, “Mantle cloaking using thin patterned metasurfaces,” Phys. Rev. B 84(20), 205110 (2011).
[Crossref]

A. Alù, “Mantle cloak: invisibility induced by a surface,” Phys. Rev. B 80(24), 245115 (2009).
[Crossref]

A. Alù and N. Engheta, “Cloaking a sensor,” Phys. Rev. Lett. 102(23), 233901 (2009).
[Crossref] [PubMed]

A. Alù and N. Engheta, “Multifrequency optical invisibility cloak with layered plasmonic shells,” Phys. Rev. Lett. 100(11), 113901 (2008).
[Crossref] [PubMed]

A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(1), 016623 (2005).
[Crossref] [PubMed]

Argyropoulos, C.

F. Monticone, C. Argyropoulos, and A. Alù, “Layered plasmonic cloaks to tailor the optical scattering at the nanoscale,” Sci. Rep. 2, 912 (2012).
[Crossref] [PubMed]

Bagci, H.

Bartal, G.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
[Crossref] [PubMed]

Bernety, H. M.

H. M. Bernety and A. B. Yakovlev, “Reduction of mutual coupling between neighboring strip dipole antennas using confocal elliptical metasurface cloaks,” IEEE Trans. Antenn. Propag. 63(4), 1554–1563 (2015).
[Crossref]

Bilotti, F.

J. Soric, A. Monti, A. Toscano, F. Bilotti, and A. Alù, “Dual-polarized reduction of dipole antenna blockage using mantle cloaks,” IEEE Trans. Antenn. Propag. 63(11), 4827–4834 (2015).
[Crossref]

J. C. Soric, A. Monti, A. Toscano, F. Bilotti, and A. Alù, “Multiband and wideband bilayer mantle cloaks,” IEEE Trans. Antenn. Propag. 63(7), 3235–3240 (2015).
[Crossref]

A. Monti, A. Alù, A. Toscano, and F. Bilotti, “Optical invisibility through metasurfaces made of plasmonic nanoparticles,” J. Appl. Phys. 117(12), 123103 (2015).
[Crossref]

A. Monti, J. Soric, A. Alù, A. Toscano, L. Vegni, and F. Bilotti, “Overcoming mutual blockage between neighboring dipole antennas using a low-profile patterned metasurface,” IEEE Antennas Wirel. Propag. Lett. 11, 1414–1417 (2012).
[Crossref]

A. Monti, F. Bilotti, and A. Toscano, “Optical cloaking of cylindrical objects by using covers made of core-shell nanoparticles,” Opt. Lett. 36(23), 4479–4481 (2011).
[Crossref] [PubMed]

F. Bilotti, A. Toscano, and L. Vegni, “Design of spiral and multiple split-ring resonators for the realization of miniaturized metamaterial samples,” IEEE Trans. Antenn. Propag. 55(8), 2258–2267 (2007).
[Crossref]

Blair, J.

Brocker, D. E.

Z. H. Jiang, Q. Wu, D. E. Brocker, P. E. Sieber, and D. H. Werner, “A low-profile high-gain substrate integrated waveguide slot antenna enabled by an ultrathin anisotropic zero-index metamaterial coating,” IEEE Trans. Antenn. Propag. 62(3), 1173–1184 (2014).
[Crossref]

Z. H. Jiang, D. E. Brocker, P. E. Sieber, and D. H. Werner, “A compact, low-profile metasurface-enabled antenna for wearable medical body-area network devices,” IEEE Trans. Antenn. Propag. 62(8), 4021–4030 (2014).
[Crossref]

Bürgi, T.

S. Mühlig, A. Cunningham, J. Dintinger, M. Farhat, S. B. Hasan, T. Scharf, T. Bürgi, F. Lederer, and C. Rockstuhl, “A self-assembled three-dimensional cloak in the visible,” Sci. Rep. 3, 2328 (2013).
[Crossref] [PubMed]

Chen, H.

S. Xu, X. Cheng, S. Xi, R. Zhang, H. O. Moser, Z. Shen, Y. Xu, Z. Huang, X. Zhang, F. Yu, B. Zhang, and H. Chen, “Experimental demonstration of a free-space cylindrical cloak without superluminal propagation,” Phys. Rev. Lett. 109(22), 223903 (2012).
[Crossref] [PubMed]

Chen, P. Y.

J. C. Soric, P. Y. Chen, A. Kerkhoff, D. Rainwater, K. Melin, and A. Alù, “Demonstration of an ultralow profile cloak for scattering suppression of a finite-length rod in free space,” New J. Phys. 15(3), 033037 (2013).
[Crossref]

P. Y. Chen, J. Soric, and A. Alù, “Invisibility and cloaking based on scattering cancellation,” Adv. Mater. 24(44), OP281–OP304 (2012).
[PubMed]

P. Y. Chen and A. Alù, “Mantle cloaking using thin patterned metasurfaces,” Phys. Rev. B 84(20), 205110 (2011).
[Crossref]

Chen, P.-Y.

P.-Y. Chen and A. Alù, “Atomically thin surface cloak using graphene monolayers,” ACS Nano 5(7), 5855–5863 (2011).
[Crossref] [PubMed]

Cheng, X.

S. Xu, X. Cheng, S. Xi, R. Zhang, H. O. Moser, Z. Shen, Y. Xu, Z. Huang, X. Zhang, F. Yu, B. Zhang, and H. Chen, “Experimental demonstration of a free-space cylindrical cloak without superluminal propagation,” Phys. Rev. Lett. 109(22), 223903 (2012).
[Crossref] [PubMed]

Chin, J. Y.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[Crossref] [PubMed]

Cui, T. J.

H. F. Ma and T. J. Cui, “Three-dimensional broadband ground-plane cloak made of metamaterials,” Nat. Commun. 1(3), 21 (2010).
[Crossref] [PubMed]

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[Crossref] [PubMed]

Cummer, S. A.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Cunningham, A.

S. Mühlig, A. Cunningham, J. Dintinger, M. Farhat, S. B. Hasan, T. Scharf, T. Bürgi, F. Lederer, and C. Rockstuhl, “A self-assembled three-dimensional cloak in the visible,” Sci. Rep. 3, 2328 (2013).
[Crossref] [PubMed]

Dienstfrey, A.

C. L. Holloway, M. A. Mohamed, E. F. Kuester, and A. Dienstfrey, “Reflection and transmission properties of a metafilm: with an application to a controllable surface composed of resonant particles,” IEEE Trans. Electromagn. Compat. 47(4), 853–865 (2005).
[Crossref]

Dintinger, J.

