Abstract

We report the first laser oscillation on Yb0.15:(Lu0.5Y0.5)3Al12 ceramics at room temperature. At 1030 nm we measured a maximum output power of 7.3 W with a corresponding slope efficiency of 55.4% by using an output coupler with a transmission of T = 39.2%. The spectroscopic properties are compared with those of the two parent garnets Yb:YAG and Yb:LuAG. To the best of our knowledge these are the first measurements reported in literature achieved with this new host.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Spectroscopy and CW first laser operation of Yb-doped Gd3(Al0.5Ga0.5)5O12 crystal

Guido Toci, Angela Pirri, Witold Ryba-Romanowski, Marek Berkowski, and Matteo Vannini
Opt. Mater. Express 7(1) 170-178 (2017)

CW and mode-locked operation of Yb3+-doped Lu3Al5O12 ceramic laser

Hiroaki Nakao, Akira Shirakawa, Ken-ichi Ueda, Hideki Yagi, and Takagimi Yanagitani
Opt. Express 20(14) 15385-15391 (2012)

Growth, spectroscopic, and laser properties of Yb3+-doped Lu3Al5O12 garnet crystal

A. Brenier, Y. Guyot, H. Canibano, G. Boulon, A. Ródenas, D. Jaque, A. Eganyan, and A. G. Petrosyan
J. Opt. Soc. Am. B 23(4) 676-683 (2006)

References

  • View by:
  • |
  • |
  • |

  1. L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications,” IEEE J. Quantum Electron. 29(4), 1179–1191 (1993).
    [Crossref]
  2. F. Druon, S. Ricaud, D. N. Papadopoulos, A. Pellegrina, P. Camy, J. L. Doualan, R. Moncorgé, A. Courjaud, E. Mottay, and P. Georges, “On Yb:CaF2 and Yb:SrF2: review of spectroscopic and thermal properties and their impact on femtosecond and high power laser performance [Invited],” Opt. Mater. Express 1(3), 489–502 (2011).
    [Crossref]
  3. A. Pirri, G. Toci, and M. Vannini, “First laser oscillation and broad tunability of 1 at. % Yb-doped Sc2O3 and Lu2O3 ceramics,” Opt. Lett. 36(21), 4284–4286 (2011).
    [Crossref] [PubMed]
  4. A. Pirri, M. Vannini, V. Babin, M. Nikl, and G. Toci, “CW and quasi-CW laser performance of 10 at.% Yb3+:LuAG ceramic,” Laser Phys. 23(9), 095002 (2013).
    [Crossref]
  5. F. Tang, Y. G. Cao, J. Q. Huang, W. Guo, H. G. Liu, W. C. Wang, Q. F. Huang, and J. T. Li, “Diode-pumped multilayer Yb:YAG composite ceramic laser,” Laser Phys. Lett. 9(8), 564–569 (2012).
    [Crossref]
  6. M. Tsunekane and T. Taira, “High-power operation of diode edge-pumped, composite all ceramic Yb:Y3Al5O12 microchip laser,” Appl. Phys. Lett. 90(12), 121101 (2007).
    [Crossref]
  7. A. A. Kaminskii, M. Sh. Akchurin, R. V. Gainutdinov, K. Takaichi, A. Shirakava, H. Yagi, T. Yanagitani, and K. Ueda, “Microhardness and Fracture Toughness of Y2O3- and Y3Al5O12-Based Nanocrystalline Laser Ceramics,” Crystallogr. Rep. 50(5), 935–939 (2005).
    [Crossref]
  8. Y. Kuwano, K. Suda, N. Ishizawa, and T. Yamada, “Crystal growth and properties of (Lu,Y)3Al5O12,” J. Cryst. Growth 260(1-2), 159–165 (2004).
    [Crossref]
  9. S. Cheng, X. Xu, D. Li, D. Zhou, F. Wua, Z. Zhao, and J. Xu, “Growth and spectroscopic properties of Yb:Lu1.5Y1.5Al5O12 mixed crystal,” Opt. Mater. 33(1), 112–115 (2010).
    [Crossref]
  10. F. Wang, Z. Qin, G. Xie, P. Yuan, L. Qian, X. Xu, and J. Xu, “8.5 W mode-locked Yb:Lu1.5Y1.5Al5O12 laser with master oscillator power amplifiers,” Appl. Opt. 54(5), 1041–1045 (2015).
    [Crossref] [PubMed]
  11. M. Sun, J. Y. Long, X. H. Li, Y. Liu, H. F. Ma, Y. An, X. H. Hu, Y. S. Wang, C. Li, and D. Y. Shen, “Widely tunable Tm:LuYAG laser with a volume Bragg grating,” Laser Phys. Lett. 9(8), 553–556 (2012).
    [Crossref]
  12. X. F. Yang, Y. Wang, D. Y. Shen, T. Zhao, X. D. Xu, D. H. Zhou, and J. Xu, “Efficient Er:LuYAG laser operating at 1648 and 1620 nm,” Laser Phys. Lett. 9(2), 131–134 (2012).
    [Crossref]
  13. J. Q. Di, X. D. Xu, D. Z. Li, D. H. Zhou, F. Wu, Z. W. Zhao, J. Xu, and D. Y. Tang, “CW Laser Properties of Nd:GdYAG, Nd:LuYAG, and Nd:GdLuAG Mixed Crystals,” Laser Phys. 21(10), 1742–1744 (2011).
    [Crossref]
  14. G. Toci, “Lifetime measurements with the pinhole method in presence of radiation trapping: I-theoretical model,” Appl. Phys. B 106(1), 63–71 (2012).
    [Crossref]
  15. G. Toci, D. Alderighi, A. Pirri, and M. Vannini, “Lifetime measurements with the pinhole method in presence of radiation trapping: II-application to Yb3+ doped ceramics and crystals,” Appl. Phys. B 106(1), 73–79 (2012).
    [Crossref]
  16. B. F. Aull and H. P. Jenssen, “Vibronic interaction Nd:YAG resulting in non reciprocity of absorption and stimulated emission cross section,” IEEE J. Quantum Electron. 18(5), 925–930 (1982).
    [Crossref]
  17. R. Gaume, B. Viana, D. Vivien, J. P. Roger, and D. Fournier, “A simple model for the prediction of thermal conductivity in pure and doped insulating crystals,” Appl. Phys. Lett. 83(7), 1355–1357 (2003).
    [Crossref]
  18. A. Pirri, D. Alderighi, G. Toci, and M. Vannini, “High-efficiency, high-power and low threshold Yb3+:YAG ceramic laser,” Opt. Express 17(25), 23344–23349 (2009).
    [Crossref] [PubMed]
  19. A. Brenier, Y. Guyot, H. Canibano, G. Boulon, A. Ródenas, D. Jaque, A. Eganyan, and A. G. Petrosyan, “Growth, spectroscopic and laser properties of Yb3+-doped Lu3Al5O12 garnet crystal,” J. Opt. Soc. Am. B 23(4), 676–683 (2006).
    [Crossref]
  20. K. Beil, S. T. Fredrich-Thornton, F. Tellkamp, R. Peters, C. Kränkel, K. Petermann, and G. Huber, “Thermal and laser properties of Yb:LuAG for kW thin disk lasers,” Opt. Express 18(20), 20712–20722 (2010).
    [Crossref] [PubMed]
  21. M. Nikl, A. Yoshikawa, and T. Fukuda, “Charge transfer luminescence in Yb3+-containing compounds,” Opt. Mater. 26(4), 545–549 (2004).
    [Crossref]
  22. H. Kühn, S. T. Fredrich-Thornton, C. Kränkel, R. Peters, and K. Petermann, “Model for the calculation of radiation trapping and description of the pinhole method,” Opt. Lett. 32(13), 1908–1910 (2007).
    [Crossref] [PubMed]
  23. A. Caird, S. A. Payne, P. R. Staver, A. J. Ramponi, and L. L. Chase, “Quantum electronic properties of the Na3Ga2Li3F12: Cr3+ laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
    [Crossref]
  24. J. Koerner, C. Vorholt, H. Liebetrau, M. Kahle, D. Kloepfel, R. Seifert, J. Hein, and M. C. Kaluza, “Measurement of temperature-dependent absorption and emission spectra of Yb:YAG, Yb:LuAG, and Yb:CaF2 between 20 °C and 200 °C and predictions on their influence on laser performance,” J. Opt. Soc. Am. B 29(9), 2493–2502 (2012).
    [Crossref]
  25. A. Pirri, G. Toci, D. Alderighi, and M. Vannini, “Effects of the excitation density on the laser output of two differently doped Yb:YAG ceramics,” Opt. Express 18(16), 17262–17272 (2010).
    [Crossref] [PubMed]
  26. A. Pirri, G. Toci, M. Nikl, V. Babin, and M. Vannini, “Experimental evidence of a nonlinear loss mechanism in highly doped Yb:LuAG crystal,” Opt. Express 22(4), 4038–4049 (2014).
    [Crossref] [PubMed]

