Abstract

We measured the optical properties of drying wood with the moisture contents ranging from 10% to 200%. By using time-resolved near-infrared spectroscopy, the reduced scattering coefficient μs′ and absorption coefficient μa were determined independent of each other, providing information on the chemical and structural changes, respectively, of wood on the nanometer scale. Scattering from dry pores dominated, which allowed us to determine the drying process of large pores during the period of constant drying rate, and the drying process of smaller pores during the period of decreasing drying rate. The surface layer and interior of the wood exhibit different moisture states, which affect the scattering properties of the wood.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Determination of true optical absorption and scattering coefficient of wooden cell wall substance by time-of-flight near infrared spectroscopy

Ryunosuke Kitamura, Tetsuya Inagaki, and Satoru Tsuchikawa
Opt. Express 24(4) 3999-4009 (2016)

Light propagation in dry and wet softwood

Alwin Kienle, Cosimo D’Andrea, Florian Foschum, Paola Taroni, and Antonio Pifferi
Opt. Express 16(13) 9895-9906 (2008)

Spectroscopic studies of wood-drying processes

Mats Andersson, Linda Persson, Mikael Sjöholm, and Sune Svanberg
Opt. Express 14(8) 3641-3653 (2006)

References

  • View by:
  • |
  • |
  • |

  1. G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. Berlin 330(3), 377–445 (1908).
    [Crossref]
  2. W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26(12), 2166–2185 (1990).
    [Crossref]
  3. H. J. W. Srutt, “On the scattering of light by small particles,” L. Phil. Mag. 41(275), 447 (1871).
  4. D. W. Mackowski and M. I. Mishchenko, “Calculation of the T matrix and the scattering matrix for ensembles of spheres,” J. Opt. Soc. Am. A 13(11), 2266–2278 (1996).
    [Crossref]
  5. P. C. Waterman, “Matrix formulation of electromagnetic scattering,” Proc. IEEE 53(8), 805–812 (1965).
    [Crossref]
  6. J. R. Mourant, T. M. Johnson, S. Carpenter, A. Guerra, T. Aida, and J. P. Freyer, “Polarized angular dependent spectroscopy of epithelial cells and epithelial cell nuclei to determine the size scale of scattering structures,” J. Biomed. Opt. 7(3), 378–387 (2002).
    [Crossref] [PubMed]
  7. R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. Macaulay, M. Follen, and R. Richards-Kortum, “Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture,” J. Biomed. Opt. 8(1), 7–16 (2003).
    [Crossref] [PubMed]
  8. M. Itoh, M. Yamanari, Y. Yasuno, and T. Yatagai, “Polarization characteristics of multiple backscattering in human blood cell suspensions,” Opt. Quantum Electron. 37(13–15), 1277–1285 (2005).
    [Crossref]
  9. A. Hielscher, A. Eick, J. Mourant, D. Shen, J. Freyer, and I. Bigio, “Diffuse backscattering Mueller matricesof highly scattering media,” Opt. Express 1(13), 441–453 (1997).
    [Crossref] [PubMed]
  10. H. Mohr and P. Schopfer, The Leaf as a Photosynthetic System,” in Plant Physiology, H. Mohr and P. Schopfer eds. (Springer, 1995), pp. 225–244.
  11. R. H. Bohning and C. A. Burnside, “The effect of light intensity on rate of apparent photosynthesis in leaves of sun and shade plants,” Am. J. Bot. 43(8), 557–561 (1956).
    [Crossref]
  12. M. Andersson, L. Persson, M. Sjöholm, and S. Svanberg, “Spectroscopic studies of wood-drying processes,” Opt. Express 14(8), 3641–3653 (2006).
    [Crossref] [PubMed]
  13. C. D’Andrea, A. Nevin, A. Farina, A. Bassi, and R. Cubeddu, “Assessment of variations in moisture content of wood using time-resolved diffuse optical spectroscopy,” Appl. Opt. 48(4), B87–B93 (2009).
    [Crossref] [PubMed]
  14. I. Bargigia, A. Nevin, A. Farina, A. Pifferi, C. D’Andrea, M. Karlsson, P. Lundin, G. Somesfalean, and S. Svanberg, “Diffuse optical techniques applied to wood characterization,” J. Near Infrared Spectrosc. 21(4), 256–268 (2013).
  15. A. Kienle, C. D’Andrea, F. Foschum, P. Taroni, and A. Pifferi, “Light propagation in dry and wet softwood,” Opt. Express 16(13), 9895–9906 (2008).
    [Crossref] [PubMed]
  16. C. D’Andrea, A. Farina, D. Comelli, A. Pifferi, P. Taroni, G. Valentini, R. Cubeddu, L. Zoia, M. Orlandi, and A. Kienle, “Time-resolved optical spectroscopy of wood,” Appl. Spectrosc. 62(5), 569–574 (2008).
    [Crossref] [PubMed]
  17. T. Fujimoto, Y. Kurata, K. Matsumoto, and S. Tsuchikawa, “Application of near infrared spectroscopy for estimating wood mechanical properties of small clear and full length lumber specimens,” J. Near Infrared Spectrosc. 16(1), 529–537 (2008).
    [Crossref]
  18. H. N. Rosen, “Recent Advances in the Drying Solid Wood,” in Advances in Drying, A. S. Mujumdar, ed. (CRC Press, 1983), pp. 99–146.
  19. M. S. Patterson, B. Chance, and B. C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties,” Appl. Opt. 28(12), 2331–2336 (1989).
    [Crossref] [PubMed]
  20. G. M. Hale and M. R. Querry, “Optical constants of water in the 200-nm to 200-μm wavelength region,” Appl. Opt. 12(3), 555–563 (1973).
    [Crossref] [PubMed]
  21. K. Furutsu and Y. Yamada, “Diffusion approximation for a dissipative random medium and the applications,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 50(5), 3634–3640 (1994).
    [Crossref] [PubMed]
  22. C. Skaar, “Wood Moisture and the Environment,” in Water in Wood, T. E. Timell, ed. (Syracuse University, 1972), pp. 27–72.
  23. J. F. Siau, “Capillary and Water Potential,” in Transport Processes in Wood, T. E. Timell, ed. (Springer-Verlag, 1984), pp. 105–131.
  24. C. Skaar, “Wood Moisture and the Environment,” in Wood-Water Relations, T. E. Timell, ed. (Springer-Verlag, 1988), pp. 1–45.
  25. S. P. Simonaho, Y. Tolonen, J. Rouvinen, and R. Silvennoinen, “Laser light scattering from wood samples soaked in water or in benzyl benzoate,” Optik (Stuttg.) 114(10), 445–448 (2003).
    [Crossref]