S. Mühlig, A. Cunningham, J. Dintinger, M. Farhat, S. B. Hasan, T. Scharf, T. Bürgi, F. Lederer, and C. Rockstuhl, “A self-assembled three-dimensional cloak in the visible,” Sci. Rep. 3, 2328 (2013).
[Crossref] [PubMed]

Engheta, N.

A. Alù and N. Engheta, “Cloaking a sensor,” Phys. Rev. Lett. 102(23), 233901 (2009).
[Crossref] [PubMed]

A. Alù and N. Engheta, “Multifrequency optical invisibility cloak with layered plasmonic shells,” Phys. Rev. Lett. 100(11), 113901 (2008).
[Crossref] [PubMed]

A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(1), 016623 (2005).
[Crossref] [PubMed]

Farhat, M.

S. Mühlig, A. Cunningham, J. Dintinger, M. Farhat, S. B. Hasan, T. Scharf, T. Bürgi, F. Lederer, and C. Rockstuhl, “A self-assembled three-dimensional cloak in the visible,” Sci. Rep. 3, 2328 (2013).
[Crossref] [PubMed]

M. Farhat, C. Rockstuhl, and H. Bağcı, “A 3D tunable and multi-frequency graphene plasmonic cloak,” Opt. Express 21(10), 12592–12603 (2013).
[Crossref] [PubMed]

M. Farhat, S. Mühlig, C. Rockstuhl, and F. Lederer, “Scattering cancellation of the magnetic dipole field from macroscopic spheres,” Opt. Express 20(13), 13896–13906 (2012).
[Crossref] [PubMed]

S. Mühlig, M. Farhat, C. Rockstuhl, and F. Lederer, “Cloaking dielectric spherical objects by a shell of metallic nanoparticles,” Phys. Rev. B 83(19), 195116 (2011).
[Crossref]

Feng, Y.

C.-W. Qiu, L. Hu, X. Xu, and Y. Feng, “Spherical cloaking with homogeneous isotropic multilayered structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 79(4), 047602 (2009).
[Crossref] [PubMed]

Y. Huang, Y. Feng, and T. Jiang, “Electromagnetic cloaking by layered structure of homogeneous isotropic materials,” Opt. Express 15(18), 11133–11141 (2007).
[Crossref] [PubMed]

Gao, Y.

Y. Gao, J. P. Huang, and K. W. Yu, “Multifrequency cloak with multishell by using transformation medium,” J. Appl. Phys. 105(12), 124505 (2009).
[Crossref]

Gregory, M. D.

Z. H. Jiang, M. D. Gregory, and D. H. Werner, “A broadband monopole antenna enabled by an ultrathin anisotropic metamaterial coating,” IEEE Antennas Wirel. Propag. Lett. 10, 1543–1546 (2011).
[Crossref]

Hasan, S. B.

S. Mühlig, A. Cunningham, J. Dintinger, M. Farhat, S. B. Hasan, T. Scharf, T. Bürgi, F. Lederer, and C. Rockstuhl, “A self-assembled three-dimensional cloak in the visible,” Sci. Rep. 3, 2328 (2013).
[Crossref] [PubMed]

Holloway, C. L.

C. L. Holloway, M. A. Mohamed, E. F. Kuester, and A. Dienstfrey, “Reflection and transmission properties of a metafilm: with an application to a controllable surface composed of resonant particles,” IEEE Trans. Electromagn. Compat. 47(4), 853–865 (2005).
[Crossref]

E. F. Kuester, M. A. Mohamed, M. Piket-May, and C. L. Holloway, “Averaged transition conditions for electromagnetic fields at a metafilm,” IEEE Trans. Antenn. Propag. 51(10), 2641–2651 (2003).
[Crossref]

Hu, L.

C.-W. Qiu, L. Hu, X. Xu, and Y. Feng, “Spherical cloaking with homogeneous isotropic multilayered structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 79(4), 047602 (2009).
[Crossref] [PubMed]

Huang, J. P.

Y. Gao, J. P. Huang, and K. W. Yu, “Multifrequency cloak with multishell by using transformation medium,” J. Appl. Phys. 105(12), 124505 (2009).
[Crossref]

Huang, Y.

Huang, Z.

S. Xu, X. Cheng, S. Xi, R. Zhang, H. O. Moser, Z. Shen, Y. Xu, Z. Huang, X. Zhang, F. Yu, B. Zhang, and H. Chen, “Experimental demonstration of a free-space cylindrical cloak without superluminal propagation,” Phys. Rev. Lett. 109(22), 223903 (2012).
[Crossref] [PubMed]

Ji, C.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[Crossref] [PubMed]

Jiang, T.

Jiang, Z. H.

Z. H. Jiang, P. E. Sieber, L. Kang, and D. H. Werner, “Restoring intrinsic properties of electromagnetic radiators using ultra-lightweight integrated metasurface cloaks,” Adv. Funct. Mater. 25(29), 4708–4716 (2015).
[Crossref]

Z. H. Jiang and D. H. Werner, “Quasi-three-dimensional angle-tolerant electromagnetic illusion using ultrathin metasurface coatings,” Adv. Funct. Mater. 24(48), 7728–7736 (2014).
[Crossref]

Z. H. Jiang, D. E. Brocker, P. E. Sieber, and D. H. Werner, “A compact, low-profile metasurface-enabled antenna for wearable medical body-area network devices,” IEEE Trans. Antenn. Propag. 62(8), 4021–4030 (2014).
[Crossref]

Z. H. Jiang, Q. Wu, D. E. Brocker, P. E. Sieber, and D. H. Werner, “A low-profile high-gain substrate integrated waveguide slot antenna enabled by an ultrathin anisotropic zero-index metamaterial coating,” IEEE Trans. Antenn. Propag. 62(3), 1173–1184 (2014).
[Crossref]

Z. H. Jiang and D. H. Werner, “Exploiting metasurface anisotropy for achieving near-perfect low-profile cloaks beyond the quasi-static limit,” J. Phys. D Appl. Phys. 46(50), 505306 (2013).
[Crossref]

Z. H. Jiang, M. D. Gregory, and D. H. Werner, “A broadband monopole antenna enabled by an ultrathin anisotropic metamaterial coating,” IEEE Antennas Wirel. Propag. Lett. 10, 1543–1546 (2011).
[Crossref]

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Kang, L.

Z. H. Jiang, P. E. Sieber, L. Kang, and D. H. Werner, “Restoring intrinsic properties of electromagnetic radiators using ultra-lightweight integrated metasurface cloaks,” Adv. Funct. Mater. 25(29), 4708–4716 (2015).
[Crossref]

Kerker, M.

Kerkhoff, A.

