Abstract

A cost reduced method of producing injection molding tools is reported and demonstrated for the fabrication of optical microlens arrays. A standard computer-numerical-control (CNC) milling machine was used to make a rough mold in steel. Surface treatment of the steel mold by spray coating with photoresist is used to smooth the mold surface providing good optical quality. The tool and process are demonstrated for the fabrication of an ø50 mm beam homogenizer for a color mixing LED light engine. The acceptance angle of the microlens array is optimized, in order to maximize the optical efficiency from the light engine. Polymer injection molded microlens arrays were produced from both the rough and coated molds and have been characterized for lenslet parameters, surface quality, light scattering, and acceptance angle. The surface roughness (Ra) is improved approximately by a factor of two after the coating process and the light scattering is reduced so that the molded microlens array can be used for the color mixing application. The measured accepted angle of the microlens array is 40° which is in agreement with simulations.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Replication of a glass microlens array using a vitreous carbon mold

Young Kyu Kim, Jong Hyun Ju, and Seok-Min Kim
Opt. Express 26(12) 14936-14944 (2018)

Effects of interface thermal resistance on surface morphology evolution in precision glass molding for microlens array

Jiaqing Xie, Tianfeng Zhou, Benshuai Ruan, Yifei Du, and Xibin Wang
Appl. Opt. 56(23) 6622-6630 (2017)