2013 (1)

I. Bargigia, A. Nevin, A. Farina, A. Pifferi, C. D’Andrea, M. Karlsson, P. Lundin, G. Somesfalean, and S. Svanberg, “Diffuse optical techniques applied to wood characterization,” J. Near Infrared Spectrosc. 21(4), 256–268 (2013).

2009 (1)

2008 (3)

2006 (1)

2005 (1)

M. Itoh, M. Yamanari, Y. Yasuno, and T. Yatagai, “Polarization characteristics of multiple backscattering in human blood cell suspensions,” Opt. Quantum Electron. 37(13–15), 1277–1285 (2005).
[Crossref]

2003 (2)

R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. Macaulay, M. Follen, and R. Richards-Kortum, “Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture,” J. Biomed. Opt. 8(1), 7–16 (2003).
[Crossref] [PubMed]

S. P. Simonaho, Y. Tolonen, J. Rouvinen, and R. Silvennoinen, “Laser light scattering from wood samples soaked in water or in benzyl benzoate,” Optik (Stuttg.) 114(10), 445–448 (2003).
[Crossref]

2002 (1)

J. R. Mourant, T. M. Johnson, S. Carpenter, A. Guerra, T. Aida, and J. P. Freyer, “Polarized angular dependent spectroscopy of epithelial cells and epithelial cell nuclei to determine the size scale of scattering structures,” J. Biomed. Opt. 7(3), 378–387 (2002).
[Crossref] [PubMed]

