Abstract

We have developed a nanophotonic platform with microdisks using epitaxial III-nitride materials on silicon. The two-dimensional platform consists of suspended waveguides and mushroom-type microdisks as resonators side-coupled with a bus waveguide. Loaded quality factors up to 80000 have been obtained in the near-infrared spectral range for microdisk diameters between 8 and 15 μm. We analyze the dependence of the quality factors as a function of coupling efficiency. We have performed continuous-wave second harmonic generation experiments in resonance with the whispering gallery modes supported by the microdisks.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Aluminum nitride-on-sapphire platform for integrated high-Q microresonators

Xianwen Liu, Changzheng Sun, Bing Xiong, Lai Wang, Jian Wang, Yanjun Han, Zhibiao Hao, Hongtao Li, Yi Luo, Jianchang Yan, Tongbo Wei, Yun Zhang, and Junxi Wang
Opt. Express 25(2) 587-594 (2017)

Fabrication and characterization of on-chip silicon nitride microdisk integrated with colloidal quantum dots

Weiqiang Xie, Yunpeng Zhu, Tangi Aubert, Zeger Hens, Edouard Brainis, and Dries Van Thourhout
Opt. Express 24(2) A114-A122 (2016)

Second-harmonic generation in aluminum nitride microrings with 2500%/W conversion efficiency

Xiang Guo, Chang-Ling Zou, and Hong X. Tang
Optica 3(10) 1126-1131 (2016)

References

  • View by:
  • |
  • |
  • |

  1. H. Jung, R. Stoll, X. Guo, D. Fischer, and H. X. Tang, “Green, red, and IR frequency comb line generation from single IR pump in AlN microring resonator,” Optica 1, 396–399 (2014).
    [Crossref]
  2. C. Xiong, W. H. P. Pernice, X. Sun, C. Schuck, K. Y. Fong, and H. X. Tang, “Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics,” New J. Phys. 14, 095014 (2012).
    [Crossref]
  3. D. Sam-Giao, D. Néel, S. Sergent, B. Gayral, M. J. Rashid, F. Semond, J. Y. Duboz, M. Mexis, T. Guillet, C. Brimont, S. David, X. Checoury, and P. Boucaud, “High quality factor AlN nanocavities embedded in a photonic crystal waveguide,” Appl. Phys. Lett. 100, 191104 (2012).
    [Crossref]
  4. S. Sergent, M. Arita, S. Kako, S. Iwamoto, and Y. Arakawa, “High-Q (≥5000) AlN nanobeam photonic crystal cavity embedding GaN quantum dots,” Appl. Phys. Lett. 100, 121103 (2012).
    [Crossref]
  5. N. Vico Triviño, R. Butté, J.-F. Carlin, and N. Grandjean, “Continuous wave blue lasing in III-Nitride nanobeam cavity on silicon,” Nano Lett. 15, 1259–1263 (2015).
    [Crossref]
  6. J. Sellés, C. Brimont, G. Cassabois, P. Valvin, T. Guillet, I. Roland, Y. Zeng, X. Checoury, P. Boucaud, M. Mexis, F. Semond, and B. Gayral, “Deep-UV nitride-on-silicon microdisk lasers,” Sci. Rep. 6, 21650 (2016).
    [Crossref] [PubMed]
  7. C. Xiong, W. H. P. Pernice, and H. X. Tang, “Low-loss, silicon integrated, aluminum nitride photonic circuits and their use for electro-optic signal processing,” Nano Lett. 12, 3562–3568 (2012).
    [Crossref] [PubMed]
  8. B. Thubthimthong, T. Sasaki, and K. Hane, “Asymmetrically and vertically coupled hybrid Si/GaN microring resonators for on-chip optical interconnects,” IEEE Photonics J. 7, 7801511 (2015).
    [Crossref]
  9. C. Xiong, W. Pernice, K. K. Ryu, C. Schuck, K. Y. Fong, T. Palacios, and H. X. Tang, “Integrated GaN photonic circuits on silicon (100) for second harmonic generation,” Opt. Express 19, 10462–10470 (2011).
    [Crossref] [PubMed]
  10. A. W. Bruch, C. Xiong, B. Leung, M. Poot, J. Han, and H. X. Tang, “Broadband nanophotonic waveguides and resonators based on epitaxial GaN thin films,” Appl. Phys. Lett. 107, 141113 (2015).
    [Crossref]
  11. I. Roland, Y. Zeng, Z. Han, X. Checoury, C. Blin, M. El Kurdi, A. Ghrib, S. Sauvage, B. Gayral, C. Brimont, T. Guillet, F. Semond, and P. Boucaud, “Near-infrared gallium nitride two-dimensional photonic crystal platform on silicon,” Appl. Phys. Lett. 105, 011104 (2014).
    [Crossref]
  12. Y. Zeng, I. Roland, X. Checoury, Z. Han, M. El Kurdi, S. Sauvage, B. Gayral, C. Brimont, T. Guillet, M. Mexis, F. Semond, and P. Boucaud, “Resonant second harmonic generation in a gallium nitride two-dimensional photonic crystal on silicon,” Appl. Phys. Lett. 106, 081105 (2015).
    [Crossref]
  13. N. Vico Triviño, M. Minkov, G. Urbinati, M. Galli, J.-F. Carlin, R. Butté, V. Savona, and N. Grandjean, “Gallium nitride L3 photonic crystal cavities with an average quality factor of 16900 in the near infrared,” Appl. Phys. Lett. 105, 231119 (2014).
    [Crossref]
  14. F. Semond, “Epitaxial challenges of GaN on silicon,” MRS Bulletin 40, 412–417 (2015).
    [Crossref]
  15. M. Mexis, S. Sergent, T. Guillet, C. Brimont, T. Bretagnon, B. Gil, F. Semond, M. Leroux, D. Néel, S. David, X. Chécoury, and P. Boucaud, “High quality factor nitride-based optical cavities: microdisks with embedded GaN/Al(Ga)N quantum dots,” Opt. Lett. 36, 2203–2205 (2011).
    [Crossref] [PubMed]
  16. P. S. Kuo, J. Bravo-Abad, and G. S. Solomon, “Second-harmonic generation using 4bar-quasi-phasematching in a GaAs whispering-gallery-mode microcavity,” Nat. Commun. 5, 3109 (2014).
    [Crossref]
  17. Q. Li, A. A. Eftekhar, Z. Xia, and A. Adibi, “Azimuthal-order variations of surface-roughness-induced mode splitting and scattering loss in high-Q microdisk resonators,” Opt. Lett. 37, 1586–1588 (2012).
    [Crossref] [PubMed]
  18. S. Blaize, F. Gesuele, I. Stefanon, A. Bruyant, G. Lérondel, P. Royer, B. Martin, A. Morand, P. Benech, and J.-M. Fedeli, “Real-space observation of spectral degeneracy breaking in a waveguide-coupled disk microresonator,” Opt. Lett. 35, 3168–3170 (2010).
    [Crossref] [PubMed]
  19. A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36, 321–322 (2000).
    [Crossref]
  20. M. Borselli, K. Srinivasan, P. E. Barclay, and O. Painter, “Rayleigh scattering, mode coupling, and optical loss in silicon microdisks,” Appl. Phys. Lett. 85, 3693–3695 (2004).
    [Crossref]
  21. M. Soltani, “Novel integrated silicon nanophotonic structures using ultra-high Q resonator,” Ph.D. thesis, Georgia Institute of Technology (2009).
  22. Z.-F. Bi, A. W. Rodriguez, H. Hashemi, D. Duchesne, M. Loncar, K.-M. Wang, and S. G. Johnson, “High-efficiency second-harmonic generation in doubly-resonant χ(2) microring resonators,” Opt. Express 20, 7526–7543 (2012).
    [Crossref] [PubMed]
  23. M. Borselli, “High-Q microresonators as lasing elements for silicon photonics,” Ph.D. thesis, California Institute of Technology (2006).
  24. M. L. M. Balistreri, D. J. W. Klunder, F. C. Blom, A. Driessen, H. W. J. M. Hoekstra, J. P. Korterik, L. Kuipers, and N. F. van Hulst, “Visualizing the whispering gallery modes in a cylindrical optical microcavity,” Opt. Lett. 24, 1829–1831 (1999).
    [Crossref]
  25. I.-W. Feng, W. Zhao, J. Li, J. Lin, H. Jiang, and J. Zavada, “Correlation between the optical loss and crystalline quality in erbium-doped GaN optical waveguides,” Appl. Opt. 52, 5426–5429 (2013).
    [Crossref] [PubMed]