J. C. Soric, P. Y. Chen, A. Kerkhoff, D. Rainwater, K. Melin, and A. Alù, “Demonstration of an ultralow profile cloak for scattering suppression of a finite-length rod in free space,” New J. Phys. 15(3), 033037 (2013).
[Crossref]

D. Rainwater, A. Kerkhoff, K. Melin, J. C. Soric, G. Moreno, and A. Alù, “Experimental verification of three-dimensional plasmonic cloaking in free-space,” New J. Phys. 14(1), 013054 (2012).
[Crossref]

Kuester, E. F.

C. L. Holloway, M. A. Mohamed, E. F. Kuester, and A. Dienstfrey, “Reflection and transmission properties of a metafilm: with an application to a controllable surface composed of resonant particles,” IEEE Trans. Electromagn. Compat. 47(4), 853–865 (2005).
[Crossref]

E. F. Kuester, M. A. Mohamed, M. Piket-May, and C. L. Holloway, “Averaged transition conditions for electromagnetic fields at a metafilm,” IEEE Trans. Antenn. Propag. 51(10), 2641–2651 (2003).
[Crossref]

Kwon, D.-H.

D.-H. Kwon and D. H. Werner, “Restoration of antenna parameters in scattering environments using electromagnetic cloaking,” Appl. Phys. Lett. 92(11), 113507 (2008).
[Crossref]

Landy, N.

N. Landy and D. R. Smith, “A full-parameter unidirectional metamaterial cloak for microwaves,” Nat. Mater. 12(1), 25–28 (2012).
[Crossref] [PubMed]

Lederer, F.

S. Mühlig, A. Cunningham, J. Dintinger, M. Farhat, S. B. Hasan, T. Scharf, T. Bürgi, F. Lederer, and C. Rockstuhl, “A self-assembled three-dimensional cloak in the visible,” Sci. Rep. 3, 2328 (2013).
[Crossref] [PubMed]

M. Farhat, S. Mühlig, C. Rockstuhl, and F. Lederer, “Scattering cancellation of the magnetic dipole field from macroscopic spheres,” Opt. Express 20(13), 13896–13906 (2012).
[Crossref] [PubMed]

S. Mühlig, M. Farhat, C. Rockstuhl, and F. Lederer, “Cloaking dielectric spherical objects by a shell of metallic nanoparticles,” Phys. Rev. B 83(19), 195116 (2011).
[Crossref]

Lee, J. H.

Leonhardt, U.

U. Leonhardt, “Optical conformal mapping,” Science 312(5781), 1777–1780 (2006).
[Crossref] [PubMed]

Li, J.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
[Crossref] [PubMed]

Liu, R.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[Crossref] [PubMed]

Luukkonen, O.

S. Tretyakov, P. Alitalo, O. Luukkonen, and C. Simovski, “Broadband electromagnetic cloaking of long cylindrical objects,” Phys. Rev. Lett. 103(10), 103905 (2009).
[Crossref] [PubMed]

Ma, H. F.

H. F. Ma and T. J. Cui, “Three-dimensional broadband ground-plane cloak made of metamaterials,” Nat. Commun. 1(3), 21 (2010).
[Crossref] [PubMed]

Melin, K.

J. C. Soric, P. Y. Chen, A. Kerkhoff, D. Rainwater, K. Melin, and A. Alù, “Demonstration of an ultralow profile cloak for scattering suppression of a finite-length rod in free space,” New J. Phys. 15(3), 033037 (2013).
[Crossref]

D. Rainwater, A. Kerkhoff, K. Melin, J. C. Soric, G. Moreno, and A. Alù, “Experimental verification of three-dimensional plasmonic cloaking in free-space,” New J. Phys. 14(1), 013054 (2012).
[Crossref]

Mock, J. J.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Mohamed, M. A.

C. L. Holloway, M. A. Mohamed, E. F. Kuester, and A. Dienstfrey, “Reflection and transmission properties of a metafilm: with an application to a controllable surface composed of resonant particles,” IEEE Trans. Electromagn. Compat. 47(4), 853–865 (2005).
[Crossref]

E. F. Kuester, M. A. Mohamed, M. Piket-May, and C. L. Holloway, “Averaged transition conditions for electromagnetic fields at a metafilm,” IEEE Trans. Antenn. Propag. 51(10), 2641–2651 (2003).
[Crossref]

Monti, A.

J. Soric, A. Monti, A. Toscano, F. Bilotti, and A. Alù, “Dual-polarized reduction of dipole antenna blockage using mantle cloaks,” IEEE Trans. Antenn. Propag. 63(11), 4827–4834 (2015).
[Crossref]

J. C. Soric, A. Monti, A. Toscano, F. Bilotti, and A. Alù, “Multiband and wideband bilayer mantle cloaks,” IEEE Trans. Antenn. Propag. 63(7), 3235–3240 (2015).
[Crossref]

A. Monti, A. Alù, A. Toscano, and F. Bilotti, “Optical invisibility through metasurfaces made of plasmonic nanoparticles,” J. Appl. Phys. 117(12), 123103 (2015).
[Crossref]

A. Monti, J. Soric, A. Alù, A. Toscano, L. Vegni, and F. Bilotti, “Overcoming mutual blockage between neighboring dipole antennas using a low-profile patterned metasurface,” IEEE Antennas Wirel. Propag. Lett. 11, 1414–1417 (2012).
[Crossref]

A. Monti, F. Bilotti, and A. Toscano, “Optical cloaking of cylindrical objects by using covers made of core-shell nanoparticles,” Opt. Lett. 36(23), 4479–4481 (2011).
[Crossref] [PubMed]

Monticone, F.

F. Monticone and A. Alù, “Do cloaked objects really scatter less?” Phys. Rev. X 3(4), 041005 (2013).
[Crossref]

F. Monticone, C. Argyropoulos, and A. Alù, “Layered plasmonic cloaks to tailor the optical scattering at the nanoscale,” Sci. Rep. 2, 912 (2012).
[Crossref] [PubMed]

Moreno, G.

D. Rainwater, A. Kerkhoff, K. Melin, J. C. Soric, G. Moreno, and A. Alù, “Experimental verification of three-dimensional plasmonic cloaking in free-space,” New J. Phys. 14(1), 013054 (2012).
[Crossref]

Moser, H. O.

S. Xu, X. Cheng, S. Xi, R. Zhang, H. O. Moser, Z. Shen, Y. Xu, Z. Huang, X. Zhang, F. Yu, B. Zhang, and H. Chen, “Experimental demonstration of a free-space cylindrical cloak without superluminal propagation,” Phys. Rev. Lett. 109(22), 223903 (2012).
[Crossref] [PubMed]

Mühlig, S.