1997 (1)

1996 (1)

1994 (1)

K. Furutsu and Y. Yamada, “Diffusion approximation for a dissipative random medium and the applications,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 50(5), 3634–3640 (1994).
[Crossref] [PubMed]

1990 (1)

W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26(12), 2166–2185 (1990).
[Crossref]

1989 (1)

1973 (1)

1965 (1)

P. C. Waterman, “Matrix formulation of electromagnetic scattering,” Proc. IEEE 53(8), 805–812 (1965).
[Crossref]

1956 (1)

R. H. Bohning and C. A. Burnside, “The effect of light intensity on rate of apparent photosynthesis in leaves of sun and shade plants,” Am. J. Bot. 43(8), 557–561 (1956).
[Crossref]

1908 (1)

G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. Berlin 330(3), 377–445 (1908).
[Crossref]

1871 (1)

H. J. W. Srutt, “On the scattering of light by small particles,” L. Phil. Mag. 41(275), 447 (1871).

Aida, T.

J. R. Mourant, T. M. Johnson, S. Carpenter, A. Guerra, T. Aida, and J. P. Freyer, “Polarized angular dependent spectroscopy of epithelial cells and epithelial cell nuclei to determine the size scale of scattering structures,” J. Biomed. Opt. 7(3), 378–387 (2002).
[Crossref] [PubMed]

Andersson, M.

Bargigia, I.

I. Bargigia, A. Nevin, A. Farina, A. Pifferi, C. D’Andrea, M. Karlsson, P. Lundin, G. Somesfalean, and S. Svanberg, “Diffuse optical techniques applied to wood characterization,” J. Near Infrared Spectrosc. 21(4), 256–268 (2013).

Bassi, A.

Bigio, I.

Bohning, R. H.

R. H. Bohning and C. A. Burnside, “The effect of light intensity on rate of apparent photosynthesis in leaves of sun and shade plants,” Am. J. Bot. 43(8), 557–561 (1956).
[Crossref]

Boiko, I.

R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. Macaulay, M. Follen, and R. Richards-Kortum, “Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture,” J. Biomed. Opt. 8(1), 7–16 (2003).
[Crossref] [PubMed]

Burnside, C. A.

R. H. Bohning and C. A. Burnside, “The effect of light intensity on rate of apparent photosynthesis in leaves of sun and shade plants,” Am. J. Bot. 43(8), 557–561 (1956).
[Crossref]

Carpenter, S.

J. R. Mourant, T. M. Johnson, S. Carpenter, A. Guerra, T. Aida, and J. P. Freyer, “Polarized angular dependent spectroscopy of epithelial cells and epithelial cell nuclei to determine the size scale of scattering structures,” J. Biomed. Opt. 7(3), 378–387 (2002).
[Crossref] [PubMed]

Chance, B.

Cheong, W. F.

W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26(12), 2166–2185 (1990).
[Crossref]

Collier, T.

R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. Macaulay, M. Follen, and R. Richards-Kortum, “Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture,” J. Biomed. Opt. 8(1), 7–16 (2003).
[Crossref] [PubMed]

Comelli, D.

Cubeddu, R.

D’Andrea, C.

Drezek, R.

R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. Macaulay, M. Follen, and R. Richards-Kortum, “Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture,” J. Biomed. Opt. 8(1), 7–16 (2003).
[Crossref] [PubMed]

Eick, A.

Farina, A.

Follen, M.

R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. Macaulay, M. Follen, and R. Richards-Kortum, “Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture,” J. Biomed. Opt. 8(1), 7–16 (2003).
[Crossref] [PubMed]

Foschum, F.

Freyer, J.

Freyer, J. P.

J. R. Mourant, T. M. Johnson, S. Carpenter, A. Guerra, T. Aida, and J. P. Freyer, “Polarized angular dependent spectroscopy of epithelial cells and epithelial cell nuclei to determine the size scale of scattering structures,” J. Biomed. Opt. 7(3), 378–387 (2002).
[Crossref] [PubMed]

Fujimoto, T.