2016 (1)

J. Sellés, C. Brimont, G. Cassabois, P. Valvin, T. Guillet, I. Roland, Y. Zeng, X. Checoury, P. Boucaud, M. Mexis, F. Semond, and B. Gayral, “Deep-UV nitride-on-silicon microdisk lasers,” Sci. Rep. 6, 21650 (2016).
[Crossref] [PubMed]

2015 (5)

B. Thubthimthong, T. Sasaki, and K. Hane, “Asymmetrically and vertically coupled hybrid Si/GaN microring resonators for on-chip optical interconnects,” IEEE Photonics J. 7, 7801511 (2015).
[Crossref]

A. W. Bruch, C. Xiong, B. Leung, M. Poot, J. Han, and H. X. Tang, “Broadband nanophotonic waveguides and resonators based on epitaxial GaN thin films,” Appl. Phys. Lett. 107, 141113 (2015).
[Crossref]

Y. Zeng, I. Roland, X. Checoury, Z. Han, M. El Kurdi, S. Sauvage, B. Gayral, C. Brimont, T. Guillet, M. Mexis, F. Semond, and P. Boucaud, “Resonant second harmonic generation in a gallium nitride two-dimensional photonic crystal on silicon,” Appl. Phys. Lett. 106, 081105 (2015).
[Crossref]

F. Semond, “Epitaxial challenges of GaN on silicon,” MRS Bulletin 40, 412–417 (2015).
[Crossref]

N. Vico Triviño, R. Butté, J.-F. Carlin, and N. Grandjean, “Continuous wave blue lasing in III-Nitride nanobeam cavity on silicon,” Nano Lett. 15, 1259–1263 (2015).
[Crossref]

2014 (4)

N. Vico Triviño, M. Minkov, G. Urbinati, M. Galli, J.-F. Carlin, R. Butté, V. Savona, and N. Grandjean, “Gallium nitride L3 photonic crystal cavities with an average quality factor of 16900 in the near infrared,” Appl. Phys. Lett. 105, 231119 (2014).
[Crossref]

I. Roland, Y. Zeng, Z. Han, X. Checoury, C. Blin, M. El Kurdi, A. Ghrib, S. Sauvage, B. Gayral, C. Brimont, T. Guillet, F. Semond, and P. Boucaud, “Near-infrared gallium nitride two-dimensional photonic crystal platform on silicon,” Appl. Phys. Lett. 105, 011104 (2014).
[Crossref]

P. S. Kuo, J. Bravo-Abad, and G. S. Solomon, “Second-harmonic generation using 4bar-quasi-phasematching in a GaAs whispering-gallery-mode microcavity,” Nat. Commun. 5, 3109 (2014).
[Crossref]

H. Jung, R. Stoll, X. Guo, D. Fischer, and H. X. Tang, “Green, red, and IR frequency comb line generation from single IR pump in AlN microring resonator,” Optica 1, 396–399 (2014).
[Crossref]

2013 (1)

2012 (6)

Z.-F. Bi, A. W. Rodriguez, H. Hashemi, D. Duchesne, M. Loncar, K.-M. Wang, and S. G. Johnson, “High-efficiency second-harmonic generation in doubly-resonant χ(2) microring resonators,” Opt. Express 20, 7526–7543 (2012).
[Crossref] [PubMed]

C. Xiong, W. H. P. Pernice, X. Sun, C. Schuck, K. Y. Fong, and H. X. Tang, “Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics,” New J. Phys. 14, 095014 (2012).
[Crossref]

D. Sam-Giao, D. Néel, S. Sergent, B. Gayral, M. J. Rashid, F. Semond, J. Y. Duboz, M. Mexis, T. Guillet, C. Brimont, S. David, X. Checoury, and P. Boucaud, “High quality factor AlN nanocavities embedded in a photonic crystal waveguide,” Appl. Phys. Lett. 100, 191104 (2012).
[Crossref]

S. Sergent, M. Arita, S. Kako, S. Iwamoto, and Y. Arakawa, “High-Q (≥5000) AlN nanobeam photonic crystal cavity embedding GaN quantum dots,” Appl. Phys. Lett. 100, 121103 (2012).
[Crossref]

C. Xiong, W. H. P. Pernice, and H. X. Tang, “Low-loss, silicon integrated, aluminum nitride photonic circuits and their use for electro-optic signal processing,” Nano Lett. 12, 3562–3568 (2012).
[Crossref] [PubMed]

Q. Li, A. A. Eftekhar, Z. Xia, and A. Adibi, “Azimuthal-order variations of surface-roughness-induced mode splitting and scattering loss in high-Q microdisk resonators,” Opt. Lett. 37, 1586–1588 (2012).
[Crossref] [PubMed]

2011 (2)

2010 (1)

2004 (1)

M. Borselli, K. Srinivasan, P. E. Barclay, and O. Painter, “Rayleigh scattering, mode coupling, and optical loss in silicon microdisks,” Appl. Phys. Lett. 85, 3693–3695 (2004).
[Crossref]

2000 (1)

A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36, 321–322 (2000).
[Crossref]

1999 (1)

Adibi, A.

Arakawa, Y.

S. Sergent, M. Arita, S. Kako, S. Iwamoto, and Y. Arakawa, “High-Q (≥5000) AlN nanobeam photonic crystal cavity embedding GaN quantum dots,” Appl. Phys. Lett. 100, 121103 (2012).
[Crossref]

Arita, M.

S. Sergent, M. Arita, S. Kako, S. Iwamoto, and Y. Arakawa, “High-Q (≥5000) AlN nanobeam photonic crystal cavity embedding GaN quantum dots,” Appl. Phys. Lett. 100, 121103 (2012).
[Crossref]

Balistreri, M. L. M.

Barclay, P. E.

M. Borselli, K. Srinivasan, P. E. Barclay, and O. Painter, “Rayleigh scattering, mode coupling, and optical loss in silicon microdisks,” Appl. Phys. Lett. 85, 3693–3695 (2004).
[Crossref]

Benech, P.

Bi, Z.-F.

Blaize, S.

Blin, C.