2015 (1)

2014 (1)

2013 (1)

A. Pirri, M. Vannini, V. Babin, M. Nikl, and G. Toci, “CW and quasi-CW laser performance of 10 at.% Yb3+:LuAG ceramic,” Laser Phys. 23(9), 095002 (2013).
[Crossref]

2012 (6)

F. Tang, Y. G. Cao, J. Q. Huang, W. Guo, H. G. Liu, W. C. Wang, Q. F. Huang, and J. T. Li, “Diode-pumped multilayer Yb:YAG composite ceramic laser,” Laser Phys. Lett. 9(8), 564–569 (2012).
[Crossref]

M. Sun, J. Y. Long, X. H. Li, Y. Liu, H. F. Ma, Y. An, X. H. Hu, Y. S. Wang, C. Li, and D. Y. Shen, “Widely tunable Tm:LuYAG laser with a volume Bragg grating,” Laser Phys. Lett. 9(8), 553–556 (2012).
[Crossref]

X. F. Yang, Y. Wang, D. Y. Shen, T. Zhao, X. D. Xu, D. H. Zhou, and J. Xu, “Efficient Er:LuYAG laser operating at 1648 and 1620 nm,” Laser Phys. Lett. 9(2), 131–134 (2012).
[Crossref]

G. Toci, “Lifetime measurements with the pinhole method in presence of radiation trapping: I-theoretical model,” Appl. Phys. B 106(1), 63–71 (2012).
[Crossref]

G. Toci, D. Alderighi, A. Pirri, and M. Vannini, “Lifetime measurements with the pinhole method in presence of radiation trapping: II-application to Yb3+ doped ceramics and crystals,” Appl. Phys. B 106(1), 73–79 (2012).
[Crossref]

J. Koerner, C. Vorholt, H. Liebetrau, M. Kahle, D. Kloepfel, R. Seifert, J. Hein, and M. C. Kaluza, “Measurement of temperature-dependent absorption and emission spectra of Yb:YAG, Yb:LuAG, and Yb:CaF2 between 20 °C and 200 °C and predictions on their influence on laser performance,” J. Opt. Soc. Am. B 29(9), 2493–2502 (2012).
[Crossref]