T. Fujimoto, Y. Kurata, K. Matsumoto, and S. Tsuchikawa, “Application of near infrared spectroscopy for estimating wood mechanical properties of small clear and full length lumber specimens,” J. Near Infrared Spectrosc. 16(1), 529–537 (2008).
[Crossref]

Furutsu, K.

K. Furutsu and Y. Yamada, “Diffusion approximation for a dissipative random medium and the applications,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 50(5), 3634–3640 (1994).
[Crossref] [PubMed]

Guerra, A.

J. R. Mourant, T. M. Johnson, S. Carpenter, A. Guerra, T. Aida, and J. P. Freyer, “Polarized angular dependent spectroscopy of epithelial cells and epithelial cell nuclei to determine the size scale of scattering structures,” J. Biomed. Opt. 7(3), 378–387 (2002).
[Crossref] [PubMed]

Guillaud, M.

R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. Macaulay, M. Follen, and R. Richards-Kortum, “Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture,” J. Biomed. Opt. 8(1), 7–16 (2003).
[Crossref] [PubMed]

Hale, G. M.

Hielscher, A.

Itoh, M.

M. Itoh, M. Yamanari, Y. Yasuno, and T. Yatagai, “Polarization characteristics of multiple backscattering in human blood cell suspensions,” Opt. Quantum Electron. 37(13–15), 1277–1285 (2005).
[Crossref]

Johnson, T. M.

J. R. Mourant, T. M. Johnson, S. Carpenter, A. Guerra, T. Aida, and J. P. Freyer, “Polarized angular dependent spectroscopy of epithelial cells and epithelial cell nuclei to determine the size scale of scattering structures,” J. Biomed. Opt. 7(3), 378–387 (2002).
[Crossref] [PubMed]

Karlsson, M.

I. Bargigia, A. Nevin, A. Farina, A. Pifferi, C. D’Andrea, M. Karlsson, P. Lundin, G. Somesfalean, and S. Svanberg, “Diffuse optical techniques applied to wood characterization,” J. Near Infrared Spectrosc. 21(4), 256–268 (2013).

Kienle, A.

Kurata, Y.

T. Fujimoto, Y. Kurata, K. Matsumoto, and S. Tsuchikawa, “Application of near infrared spectroscopy for estimating wood mechanical properties of small clear and full length lumber specimens,” J. Near Infrared Spectrosc. 16(1), 529–537 (2008).
[Crossref]

Lundin, P.

I. Bargigia, A. Nevin, A. Farina, A. Pifferi, C. D’Andrea, M. Karlsson, P. Lundin, G. Somesfalean, and S. Svanberg, “Diffuse optical techniques applied to wood characterization,” J. Near Infrared Spectrosc. 21(4), 256–268 (2013).

Macaulay, C.

R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. Macaulay, M. Follen, and R. Richards-Kortum, “Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture,” J. Biomed. Opt. 8(1), 7–16 (2003).
[Crossref] [PubMed]

Mackowski, D. W.

Malpica, A.

R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. Macaulay, M. Follen, and R. Richards-Kortum, “Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture,” J. Biomed. Opt. 8(1), 7–16 (2003).
[Crossref] [PubMed]

Matsumoto, K.

T. Fujimoto, Y. Kurata, K. Matsumoto, and S. Tsuchikawa, “Application of near infrared spectroscopy for estimating wood mechanical properties of small clear and full length lumber specimens,” J. Near Infrared Spectrosc. 16(1), 529–537 (2008).
[Crossref]

Mie, G.

G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. Berlin 330(3), 377–445 (1908).
[Crossref]

Mishchenko, M. I.

Mourant, J.

Mourant, J. R.

J. R. Mourant, T. M. Johnson, S. Carpenter, A. Guerra, T. Aida, and J. P. Freyer, “Polarized angular dependent spectroscopy of epithelial cells and epithelial cell nuclei to determine the size scale of scattering structures,” J. Biomed. Opt. 7(3), 378–387 (2002).
[Crossref] [PubMed]

Nevin, A.