I. Roland, Y. Zeng, Z. Han, X. Checoury, C. Blin, M. El Kurdi, A. Ghrib, S. Sauvage, B. Gayral, C. Brimont, T. Guillet, F. Semond, and P. Boucaud, “Near-infrared gallium nitride two-dimensional photonic crystal platform on silicon,” Appl. Phys. Lett. 105, 011104 (2014).
[Crossref]

Blom, F. C.

Borselli, M.

M. Borselli, K. Srinivasan, P. E. Barclay, and O. Painter, “Rayleigh scattering, mode coupling, and optical loss in silicon microdisks,” Appl. Phys. Lett. 85, 3693–3695 (2004).
[Crossref]

M. Borselli, “High-Q microresonators as lasing elements for silicon photonics,” Ph.D. thesis, California Institute of Technology (2006).

Boucaud, P.

J. Sellés, C. Brimont, G. Cassabois, P. Valvin, T. Guillet, I. Roland, Y. Zeng, X. Checoury, P. Boucaud, M. Mexis, F. Semond, and B. Gayral, “Deep-UV nitride-on-silicon microdisk lasers,” Sci. Rep. 6, 21650 (2016).
[Crossref] [PubMed]

Y. Zeng, I. Roland, X. Checoury, Z. Han, M. El Kurdi, S. Sauvage, B. Gayral, C. Brimont, T. Guillet, M. Mexis, F. Semond, and P. Boucaud, “Resonant second harmonic generation in a gallium nitride two-dimensional photonic crystal on silicon,” Appl. Phys. Lett. 106, 081105 (2015).
[Crossref]

I. Roland, Y. Zeng, Z. Han, X. Checoury, C. Blin, M. El Kurdi, A. Ghrib, S. Sauvage, B. Gayral, C. Brimont, T. Guillet, F. Semond, and P. Boucaud, “Near-infrared gallium nitride two-dimensional photonic crystal platform on silicon,” Appl. Phys. Lett. 105, 011104 (2014).
[Crossref]

D. Sam-Giao, D. Néel, S. Sergent, B. Gayral, M. J. Rashid, F. Semond, J. Y. Duboz, M. Mexis, T. Guillet, C. Brimont, S. David, X. Checoury, and P. Boucaud, “High quality factor AlN nanocavities embedded in a photonic crystal waveguide,” Appl. Phys. Lett. 100, 191104 (2012).
[Crossref]

M. Mexis, S. Sergent, T. Guillet, C. Brimont, T. Bretagnon, B. Gil, F. Semond, M. Leroux, D. Néel, S. David, X. Chécoury, and P. Boucaud, “High quality factor nitride-based optical cavities: microdisks with embedded GaN/Al(Ga)N quantum dots,” Opt. Lett. 36, 2203–2205 (2011).
[Crossref] [PubMed]

Bravo-Abad, J.

P. S. Kuo, J. Bravo-Abad, and G. S. Solomon, “Second-harmonic generation using 4bar-quasi-phasematching in a GaAs whispering-gallery-mode microcavity,” Nat. Commun. 5, 3109 (2014).
[Crossref]

Bretagnon, T.

Brimont, C.

J. Sellés, C. Brimont, G. Cassabois, P. Valvin, T. Guillet, I. Roland, Y. Zeng, X. Checoury, P. Boucaud, M. Mexis, F. Semond, and B. Gayral, “Deep-UV nitride-on-silicon microdisk lasers,” Sci. Rep. 6, 21650 (2016).
[Crossref] [PubMed]

Y. Zeng, I. Roland, X. Checoury, Z. Han, M. El Kurdi, S. Sauvage, B. Gayral, C. Brimont, T. Guillet, M. Mexis, F. Semond, and P. Boucaud, “Resonant second harmonic generation in a gallium nitride two-dimensional photonic crystal on silicon,” Appl. Phys. Lett. 106, 081105 (2015).
[Crossref]

I. Roland, Y. Zeng, Z. Han, X. Checoury, C. Blin, M. El Kurdi, A. Ghrib, S. Sauvage, B. Gayral, C. Brimont, T. Guillet, F. Semond, and P. Boucaud, “Near-infrared gallium nitride two-dimensional photonic crystal platform on silicon,” Appl. Phys. Lett. 105, 011104 (2014).
[Crossref]

D. Sam-Giao, D. Néel, S. Sergent, B. Gayral, M. J. Rashid, F. Semond, J. Y. Duboz, M. Mexis, T. Guillet, C. Brimont, S. David, X. Checoury, and P. Boucaud, “High quality factor AlN nanocavities embedded in a photonic crystal waveguide,” Appl. Phys. Lett. 100, 191104 (2012).
[Crossref]

M. Mexis, S. Sergent, T. Guillet, C. Brimont, T. Bretagnon, B. Gil, F. Semond, M. Leroux, D. Néel, S. David, X. Chécoury, and P. Boucaud, “High quality factor nitride-based optical cavities: microdisks with embedded GaN/Al(Ga)N quantum dots,” Opt. Lett. 36, 2203–2205 (2011).
[Crossref] [PubMed]

Bruch, A. W.

A. W. Bruch, C. Xiong, B. Leung, M. Poot, J. Han, and H. X. Tang, “Broadband nanophotonic waveguides and resonators based on epitaxial GaN thin films,” Appl. Phys. Lett. 107, 141113 (2015).
[Crossref]

Bruyant, A.

Butté, R.

N. Vico Triviño, R. Butté, J.-F. Carlin, and N. Grandjean, “Continuous wave blue lasing in III-Nitride nanobeam cavity on silicon,” Nano Lett. 15, 1259–1263 (2015).
[Crossref]

N. Vico Triviño, M. Minkov, G. Urbinati, M. Galli, J.-F. Carlin, R. Butté, V. Savona, and N. Grandjean, “Gallium nitride L3 photonic crystal cavities with an average quality factor of 16900 in the near infrared,” Appl. Phys. Lett. 105, 231119 (2014).
[Crossref]

Carlin, J.-F.

N. Vico Triviño, R. Butté, J.-F. Carlin, and N. Grandjean, “Continuous wave blue lasing in III-Nitride nanobeam cavity on silicon,” Nano Lett. 15, 1259–1263 (2015).
[Crossref]

N. Vico Triviño, M. Minkov, G. Urbinati, M. Galli, J.-F. Carlin, R. Butté, V. Savona, and N. Grandjean, “Gallium nitride L3 photonic crystal cavities with an average quality factor of 16900 in the near infrared,” Appl. Phys. Lett. 105, 231119 (2014).
[Crossref]

Cassabois, G.

J. Sellés, C. Brimont, G. Cassabois, P. Valvin, T. Guillet, I. Roland, Y. Zeng, X. Checoury, P. Boucaud, M. Mexis, F. Semond, and B. Gayral, “Deep-UV nitride-on-silicon microdisk lasers,” Sci. Rep. 6, 21650 (2016).
[Crossref] [PubMed]

Checoury, X.