S. Mühlig, A. Cunningham, J. Dintinger, M. Farhat, S. B. Hasan, T. Scharf, T. Bürgi, F. Lederer, and C. Rockstuhl, “A self-assembled three-dimensional cloak in the visible,” Sci. Rep. 3, 2328 (2013).
[Crossref] [PubMed]

M. Farhat, S. Mühlig, C. Rockstuhl, and F. Lederer, “Scattering cancellation of the magnetic dipole field from macroscopic spheres,” Opt. Express 20(13), 13896–13906 (2012).
[Crossref] [PubMed]

S. Mühlig, M. Farhat, C. Rockstuhl, and F. Lederer, “Cloaking dielectric spherical objects by a shell of metallic nanoparticles,” Phys. Rev. B 83(19), 195116 (2011).
[Crossref]

Park, W.

Pendry, J. B.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

Piket-May, M.

E. F. Kuester, M. A. Mohamed, M. Piket-May, and C. L. Holloway, “Averaged transition conditions for electromagnetic fields at a metafilm,” IEEE Trans. Antenn. Propag. 51(10), 2641–2651 (2003).
[Crossref]

Qiu, C.-W.

C.-W. Qiu, L. Hu, X. Xu, and Y. Feng, “Spherical cloaking with homogeneous isotropic multilayered structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 79(4), 047602 (2009).
[Crossref] [PubMed]

Rainwater, D.

J. C. Soric, P. Y. Chen, A. Kerkhoff, D. Rainwater, K. Melin, and A. Alù, “Demonstration of an ultralow profile cloak for scattering suppression of a finite-length rod in free space,” New J. Phys. 15(3), 033037 (2013).
[Crossref]

D. Rainwater, A. Kerkhoff, K. Melin, J. C. Soric, G. Moreno, and A. Alù, “Experimental verification of three-dimensional plasmonic cloaking in free-space,” New J. Phys. 14(1), 013054 (2012).
[Crossref]

Rhee, S. J.

Rockstuhl, C.

M. Farhat, C. Rockstuhl, and H. Bağcı, “A 3D tunable and multi-frequency graphene plasmonic cloak,” Opt. Express 21(10), 12592–12603 (2013).
[Crossref] [PubMed]

S. Mühlig, A. Cunningham, J. Dintinger, M. Farhat, S. B. Hasan, T. Scharf, T. Bürgi, F. Lederer, and C. Rockstuhl, “A self-assembled three-dimensional cloak in the visible,” Sci. Rep. 3, 2328 (2013).
[Crossref] [PubMed]

M. Farhat, S. Mühlig, C. Rockstuhl, and F. Lederer, “Scattering cancellation of the magnetic dipole field from macroscopic spheres,” Opt. Express 20(13), 13896–13906 (2012).
[Crossref] [PubMed]

S. Mühlig, M. Farhat, C. Rockstuhl, and F. Lederer, “Cloaking dielectric spherical objects by a shell of metallic nanoparticles,” Phys. Rev. B 83(19), 195116 (2011).
[Crossref]

Scharf, T.

S. Mühlig, A. Cunningham, J. Dintinger, M. Farhat, S. B. Hasan, T. Scharf, T. Bürgi, F. Lederer, and C. Rockstuhl, “A self-assembled three-dimensional cloak in the visible,” Sci. Rep. 3, 2328 (2013).
[Crossref] [PubMed]

Schurig, D.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Shen, Z.

S. Xu, X. Cheng, S. Xi, R. Zhang, H. O. Moser, Z. Shen, Y. Xu, Z. Huang, X. Zhang, F. Yu, B. Zhang, and H. Chen, “Experimental demonstration of a free-space cylindrical cloak without superluminal propagation,” Phys. Rev. Lett. 109(22), 223903 (2012).
[Crossref] [PubMed]

Sieber, P. E.

Z. H. Jiang, P. E. Sieber, L. Kang, and D. H. Werner, “Restoring intrinsic properties of electromagnetic radiators using ultra-lightweight integrated metasurface cloaks,” Adv. Funct. Mater. 25(29), 4708–4716 (2015).
[Crossref]

Z. H. Jiang, D. E. Brocker, P. E. Sieber, and D. H. Werner, “A compact, low-profile metasurface-enabled antenna for wearable medical body-area network devices,” IEEE Trans. Antenn. Propag. 62(8), 4021–4030 (2014).
[Crossref]

Z. H. Jiang, Q. Wu, D. E. Brocker, P. E. Sieber, and D. H. Werner, “A low-profile high-gain substrate integrated waveguide slot antenna enabled by an ultrathin anisotropic zero-index metamaterial coating,” IEEE Trans. Antenn. Propag. 62(3), 1173–1184 (2014).
[Crossref]

Simovski, C.

S. Tretyakov, P. Alitalo, O. Luukkonen, and C. Simovski, “Broadband electromagnetic cloaking of long cylindrical objects,” Phys. Rev. Lett. 103(10), 103905 (2009).
[Crossref] [PubMed]

Smith, D. R.

N. Landy and D. R. Smith, “A full-parameter unidirectional metamaterial cloak for microwaves,” Nat. Mater. 12(1), 25–28 (2012).
[Crossref] [PubMed]

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

Soric, J.

J. Soric, A. Monti, A. Toscano, F. Bilotti, and A. Alù, “Dual-polarized reduction of dipole antenna blockage using mantle cloaks,” IEEE Trans. Antenn. Propag. 63(11), 4827–4834 (2015).
[Crossref]

A. Monti, J. Soric, A. Alù, A. Toscano, L. Vegni, and F. Bilotti, “Overcoming mutual blockage between neighboring dipole antennas using a low-profile patterned metasurface,” IEEE Antennas Wirel. Propag. Lett. 11, 1414–1417 (2012).
[Crossref]

P. Y. Chen, J. Soric, and A. Alù, “Invisibility and cloaking based on scattering cancellation,” Adv. Mater. 24(44), OP281–OP304 (2012).
[PubMed]

Soric, J. C.

J. C. Soric, A. Monti, A. Toscano, F. Bilotti, and A. Alù, “Multiband and wideband bilayer mantle cloaks,” IEEE Trans. Antenn. Propag. 63(7), 3235–3240 (2015).
[Crossref]

J. C. Soric, P. Y. Chen, A. Kerkhoff, D. Rainwater, K. Melin, and A. Alù, “Demonstration of an ultralow profile cloak for scattering suppression of a finite-length rod in free space,” New J. Phys. 15(3), 033037 (2013).
[Crossref]

D. Rainwater, A. Kerkhoff, K. Melin, J. C. Soric, G. Moreno, and A. Alù, “Experimental verification of three-dimensional plasmonic cloaking in free-space,” New J. Phys. 14(1), 013054 (2012).
[Crossref]

Starr, A. F.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Summers, C. J.