I. Bargigia, A. Nevin, A. Farina, A. Pifferi, C. D’Andrea, M. Karlsson, P. Lundin, G. Somesfalean, and S. Svanberg, “Diffuse optical techniques applied to wood characterization,” J. Near Infrared Spectrosc. 21(4), 256–268 (2013).

C. D’Andrea, A. Nevin, A. Farina, A. Bassi, and R. Cubeddu, “Assessment of variations in moisture content of wood using time-resolved diffuse optical spectroscopy,” Appl. Opt. 48(4), B87–B93 (2009).
[Crossref] [PubMed]

Orlandi, M.

Patterson, M. S.

Persson, L.

Pifferi, A.

Prahl, S. A.

W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26(12), 2166–2185 (1990).
[Crossref]

Querry, M. R.

Richards-Kortum, R.

R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. Macaulay, M. Follen, and R. Richards-Kortum, “Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture,” J. Biomed. Opt. 8(1), 7–16 (2003).
[Crossref] [PubMed]

Rouvinen, J.

S. P. Simonaho, Y. Tolonen, J. Rouvinen, and R. Silvennoinen, “Laser light scattering from wood samples soaked in water or in benzyl benzoate,” Optik (Stuttg.) 114(10), 445–448 (2003).
[Crossref]

Shen, D.

Silvennoinen, R.

S. P. Simonaho, Y. Tolonen, J. Rouvinen, and R. Silvennoinen, “Laser light scattering from wood samples soaked in water or in benzyl benzoate,” Optik (Stuttg.) 114(10), 445–448 (2003).
[Crossref]

Simonaho, S. P.

S. P. Simonaho, Y. Tolonen, J. Rouvinen, and R. Silvennoinen, “Laser light scattering from wood samples soaked in water or in benzyl benzoate,” Optik (Stuttg.) 114(10), 445–448 (2003).
[Crossref]

Sjöholm, M.

Somesfalean, G.

I. Bargigia, A. Nevin, A. Farina, A. Pifferi, C. D’Andrea, M. Karlsson, P. Lundin, G. Somesfalean, and S. Svanberg, “Diffuse optical techniques applied to wood characterization,” J. Near Infrared Spectrosc. 21(4), 256–268 (2013).

Srutt, H. J. W.

H. J. W. Srutt, “On the scattering of light by small particles,” L. Phil. Mag. 41(275), 447 (1871).

Svanberg, S.

I. Bargigia, A. Nevin, A. Farina, A. Pifferi, C. D’Andrea, M. Karlsson, P. Lundin, G. Somesfalean, and S. Svanberg, “Diffuse optical techniques applied to wood characterization,” J. Near Infrared Spectrosc. 21(4), 256–268 (2013).

M. Andersson, L. Persson, M. Sjöholm, and S. Svanberg, “Spectroscopic studies of wood-drying processes,” Opt. Express 14(8), 3641–3653 (2006).
[Crossref] [PubMed]

Taroni, P.

Tolonen, Y.

S. P. Simonaho, Y. Tolonen, J. Rouvinen, and R. Silvennoinen, “Laser light scattering from wood samples soaked in water or in benzyl benzoate,” Optik (Stuttg.) 114(10), 445–448 (2003).
[Crossref]

Tsuchikawa, S.

T. Fujimoto, Y. Kurata, K. Matsumoto, and S. Tsuchikawa, “Application of near infrared spectroscopy for estimating wood mechanical properties of small clear and full length lumber specimens,” J. Near Infrared Spectrosc. 16(1), 529–537 (2008).
[Crossref]

Valentini, G.

Waterman, P. C.

P. C. Waterman, “Matrix formulation of electromagnetic scattering,” Proc. IEEE 53(8), 805–812 (1965).
[Crossref]

Welch, A. J.

W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26(12), 2166–2185 (1990).
[Crossref]

Wilson, B. C.

Yamada, Y.