J. Sellés, C. Brimont, G. Cassabois, P. Valvin, T. Guillet, I. Roland, Y. Zeng, X. Checoury, P. Boucaud, M. Mexis, F. Semond, and B. Gayral, “Deep-UV nitride-on-silicon microdisk lasers,” Sci. Rep. 6, 21650 (2016).
[Crossref] [PubMed]

Y. Zeng, I. Roland, X. Checoury, Z. Han, M. El Kurdi, S. Sauvage, B. Gayral, C. Brimont, T. Guillet, M. Mexis, F. Semond, and P. Boucaud, “Resonant second harmonic generation in a gallium nitride two-dimensional photonic crystal on silicon,” Appl. Phys. Lett. 106, 081105 (2015).
[Crossref]

I. Roland, Y. Zeng, Z. Han, X. Checoury, C. Blin, M. El Kurdi, A. Ghrib, S. Sauvage, B. Gayral, C. Brimont, T. Guillet, F. Semond, and P. Boucaud, “Near-infrared gallium nitride two-dimensional photonic crystal platform on silicon,” Appl. Phys. Lett. 105, 011104 (2014).
[Crossref]

D. Sam-Giao, D. Néel, S. Sergent, B. Gayral, M. J. Rashid, F. Semond, J. Y. Duboz, M. Mexis, T. Guillet, C. Brimont, S. David, X. Checoury, and P. Boucaud, “High quality factor AlN nanocavities embedded in a photonic crystal waveguide,” Appl. Phys. Lett. 100, 191104 (2012).
[Crossref]

Chécoury, X.

David, S.

D. Sam-Giao, D. Néel, S. Sergent, B. Gayral, M. J. Rashid, F. Semond, J. Y. Duboz, M. Mexis, T. Guillet, C. Brimont, S. David, X. Checoury, and P. Boucaud, “High quality factor AlN nanocavities embedded in a photonic crystal waveguide,” Appl. Phys. Lett. 100, 191104 (2012).
[Crossref]

M. Mexis, S. Sergent, T. Guillet, C. Brimont, T. Bretagnon, B. Gil, F. Semond, M. Leroux, D. Néel, S. David, X. Chécoury, and P. Boucaud, “High quality factor nitride-based optical cavities: microdisks with embedded GaN/Al(Ga)N quantum dots,” Opt. Lett. 36, 2203–2205 (2011).
[Crossref] [PubMed]

Driessen, A.

Duboz, J. Y.

D. Sam-Giao, D. Néel, S. Sergent, B. Gayral, M. J. Rashid, F. Semond, J. Y. Duboz, M. Mexis, T. Guillet, C. Brimont, S. David, X. Checoury, and P. Boucaud, “High quality factor AlN nanocavities embedded in a photonic crystal waveguide,” Appl. Phys. Lett. 100, 191104 (2012).
[Crossref]

Duchesne, D.

Eftekhar, A. A.

El Kurdi, M.

Y. Zeng, I. Roland, X. Checoury, Z. Han, M. El Kurdi, S. Sauvage, B. Gayral, C. Brimont, T. Guillet, M. Mexis, F. Semond, and P. Boucaud, “Resonant second harmonic generation in a gallium nitride two-dimensional photonic crystal on silicon,” Appl. Phys. Lett. 106, 081105 (2015).
[Crossref]

I. Roland, Y. Zeng, Z. Han, X. Checoury, C. Blin, M. El Kurdi, A. Ghrib, S. Sauvage, B. Gayral, C. Brimont, T. Guillet, F. Semond, and P. Boucaud, “Near-infrared gallium nitride two-dimensional photonic crystal platform on silicon,” Appl. Phys. Lett. 105, 011104 (2014).
[Crossref]

Fedeli, J.-M.

Feng, I.-W.

Fischer, D.

Fong, K. Y.

C. Xiong, W. H. P. Pernice, X. Sun, C. Schuck, K. Y. Fong, and H. X. Tang, “Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics,” New J. Phys. 14, 095014 (2012).
[Crossref]

C. Xiong, W. Pernice, K. K. Ryu, C. Schuck, K. Y. Fong, T. Palacios, and H. X. Tang, “Integrated GaN photonic circuits on silicon (100) for second harmonic generation,” Opt. Express 19, 10462–10470 (2011).
[Crossref] [PubMed]

Galli, M.

N. Vico Triviño, M. Minkov, G. Urbinati, M. Galli, J.-F. Carlin, R. Butté, V. Savona, and N. Grandjean, “Gallium nitride L3 photonic crystal cavities with an average quality factor of 16900 in the near infrared,” Appl. Phys. Lett. 105, 231119 (2014).
[Crossref]

Gayral, B.

J. Sellés, C. Brimont, G. Cassabois, P. Valvin, T. Guillet, I. Roland, Y. Zeng, X. Checoury, P. Boucaud, M. Mexis, F. Semond, and B. Gayral, “Deep-UV nitride-on-silicon microdisk lasers,” Sci. Rep. 6, 21650 (2016).
[Crossref] [PubMed]

Y. Zeng, I. Roland, X. Checoury, Z. Han, M. El Kurdi, S. Sauvage, B. Gayral, C. Brimont, T. Guillet, M. Mexis, F. Semond, and P. Boucaud, “Resonant second harmonic generation in a gallium nitride two-dimensional photonic crystal on silicon,” Appl. Phys. Lett. 106, 081105 (2015).
[Crossref]

I. Roland, Y. Zeng, Z. Han, X. Checoury, C. Blin, M. El Kurdi, A. Ghrib, S. Sauvage, B. Gayral, C. Brimont, T. Guillet, F. Semond, and P. Boucaud, “Near-infrared gallium nitride two-dimensional photonic crystal platform on silicon,” Appl. Phys. Lett. 105, 011104 (2014).
[Crossref]

D. Sam-Giao, D. Néel, S. Sergent, B. Gayral, M. J. Rashid, F. Semond, J. Y. Duboz, M. Mexis, T. Guillet, C. Brimont, S. David, X. Checoury, and P. Boucaud, “High quality factor AlN nanocavities embedded in a photonic crystal waveguide,” Appl. Phys. Lett. 100, 191104 (2012).
[Crossref]

Gesuele, F.

Ghrib, A.

I. Roland, Y. Zeng, Z. Han, X. Checoury, C. Blin, M. El Kurdi, A. Ghrib, S. Sauvage, B. Gayral, C. Brimont, T. Guillet, F. Semond, and P. Boucaud, “Near-infrared gallium nitride two-dimensional photonic crystal platform on silicon,” Appl. Phys. Lett. 105, 011104 (2014).
[Crossref]

Gil, B.

Grandjean, N.

N. Vico Triviño, R. Butté, J.-F. Carlin, and N. Grandjean, “Continuous wave blue lasing in III-Nitride nanobeam cavity on silicon,” Nano Lett. 15, 1259–1263 (2015).
[Crossref]

N. Vico Triviño, M. Minkov, G. Urbinati, M. Galli, J.-F. Carlin, R. Butté, V. Savona, and N. Grandjean, “Gallium nitride L3 photonic crystal cavities with an average quality factor of 16900 in the near infrared,” Appl. Phys. Lett. 105, 231119 (2014).
[Crossref]

Guillet, T.