Tamma, V. A.

Toscano, A.

A. Monti, A. Alù, A. Toscano, and F. Bilotti, “Optical invisibility through metasurfaces made of plasmonic nanoparticles,” J. Appl. Phys. 117(12), 123103 (2015).
[Crossref]

J. C. Soric, A. Monti, A. Toscano, F. Bilotti, and A. Alù, “Multiband and wideband bilayer mantle cloaks,” IEEE Trans. Antenn. Propag. 63(7), 3235–3240 (2015).
[Crossref]

J. Soric, A. Monti, A. Toscano, F. Bilotti, and A. Alù, “Dual-polarized reduction of dipole antenna blockage using mantle cloaks,” IEEE Trans. Antenn. Propag. 63(11), 4827–4834 (2015).
[Crossref]

A. Monti, J. Soric, A. Alù, A. Toscano, L. Vegni, and F. Bilotti, “Overcoming mutual blockage between neighboring dipole antennas using a low-profile patterned metasurface,” IEEE Antennas Wirel. Propag. Lett. 11, 1414–1417 (2012).
[Crossref]

A. Monti, F. Bilotti, and A. Toscano, “Optical cloaking of cylindrical objects by using covers made of core-shell nanoparticles,” Opt. Lett. 36(23), 4479–4481 (2011).
[Crossref] [PubMed]

F. Bilotti, A. Toscano, and L. Vegni, “Design of spiral and multiple split-ring resonators for the realization of miniaturized metamaterial samples,” IEEE Trans. Antenn. Propag. 55(8), 2258–2267 (2007).
[Crossref]

Tretyakov, S.

S. Tretyakov, P. Alitalo, O. Luukkonen, and C. Simovski, “Broadband electromagnetic cloaking of long cylindrical objects,” Phys. Rev. Lett. 103(10), 103905 (2009).
[Crossref] [PubMed]

Tretyakov, S. A.

P. Alitalo and S. A. Tretyakov, “Broadband electromagnetic cloaking realized with transmission-line and waveguiding structures,” Proc. IEEE 99(10), 1646–1659 (2011).
[Crossref]

Valentine, J.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
[Crossref] [PubMed]

Vegni, L.

A. Monti, J. Soric, A. Alù, A. Toscano, L. Vegni, and F. Bilotti, “Overcoming mutual blockage between neighboring dipole antennas using a low-profile patterned metasurface,” IEEE Antennas Wirel. Propag. Lett. 11, 1414–1417 (2012).
[Crossref]

F. Bilotti, A. Toscano, and L. Vegni, “Design of spiral and multiple split-ring resonators for the realization of miniaturized metamaterial samples,” IEEE Trans. Antenn. Propag. 55(8), 2258–2267 (2007).
[Crossref]

Wang, H.

H. Wang and X. Zhang, “Achieving multifrequency transperancy with cylindrical plasmonic cloak,” J. Appl. Phys. 106(5), 053302 (2009).
[Crossref]

Werner, D. H.

Z. H. Jiang, P. E. Sieber, L. Kang, and D. H. Werner, “Restoring intrinsic properties of electromagnetic radiators using ultra-lightweight integrated metasurface cloaks,” Adv. Funct. Mater. 25(29), 4708–4716 (2015).
[Crossref]

Z. H. Jiang and D. H. Werner, “Quasi-three-dimensional angle-tolerant electromagnetic illusion using ultrathin metasurface coatings,” Adv. Funct. Mater. 24(48), 7728–7736 (2014).
[Crossref]

Z. H. Jiang, Q. Wu, D. E. Brocker, P. E. Sieber, and D. H. Werner, “A low-profile high-gain substrate integrated waveguide slot antenna enabled by an ultrathin anisotropic zero-index metamaterial coating,” IEEE Trans. Antenn. Propag. 62(3), 1173–1184 (2014).
[Crossref]

Z. H. Jiang, D. E. Brocker, P. E. Sieber, and D. H. Werner, “A compact, low-profile metasurface-enabled antenna for wearable medical body-area network devices,” IEEE Trans. Antenn. Propag. 62(8), 4021–4030 (2014).
[Crossref]

Z. H. Jiang and D. H. Werner, “Exploiting metasurface anisotropy for achieving near-perfect low-profile cloaks beyond the quasi-static limit,” J. Phys. D Appl. Phys. 46(50), 505306 (2013).
[Crossref]

Z. H. Jiang, M. D. Gregory, and D. H. Werner, “A broadband monopole antenna enabled by an ultrathin anisotropic metamaterial coating,” IEEE Antennas Wirel. Propag. Lett. 10, 1543–1546 (2011).
[Crossref]

D.-H. Kwon and D. H. Werner, “Restoration of antenna parameters in scattering environments using electromagnetic cloaking,” Appl. Phys. Lett. 92(11), 113507 (2008).
[Crossref]

Wu, Q.

Z. H. Jiang, Q. Wu, D. E. Brocker, P. E. Sieber, and D. H. Werner, “A low-profile high-gain substrate integrated waveguide slot antenna enabled by an ultrathin anisotropic zero-index metamaterial coating,” IEEE Trans. Antenn. Propag. 62(3), 1173–1184 (2014).
[Crossref]

J. H. Lee, J. Blair, V. A. Tamma, Q. Wu, S. J. Rhee, C. J. Summers, and W. Park, “Direct visualization of optical frequency invisibility cloak based on silicon nanorod array,” Opt. Express 17(15), 12922–12928 (2009).
[Crossref] [PubMed]

Xi, S.

S. Xu, X. Cheng, S. Xi, R. Zhang, H. O. Moser, Z. Shen, Y. Xu, Z. Huang, X. Zhang, F. Yu, B. Zhang, and H. Chen, “Experimental demonstration of a free-space cylindrical cloak without superluminal propagation,” Phys. Rev. Lett. 109(22), 223903 (2012).
[Crossref] [PubMed]

Xu, S.

S. Xu, X. Cheng, S. Xi, R. Zhang, H. O. Moser, Z. Shen, Y. Xu, Z. Huang, X. Zhang, F. Yu, B. Zhang, and H. Chen, “Experimental demonstration of a free-space cylindrical cloak without superluminal propagation,” Phys. Rev. Lett. 109(22), 223903 (2012).
[Crossref] [PubMed]

Xu, X.

C.-W. Qiu, L. Hu, X. Xu, and Y. Feng, “Spherical cloaking with homogeneous isotropic multilayered structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 79(4), 047602 (2009).
[Crossref] [PubMed]

Xu, Y.