2011 (3)

2010 (3)

2009 (1)

2007 (2)

H. Kühn, S. T. Fredrich-Thornton, C. Kränkel, R. Peters, and K. Petermann, “Model for the calculation of radiation trapping and description of the pinhole method,” Opt. Lett. 32(13), 1908–1910 (2007).
[Crossref] [PubMed]

M. Tsunekane and T. Taira, “High-power operation of diode edge-pumped, composite all ceramic Yb:Y3Al5O12 microchip laser,” Appl. Phys. Lett. 90(12), 121101 (2007).
[Crossref]

2006 (1)

2005 (1)

A. A. Kaminskii, M. Sh. Akchurin, R. V. Gainutdinov, K. Takaichi, A. Shirakava, H. Yagi, T. Yanagitani, and K. Ueda, “Microhardness and Fracture Toughness of Y2O3- and Y3Al5O12-Based Nanocrystalline Laser Ceramics,” Crystallogr. Rep. 50(5), 935–939 (2005).
[Crossref]

2004 (2)

Y. Kuwano, K. Suda, N. Ishizawa, and T. Yamada, “Crystal growth and properties of (Lu,Y)3Al5O12,” J. Cryst. Growth 260(1-2), 159–165 (2004).
[Crossref]

M. Nikl, A. Yoshikawa, and T. Fukuda, “Charge transfer luminescence in Yb3+-containing compounds,” Opt. Mater. 26(4), 545–549 (2004).
[Crossref]

2003 (1)

R. Gaume, B. Viana, D. Vivien, J. P. Roger, and D. Fournier, “A simple model for the prediction of thermal conductivity in pure and doped insulating crystals,” Appl. Phys. Lett. 83(7), 1355–1357 (2003).
[Crossref]

1993 (1)

L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications,” IEEE J. Quantum Electron. 29(4), 1179–1191 (1993).
[Crossref]

1988 (1)

A. Caird, S. A. Payne, P. R. Staver, A. J. Ramponi, and L. L. Chase, “Quantum electronic properties of the Na3Ga2Li3F12: Cr3+ laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
[Crossref]

1982 (1)

B. F. Aull and H. P. Jenssen, “Vibronic interaction Nd:YAG resulting in non reciprocity of absorption and stimulated emission cross section,” IEEE J. Quantum Electron. 18(5), 925–930 (1982).
[Crossref]

Akchurin, M. Sh.

A. A. Kaminskii, M. Sh. Akchurin, R. V. Gainutdinov, K. Takaichi, A. Shirakava, H. Yagi, T. Yanagitani, and K. Ueda, “Microhardness and Fracture Toughness of Y2O3- and Y3Al5O12-Based Nanocrystalline Laser Ceramics,” Crystallogr. Rep. 50(5), 935–939 (2005).
[Crossref]

Alderighi, D.

An, Y.

M. Sun, J. Y. Long, X. H. Li, Y. Liu, H. F. Ma, Y. An, X. H. Hu, Y. S. Wang, C. Li, and D. Y. Shen, “Widely tunable Tm:LuYAG laser with a volume Bragg grating,” Laser Phys. Lett. 9(8), 553–556 (2012).
[Crossref]

Aull, B. F.

B. F. Aull and H. P. Jenssen, “Vibronic interaction Nd:YAG resulting in non reciprocity of absorption and stimulated emission cross section,” IEEE J. Quantum Electron. 18(5), 925–930 (1982).
[Crossref]

Babin, V.

A. Pirri, G. Toci, M. Nikl, V. Babin, and M. Vannini, “Experimental evidence of a nonlinear loss mechanism in highly doped Yb:LuAG crystal,” Opt. Express 22(4), 4038–4049 (2014).
[Crossref] [PubMed]

A. Pirri, M. Vannini, V. Babin, M. Nikl, and G. Toci, “CW and quasi-CW laser performance of 10 at.% Yb3+:LuAG ceramic,” Laser Phys. 23(9), 095002 (2013).
[Crossref]

Beil, K.

Boulon, G.

Brenier, A.

Caird, A.

A. Caird, S. A. Payne, P. R. Staver, A. J. Ramponi, and L. L. Chase, “Quantum electronic properties of the Na3Ga2Li3F12: Cr3+ laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
[Crossref]

Camy, P.

Canibano, H.

Cao, Y. G.

F. Tang, Y. G. Cao, J. Q. Huang, W. Guo, H. G. Liu, W. C. Wang, Q. F. Huang, and J. T. Li, “Diode-pumped multilayer Yb:YAG composite ceramic laser,” Laser Phys. Lett. 9(8), 564–569 (2012).
[Crossref]

Chase, L. L.

L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications,” IEEE J. Quantum Electron. 29(4), 1179–1191 (1993).
[Crossref]

A. Caird, S. A. Payne, P. R. Staver, A. J. Ramponi, and L. L. Chase, “Quantum electronic properties of the Na3Ga2Li3F12: Cr3+ laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
[Crossref]

Cheng, S.

S. Cheng, X. Xu, D. Li, D. Zhou, F. Wua, Z. Zhao, and J. Xu, “Growth and spectroscopic properties of Yb:Lu1.5Y1.5Al5O12 mixed crystal,” Opt. Mater. 33(1), 112–115 (2010).
[Crossref]

Courjaud, A.

DeLoach, L. D.

L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications,” IEEE J. Quantum Electron. 29(4), 1179–1191 (1993).
[Crossref]

Di, J. Q.