J. Sellés, C. Brimont, G. Cassabois, P. Valvin, T. Guillet, I. Roland, Y. Zeng, X. Checoury, P. Boucaud, M. Mexis, F. Semond, and B. Gayral, “Deep-UV nitride-on-silicon microdisk lasers,” Sci. Rep. 6, 21650 (2016).
[Crossref] [PubMed]

Y. Zeng, I. Roland, X. Checoury, Z. Han, M. El Kurdi, S. Sauvage, B. Gayral, C. Brimont, T. Guillet, M. Mexis, F. Semond, and P. Boucaud, “Resonant second harmonic generation in a gallium nitride two-dimensional photonic crystal on silicon,” Appl. Phys. Lett. 106, 081105 (2015).
[Crossref]

I. Roland, Y. Zeng, Z. Han, X. Checoury, C. Blin, M. El Kurdi, A. Ghrib, S. Sauvage, B. Gayral, C. Brimont, T. Guillet, F. Semond, and P. Boucaud, “Near-infrared gallium nitride two-dimensional photonic crystal platform on silicon,” Appl. Phys. Lett. 105, 011104 (2014).
[Crossref]

D. Sam-Giao, D. Néel, S. Sergent, B. Gayral, M. J. Rashid, F. Semond, J. Y. Duboz, M. Mexis, T. Guillet, C. Brimont, S. David, X. Checoury, and P. Boucaud, “High quality factor AlN nanocavities embedded in a photonic crystal waveguide,” Appl. Phys. Lett. 100, 191104 (2012).
[Crossref]

M. Mexis, S. Sergent, T. Guillet, C. Brimont, T. Bretagnon, B. Gil, F. Semond, M. Leroux, D. Néel, S. David, X. Chécoury, and P. Boucaud, “High quality factor nitride-based optical cavities: microdisks with embedded GaN/Al(Ga)N quantum dots,” Opt. Lett. 36, 2203–2205 (2011).
[Crossref] [PubMed]

Guo, X.

Han, J.

A. W. Bruch, C. Xiong, B. Leung, M. Poot, J. Han, and H. X. Tang, “Broadband nanophotonic waveguides and resonators based on epitaxial GaN thin films,” Appl. Phys. Lett. 107, 141113 (2015).
[Crossref]

Han, Z.

Y. Zeng, I. Roland, X. Checoury, Z. Han, M. El Kurdi, S. Sauvage, B. Gayral, C. Brimont, T. Guillet, M. Mexis, F. Semond, and P. Boucaud, “Resonant second harmonic generation in a gallium nitride two-dimensional photonic crystal on silicon,” Appl. Phys. Lett. 106, 081105 (2015).
[Crossref]

I. Roland, Y. Zeng, Z. Han, X. Checoury, C. Blin, M. El Kurdi, A. Ghrib, S. Sauvage, B. Gayral, C. Brimont, T. Guillet, F. Semond, and P. Boucaud, “Near-infrared gallium nitride two-dimensional photonic crystal platform on silicon,” Appl. Phys. Lett. 105, 011104 (2014).
[Crossref]

Hane, K.

B. Thubthimthong, T. Sasaki, and K. Hane, “Asymmetrically and vertically coupled hybrid Si/GaN microring resonators for on-chip optical interconnects,” IEEE Photonics J. 7, 7801511 (2015).
[Crossref]

Hashemi, H.

Hoekstra, H. W. J. M.

Iwamoto, S.

S. Sergent, M. Arita, S. Kako, S. Iwamoto, and Y. Arakawa, “High-Q (≥5000) AlN nanobeam photonic crystal cavity embedding GaN quantum dots,” Appl. Phys. Lett. 100, 121103 (2012).
[Crossref]

Jiang, H.

Johnson, S. G.

Jung, H.

Kako, S.

S. Sergent, M. Arita, S. Kako, S. Iwamoto, and Y. Arakawa, “High-Q (≥5000) AlN nanobeam photonic crystal cavity embedding GaN quantum dots,” Appl. Phys. Lett. 100, 121103 (2012).
[Crossref]

Klunder, D. J. W.

Korterik, J. P.

Kuipers, L.

Kuo, P. S.

P. S. Kuo, J. Bravo-Abad, and G. S. Solomon, “Second-harmonic generation using 4bar-quasi-phasematching in a GaAs whispering-gallery-mode microcavity,” Nat. Commun. 5, 3109 (2014).
[Crossref]

Lérondel, G.

Leroux, M.

Leung, B.

A. W. Bruch, C. Xiong, B. Leung, M. Poot, J. Han, and H. X. Tang, “Broadband nanophotonic waveguides and resonators based on epitaxial GaN thin films,” Appl. Phys. Lett. 107, 141113 (2015).
[Crossref]

Li, J.

Li, Q.

Lin, J.

Loncar, M.

Martin, B.

Mexis, M.

J. Sellés, C. Brimont, G. Cassabois, P. Valvin, T. Guillet, I. Roland, Y. Zeng, X. Checoury, P. Boucaud, M. Mexis, F. Semond, and B. Gayral, “Deep-UV nitride-on-silicon microdisk lasers,” Sci. Rep. 6, 21650 (2016).
[Crossref] [PubMed]

Y. Zeng, I. Roland, X. Checoury, Z. Han, M. El Kurdi, S. Sauvage, B. Gayral, C. Brimont, T. Guillet, M. Mexis, F. Semond, and P. Boucaud, “Resonant second harmonic generation in a gallium nitride two-dimensional photonic crystal on silicon,” Appl. Phys. Lett. 106, 081105 (2015).
[Crossref]

D. Sam-Giao, D. Néel, S. Sergent, B. Gayral, M. J. Rashid, F. Semond, J. Y. Duboz, M. Mexis, T. Guillet, C. Brimont, S. David, X. Checoury, and P. Boucaud, “High quality factor AlN nanocavities embedded in a photonic crystal waveguide,” Appl. Phys. Lett. 100, 191104 (2012).
[Crossref]

M. Mexis, S. Sergent, T. Guillet, C. Brimont, T. Bretagnon, B. Gil, F. Semond, M. Leroux, D. Néel, S. David, X. Chécoury, and P. Boucaud, “High quality factor nitride-based optical cavities: microdisks with embedded GaN/Al(Ga)N quantum dots,” Opt. Lett. 36, 2203–2205 (2011).
[Crossref] [PubMed]

Minkov, M.

N. Vico Triviño, M. Minkov, G. Urbinati, M. Galli, J.-F. Carlin, R. Butté, V. Savona, and N. Grandjean, “Gallium nitride L3 photonic crystal cavities with an average quality factor of 16900 in the near infrared,” Appl. Phys. Lett. 105, 231119 (2014).
[Crossref]

Morand, A.

Néel, D.

D. Sam-Giao, D. Néel, S. Sergent, B. Gayral, M. J. Rashid, F. Semond, J. Y. Duboz, M. Mexis, T. Guillet, C. Brimont, S. David, X. Checoury, and P. Boucaud, “High quality factor AlN nanocavities embedded in a photonic crystal waveguide,” Appl. Phys. Lett. 100, 191104 (2012).
[Crossref]

M. Mexis, S. Sergent, T. Guillet, C. Brimont, T. Bretagnon, B. Gil, F. Semond, M. Leroux, D. Néel, S. David, X. Chécoury, and P. Boucaud, “High quality factor nitride-based optical cavities: microdisks with embedded GaN/Al(Ga)N quantum dots,” Opt. Lett. 36, 2203–2205 (2011).
[Crossref] [PubMed]

Painter, O.

M. Borselli, K. Srinivasan, P. E. Barclay, and O. Painter, “Rayleigh scattering, mode coupling, and optical loss in silicon microdisks,” Appl. Phys. Lett. 85, 3693–3695 (2004).
[Crossref]

Palacios, T.