S. Xu, X. Cheng, S. Xi, R. Zhang, H. O. Moser, Z. Shen, Y. Xu, Z. Huang, X. Zhang, F. Yu, B. Zhang, and H. Chen, “Experimental demonstration of a free-space cylindrical cloak without superluminal propagation,” Phys. Rev. Lett. 109(22), 223903 (2012).
[Crossref] [PubMed]

Yakovlev, A. B.

H. M. Bernety and A. B. Yakovlev, “Reduction of mutual coupling between neighboring strip dipole antennas using confocal elliptical metasurface cloaks,” IEEE Trans. Antenn. Propag. 63(4), 1554–1563 (2015).
[Crossref]

Yu, F.

S. Xu, X. Cheng, S. Xi, R. Zhang, H. O. Moser, Z. Shen, Y. Xu, Z. Huang, X. Zhang, F. Yu, B. Zhang, and H. Chen, “Experimental demonstration of a free-space cylindrical cloak without superluminal propagation,” Phys. Rev. Lett. 109(22), 223903 (2012).
[Crossref] [PubMed]

Yu, K. W.

Y. Gao, J. P. Huang, and K. W. Yu, “Multifrequency cloak with multishell by using transformation medium,” J. Appl. Phys. 105(12), 124505 (2009).
[Crossref]

Zentgraf, T.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
[Crossref] [PubMed]

Zhang, B.

S. Xu, X. Cheng, S. Xi, R. Zhang, H. O. Moser, Z. Shen, Y. Xu, Z. Huang, X. Zhang, F. Yu, B. Zhang, and H. Chen, “Experimental demonstration of a free-space cylindrical cloak without superluminal propagation,” Phys. Rev. Lett. 109(22), 223903 (2012).
[Crossref] [PubMed]

B. Zhang, “Electrodynamics of transformation-based invisibility cloaking,” Light Sci. Appl. 1(10), e32 (2012).
[Crossref]

Zhang, R.

S. Xu, X. Cheng, S. Xi, R. Zhang, H. O. Moser, Z. Shen, Y. Xu, Z. Huang, X. Zhang, F. Yu, B. Zhang, and H. Chen, “Experimental demonstration of a free-space cylindrical cloak without superluminal propagation,” Phys. Rev. Lett. 109(22), 223903 (2012).
[Crossref] [PubMed]

Zhang, X.

S. Xu, X. Cheng, S. Xi, R. Zhang, H. O. Moser, Z. Shen, Y. Xu, Z. Huang, X. Zhang, F. Yu, B. Zhang, and H. Chen, “Experimental demonstration of a free-space cylindrical cloak without superluminal propagation,” Phys. Rev. Lett. 109(22), 223903 (2012).
[Crossref] [PubMed]

H. Wang and X. Zhang, “Achieving multifrequency transperancy with cylindrical plasmonic cloak,” J. Appl. Phys. 106(5), 053302 (2009).
[Crossref]

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
[Crossref] [PubMed]

ACS Nano (1)

P.-Y. Chen and A. Alù, “Atomically thin surface cloak using graphene monolayers,” ACS Nano 5(7), 5855–5863 (2011).
[Crossref] [PubMed]

Adv. Funct. Mater. (2)

Z. H. Jiang and D. H. Werner, “Quasi-three-dimensional angle-tolerant electromagnetic illusion using ultrathin metasurface coatings,” Adv. Funct. Mater. 24(48), 7728–7736 (2014).
[Crossref]

Z. H. Jiang, P. E. Sieber, L. Kang, and D. H. Werner, “Restoring intrinsic properties of electromagnetic radiators using ultra-lightweight integrated metasurface cloaks,” Adv. Funct. Mater. 25(29), 4708–4716 (2015).
[Crossref]

Adv. Mater. (1)

P. Y. Chen, J. Soric, and A. Alù, “Invisibility and cloaking based on scattering cancellation,” Adv. Mater. 24(44), OP281–OP304 (2012).
[PubMed]

Appl. Phys. Lett. (1)

D.-H. Kwon and D. H. Werner, “Restoration of antenna parameters in scattering environments using electromagnetic cloaking,” Appl. Phys. Lett. 92(11), 113507 (2008).
[Crossref]

IEEE Antennas Wirel. Propag. Lett. (2)

A. Monti, J. Soric, A. Alù, A. Toscano, L. Vegni, and F. Bilotti, “Overcoming mutual blockage between neighboring dipole antennas using a low-profile patterned metasurface,” IEEE Antennas Wirel. Propag. Lett. 11, 1414–1417 (2012).
[Crossref]

Z. H. Jiang, M. D. Gregory, and D. H. Werner, “A broadband monopole antenna enabled by an ultrathin anisotropic metamaterial coating,” IEEE Antennas Wirel. Propag. Lett. 10, 1543–1546 (2011).
[Crossref]

IEEE Trans. Antenn. Propag. (7)

Z. H. Jiang, Q. Wu, D. E. Brocker, P. E. Sieber, and D. H. Werner, “A low-profile high-gain substrate integrated waveguide slot antenna enabled by an ultrathin anisotropic zero-index metamaterial coating,” IEEE Trans. Antenn. Propag. 62(3), 1173–1184 (2014).
[Crossref]

Z. H. Jiang, D. E. Brocker, P. E. Sieber, and D. H. Werner, “A compact, low-profile metasurface-enabled antenna for wearable medical body-area network devices,” IEEE Trans. Antenn. Propag. 62(8), 4021–4030 (2014).
[Crossref]

F. Bilotti, A. Toscano, and L. Vegni, “Design of spiral and multiple split-ring resonators for the realization of miniaturized metamaterial samples,” IEEE Trans. Antenn. Propag. 55(8), 2258–2267 (2007).
[Crossref]

H. M. Bernety and A. B. Yakovlev, “Reduction of mutual coupling between neighboring strip dipole antennas using confocal elliptical metasurface cloaks,” IEEE Trans. Antenn. Propag. 63(4), 1554–1563 (2015).
[Crossref]

J. Soric, A. Monti, A. Toscano, F. Bilotti, and A. Alù, “Dual-polarized reduction of dipole antenna blockage using mantle cloaks,” IEEE Trans. Antenn. Propag. 63(11), 4827–4834 (2015).
[Crossref]

E. F. Kuester, M. A. Mohamed, M. Piket-May, and C. L. Holloway, “Averaged transition conditions for electromagnetic fields at a metafilm,” IEEE Trans. Antenn. Propag. 51(10), 2641–2651 (2003).
[Crossref]