Design and fabrication of a microlens array by use of a slow tool servo

A. Y. Yi and L. Li
Opt. Lett. 30(13) 1707-1709 (2005)

References

  • View by:
  • |
  • |
  • |

  1. T. J. Suleski and R. D. Te Kolste, “Fabrication trends for free-space microoptics,” J. Lightwave Technol. 23(2), 633–646 (2005).
    [Crossref]
  2. S. Möller and S. R. Forrest, “Improved light out-coupling in organic light emitting diodes employing ordered microlens arrays,” J. Appl. Phys. 91(5), 3324–3327 (2002).
    [Crossref]
  3. S. Park, Y. Jeong, J. Kim, K. Choi, H. C. Kim, D. S. Chung, and K. Chun, “Fabricaton of poly(dimethylsiloxane) microlens for laser-induced fluorescence detection,” Jpn. J. Appl. Phys. 45(6B), 5614–5617 (2006).
    [Crossref]
  4. E. Roy, B. Voisin, J. F. Gravel, R. Peytavi, D. Boudreau, and T. Veres, “Microlens array fabrication by enhanced thermal reflow process: towards efficient collection of fluorescence light from microarrays,” Microelectron. Eng. 86(11), 2255–2261 (2009).
    [Crossref]
  5. P. Schreiber, S. Kudaev, P. Dannberg, and U. D. Zeitner, “Homogeneous LED-illumination using microlens arrays,” Proc. SPIE 5942, 59420K (2005).
    [Crossref]
  6. H. C. Pedersen, T. Brockmann, and C. Dam-Hansen, “Light engine for an illumination device,” EP2843301, International Bureau of the World Intellectual Property Organization (WIPO) (2015).
  7. M. Chakrabarti, A. Thorseth, J. Jepsen, D. D. Corell, and C. Dam-Hansen, “Color control for tunable white LED lighting system,” Opt. Eng.in press.
  8. M. Chakrabarti, H. C. Pedersen, P. B. Poulsen, and C. Dam-Hansen, “C., “Focusable, color tunable white and efficient LED stage lighting,” Opt. Eng.in press.
  9. D. Daly, R. F. Stevens, M. C. Hutley, and N. Davies, “The manufacture of microlenses by melting photoresist,” Meas. Sci. Technol. 1(8), 759–766 (1990).
    [Crossref]
  10. K. Naessens, H. Ottevaere, R. Baets, P. Van Daele, and H. Thienpont, “Direct writing of microlenses in polycarbonate with excimer laser ablation,” Appl. Opt. 42(31), 6349–6359 (2003).
    [Crossref] [PubMed]
  11. J. Yong, F. Chen, Q. Yang, G. Du, H. Bian, D. Zhang, J. Si, F. Yun, and X. Hou, “Rapid fabrication of large-area concave microlens arrays on PDMS by a femtosecond laser,” ACS Appl. Mater. Interfaces 5(19), 9382–9385 (2013).
    [Crossref] [PubMed]
  12. P. Zhang, G. Londe, J. Sung, E. Johnson, M. Lee, and H. J. Cho, “Microlens fabrication using an etched glass master,” Microsyst. Technol. 13(3–4), 339–342 (2007).
  13. J. Rogers, A. Kärkkäinen, T. Tkaczyk, J. Rantala, and M. Descour, “Realization of refractive microoptics through grayscale lithographic patterning of photosensitive hybrid glass,” Opt. Express 12(7), 1294–1303 (2004).
    [Crossref] [PubMed]
  14. K. Totsu, K. Fujishiro, S. Tanaka, and M. Esashi, “Fabrication of three-dimensional microstructure using maskless gray-scale lithography,” Sens. Actuators A Phys. 130–131, 387–392 (2006).
    [Crossref]
  15. B. K. Lee, D. S. Kim, and T. H. Kwon, “Replication of microlens arrays by injection molding,” Microsyst. Technol. 10(6–7), 531–535 (2004).
    [Crossref]
  16. V. N. Goral, Y.-C. Hsieh, O. N. Petzold, R. A. Faris, and P. K. Yuen, “Hot embossing of plastic microfluidic devices using poly(dimethylsiloxane) molds,” J. Micromech. Microeng. 21(1), 017002 (2011).
    [Crossref]
  17. R. K. Jena, C. Y. Yue, Y. C. Lam, P. S. Tang, and A. Gupta, “Comparison of different molds (epoxy, polymer and silicon) for microfabrication by hot embossing technique,” Sens. Actuators B Chem. 163(1), 233–241 (2012).
    [Crossref]
  18. Y. Liu, P. Zhang, Y. Deng, P. Hao, J. Fan, M. Chi, and Y. Wu, “Polymeric microlens array fabricated with PDMS mold-based hot embossing,” J. Micromechanics Microengineering 24, 095028 (2014).
  19. S. Kim and S. Kang, “Replication qualities and optical properties of UV-moulded microlens arrays,” J. Phys. D Appl. Phys. 36(20), 2451–2456 (2003).
    [Crossref]
  20. Y. Zhao, C. C. Wang, W. M. Huang, H. Purnawali, and L. An, “Formation of micro protrusive lens arrays atop poly(methyl methacrylate),” Opt. Express 19(27), 26000–26005 (2011).
    [Crossref] [PubMed]
  21. Y. Zhao, W. M. Huang, and C. C. Wang, “Thermo/chemo-responsive shape memory effect for micro/nano patterning atop polymers,” Nanosci. Nanotechnol. Lett. 4(9), 862–878 (2012).
    [Crossref]
  22. L. Sun, W. M. Huang, Z. Ding, Y. Zhao, C. C. Wang, H. Purnawali, and C. Tang, “Stimulus-responsive shape memory materials,” Mater. Des. 33(2012), 578–640 (2011).
  23. A. Y. Yi and L. Li, “Design and fabrication of a microlens array by use of a slow tool servo,” Opt. Lett. 30(13), 1707–1709 (2005).
    [Crossref] [PubMed]
  24. B. McCall and T. S. Tkaczyk, “Fabrication of plastic microlens array for array microscopy by three-dimensional diamond micromilling,” Opt. Eng. 49(10), 103401 (2010).
    [Crossref] [PubMed]
  25. H. M. Leung, G. Zhou, H. Yu, F. S. Chau, and A. S. Kumar, “Diamond turning and soft lithography processes for liquid tunable lenses,” J. Micromech. Microeng. 20(2), 025021 (2010).
    [Crossref]
  26. S. Scheiding, A. Y. Yi, A. Gebhardt, L. Li, S. Risse, R. Eberhardt, and A. Tünnermann, “Freeform manufacturing of a microoptical lens array on a steep curved substrate by use of a voice coil fast tool servo,” Opt. Express 19(24), 23938–23951 (2011).
    [Crossref] [PubMed]
  27. B. McCall and T. S. Tkaczyk, “Rapid fabrication of miniature lens arrays by four-axis single point diamond machining,” Opt. Express 21(3), 3557–3572 (2013).
    [Crossref] [PubMed]
  28. S. Scheiding, A. Y. Yi, A. Gebhardt, R. Loose, L. Li, S. Risse, R. Eberhardt, and A. Tünnermann, “Diamond milling or turning for the fabrication of micro lens arrays: comparing different diamond machining technologies,” Proc. SPIE 7927, 79270N (2011).
    [Crossref]
  29. W.-C. Chen, T.-J. Wu, W.-J. Wu, and G.-D. J. Su, “Fabrication of inkjet-printed SU-8 photoresist microlenses using hydrophilic confinement,” J. Micromech. Microeng. 23(6), 065008 (2013).
    [Crossref]
  30. G. Liu, W. Yu, H. Li, J. Gao, D. Flynn, R. W. Kay, S. Cargill, C. Tonry, M. K. Patel, C. Bailey, and M. P. Y. Desmulliez, “Microstructure formation in a thick polymer by electrostatic-induced lithography,” J. Micromech. Microeng. 23(3), 035018 (2013).
    [Crossref]
  31. B. Jiri Cech, H. Pranov, G. Kofod, M. Matschuk, S. Murthy, and R. Taboryski, “Surface roughness reduction using spray-coated hydrogen silsesquioxane reflow,” Appl. Surf. Sci. 280, 424–430 (2013).
    [Crossref]
  32. J. C. Miñano, M. Hernández, P. Benítez, J. Blen, O. Dross, R. Mohedano, and A. Santamaría, “Free-form integrator array optics,” Proc. SPIE 5942, 59420C (2005).
    [Crossref]
  33. D. Meister and O. World, “Methods for estimating lens thickness,” Opt. World 26(201), 1–5 (1997).
  34. Micro.Chem., “MicroSprayTM,” 2016, < http://www.microchem.com/Prod-Microspray.htm >.
  35. ISO 4287., Geometrical Product Specifications (GPS)–Surface texture: Profile method–Terms, definitions and surface texture parameters (1987).