J. Q. Di, X. D. Xu, D. Z. Li, D. H. Zhou, F. Wu, Z. W. Zhao, J. Xu, and D. Y. Tang, “CW Laser Properties of Nd:GdYAG, Nd:LuYAG, and Nd:GdLuAG Mixed Crystals,” Laser Phys. 21(10), 1742–1744 (2011).
[Crossref]

Doualan, J. L.

Druon, F.

Eganyan, A.

Fournier, D.

R. Gaume, B. Viana, D. Vivien, J. P. Roger, and D. Fournier, “A simple model for the prediction of thermal conductivity in pure and doped insulating crystals,” Appl. Phys. Lett. 83(7), 1355–1357 (2003).
[Crossref]

Fredrich-Thornton, S. T.

Fukuda, T.

M. Nikl, A. Yoshikawa, and T. Fukuda, “Charge transfer luminescence in Yb3+-containing compounds,” Opt. Mater. 26(4), 545–549 (2004).
[Crossref]

Gainutdinov, R. V.

A. A. Kaminskii, M. Sh. Akchurin, R. V. Gainutdinov, K. Takaichi, A. Shirakava, H. Yagi, T. Yanagitani, and K. Ueda, “Microhardness and Fracture Toughness of Y2O3- and Y3Al5O12-Based Nanocrystalline Laser Ceramics,” Crystallogr. Rep. 50(5), 935–939 (2005).
[Crossref]

Gaume, R.

R. Gaume, B. Viana, D. Vivien, J. P. Roger, and D. Fournier, “A simple model for the prediction of thermal conductivity in pure and doped insulating crystals,” Appl. Phys. Lett. 83(7), 1355–1357 (2003).
[Crossref]

Georges, P.

Guo, W.

F. Tang, Y. G. Cao, J. Q. Huang, W. Guo, H. G. Liu, W. C. Wang, Q. F. Huang, and J. T. Li, “Diode-pumped multilayer Yb:YAG composite ceramic laser,” Laser Phys. Lett. 9(8), 564–569 (2012).
[Crossref]

Guyot, Y.

Hein, J.

Hu, X. H.

M. Sun, J. Y. Long, X. H. Li, Y. Liu, H. F. Ma, Y. An, X. H. Hu, Y. S. Wang, C. Li, and D. Y. Shen, “Widely tunable Tm:LuYAG laser with a volume Bragg grating,” Laser Phys. Lett. 9(8), 553–556 (2012).
[Crossref]

Huang, J. Q.

F. Tang, Y. G. Cao, J. Q. Huang, W. Guo, H. G. Liu, W. C. Wang, Q. F. Huang, and J. T. Li, “Diode-pumped multilayer Yb:YAG composite ceramic laser,” Laser Phys. Lett. 9(8), 564–569 (2012).
[Crossref]

Huang, Q. F.

F. Tang, Y. G. Cao, J. Q. Huang, W. Guo, H. G. Liu, W. C. Wang, Q. F. Huang, and J. T. Li, “Diode-pumped multilayer Yb:YAG composite ceramic laser,” Laser Phys. Lett. 9(8), 564–569 (2012).
[Crossref]

Huber, G.

Ishizawa, N.

Y. Kuwano, K. Suda, N. Ishizawa, and T. Yamada, “Crystal growth and properties of (Lu,Y)3Al5O12,” J. Cryst. Growth 260(1-2), 159–165 (2004).
[Crossref]

Jaque, D.

Jenssen, H. P.

B. F. Aull and H. P. Jenssen, “Vibronic interaction Nd:YAG resulting in non reciprocity of absorption and stimulated emission cross section,” IEEE J. Quantum Electron. 18(5), 925–930 (1982).
[Crossref]

Kahle, M.

Kaluza, M. C.

Kaminskii, A. A.

A. A. Kaminskii, M. Sh. Akchurin, R. V. Gainutdinov, K. Takaichi, A. Shirakava, H. Yagi, T. Yanagitani, and K. Ueda, “Microhardness and Fracture Toughness of Y2O3- and Y3Al5O12-Based Nanocrystalline Laser Ceramics,” Crystallogr. Rep. 50(5), 935–939 (2005).
[Crossref]

Kloepfel, D.

Koerner, J.

Kränkel, C.

Krupke, W. F.

L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications,” IEEE J. Quantum Electron. 29(4), 1179–1191 (1993).
[Crossref]

Kühn, H.

Kuwano, Y.

Y. Kuwano, K. Suda, N. Ishizawa, and T. Yamada, “Crystal growth and properties of (Lu,Y)3Al5O12,” J. Cryst. Growth 260(1-2), 159–165 (2004).
[Crossref]

Kway, W. L.

L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications,” IEEE J. Quantum Electron. 29(4), 1179–1191 (1993).
[Crossref]

Li, C.

M. Sun, J. Y. Long, X. H. Li, Y. Liu, H. F. Ma, Y. An, X. H. Hu, Y. S. Wang, C. Li, and D. Y. Shen, “Widely tunable Tm:LuYAG laser with a volume Bragg grating,” Laser Phys. Lett. 9(8), 553–556 (2012).
[Crossref]

Li, D.

S. Cheng, X. Xu, D. Li, D. Zhou, F. Wua, Z. Zhao, and J. Xu, “Growth and spectroscopic properties of Yb:Lu1.5Y1.5Al5O12 mixed crystal,” Opt. Mater. 33(1), 112–115 (2010).
[Crossref]

Li, D. Z.

J. Q. Di, X. D. Xu, D. Z. Li, D. H. Zhou, F. Wu, Z. W. Zhao, J. Xu, and D. Y. Tang, “CW Laser Properties of Nd:GdYAG, Nd:LuYAG, and Nd:GdLuAG Mixed Crystals,” Laser Phys. 21(10), 1742–1744 (2011).
[Crossref]

Li, J. T.