J. C. Soric, A. Monti, A. Toscano, F. Bilotti, and A. Alù, “Multiband and wideband bilayer mantle cloaks,” IEEE Trans. Antenn. Propag. 63(7), 3235–3240 (2015).
[Crossref]

IEEE Trans. Electromagn. Compat. (1)

C. L. Holloway, M. A. Mohamed, E. F. Kuester, and A. Dienstfrey, “Reflection and transmission properties of a metafilm: with an application to a controllable surface composed of resonant particles,” IEEE Trans. Electromagn. Compat. 47(4), 853–865 (2005).
[Crossref]

J. Appl. Phys. (3)

H. Wang and X. Zhang, “Achieving multifrequency transperancy with cylindrical plasmonic cloak,” J. Appl. Phys. 106(5), 053302 (2009).
[Crossref]

Y. Gao, J. P. Huang, and K. W. Yu, “Multifrequency cloak with multishell by using transformation medium,” J. Appl. Phys. 105(12), 124505 (2009).
[Crossref]

A. Monti, A. Alù, A. Toscano, and F. Bilotti, “Optical invisibility through metasurfaces made of plasmonic nanoparticles,” J. Appl. Phys. 117(12), 123103 (2015).
[Crossref]

J. Opt. Soc. Am. (1)

J. Phys. D Appl. Phys. (1)

Z. H. Jiang and D. H. Werner, “Exploiting metasurface anisotropy for achieving near-perfect low-profile cloaks beyond the quasi-static limit,” J. Phys. D Appl. Phys. 46(50), 505306 (2013).
[Crossref]

Light Sci. Appl. (1)

B. Zhang, “Electrodynamics of transformation-based invisibility cloaking,” Light Sci. Appl. 1(10), e32 (2012).
[Crossref]

Nat. Commun. (1)

H. F. Ma and T. J. Cui, “Three-dimensional broadband ground-plane cloak made of metamaterials,” Nat. Commun. 1(3), 21 (2010).
[Crossref] [PubMed]

Nat. Mater. (2)

N. Landy and D. R. Smith, “A full-parameter unidirectional metamaterial cloak for microwaves,” Nat. Mater. 12(1), 25–28 (2012).
[Crossref] [PubMed]

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
[Crossref] [PubMed]

New J. Phys. (2)

D. Rainwater, A. Kerkhoff, K. Melin, J. C. Soric, G. Moreno, and A. Alù, “Experimental verification of three-dimensional plasmonic cloaking in free-space,” New J. Phys. 14(1), 013054 (2012).
[Crossref]

J. C. Soric, P. Y. Chen, A. Kerkhoff, D. Rainwater, K. Melin, and A. Alù, “Demonstration of an ultralow profile cloak for scattering suppression of a finite-length rod in free space,” New J. Phys. 15(3), 033037 (2013).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Phys. Rev. B (3)

P. Y. Chen and A. Alù, “Mantle cloaking using thin patterned metasurfaces,” Phys. Rev. B 84(20), 205110 (2011).
[Crossref]

A. Alù, “Mantle cloak: invisibility induced by a surface,” Phys. Rev. B 80(24), 245115 (2009).
[Crossref]

S. Mühlig, M. Farhat, C. Rockstuhl, and F. Lederer, “Cloaking dielectric spherical objects by a shell of metallic nanoparticles,” Phys. Rev. B 83(19), 195116 (2011).
[Crossref]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (2)

C.-W. Qiu, L. Hu, X. Xu, and Y. Feng, “Spherical cloaking with homogeneous isotropic multilayered structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 79(4), 047602 (2009).
[Crossref] [PubMed]

A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(1), 016623 (2005).
[Crossref] [PubMed]

Phys. Rev. Lett. (4)

S. Tretyakov, P. Alitalo, O. Luukkonen, and C. Simovski, “Broadband electromagnetic cloaking of long cylindrical objects,” Phys. Rev. Lett. 103(10), 103905 (2009).
[Crossref] [PubMed]

A. Alù and N. Engheta, “Multifrequency optical invisibility cloak with layered plasmonic shells,” Phys. Rev. Lett. 100(11), 113901 (2008).
[Crossref] [PubMed]

S. Xu, X. Cheng, S. Xi, R. Zhang, H. O. Moser, Z. Shen, Y. Xu, Z. Huang, X. Zhang, F. Yu, B. Zhang, and H. Chen, “Experimental demonstration of a free-space cylindrical cloak without superluminal propagation,” Phys. Rev. Lett. 109(22), 223903 (2012).
[Crossref] [PubMed]

A. Alù and N. Engheta, “Cloaking a sensor,” Phys. Rev. Lett. 102(23), 233901 (2009).
[Crossref] [PubMed]

Phys. Rev. X (1)

F. Monticone and A. Alù, “Do cloaked objects really scatter less?” Phys. Rev. X 3(4), 041005 (2013).
[Crossref]

Proc. IEEE (1)

P. Alitalo and S. A. Tretyakov, “Broadband electromagnetic cloaking realized with transmission-line and waveguiding structures,” Proc. IEEE 99(10), 1646–1659 (2011).
[Crossref]

Sci. Rep. (2)

F. Monticone, C. Argyropoulos, and A. Alù, “Layered plasmonic cloaks to tailor the optical scattering at the nanoscale,” Sci. Rep. 2, 912 (2012).
[Crossref] [PubMed]

S. Mühlig, A. Cunningham, J. Dintinger, M. Farhat, S. B. Hasan, T. Scharf, T. Bürgi, F. Lederer, and C. Rockstuhl, “A self-assembled three-dimensional cloak in the visible,” Sci. Rep. 3, 2328 (2013).
[Crossref] [PubMed]

Science (4)

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[Crossref] [PubMed]

U. Leonhardt, “Optical conformal mapping,” Science 312(5781), 1777–1780 (2006).
[Crossref] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

Other (3)

D. H. Werner and D.-H. Kwon, Transformation Electromagnetics and Metamaterials: Fundamental Principles and Applications (Springer, 2014).