2014 (1)

Y. Liu, P. Zhang, Y. Deng, P. Hao, J. Fan, M. Chi, and Y. Wu, “Polymeric microlens array fabricated with PDMS mold-based hot embossing,” J. Micromechanics Microengineering 24, 095028 (2014).

2013 (5)

J. Yong, F. Chen, Q. Yang, G. Du, H. Bian, D. Zhang, J. Si, F. Yun, and X. Hou, “Rapid fabrication of large-area concave microlens arrays on PDMS by a femtosecond laser,” ACS Appl. Mater. Interfaces 5(19), 9382–9385 (2013).
[Crossref] [PubMed]

W.-C. Chen, T.-J. Wu, W.-J. Wu, and G.-D. J. Su, “Fabrication of inkjet-printed SU-8 photoresist microlenses using hydrophilic confinement,” J. Micromech. Microeng. 23(6), 065008 (2013).
[Crossref]

G. Liu, W. Yu, H. Li, J. Gao, D. Flynn, R. W. Kay, S. Cargill, C. Tonry, M. K. Patel, C. Bailey, and M. P. Y. Desmulliez, “Microstructure formation in a thick polymer by electrostatic-induced lithography,” J. Micromech. Microeng. 23(3), 035018 (2013).
[Crossref]

B. Jiri Cech, H. Pranov, G. Kofod, M. Matschuk, S. Murthy, and R. Taboryski, “Surface roughness reduction using spray-coated hydrogen silsesquioxane reflow,” Appl. Surf. Sci. 280, 424–430 (2013).
[Crossref]

B. McCall and T. S. Tkaczyk, “Rapid fabrication of miniature lens arrays by four-axis single point diamond machining,” Opt. Express 21(3), 3557–3572 (2013).
[Crossref] [PubMed]

2012 (2)

Y. Zhao, W. M. Huang, and C. C. Wang, “Thermo/chemo-responsive shape memory effect for micro/nano patterning atop polymers,” Nanosci. Nanotechnol. Lett. 4(9), 862–878 (2012).
[Crossref]