F. Tang, Y. G. Cao, J. Q. Huang, W. Guo, H. G. Liu, W. C. Wang, Q. F. Huang, and J. T. Li, “Diode-pumped multilayer Yb:YAG composite ceramic laser,” Laser Phys. Lett. 9(8), 564–569 (2012).
[Crossref]

Li, X. H.

M. Sun, J. Y. Long, X. H. Li, Y. Liu, H. F. Ma, Y. An, X. H. Hu, Y. S. Wang, C. Li, and D. Y. Shen, “Widely tunable Tm:LuYAG laser with a volume Bragg grating,” Laser Phys. Lett. 9(8), 553–556 (2012).
[Crossref]

Liebetrau, H.

Liu, H. G.

F. Tang, Y. G. Cao, J. Q. Huang, W. Guo, H. G. Liu, W. C. Wang, Q. F. Huang, and J. T. Li, “Diode-pumped multilayer Yb:YAG composite ceramic laser,” Laser Phys. Lett. 9(8), 564–569 (2012).
[Crossref]

Liu, Y.

M. Sun, J. Y. Long, X. H. Li, Y. Liu, H. F. Ma, Y. An, X. H. Hu, Y. S. Wang, C. Li, and D. Y. Shen, “Widely tunable Tm:LuYAG laser with a volume Bragg grating,” Laser Phys. Lett. 9(8), 553–556 (2012).
[Crossref]

Long, J. Y.

M. Sun, J. Y. Long, X. H. Li, Y. Liu, H. F. Ma, Y. An, X. H. Hu, Y. S. Wang, C. Li, and D. Y. Shen, “Widely tunable Tm:LuYAG laser with a volume Bragg grating,” Laser Phys. Lett. 9(8), 553–556 (2012).
[Crossref]

Ma, H. F.

M. Sun, J. Y. Long, X. H. Li, Y. Liu, H. F. Ma, Y. An, X. H. Hu, Y. S. Wang, C. Li, and D. Y. Shen, “Widely tunable Tm:LuYAG laser with a volume Bragg grating,” Laser Phys. Lett. 9(8), 553–556 (2012).
[Crossref]

Moncorgé, R.

Mottay, E.

Nikl, M.

A. Pirri, G. Toci, M. Nikl, V. Babin, and M. Vannini, “Experimental evidence of a nonlinear loss mechanism in highly doped Yb:LuAG crystal,” Opt. Express 22(4), 4038–4049 (2014).
[Crossref] [PubMed]

A. Pirri, M. Vannini, V. Babin, M. Nikl, and G. Toci, “CW and quasi-CW laser performance of 10 at.% Yb3+:LuAG ceramic,” Laser Phys. 23(9), 095002 (2013).
[Crossref]

M. Nikl, A. Yoshikawa, and T. Fukuda, “Charge transfer luminescence in Yb3+-containing compounds,” Opt. Mater. 26(4), 545–549 (2004).
[Crossref]

Papadopoulos, D. N.

Payne, S. A.

L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications,” IEEE J. Quantum Electron. 29(4), 1179–1191 (1993).
[Crossref]

A. Caird, S. A. Payne, P. R. Staver, A. J. Ramponi, and L. L. Chase, “Quantum electronic properties of the Na3Ga2Li3F12: Cr3+ laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
[Crossref]

Pellegrina, A.

Petermann, K.

Peters, R.

Petrosyan, A. G.

Pirri, A.

Qian, L.

Qin, Z.

Ramponi, A. J.

A. Caird, S. A. Payne, P. R. Staver, A. J. Ramponi, and L. L. Chase, “Quantum electronic properties of the Na3Ga2Li3F12: Cr3+ laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
[Crossref]

Ricaud, S.

Ródenas, A.

Roger, J. P.

R. Gaume, B. Viana, D. Vivien, J. P. Roger, and D. Fournier, “A simple model for the prediction of thermal conductivity in pure and doped insulating crystals,” Appl. Phys. Lett. 83(7), 1355–1357 (2003).
[Crossref]

Seifert, R.

Shen, D. Y.

X. F. Yang, Y. Wang, D. Y. Shen, T. Zhao, X. D. Xu, D. H. Zhou, and J. Xu, “Efficient Er:LuYAG laser operating at 1648 and 1620 nm,” Laser Phys. Lett. 9(2), 131–134 (2012).
[Crossref]

M. Sun, J. Y. Long, X. H. Li, Y. Liu, H. F. Ma, Y. An, X. H. Hu, Y. S. Wang, C. Li, and D. Y. Shen, “Widely tunable Tm:LuYAG laser with a volume Bragg grating,” Laser Phys. Lett. 9(8), 553–556 (2012).
[Crossref]

Shirakava, A.

A. A. Kaminskii, M. Sh. Akchurin, R. V. Gainutdinov, K. Takaichi, A. Shirakava, H. Yagi, T. Yanagitani, and K. Ueda, “Microhardness and Fracture Toughness of Y2O3- and Y3Al5O12-Based Nanocrystalline Laser Ceramics,” Crystallogr. Rep. 50(5), 935–939 (2005).
[Crossref]

Smith, L. K.

L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications,” IEEE J. Quantum Electron. 29(4), 1179–1191 (1993).
[Crossref]

Staver, P. R.

A. Caird, S. A. Payne, P. R. Staver, A. J. Ramponi, and L. L. Chase, “Quantum electronic properties of the Na3Ga2Li3F12: Cr3+ laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
[Crossref]

Suda, K.