L. D. Landau, L. P. Pitaevskii, and E. M. Lifshitz, Electrodynamics of Continuous Media, 2nd ed. (Elsevier, 1984).

C. A. Balanis, Advanced Engineering Electromagnetics (Wiley, 1989).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 (a) Conceptual schematic of a monopole radiator (Ant 1), operating at frequency f1, coated by a multilayer anisotropic metasurface that renders the enclosed monopole electromagnetically transparent (i.e. invisible) to waves radiated by a nearby dual-band radiator (Ant 2), which operates at frequencies f2 and f3. (b) Scattering by an infinitely-long cylinder coated with N layers of anisotropic metasurfaces under illumination by an obliquely incident TMz polarized plane wave.
Fig. 2
Fig. 2 (a) Scattering width of a conducting cylinder (a = 2 mm) coated by a triple-layer metasurface normalized to that of a bare conducting cylinder at (a) f2 and (b) f3.
Fig. 3
Fig. 3 Unit cell geometries of (a) the outermost, (b) the middle, and (c) the innermost metasurface layers of C1. The dimensions are pφ11 = 9.28, pφ12 = 6.65, pφ13 = 3.82, pz11 = 8, pz12 = 8, pz13 = 16, a1 = 7.5, b1 = 5.7, c1 = 2.2, d11 = 7.5, d12 = 0.62, g1 = 5.78, w11 = 0.4, w12 = 0.5, w13 = 0.35, w14 = 0.4, w15 = 0.68, w16 = 0.3, w17 = 0.45, all in millimeters. The substrate thickness of all the layers is 100 μm. The substrate material is Rogers Ultralam 3850 (εr = 2.9, δtan = 0.0025). Retrieved effective surface electric and magnetic susceptibility tensor parameters for the metasurfaces of C1. (d) χ 1z E / λ 0 and (e) χ 1r M / λ 0 for the outermost layer, (f) χ 2z E / λ 0 for the middle layer, (g) χ 3z E / λ 0 for the innermost layer.
Fig. 4
Fig. 4 Unit cell geometries of (a) the outermost, (b) the middle, and (c) the innermost metasurface layers of C2. The dimensions are pφ21 = 9.28, pφ22 = 6.65, pφ23 = 3.82, pz21 = 8, pz22 = 8, pz23 = 16, a21 = 5.5, a22 = 3.42, a23 = 2, b2 = 5.7, c2 = 2.9, d21 = 7.6, d22 = 7.55, g2 = 3.25, w21 = 0.4, w22 = 0.4, w23 = 0.38, w24 = 0.4, w25 = 0.4, w26 = 0.68, w27 = 0.3, w28 = 0.45, all in millimeters. The substrate thickness of all the layers is 100 μm. The substrate material is Rogers Ultralam 3850 (εr = 2.9, δtan = 0.0025). Retrieved effective surface electric and magnetic susceptibility tensor parameters for the metasurfaces of C1. (d) χ 1z E / λ 0 for the outermost layer, (e) χ 2z E / λ 0 and (f) χ 2r M / λ 0 for the middle layer, (g) χ 3z E / λ 0 for the innermost layer.
Fig. 5
Fig. 5 Snapshots of the full-wave simulated total electric field magnitude distribution for (a) the uncoated copper cylinder, and the same copper cylinder coated by the actual triple-layer metasurface cloaking structure (b) C1 and (c) C2 under a cylindrical wave excitation at a distance of D = 50 mm. The same set of plots for the copper cylinder coated by the metasurface cloaking structure (d) C1 and (e) C2 under a cylindrical wave excitation at a distance of only D = 20 mm.
Fig. 6
Fig. 6 Configuration of the single-band monopole radiator (Ant 1) coated with multilayer metasurface (a) C1 and (b) C2 and a dual-band sleeve monopole radiator (Ant 2). The center-to-center distance between the two antennas is D = 50 mm. The ground plane size is 300 mm by 300 mm. Photographs of the fabricated prototype of the dual-band sleeve monopole (Ant 2) and the single-band monopole (Ant 1) surrounded by (c) C1 and (d) C2. For C1, the tuned parameters are w17 = 0.4, d12 = 0.52, g1 = 5.78, and d11 = 7.55, while for C2, the tuned parameters are w28 = 0.4, d21 = 7.7, g2 = 3.25, and d22 = 7.65, w23 = 0.38, all in millimeters.
Fig. 7
Fig. 7 Simulated and measured scattering parameters of the single-band monopole radiator (Ant 1) and the dual-band sleeve monopole radiator (Ant 2) for the cases (a) without any coating, (b) with C1, and (c) with C2.
Fig. 8
Fig. 8 Simulated and measured gain variation (ΔGain) in the x-y plane versus frequency at the low (top) and high (bottom) operational frequency bands of the dual-band sleeve monopole radiator (Ant 2) for the cases (a) without any coating, (b) with C1, and (c) with C2.
Fig. 9
Fig. 9 Simulated and measured (a) H-plane and (b) E-plane radiation patterns at the low frequency band and (c) H-plane and (d) E-plane radiation patterns at the high frequency band for the cases without any coating (top row), with C1 (middle row), and with C2 (bottom row).
Fig. 10
Fig. 10 Simulated S11 and S22 for the cases with (a) C1 and (b) C2. Simulated (c) mutual coupling (S21) reduction and gain variation (ΔGain) in the x-y plane versus frequency at the (d) low and (e) high operational bands of the dual-band sleeve monopole radiator (Ant 2) for the cases with C1 (top) and C2 (bottom), where the distance D is varied.

Tables (1)

Tables Icon

Table 1 Surface properties of the triple-layer coating.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

E z 0 =sin θ i n= + [ J n ( β t r)+ b n 0 H n (2) ( β t r)] F n ,
H z 0 =( sin θ i / Z 0 ) n= + [ d n 0 H n (2) ( β t r)] F n ,
E z m =sin θ i n= + [ a n m J n ( β t r)+ b n m Y n ( β t r)] F n ,
H z m =( sin θ i / Z 0 ) n= + [ c n m J n ( β t r)+ d n m Y n ( β t r)] F n ,
E z N+1 =sin θ i n= + [ a n N+1 J n ( β dt r)] F n ,
H z N+1 =( sin θ i / Z N ) n= + [ c n N+1 J n ( β dt r)] F n ,
r [ E z E φ H z H φ ]=[ 0 0 jn β z / ω ε 0 r jω μ 0 j β z 2 / ω ε 0 0 1/r j n 2 / ω ε 0 r 2 jω μ 0 jn β z / ω ε 0 r jn β z / ω μ 0 r j β z 2 / ω μ 0 jω ε 0 0 0 j n 2 / ω μ 0 r 2 +jω ε 0 jn β z / ω μ 0 r 0 1/r ][ E z E φ H z H φ ].
T ¯ m =[ 1 0 0 0 0 1 0 0 j χ mr M n β z / ω μ 0 r j χ mr M β z 2 / ω μ 0 jω ε 0 χ mφ E 1 0 jω ε 0 χ mz E + j χ mr M n 2 / ω μ 0 r 2 j χ mr M n β z / ω μ 0 r 0 1 ]
V ¯ ( r 1 + )= T ¯ tot V ¯ ( r N+1 )= m=1 N ( T ¯ m P ¯ m ) V ¯ ( r N+1 ),

Metrics