R. K. Jena, C. Y. Yue, Y. C. Lam, P. S. Tang, and A. Gupta, “Comparison of different molds (epoxy, polymer and silicon) for microfabrication by hot embossing technique,” Sens. Actuators B Chem. 163(1), 233–241 (2012).
[Crossref]

2011 (5)

V. N. Goral, Y.-C. Hsieh, O. N. Petzold, R. A. Faris, and P. K. Yuen, “Hot embossing of plastic microfluidic devices using poly(dimethylsiloxane) molds,” J. Micromech. Microeng. 21(1), 017002 (2011).
[Crossref]

L. Sun, W. M. Huang, Z. Ding, Y. Zhao, C. C. Wang, H. Purnawali, and C. Tang, “Stimulus-responsive shape memory materials,” Mater. Des. 33(2012), 578–640 (2011).

S. Scheiding, A. Y. Yi, A. Gebhardt, R. Loose, L. Li, S. Risse, R. Eberhardt, and A. Tünnermann, “Diamond milling or turning for the fabrication of micro lens arrays: comparing different diamond machining technologies,” Proc. SPIE 7927, 79270N (2011).
[Crossref]

Y. Zhao, C. C. Wang, W. M. Huang, H. Purnawali, and L. An, “Formation of micro protrusive lens arrays atop poly(methyl methacrylate),” Opt. Express 19(27), 26000–26005 (2011).
[Crossref] [PubMed]

S. Scheiding, A. Y. Yi, A. Gebhardt, L. Li, S. Risse, R. Eberhardt, and A. Tünnermann, “Freeform manufacturing of a microoptical lens array on a steep curved substrate by use of a voice coil fast tool servo,” Opt. Express 19(24), 23938–23951 (2011).
[Crossref] [PubMed]

2010 (2)

B. McCall and T. S. Tkaczyk, “Fabrication of plastic microlens array for array microscopy by three-dimensional diamond micromilling,” Opt. Eng. 49(10), 103401 (2010).
[Crossref] [PubMed]

H. M. Leung, G. Zhou, H. Yu, F. S. Chau, and A. S. Kumar, “Diamond turning and soft lithography processes for liquid tunable lenses,” J. Micromech. Microeng. 20(2), 025021 (2010).
[Crossref]

2009 (1)

E. Roy, B. Voisin, J. F. Gravel, R. Peytavi, D. Boudreau, and T. Veres, “Microlens array fabrication by enhanced thermal reflow process: towards efficient collection of fluorescence light from microarrays,” Microelectron. Eng. 86(11), 2255–2261 (2009).
[Crossref]

2007 (1)

P. Zhang, G. Londe, J. Sung, E. Johnson, M. Lee, and H. J. Cho, “Microlens fabrication using an etched glass master,” Microsyst. Technol. 13(3–4), 339–342 (2007).

2006 (2)

S. Park, Y. Jeong, J. Kim, K. Choi, H. C. Kim, D. S. Chung, and K. Chun, “Fabricaton of poly(dimethylsiloxane) microlens for laser-induced fluorescence detection,” Jpn. J. Appl. Phys. 45(6B), 5614–5617 (2006).
[Crossref]

K. Totsu, K. Fujishiro, S. Tanaka, and M. Esashi, “Fabrication of three-dimensional microstructure using maskless gray-scale lithography,” Sens. Actuators A Phys. 130–131, 387–392 (2006).
[Crossref]

2005 (4)

A. Y. Yi and L. Li, “Design and fabrication of a microlens array by use of a slow tool servo,” Opt. Lett. 30(13), 1707–1709 (2005).
[Crossref] [PubMed]

P. Schreiber, S. Kudaev, P. Dannberg, and U. D. Zeitner, “Homogeneous LED-illumination using microlens arrays,” Proc. SPIE 5942, 59420K (2005).
[Crossref]

T. J. Suleski and R. D. Te Kolste, “Fabrication trends for free-space microoptics,” J. Lightwave Technol. 23(2), 633–646 (2005).
[Crossref]