Y. Kuwano, K. Suda, N. Ishizawa, and T. Yamada, “Crystal growth and properties of (Lu,Y)3Al5O12,” J. Cryst. Growth 260(1-2), 159–165 (2004).
[Crossref]

Sun, M.

M. Sun, J. Y. Long, X. H. Li, Y. Liu, H. F. Ma, Y. An, X. H. Hu, Y. S. Wang, C. Li, and D. Y. Shen, “Widely tunable Tm:LuYAG laser with a volume Bragg grating,” Laser Phys. Lett. 9(8), 553–556 (2012).
[Crossref]

Taira, T.

M. Tsunekane and T. Taira, “High-power operation of diode edge-pumped, composite all ceramic Yb:Y3Al5O12 microchip laser,” Appl. Phys. Lett. 90(12), 121101 (2007).
[Crossref]

Takaichi, K.

A. A. Kaminskii, M. Sh. Akchurin, R. V. Gainutdinov, K. Takaichi, A. Shirakava, H. Yagi, T. Yanagitani, and K. Ueda, “Microhardness and Fracture Toughness of Y2O3- and Y3Al5O12-Based Nanocrystalline Laser Ceramics,” Crystallogr. Rep. 50(5), 935–939 (2005).
[Crossref]

Tang, D. Y.

J. Q. Di, X. D. Xu, D. Z. Li, D. H. Zhou, F. Wu, Z. W. Zhao, J. Xu, and D. Y. Tang, “CW Laser Properties of Nd:GdYAG, Nd:LuYAG, and Nd:GdLuAG Mixed Crystals,” Laser Phys. 21(10), 1742–1744 (2011).
[Crossref]

Tang, F.

F. Tang, Y. G. Cao, J. Q. Huang, W. Guo, H. G. Liu, W. C. Wang, Q. F. Huang, and J. T. Li, “Diode-pumped multilayer Yb:YAG composite ceramic laser,” Laser Phys. Lett. 9(8), 564–569 (2012).
[Crossref]

Tellkamp, F.

Toci, G.

Tsunekane, M.

M. Tsunekane and T. Taira, “High-power operation of diode edge-pumped, composite all ceramic Yb:Y3Al5O12 microchip laser,” Appl. Phys. Lett. 90(12), 121101 (2007).
[Crossref]

Ueda, K.

A. A. Kaminskii, M. Sh. Akchurin, R. V. Gainutdinov, K. Takaichi, A. Shirakava, H. Yagi, T. Yanagitani, and K. Ueda, “Microhardness and Fracture Toughness of Y2O3- and Y3Al5O12-Based Nanocrystalline Laser Ceramics,” Crystallogr. Rep. 50(5), 935–939 (2005).
[Crossref]

Vannini, M.

Viana, B.

R. Gaume, B. Viana, D. Vivien, J. P. Roger, and D. Fournier, “A simple model for the prediction of thermal conductivity in pure and doped insulating crystals,” Appl. Phys. Lett. 83(7), 1355–1357 (2003).
[Crossref]

Vivien, D.

R. Gaume, B. Viana, D. Vivien, J. P. Roger, and D. Fournier, “A simple model for the prediction of thermal conductivity in pure and doped insulating crystals,” Appl. Phys. Lett. 83(7), 1355–1357 (2003).
[Crossref]

Vorholt, C.

Wang, F.

Wang, W. C.

F. Tang, Y. G. Cao, J. Q. Huang, W. Guo, H. G. Liu, W. C. Wang, Q. F. Huang, and J. T. Li, “Diode-pumped multilayer Yb:YAG composite ceramic laser,” Laser Phys. Lett. 9(8), 564–569 (2012).
[Crossref]

Wang, Y.

X. F. Yang, Y. Wang, D. Y. Shen, T. Zhao, X. D. Xu, D. H. Zhou, and J. Xu, “Efficient Er:LuYAG laser operating at 1648 and 1620 nm,” Laser Phys. Lett. 9(2), 131–134 (2012).
[Crossref]

Wang, Y. S.

M. Sun, J. Y. Long, X. H. Li, Y. Liu, H. F. Ma, Y. An, X. H. Hu, Y. S. Wang, C. Li, and D. Y. Shen, “Widely tunable Tm:LuYAG laser with a volume Bragg grating,” Laser Phys. Lett. 9(8), 553–556 (2012).
[Crossref]

Wu, F.

J. Q. Di, X. D. Xu, D. Z. Li, D. H. Zhou, F. Wu, Z. W. Zhao, J. Xu, and D. Y. Tang, “CW Laser Properties of Nd:GdYAG, Nd:LuYAG, and Nd:GdLuAG Mixed Crystals,” Laser Phys. 21(10), 1742–1744 (2011).
[Crossref]

Wua, F.

S. Cheng, X. Xu, D. Li, D. Zhou, F. Wua, Z. Zhao, and J. Xu, “Growth and spectroscopic properties of Yb:Lu1.5Y1.5Al5O12 mixed crystal,” Opt. Mater. 33(1), 112–115 (2010).
[Crossref]

Xie, G.

Xu, J.