K. Furutsu and Y. Yamada, “Diffusion approximation for a dissipative random medium and the applications,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 50(5), 3634–3640 (1994).
[Crossref] [PubMed]

Yamanari, M.

M. Itoh, M. Yamanari, Y. Yasuno, and T. Yatagai, “Polarization characteristics of multiple backscattering in human blood cell suspensions,” Opt. Quantum Electron. 37(13–15), 1277–1285 (2005).
[Crossref]

Yasuno, Y.

M. Itoh, M. Yamanari, Y. Yasuno, and T. Yatagai, “Polarization characteristics of multiple backscattering in human blood cell suspensions,” Opt. Quantum Electron. 37(13–15), 1277–1285 (2005).
[Crossref]

Yatagai, T.

M. Itoh, M. Yamanari, Y. Yasuno, and T. Yatagai, “Polarization characteristics of multiple backscattering in human blood cell suspensions,” Opt. Quantum Electron. 37(13–15), 1277–1285 (2005).
[Crossref]

Zoia, L.

Am. J. Bot. (1)

R. H. Bohning and C. A. Burnside, “The effect of light intensity on rate of apparent photosynthesis in leaves of sun and shade plants,” Am. J. Bot. 43(8), 557–561 (1956).
[Crossref]

Ann. Phys. Berlin (1)

G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. Berlin 330(3), 377–445 (1908).
[Crossref]

Appl. Opt. (3)

Appl. Spectrosc. (1)

IEEE J. Quantum Electron. (1)

W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26(12), 2166–2185 (1990).
[Crossref]

J. Biomed. Opt. (2)

J. R. Mourant, T. M. Johnson, S. Carpenter, A. Guerra, T. Aida, and J. P. Freyer, “Polarized angular dependent spectroscopy of epithelial cells and epithelial cell nuclei to determine the size scale of scattering structures,” J. Biomed. Opt. 7(3), 378–387 (2002).
[Crossref] [PubMed]

R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. Macaulay, M. Follen, and R. Richards-Kortum, “Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture,” J. Biomed. Opt. 8(1), 7–16 (2003).
[Crossref] [PubMed]

J. Near Infrared Spectrosc. (2)

I. Bargigia, A. Nevin, A. Farina, A. Pifferi, C. D’Andrea, M. Karlsson, P. Lundin, G. Somesfalean, and S. Svanberg, “Diffuse optical techniques applied to wood characterization,” J. Near Infrared Spectrosc. 21(4), 256–268 (2013).

T. Fujimoto, Y. Kurata, K. Matsumoto, and S. Tsuchikawa, “Application of near infrared spectroscopy for estimating wood mechanical properties of small clear and full length lumber specimens,” J. Near Infrared Spectrosc. 16(1), 529–537 (2008).
[Crossref]

J. Opt. Soc. Am. A (1)

L. Phil. Mag. (1)

H. J. W. Srutt, “On the scattering of light by small particles,” L. Phil. Mag. 41(275), 447 (1871).

Opt. Express (3)

Opt. Quantum Electron. (1)

M. Itoh, M. Yamanari, Y. Yasuno, and T. Yatagai, “Polarization characteristics of multiple backscattering in human blood cell suspensions,” Opt. Quantum Electron. 37(13–15), 1277–1285 (2005).
[Crossref]

Optik (Stuttg.) (1)

S. P. Simonaho, Y. Tolonen, J. Rouvinen, and R. Silvennoinen, “Laser light scattering from wood samples soaked in water or in benzyl benzoate,” Optik (Stuttg.) 114(10), 445–448 (2003).
[Crossref]

Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics (1)

K. Furutsu and Y. Yamada, “Diffusion approximation for a dissipative random medium and the applications,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 50(5), 3634–3640 (1994).
[Crossref] [PubMed]

Proc. IEEE (1)

P. C. Waterman, “Matrix formulation of electromagnetic scattering,” Proc. IEEE 53(8), 805–812 (1965).
[Crossref]

Other (5)

H. Mohr and P. Schopfer, The Leaf as a Photosynthetic System,” in Plant Physiology, H. Mohr and P. Schopfer eds. (Springer, 1995), pp. 225–244.