Pernice, W.

Pernice, W. H. P.

C. Xiong, W. H. P. Pernice, X. Sun, C. Schuck, K. Y. Fong, and H. X. Tang, “Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics,” New J. Phys. 14, 095014 (2012).
[Crossref]

C. Xiong, W. H. P. Pernice, and H. X. Tang, “Low-loss, silicon integrated, aluminum nitride photonic circuits and their use for electro-optic signal processing,” Nano Lett. 12, 3562–3568 (2012).
[Crossref] [PubMed]

Poot, M.

A. W. Bruch, C. Xiong, B. Leung, M. Poot, J. Han, and H. X. Tang, “Broadband nanophotonic waveguides and resonators based on epitaxial GaN thin films,” Appl. Phys. Lett. 107, 141113 (2015).
[Crossref]

Rashid, M. J.

D. Sam-Giao, D. Néel, S. Sergent, B. Gayral, M. J. Rashid, F. Semond, J. Y. Duboz, M. Mexis, T. Guillet, C. Brimont, S. David, X. Checoury, and P. Boucaud, “High quality factor AlN nanocavities embedded in a photonic crystal waveguide,” Appl. Phys. Lett. 100, 191104 (2012).
[Crossref]

Rodriguez, A. W.

Roland, I.

J. Sellés, C. Brimont, G. Cassabois, P. Valvin, T. Guillet, I. Roland, Y. Zeng, X. Checoury, P. Boucaud, M. Mexis, F. Semond, and B. Gayral, “Deep-UV nitride-on-silicon microdisk lasers,” Sci. Rep. 6, 21650 (2016).
[Crossref] [PubMed]

Y. Zeng, I. Roland, X. Checoury, Z. Han, M. El Kurdi, S. Sauvage, B. Gayral, C. Brimont, T. Guillet, M. Mexis, F. Semond, and P. Boucaud, “Resonant second harmonic generation in a gallium nitride two-dimensional photonic crystal on silicon,” Appl. Phys. Lett. 106, 081105 (2015).
[Crossref]

I. Roland, Y. Zeng, Z. Han, X. Checoury, C. Blin, M. El Kurdi, A. Ghrib, S. Sauvage, B. Gayral, C. Brimont, T. Guillet, F. Semond, and P. Boucaud, “Near-infrared gallium nitride two-dimensional photonic crystal platform on silicon,” Appl. Phys. Lett. 105, 011104 (2014).
[Crossref]

Royer, P.

Ryu, K. K.

Sam-Giao, D.

D. Sam-Giao, D. Néel, S. Sergent, B. Gayral, M. J. Rashid, F. Semond, J. Y. Duboz, M. Mexis, T. Guillet, C. Brimont, S. David, X. Checoury, and P. Boucaud, “High quality factor AlN nanocavities embedded in a photonic crystal waveguide,” Appl. Phys. Lett. 100, 191104 (2012).
[Crossref]

Sasaki, T.

B. Thubthimthong, T. Sasaki, and K. Hane, “Asymmetrically and vertically coupled hybrid Si/GaN microring resonators for on-chip optical interconnects,” IEEE Photonics J. 7, 7801511 (2015).
[Crossref]

Sauvage, S.

Y. Zeng, I. Roland, X. Checoury, Z. Han, M. El Kurdi, S. Sauvage, B. Gayral, C. Brimont, T. Guillet, M. Mexis, F. Semond, and P. Boucaud, “Resonant second harmonic generation in a gallium nitride two-dimensional photonic crystal on silicon,” Appl. Phys. Lett. 106, 081105 (2015).
[Crossref]

I. Roland, Y. Zeng, Z. Han, X. Checoury, C. Blin, M. El Kurdi, A. Ghrib, S. Sauvage, B. Gayral, C. Brimont, T. Guillet, F. Semond, and P. Boucaud, “Near-infrared gallium nitride two-dimensional photonic crystal platform on silicon,” Appl. Phys. Lett. 105, 011104 (2014).
[Crossref]

Savona, V.

N. Vico Triviño, M. Minkov, G. Urbinati, M. Galli, J.-F. Carlin, R. Butté, V. Savona, and N. Grandjean, “Gallium nitride L3 photonic crystal cavities with an average quality factor of 16900 in the near infrared,” Appl. Phys. Lett. 105, 231119 (2014).
[Crossref]

Schuck, C.

C. Xiong, W. H. P. Pernice, X. Sun, C. Schuck, K. Y. Fong, and H. X. Tang, “Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics,” New J. Phys. 14, 095014 (2012).
[Crossref]

C. Xiong, W. Pernice, K. K. Ryu, C. Schuck, K. Y. Fong, T. Palacios, and H. X. Tang, “Integrated GaN photonic circuits on silicon (100) for second harmonic generation,” Opt. Express 19, 10462–10470 (2011).
[Crossref] [PubMed]

Sellés, J.

J. Sellés, C. Brimont, G. Cassabois, P. Valvin, T. Guillet, I. Roland, Y. Zeng, X. Checoury, P. Boucaud, M. Mexis, F. Semond, and B. Gayral, “Deep-UV nitride-on-silicon microdisk lasers,” Sci. Rep. 6, 21650 (2016).
[Crossref] [PubMed]

Semond, F.

J. Sellés, C. Brimont, G. Cassabois, P. Valvin, T. Guillet, I. Roland, Y. Zeng, X. Checoury, P. Boucaud, M. Mexis, F. Semond, and B. Gayral, “Deep-UV nitride-on-silicon microdisk lasers,” Sci. Rep. 6, 21650 (2016).
[Crossref] [PubMed]

F. Semond, “Epitaxial challenges of GaN on silicon,” MRS Bulletin 40, 412–417 (2015).
[Crossref]

Y. Zeng, I. Roland, X. Checoury, Z. Han, M. El Kurdi, S. Sauvage, B. Gayral, C. Brimont, T. Guillet, M. Mexis, F. Semond, and P. Boucaud, “Resonant second harmonic generation in a gallium nitride two-dimensional photonic crystal on silicon,” Appl. Phys. Lett. 106, 081105 (2015).
[Crossref]

I. Roland, Y. Zeng, Z. Han, X. Checoury, C. Blin, M. El Kurdi, A. Ghrib, S. Sauvage, B. Gayral, C. Brimont, T. Guillet, F. Semond, and P. Boucaud, “Near-infrared gallium nitride two-dimensional photonic crystal platform on silicon,” Appl. Phys. Lett. 105, 011104 (2014).
[Crossref]

D. Sam-Giao, D. Néel, S. Sergent, B. Gayral, M. J. Rashid, F. Semond, J. Y. Duboz, M. Mexis, T. Guillet, C. Brimont, S. David, X. Checoury, and P. Boucaud, “High quality factor AlN nanocavities embedded in a photonic crystal waveguide,” Appl. Phys. Lett. 100, 191104 (2012).
[Crossref]

M. Mexis, S. Sergent, T. Guillet, C. Brimont, T. Bretagnon, B. Gil, F. Semond, M. Leroux, D. Néel, S. David, X. Chécoury, and P. Boucaud, “High quality factor nitride-based optical cavities: microdisks with embedded GaN/Al(Ga)N quantum dots,” Opt. Lett. 36, 2203–2205 (2011).
[Crossref] [PubMed]

Sergent, S.