F. Wang, Z. Qin, G. Xie, P. Yuan, L. Qian, X. Xu, and J. Xu, “8.5 W mode-locked Yb:Lu1.5Y1.5Al5O12 laser with master oscillator power amplifiers,” Appl. Opt. 54(5), 1041–1045 (2015).
[Crossref] [PubMed]

X. F. Yang, Y. Wang, D. Y. Shen, T. Zhao, X. D. Xu, D. H. Zhou, and J. Xu, “Efficient Er:LuYAG laser operating at 1648 and 1620 nm,” Laser Phys. Lett. 9(2), 131–134 (2012).
[Crossref]

J. Q. Di, X. D. Xu, D. Z. Li, D. H. Zhou, F. Wu, Z. W. Zhao, J. Xu, and D. Y. Tang, “CW Laser Properties of Nd:GdYAG, Nd:LuYAG, and Nd:GdLuAG Mixed Crystals,” Laser Phys. 21(10), 1742–1744 (2011).
[Crossref]

S. Cheng, X. Xu, D. Li, D. Zhou, F. Wua, Z. Zhao, and J. Xu, “Growth and spectroscopic properties of Yb:Lu1.5Y1.5Al5O12 mixed crystal,” Opt. Mater. 33(1), 112–115 (2010).
[Crossref]

Xu, X.

F. Wang, Z. Qin, G. Xie, P. Yuan, L. Qian, X. Xu, and J. Xu, “8.5 W mode-locked Yb:Lu1.5Y1.5Al5O12 laser with master oscillator power amplifiers,” Appl. Opt. 54(5), 1041–1045 (2015).
[Crossref] [PubMed]

S. Cheng, X. Xu, D. Li, D. Zhou, F. Wua, Z. Zhao, and J. Xu, “Growth and spectroscopic properties of Yb:Lu1.5Y1.5Al5O12 mixed crystal,” Opt. Mater. 33(1), 112–115 (2010).
[Crossref]

Xu, X. D.

X. F. Yang, Y. Wang, D. Y. Shen, T. Zhao, X. D. Xu, D. H. Zhou, and J. Xu, “Efficient Er:LuYAG laser operating at 1648 and 1620 nm,” Laser Phys. Lett. 9(2), 131–134 (2012).
[Crossref]

J. Q. Di, X. D. Xu, D. Z. Li, D. H. Zhou, F. Wu, Z. W. Zhao, J. Xu, and D. Y. Tang, “CW Laser Properties of Nd:GdYAG, Nd:LuYAG, and Nd:GdLuAG Mixed Crystals,” Laser Phys. 21(10), 1742–1744 (2011).
[Crossref]

Yagi, H.

A. A. Kaminskii, M. Sh. Akchurin, R. V. Gainutdinov, K. Takaichi, A. Shirakava, H. Yagi, T. Yanagitani, and K. Ueda, “Microhardness and Fracture Toughness of Y2O3- and Y3Al5O12-Based Nanocrystalline Laser Ceramics,” Crystallogr. Rep. 50(5), 935–939 (2005).
[Crossref]

Yamada, T.

Y. Kuwano, K. Suda, N. Ishizawa, and T. Yamada, “Crystal growth and properties of (Lu,Y)3Al5O12,” J. Cryst. Growth 260(1-2), 159–165 (2004).
[Crossref]

Yanagitani, T.

A. A. Kaminskii, M. Sh. Akchurin, R. V. Gainutdinov, K. Takaichi, A. Shirakava, H. Yagi, T. Yanagitani, and K. Ueda, “Microhardness and Fracture Toughness of Y2O3- and Y3Al5O12-Based Nanocrystalline Laser Ceramics,” Crystallogr. Rep. 50(5), 935–939 (2005).
[Crossref]

Yang, X. F.

X. F. Yang, Y. Wang, D. Y. Shen, T. Zhao, X. D. Xu, D. H. Zhou, and J. Xu, “Efficient Er:LuYAG laser operating at 1648 and 1620 nm,” Laser Phys. Lett. 9(2), 131–134 (2012).
[Crossref]

Yoshikawa, A.

M. Nikl, A. Yoshikawa, and T. Fukuda, “Charge transfer luminescence in Yb3+-containing compounds,” Opt. Mater. 26(4), 545–549 (2004).
[Crossref]

Yuan, P.

Zhao, T.

X. F. Yang, Y. Wang, D. Y. Shen, T. Zhao, X. D. Xu, D. H. Zhou, and J. Xu, “Efficient Er:LuYAG laser operating at 1648 and 1620 nm,” Laser Phys. Lett. 9(2), 131–134 (2012).
[Crossref]

Zhao, Z.

S. Cheng, X. Xu, D. Li, D. Zhou, F. Wua, Z. Zhao, and J. Xu, “Growth and spectroscopic properties of Yb:Lu1.5Y1.5Al5O12 mixed crystal,” Opt. Mater. 33(1), 112–115 (2010).
[Crossref]

Zhao, Z. W.

J. Q. Di, X. D. Xu, D. Z. Li, D. H. Zhou, F. Wu, Z. W. Zhao, J. Xu, and D. Y. Tang, “CW Laser Properties of Nd:GdYAG, Nd:LuYAG, and Nd:GdLuAG Mixed Crystals,” Laser Phys. 21(10), 1742–1744 (2011).
[Crossref]

Zhou, D.

S. Cheng, X. Xu, D. Li, D. Zhou, F. Wua, Z. Zhao, and J. Xu, “Growth and spectroscopic properties of Yb:Lu1.5Y1.5Al5O12 mixed crystal,” Opt. Mater. 33(1), 112–115 (2010).
[Crossref]

Zhou, D. H.