J. C. Miñano, M. Hernández, P. Benítez, J. Blen, O. Dross, R. Mohedano, and A. Santamaría, “Free-form integrator array optics,” Proc. SPIE 5942, 59420C (2005).
[Crossref]

2004 (2)

2003 (2)

S. Kim and S. Kang, “Replication qualities and optical properties of UV-moulded microlens arrays,” J. Phys. D Appl. Phys. 36(20), 2451–2456 (2003).
[Crossref]

K. Naessens, H. Ottevaere, R. Baets, P. Van Daele, and H. Thienpont, “Direct writing of microlenses in polycarbonate with excimer laser ablation,” Appl. Opt. 42(31), 6349–6359 (2003).
[Crossref] [PubMed]

2002 (1)

S. Möller and S. R. Forrest, “Improved light out-coupling in organic light emitting diodes employing ordered microlens arrays,” J. Appl. Phys. 91(5), 3324–3327 (2002).
[Crossref]

1997 (1)

D. Meister and O. World, “Methods for estimating lens thickness,” Opt. World 26(201), 1–5 (1997).

1990 (1)

D. Daly, R. F. Stevens, M. C. Hutley, and N. Davies, “The manufacture of microlenses by melting photoresist,” Meas. Sci. Technol. 1(8), 759–766 (1990).
[Crossref]

An, L.

Baets, R.

Bailey, C.

G. Liu, W. Yu, H. Li, J. Gao, D. Flynn, R. W. Kay, S. Cargill, C. Tonry, M. K. Patel, C. Bailey, and M. P. Y. Desmulliez, “Microstructure formation in a thick polymer by electrostatic-induced lithography,” J. Micromech. Microeng. 23(3), 035018 (2013).
[Crossref]

Benítez, P.

J. C. Miñano, M. Hernández, P. Benítez, J. Blen, O. Dross, R. Mohedano, and A. Santamaría, “Free-form integrator array optics,” Proc. SPIE 5942, 59420C (2005).
[Crossref]

Bian, H.

J. Yong, F. Chen, Q. Yang, G. Du, H. Bian, D. Zhang, J. Si, F. Yun, and X. Hou, “Rapid fabrication of large-area concave microlens arrays on PDMS by a femtosecond laser,” ACS Appl. Mater. Interfaces 5(19), 9382–9385 (2013).
[Crossref] [PubMed]

Blen, J.

J. C. Miñano, M. Hernández, P. Benítez, J. Blen, O. Dross, R. Mohedano, and A. Santamaría, “Free-form integrator array optics,” Proc. SPIE 5942, 59420C (2005).
[Crossref]

Boudreau, D.

E. Roy, B. Voisin, J. F. Gravel, R. Peytavi, D. Boudreau, and T. Veres, “Microlens array fabrication by enhanced thermal reflow process: towards efficient collection of fluorescence light from microarrays,” Microelectron. Eng. 86(11), 2255–2261 (2009).
[Crossref]

Cargill, S.

G. Liu, W. Yu, H. Li, J. Gao, D. Flynn, R. W. Kay, S. Cargill, C. Tonry, M. K. Patel, C. Bailey, and M. P. Y. Desmulliez, “Microstructure formation in a thick polymer by electrostatic-induced lithography,” J. Micromech. Microeng. 23(3), 035018 (2013).
[Crossref]

Chakrabarti, M.

M. Chakrabarti, A. Thorseth, J. Jepsen, D. D. Corell, and C. Dam-Hansen, “Color control for tunable white LED lighting system,” Opt. Eng.in press.

M. Chakrabarti, H. C. Pedersen, P. B. Poulsen, and C. Dam-Hansen, “C., “Focusable, color tunable white and efficient LED stage lighting,” Opt. Eng.in press.

Chau, F. S.

H. M. Leung, G. Zhou, H. Yu, F. S. Chau, and A. S. Kumar, “Diamond turning and soft lithography processes for liquid tunable lenses,” J. Micromech. Microeng. 20(2), 025021 (2010).
[Crossref]

Chen, F.