D. Sam-Giao, D. Néel, S. Sergent, B. Gayral, M. J. Rashid, F. Semond, J. Y. Duboz, M. Mexis, T. Guillet, C. Brimont, S. David, X. Checoury, and P. Boucaud, “High quality factor AlN nanocavities embedded in a photonic crystal waveguide,” Appl. Phys. Lett. 100, 191104 (2012).
[Crossref]

S. Sergent, M. Arita, S. Kako, S. Iwamoto, and Y. Arakawa, “High-Q (≥5000) AlN nanobeam photonic crystal cavity embedding GaN quantum dots,” Appl. Phys. Lett. 100, 121103 (2012).
[Crossref]

M. Mexis, S. Sergent, T. Guillet, C. Brimont, T. Bretagnon, B. Gil, F. Semond, M. Leroux, D. Néel, S. David, X. Chécoury, and P. Boucaud, “High quality factor nitride-based optical cavities: microdisks with embedded GaN/Al(Ga)N quantum dots,” Opt. Lett. 36, 2203–2205 (2011).
[Crossref] [PubMed]

Solomon, G. S.

P. S. Kuo, J. Bravo-Abad, and G. S. Solomon, “Second-harmonic generation using 4bar-quasi-phasematching in a GaAs whispering-gallery-mode microcavity,” Nat. Commun. 5, 3109 (2014).
[Crossref]

Soltani, M.

M. Soltani, “Novel integrated silicon nanophotonic structures using ultra-high Q resonator,” Ph.D. thesis, Georgia Institute of Technology (2009).

Srinivasan, K.

M. Borselli, K. Srinivasan, P. E. Barclay, and O. Painter, “Rayleigh scattering, mode coupling, and optical loss in silicon microdisks,” Appl. Phys. Lett. 85, 3693–3695 (2004).
[Crossref]

Stefanon, I.

Stoll, R.

Sun, X.

C. Xiong, W. H. P. Pernice, X. Sun, C. Schuck, K. Y. Fong, and H. X. Tang, “Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics,” New J. Phys. 14, 095014 (2012).
[Crossref]

Tang, H. X.

A. W. Bruch, C. Xiong, B. Leung, M. Poot, J. Han, and H. X. Tang, “Broadband nanophotonic waveguides and resonators based on epitaxial GaN thin films,” Appl. Phys. Lett. 107, 141113 (2015).
[Crossref]

H. Jung, R. Stoll, X. Guo, D. Fischer, and H. X. Tang, “Green, red, and IR frequency comb line generation from single IR pump in AlN microring resonator,” Optica 1, 396–399 (2014).
[Crossref]

C. Xiong, W. H. P. Pernice, and H. X. Tang, “Low-loss, silicon integrated, aluminum nitride photonic circuits and their use for electro-optic signal processing,” Nano Lett. 12, 3562–3568 (2012).
[Crossref] [PubMed]

C. Xiong, W. H. P. Pernice, X. Sun, C. Schuck, K. Y. Fong, and H. X. Tang, “Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics,” New J. Phys. 14, 095014 (2012).
[Crossref]

C. Xiong, W. Pernice, K. K. Ryu, C. Schuck, K. Y. Fong, T. Palacios, and H. X. Tang, “Integrated GaN photonic circuits on silicon (100) for second harmonic generation,” Opt. Express 19, 10462–10470 (2011).
[Crossref] [PubMed]

Thubthimthong, B.

B. Thubthimthong, T. Sasaki, and K. Hane, “Asymmetrically and vertically coupled hybrid Si/GaN microring resonators for on-chip optical interconnects,” IEEE Photonics J. 7, 7801511 (2015).
[Crossref]

Urbinati, G.

N. Vico Triviño, M. Minkov, G. Urbinati, M. Galli, J.-F. Carlin, R. Butté, V. Savona, and N. Grandjean, “Gallium nitride L3 photonic crystal cavities with an average quality factor of 16900 in the near infrared,” Appl. Phys. Lett. 105, 231119 (2014).
[Crossref]

Valvin, P.

J. Sellés, C. Brimont, G. Cassabois, P. Valvin, T. Guillet, I. Roland, Y. Zeng, X. Checoury, P. Boucaud, M. Mexis, F. Semond, and B. Gayral, “Deep-UV nitride-on-silicon microdisk lasers,” Sci. Rep. 6, 21650 (2016).
[Crossref] [PubMed]

van Hulst, N. F.

Vico Triviño, N.

N. Vico Triviño, R. Butté, J.-F. Carlin, and N. Grandjean, “Continuous wave blue lasing in III-Nitride nanobeam cavity on silicon,” Nano Lett. 15, 1259–1263 (2015).
[Crossref]

N. Vico Triviño, M. Minkov, G. Urbinati, M. Galli, J.-F. Carlin, R. Butté, V. Savona, and N. Grandjean, “Gallium nitride L3 photonic crystal cavities with an average quality factor of 16900 in the near infrared,” Appl. Phys. Lett. 105, 231119 (2014).
[Crossref]

Wang, K.-M.

Xia, Z.

Xiong, C.

A. W. Bruch, C. Xiong, B. Leung, M. Poot, J. Han, and H. X. Tang, “Broadband nanophotonic waveguides and resonators based on epitaxial GaN thin films,” Appl. Phys. Lett. 107, 141113 (2015).
[Crossref]

C. Xiong, W. H. P. Pernice, and H. X. Tang, “Low-loss, silicon integrated, aluminum nitride photonic circuits and their use for electro-optic signal processing,” Nano Lett. 12, 3562–3568 (2012).
[Crossref] [PubMed]

C. Xiong, W. H. P. Pernice, X. Sun, C. Schuck, K. Y. Fong, and H. X. Tang, “Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics,” New J. Phys. 14, 095014 (2012).
[Crossref]

C. Xiong, W. Pernice, K. K. Ryu, C. Schuck, K. Y. Fong, T. Palacios, and H. X. Tang, “Integrated GaN photonic circuits on silicon (100) for second harmonic generation,” Opt. Express 19, 10462–10470 (2011).
[Crossref] [PubMed]

Yariv, A.

A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36, 321–322 (2000).
[Crossref]

Zavada, J.

Zeng, Y.

J. Sellés, C. Brimont, G. Cassabois, P. Valvin, T. Guillet, I. Roland, Y. Zeng, X. Checoury, P. Boucaud, M. Mexis, F. Semond, and B. Gayral, “Deep-UV nitride-on-silicon microdisk lasers,” Sci. Rep. 6, 21650 (2016).
[Crossref] [PubMed]

Y. Zeng, I. Roland, X. Checoury, Z. Han, M. El Kurdi, S. Sauvage, B. Gayral, C. Brimont, T. Guillet, M. Mexis, F. Semond, and P. Boucaud, “Resonant second harmonic generation in a gallium nitride two-dimensional photonic crystal on silicon,” Appl. Phys. Lett. 106, 081105 (2015).
[Crossref]

I. Roland, Y. Zeng, Z. Han, X. Checoury, C. Blin, M. El Kurdi, A. Ghrib, S. Sauvage, B. Gayral, C. Brimont, T. Guillet, F. Semond, and P. Boucaud, “Near-infrared gallium nitride two-dimensional photonic crystal platform on silicon,” Appl. Phys. Lett. 105, 011104 (2014).
[Crossref]

Zhao, W.