C. Skaar, “Wood Moisture and the Environment,” in Water in Wood, T. E. Timell, ed. (Syracuse University, 1972), pp. 27–72.

J. F. Siau, “Capillary and Water Potential,” in Transport Processes in Wood, T. E. Timell, ed. (Springer-Verlag, 1984), pp. 105–131.

C. Skaar, “Wood Moisture and the Environment,” in Wood-Water Relations, T. E. Timell, ed. (Springer-Verlag, 1988), pp. 1–45.

H. N. Rosen, “Recent Advances in the Drying Solid Wood,” in Advances in Drying, A. S. Mujumdar, ed. (CRC Press, 1983), pp. 99–146.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Microscope photograph of tracheid (cross section) of Douglas fir (P. meziesii) of softwood.
Fig. 2
Fig. 2 Schematic diagram of measuring system. The streak camera (10.8 ps time interval) recourd 70 ps NIR pulses after their transmission through a wood sample.
Fig. 3
Fig. 3 Measured time-of-flight for 70 ps, 846 nm pulses transmitted through wood samples with moisture contents of about 12% (air dried), 30% (fiber-saturation point), and 120% (water saturated). The dots show the normalized number of photons arriving after transmission through the wood sample, and the solid lines are fit by using the diffusion model (see text). The sample thickness d is marked in each panel.
Fig. 4
Fig. 4 Reduced scattering coefficient μs as a function of moisture content for wood. Low moisture content indicates dry wood. The sample thickness d is marked in each panel.
Fig. 5
Fig. 5 Transport mean free path l* as a function of moisture content in wood. The sample thickness d is marked in each panel.
Fig. 6
Fig. 6 Drying rate ratio (blue open squares, right axis) and reduced scattering coefficient μs (solid circles, left axis) as a function of moisture content in wood. The sample thickness d is marked in each panel. Four drying stages are identified based on the slope of the drying-rate ratio: constant-rate period (stage A), the initial part of the first decreasing-rate period (stage B), the later part (stage C), and the second decreasing-rate period (stage D).
Fig. 7
Fig. 7 Surface temperature (open squares, right axis) and (a) drying rate ratio (solid squares, left axis) and (b) reduced scattering coefficient μs (solid circles, left axis), all as a function of moisture content in wood.
Fig. 8
Fig. 8 Optical absorption coefficient μa as a function of moisture content during wood drying. The sample thickness d is marked in each panel.
Fig. 9
Fig. 9 Angle distributions of scattered intensity for wet (full lines) and dry (broken lines) wood. The scattering patterns from the cell-wall structure (red lines) and from small particles in the cell wall (blue lines) are calculated based on the Henyey–Greenstein function using the values given by Kienle et al. and by Mie theory, respectively.
Fig. 10
Fig. 10 Schematic diagram of optical scattering on the scale (a) of tracheids and (b) of wood tissue for (1) water-saturated conditions and of (2) low moisture content.

Tables (1)

Tables Icon

Table 1 Characteristic of reduced scattering coefficient μs' and the scattering characteristic of pores in wood for each drying stage. The radical change should be related to the moisture condition and to the wood microstructure, and these characteristics are presented in the same row with the corresponding drying stage.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

T( d,t )= ( 4πDc ) 1/2 t 3/2 exp( μ a ct )×( ( d z 0 )exp( ( d z 0 ) 2 4Dct )( d+ z 0 )exp( ( d+ z 0 ) 2 4Dct ) +( 3d z 0 )exp( ( 3d z 0 ) 2 4Dct )( 3d+ z 0 )exp( ( 3d+ z 0 ) 2 4Dct ) ), D= [ 3( μ a + μ s ) ] 1 ... f water = ρ 0 ( u/1.50 ) 1.00 ... f air + f cw + f water =1
n wood = n cw f cw + n water f water + n air f air , f cw = ρ 0 1.50 ... f water = ρ 0 ( u/1.50 ) 1.00 ... f air + f cw + f water =1

Metrics