J. Yong, F. Chen, Q. Yang, G. Du, H. Bian, D. Zhang, J. Si, F. Yun, and X. Hou, “Rapid fabrication of large-area concave microlens arrays on PDMS by a femtosecond laser,” ACS Appl. Mater. Interfaces 5(19), 9382–9385 (2013).
[Crossref] [PubMed]

Chen, W.-C.

W.-C. Chen, T.-J. Wu, W.-J. Wu, and G.-D. J. Su, “Fabrication of inkjet-printed SU-8 photoresist microlenses using hydrophilic confinement,” J. Micromech. Microeng. 23(6), 065008 (2013).
[Crossref]

Chi, M.

Y. Liu, P. Zhang, Y. Deng, P. Hao, J. Fan, M. Chi, and Y. Wu, “Polymeric microlens array fabricated with PDMS mold-based hot embossing,” J. Micromechanics Microengineering 24, 095028 (2014).

Cho, H. J.

P. Zhang, G. Londe, J. Sung, E. Johnson, M. Lee, and H. J. Cho, “Microlens fabrication using an etched glass master,” Microsyst. Technol. 13(3–4), 339–342 (2007).

Choi, K.

S. Park, Y. Jeong, J. Kim, K. Choi, H. C. Kim, D. S. Chung, and K. Chun, “Fabricaton of poly(dimethylsiloxane) microlens for laser-induced fluorescence detection,” Jpn. J. Appl. Phys. 45(6B), 5614–5617 (2006).
[Crossref]

Chun, K.

S. Park, Y. Jeong, J. Kim, K. Choi, H. C. Kim, D. S. Chung, and K. Chun, “Fabricaton of poly(dimethylsiloxane) microlens for laser-induced fluorescence detection,” Jpn. J. Appl. Phys. 45(6B), 5614–5617 (2006).
[Crossref]

Chung, D. S.

S. Park, Y. Jeong, J. Kim, K. Choi, H. C. Kim, D. S. Chung, and K. Chun, “Fabricaton of poly(dimethylsiloxane) microlens for laser-induced fluorescence detection,” Jpn. J. Appl. Phys. 45(6B), 5614–5617 (2006).
[Crossref]

Corell, D. D.

M. Chakrabarti, A. Thorseth, J. Jepsen, D. D. Corell, and C. Dam-Hansen, “Color control for tunable white LED lighting system,” Opt. Eng.in press.

Daly, D.

D. Daly, R. F. Stevens, M. C. Hutley, and N. Davies, “The manufacture of microlenses by melting photoresist,” Meas. Sci. Technol. 1(8), 759–766 (1990).
[Crossref]

Dam-Hansen, C.

M. Chakrabarti, H. C. Pedersen, P. B. Poulsen, and C. Dam-Hansen, “C., “Focusable, color tunable white and efficient LED stage lighting,” Opt. Eng.in press.

M. Chakrabarti, A. Thorseth, J. Jepsen, D. D. Corell, and C. Dam-Hansen, “Color control for tunable white LED lighting system,” Opt. Eng.in press.

Dannberg, P.

P. Schreiber, S. Kudaev, P. Dannberg, and U. D. Zeitner, “Homogeneous LED-illumination using microlens arrays,” Proc. SPIE 5942, 59420K (2005).
[Crossref]

Davies, N.

D. Daly, R. F. Stevens, M. C. Hutley, and N. Davies, “The manufacture of microlenses by melting photoresist,” Meas. Sci. Technol. 1(8), 759–766 (1990).
[Crossref]

Deng, Y.

Y. Liu, P. Zhang, Y. Deng, P. Hao, J. Fan, M. Chi, and Y. Wu, “Polymeric microlens array fabricated with PDMS mold-based hot embossing,” J. Micromechanics Microengineering 24, 095028 (2014).

Descour, M.

Desmulliez, M. P. Y.

G. Liu, W. Yu, H. Li, J. Gao, D. Flynn, R. W. Kay, S. Cargill, C. Tonry, M. K. Patel, C. Bailey, and M. P. Y. Desmulliez, “Microstructure formation in a thick polymer by electrostatic-induced lithography,” J. Micromech. Microeng. 23(3), 035018 (2013).
[Crossref]

Ding, Z.