Appl. Opt. (1)

Appl. Phys. Lett. (7)

M. Borselli, K. Srinivasan, P. E. Barclay, and O. Painter, “Rayleigh scattering, mode coupling, and optical loss in silicon microdisks,” Appl. Phys. Lett. 85, 3693–3695 (2004).
[Crossref]

D. Sam-Giao, D. Néel, S. Sergent, B. Gayral, M. J. Rashid, F. Semond, J. Y. Duboz, M. Mexis, T. Guillet, C. Brimont, S. David, X. Checoury, and P. Boucaud, “High quality factor AlN nanocavities embedded in a photonic crystal waveguide,” Appl. Phys. Lett. 100, 191104 (2012).
[Crossref]

S. Sergent, M. Arita, S. Kako, S. Iwamoto, and Y. Arakawa, “High-Q (≥5000) AlN nanobeam photonic crystal cavity embedding GaN quantum dots,” Appl. Phys. Lett. 100, 121103 (2012).
[Crossref]

A. W. Bruch, C. Xiong, B. Leung, M. Poot, J. Han, and H. X. Tang, “Broadband nanophotonic waveguides and resonators based on epitaxial GaN thin films,” Appl. Phys. Lett. 107, 141113 (2015).
[Crossref]

I. Roland, Y. Zeng, Z. Han, X. Checoury, C. Blin, M. El Kurdi, A. Ghrib, S. Sauvage, B. Gayral, C. Brimont, T. Guillet, F. Semond, and P. Boucaud, “Near-infrared gallium nitride two-dimensional photonic crystal platform on silicon,” Appl. Phys. Lett. 105, 011104 (2014).
[Crossref]

Y. Zeng, I. Roland, X. Checoury, Z. Han, M. El Kurdi, S. Sauvage, B. Gayral, C. Brimont, T. Guillet, M. Mexis, F. Semond, and P. Boucaud, “Resonant second harmonic generation in a gallium nitride two-dimensional photonic crystal on silicon,” Appl. Phys. Lett. 106, 081105 (2015).
[Crossref]

N. Vico Triviño, M. Minkov, G. Urbinati, M. Galli, J.-F. Carlin, R. Butté, V. Savona, and N. Grandjean, “Gallium nitride L3 photonic crystal cavities with an average quality factor of 16900 in the near infrared,” Appl. Phys. Lett. 105, 231119 (2014).
[Crossref]

Electron. Lett. (1)

A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36, 321–322 (2000).
[Crossref]

IEEE Photonics J. (1)

B. Thubthimthong, T. Sasaki, and K. Hane, “Asymmetrically and vertically coupled hybrid Si/GaN microring resonators for on-chip optical interconnects,” IEEE Photonics J. 7, 7801511 (2015).
[Crossref]

MRS Bulletin (1)

F. Semond, “Epitaxial challenges of GaN on silicon,” MRS Bulletin 40, 412–417 (2015).
[Crossref]

Nano Lett. (2)

C. Xiong, W. H. P. Pernice, and H. X. Tang, “Low-loss, silicon integrated, aluminum nitride photonic circuits and their use for electro-optic signal processing,” Nano Lett. 12, 3562–3568 (2012).
[Crossref] [PubMed]

N. Vico Triviño, R. Butté, J.-F. Carlin, and N. Grandjean, “Continuous wave blue lasing in III-Nitride nanobeam cavity on silicon,” Nano Lett. 15, 1259–1263 (2015).
[Crossref]

Nat. Commun. (1)

P. S. Kuo, J. Bravo-Abad, and G. S. Solomon, “Second-harmonic generation using 4bar-quasi-phasematching in a GaAs whispering-gallery-mode microcavity,” Nat. Commun. 5, 3109 (2014).
[Crossref]

New J. Phys. (1)

C. Xiong, W. H. P. Pernice, X. Sun, C. Schuck, K. Y. Fong, and H. X. Tang, “Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics,” New J. Phys. 14, 095014 (2012).
[Crossref]

Opt. Express (2)

Opt. Lett. (4)

Optica (1)

Sci. Rep. (1)

J. Sellés, C. Brimont, G. Cassabois, P. Valvin, T. Guillet, I. Roland, Y. Zeng, X. Checoury, P. Boucaud, M. Mexis, F. Semond, and B. Gayral, “Deep-UV nitride-on-silicon microdisk lasers,” Sci. Rep. 6, 21650 (2016).
[Crossref] [PubMed]

Other (2)

M. Borselli, “High-Q microresonators as lasing elements for silicon photonics,” Ph.D. thesis, California Institute of Technology (2006).

M. Soltani, “Novel integrated silicon nanophotonic structures using ultra-high Q resonator,” Ph.D. thesis, Georgia Institute of Technology (2009).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Optical microscopy image of a series of microdisks and their coupling waveguides. The color contrast results from the underetching. (b) Scanning electron microscopy image of a 8 μm diameter nitride microdisk and its suspended side-coupling bus waveguides. One can observe the nanotethers that maintain the coupling waveguide. The clearer zones correspond to underetched regions. The pedestal can be observed with a darker contrast at the disk center. (c) Zoom image of the microdisk sidewall
Fig. 2
Fig. 2 (a) Transmission spectrum of a 8 μm diameter microdisk with a gap distance between microdisk and waveguide of 550 nm. (b) Transmission spectrum of a 15 μm diameter microdisk. Gap distance 350 nm. (c) Zoom around the resonances (1 - normalized transmission) at 1583.9 nm for a gap distance of 1050 nm (different from Fig.(a)) for the 8 μm diameter microdisk. The Lorentzian fits gives a loaded quality factor up to 80000. (d) Zoom around the resonances at 1592 nm for a gap distance of 850 nm (different from Fig.(b)) for the 15 μm diameter microdisk. The Lorentzian fit gives a loaded quality factor up to 70000.
Fig. 3
Fig. 3 (a) Dependence of the quality factor for the resonance at 1592 nm for the 15 μm diameter microdisk as a function of the gap distance between waveguide and microdisk. (b) Variation of the peak amplitude (1 - normalized transmission) as a function of the gap distance. The inset shows the value of Qc in log scale as deduced from formula 1. One obtains an exponential dependence of Qc vs. gap distance, as expected and illustrated by the full line.
Fig. 4
Fig. 4 (a) Transmission for a 15 μm diameter microdisk with a gap distance of 450 nm. (b) optical microscopy image measured with the same set-up as the one used for the collection of second harmonic generation. (c) Profile of the second harmonic radiated pattern for the mode at 1586 nm with a low quality factor. The laser power is 13 dB. (d) Profile of the second harmonic radiated pattern for the mode at 1592 nm with a high quality factor. These modes are those that provide the highest quality factors. (e) Near-field Hz profile of the second-order radial mode TE(2,43). (f) Near-field Hz profile of the first-order radial mode TE(1,48). The dashed lines are guide to the eyes to highlight the disk periphery and the average radial positions of the lobes. (g) and (h) Superimposed images of the near-field and second harmonic patterns

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

T = | 1 1 Q c ( 4 j ( ω ω 0 ) ω 0 + 1 Q + 1 Q ) ( j [ 2 ( ω ω 0 ) ω 0 1 Q split ] + 1 Q + ) ( j [ 2 ( ω ω 0 ) ω 0 + 1 Q split ] + 1 Q ) | 2

Metrics