X. F. Yang, Y. Wang, D. Y. Shen, T. Zhao, X. D. Xu, D. H. Zhou, and J. Xu, “Efficient Er:LuYAG laser operating at 1648 and 1620 nm,” Laser Phys. Lett. 9(2), 131–134 (2012).
[Crossref]

J. Q. Di, X. D. Xu, D. Z. Li, D. H. Zhou, F. Wu, Z. W. Zhao, J. Xu, and D. Y. Tang, “CW Laser Properties of Nd:GdYAG, Nd:LuYAG, and Nd:GdLuAG Mixed Crystals,” Laser Phys. 21(10), 1742–1744 (2011).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (2)

G. Toci, “Lifetime measurements with the pinhole method in presence of radiation trapping: I-theoretical model,” Appl. Phys. B 106(1), 63–71 (2012).
[Crossref]

G. Toci, D. Alderighi, A. Pirri, and M. Vannini, “Lifetime measurements with the pinhole method in presence of radiation trapping: II-application to Yb3+ doped ceramics and crystals,” Appl. Phys. B 106(1), 73–79 (2012).
[Crossref]

Appl. Phys. Lett. (2)

M. Tsunekane and T. Taira, “High-power operation of diode edge-pumped, composite all ceramic Yb:Y3Al5O12 microchip laser,” Appl. Phys. Lett. 90(12), 121101 (2007).
[Crossref]

R. Gaume, B. Viana, D. Vivien, J. P. Roger, and D. Fournier, “A simple model for the prediction of thermal conductivity in pure and doped insulating crystals,” Appl. Phys. Lett. 83(7), 1355–1357 (2003).
[Crossref]

Crystallogr. Rep. (1)

A. A. Kaminskii, M. Sh. Akchurin, R. V. Gainutdinov, K. Takaichi, A. Shirakava, H. Yagi, T. Yanagitani, and K. Ueda, “Microhardness and Fracture Toughness of Y2O3- and Y3Al5O12-Based Nanocrystalline Laser Ceramics,” Crystallogr. Rep. 50(5), 935–939 (2005).
[Crossref]

IEEE J. Quantum Electron. (3)

B. F. Aull and H. P. Jenssen, “Vibronic interaction Nd:YAG resulting in non reciprocity of absorption and stimulated emission cross section,” IEEE J. Quantum Electron. 18(5), 925–930 (1982).
[Crossref]

L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications,” IEEE J. Quantum Electron. 29(4), 1179–1191 (1993).
[Crossref]

A. Caird, S. A. Payne, P. R. Staver, A. J. Ramponi, and L. L. Chase, “Quantum electronic properties of the Na3Ga2Li3F12: Cr3+ laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
[Crossref]

J. Cryst. Growth (1)

Y. Kuwano, K. Suda, N. Ishizawa, and T. Yamada, “Crystal growth and properties of (Lu,Y)3Al5O12,” J. Cryst. Growth 260(1-2), 159–165 (2004).
[Crossref]

J. Opt. Soc. Am. B (2)

Laser Phys. (2)

J. Q. Di, X. D. Xu, D. Z. Li, D. H. Zhou, F. Wu, Z. W. Zhao, J. Xu, and D. Y. Tang, “CW Laser Properties of Nd:GdYAG, Nd:LuYAG, and Nd:GdLuAG Mixed Crystals,” Laser Phys. 21(10), 1742–1744 (2011).
[Crossref]

A. Pirri, M. Vannini, V. Babin, M. Nikl, and G. Toci, “CW and quasi-CW laser performance of 10 at.% Yb3+:LuAG ceramic,” Laser Phys. 23(9), 095002 (2013).
[Crossref]

Laser Phys. Lett. (3)

F. Tang, Y. G. Cao, J. Q. Huang, W. Guo, H. G. Liu, W. C. Wang, Q. F. Huang, and J. T. Li, “Diode-pumped multilayer Yb:YAG composite ceramic laser,” Laser Phys. Lett. 9(8), 564–569 (2012).
[Crossref]

M. Sun, J. Y. Long, X. H. Li, Y. Liu, H. F. Ma, Y. An, X. H. Hu, Y. S. Wang, C. Li, and D. Y. Shen, “Widely tunable Tm:LuYAG laser with a volume Bragg grating,” Laser Phys. Lett. 9(8), 553–556 (2012).
[Crossref]

X. F. Yang, Y. Wang, D. Y. Shen, T. Zhao, X. D. Xu, D. H. Zhou, and J. Xu, “Efficient Er:LuYAG laser operating at 1648 and 1620 nm,” Laser Phys. Lett. 9(2), 131–134 (2012).
[Crossref]

Opt. Express (4)

Opt. Lett. (2)

Opt. Mater. (2)

M. Nikl, A. Yoshikawa, and T. Fukuda, “Charge transfer luminescence in Yb3+-containing compounds,” Opt. Mater. 26(4), 545–549 (2004).
[Crossref]

S. Cheng, X. Xu, D. Li, D. Zhou, F. Wua, Z. Zhao, and J. Xu, “Growth and spectroscopic properties of Yb:Lu1.5Y1.5Al5O12 mixed crystal,” Opt. Mater. 33(1), 112–115 (2010).
[Crossref]

Opt. Mater. Express (1)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a): Transmission spectrum; (b): FESEM image of the sample fracture surface.
Fig. 2
Fig. 2 (a): Absorption coefficient in the blue-UV; (b): Absorption and emission cross section spectra (σa and σe respectively) of the Yb3+ 4f-4f transition.
Fig. 3
Fig. 3 Laser cavity layout. The inset shows the ceramic sample (thickness 1.4 mm, ∅ 16 mm).
Fig. 4
Fig. 4 (a): QCW laser output power versus the absorbed pump power; (b): Values of the slope efficiency for the various OC transmissions; (c): CW laser output power versus the absorbed pump power; the inset shows the far field beam intensity distribution at a pump power of 5.7 W; (d): Tuning range under QCW at 936 nm with an input pump power of 21.75 W.

Tables (1)

Tables Icon

Table 1 Spectroscopic, structural and thermal properties of Yb0.15:(Lu0.5Y0.5)3Al5O12

Metrics