L. Sun, W. M. Huang, Z. Ding, Y. Zhao, C. C. Wang, H. Purnawali, and C. Tang, “Stimulus-responsive shape memory materials,” Mater. Des. 33(2012), 578–640 (2011).

Dross, O.

J. C. Miñano, M. Hernández, P. Benítez, J. Blen, O. Dross, R. Mohedano, and A. Santamaría, “Free-form integrator array optics,” Proc. SPIE 5942, 59420C (2005).
[Crossref]

Du, G.

J. Yong, F. Chen, Q. Yang, G. Du, H. Bian, D. Zhang, J. Si, F. Yun, and X. Hou, “Rapid fabrication of large-area concave microlens arrays on PDMS by a femtosecond laser,” ACS Appl. Mater. Interfaces 5(19), 9382–9385 (2013).
[Crossref] [PubMed]

Eberhardt, R.

S. Scheiding, A. Y. Yi, A. Gebhardt, R. Loose, L. Li, S. Risse, R. Eberhardt, and A. Tünnermann, “Diamond milling or turning for the fabrication of micro lens arrays: comparing different diamond machining technologies,” Proc. SPIE 7927, 79270N (2011).
[Crossref]

S. Scheiding, A. Y. Yi, A. Gebhardt, L. Li, S. Risse, R. Eberhardt, and A. Tünnermann, “Freeform manufacturing of a microoptical lens array on a steep curved substrate by use of a voice coil fast tool servo,” Opt. Express 19(24), 23938–23951 (2011).
[Crossref] [PubMed]

Esashi, M.

K. Totsu, K. Fujishiro, S. Tanaka, and M. Esashi, “Fabrication of three-dimensional microstructure using maskless gray-scale lithography,” Sens. Actuators A Phys. 130–131, 387–392 (2006).
[Crossref]

Fan, J.

Y. Liu, P. Zhang, Y. Deng, P. Hao, J. Fan, M. Chi, and Y. Wu, “Polymeric microlens array fabricated with PDMS mold-based hot embossing,” J. Micromechanics Microengineering 24, 095028 (2014).

Faris, R. A.

V. N. Goral, Y.-C. Hsieh, O. N. Petzold, R. A. Faris, and P. K. Yuen, “Hot embossing of plastic microfluidic devices using poly(dimethylsiloxane) molds,” J. Micromech. Microeng. 21(1), 017002 (2011).
[Crossref]

Flynn, D.

G. Liu, W. Yu, H. Li, J. Gao, D. Flynn, R. W. Kay, S. Cargill, C. Tonry, M. K. Patel, C. Bailey, and M. P. Y. Desmulliez, “Microstructure formation in a thick polymer by electrostatic-induced lithography,” J. Micromech. Microeng. 23(3), 035018 (2013).
[Crossref]

Forrest, S. R.

S. Möller and S. R. Forrest, “Improved light out-coupling in organic light emitting diodes employing ordered microlens arrays,” J. Appl. Phys. 91(5), 3324–3327 (2002).
[Crossref]

Fujishiro, K.

K. Totsu, K. Fujishiro, S. Tanaka, and M. Esashi, “Fabrication of three-dimensional microstructure using maskless gray-scale lithography,” Sens. Actuators A Phys. 130–131, 387–392 (2006).
[Crossref]

Gao, J.

G. Liu, W. Yu, H. Li, J. Gao, D. Flynn, R. W. Kay, S. Cargill, C. Tonry, M. K. Patel, C. Bailey, and M. P. Y. Desmulliez, “Microstructure formation in a thick polymer by electrostatic-induced lithography,” J. Micromech. Microeng. 23(3), 035018 (2013).
[Crossref]

Gebhardt, A.

S. Scheiding, A. Y. Yi, A. Gebhardt, R. Loose, L. Li, S. Risse, R. Eberhardt, and A. Tünnermann, “Diamond milling or turning for the fabrication of micro lens arrays: comparing different diamond machining technologies,” Proc. SPIE 7927, 79270N (2011).
[Crossref]

S. Scheiding, A. Y. Yi, A. Gebhardt, L. Li, S. Risse, R. Eberhardt, and A. Tünnermann, “Freeform manufacturing of a microoptical lens array on a steep curved substrate by use of a voice coil fast tool servo,” Opt. Express 19(24), 23938–23951 (2011).
[Crossref] [PubMed]

Goral, V. N.

V. N. Goral, Y.-C. Hsieh, O. N. Petzold, R. A. Faris, and P. K. Yuen, “Hot embossing of plastic microfluidic devices using poly(dimethylsiloxane) molds,” J. Micromech. Microeng. 21(1), 017002 (2011).
[Crossref]

Gravel, J. F.

E. Roy, B. Voisin, J. F. Gravel, R. Peytavi, D. Boudreau, and T. Veres, “Microlens array fabrication by enhanced thermal reflow process: towards efficient collection of fluorescence light from microarrays,” Microelectron. Eng. 86(11), 2255–2261 (2009).
[Crossref]

Gupta, A.

R. K. Jena, C. Y. Yue, Y. C. Lam, P. S. Tang, and A. Gupta, “Comparison of different molds (epoxy, polymer and silicon) for microfabrication by hot embossing technique,” Sens. Actuators B Chem. 163(1), 233–241 (2012).
[Crossref]

Hao, P.

Y. Liu, P. Zhang, Y. Deng, P. Hao, J. Fan, M. Chi, and Y. Wu, “Polymeric microlens array fabricated with PDMS mold-based hot embossing,” J. Micromechanics Microengineering 24, 095028 (2014).

Hernández, M.

J. C. Miñano, M. Hernández, P. Benítez, J. Blen, O. Dross, R. Mohedano, and A. Santamaría, “Free-form integrator array optics,” Proc. SPIE 5942, 59420C (2005).
[Crossref]

Hou, X.

J. Yong, F. Chen, Q. Yang, G. Du, H. Bian, D. Zhang, J. Si, F. Yun, and X. Hou, “Rapid fabrication of large-area concave microlens arrays on PDMS by a femtosecond laser,” ACS Appl. Mater. Interfaces 5(19), 9382–9385 (2013).
[Crossref] [PubMed]

Hsieh, Y.-C.

V. N. Goral, Y.-C. Hsieh, O. N. Petzold, R. A. Faris, and P. K. Yuen, “Hot embossing of plastic microfluidic devices using poly(dimethylsiloxane) molds,” J. Micromech. Microeng. 21(1), 017002 (2011).
[Crossref]

Huang, W. M.

Y. Zhao, W. M. Huang, and C. C. Wang, “Thermo/chemo-responsive shape memory effect for micro/nano patterning atop polymers,” Nanosci. Nanotechnol. Lett. 4(9), 862–878 (2012).
[Crossref]

L. Sun, W. M. Huang, Z. Ding, Y. Zhao, C. C. Wang, H. Purnawali, and C. Tang, “Stimulus-responsive shape memory materials,” Mater. Des. 33(2012), 578–640 (2011).

Y. Zhao, C. C. Wang, W. M. Huang, H. Purnawali, and L. An, “Formation of micro protrusive lens arrays atop poly(methyl methacrylate),” Opt. Express 19(27), 26000–26005 (2011).
[Crossref] [PubMed]

Hutley, M. C.

D. Daly, R. F. Stevens, M. C. Hutley, and N. Davies, “The manufacture of microlenses by melting photoresist,” Meas. Sci. Technol. 1(8), 759–766 (1990).
[Crossref]

Jena, R. K.

R. K. Jena, C. Y. Yue, Y. C. Lam, P. S. Tang, and A. Gupta, “Comparison of different molds (epoxy, polymer and silicon) for microfabrication by hot embossing technique,” Sens. Actuators B Chem. 163(1), 233–241 (2012).
[Crossref]

Jeong, Y.

S. Park, Y. Jeong, J. Kim, K. Choi, H. C. Kim, D. S. Chung, and K. Chun, “Fabricaton of poly(dimethylsiloxane) microlens for laser-induced fluorescence detection,” Jpn. J. Appl. Phys. 45(6B), 5614–5617 (2006).
[Crossref]

Jepsen, J.

M. Chakrabarti, A. Thorseth, J. Jepsen, D. D. Corell, and C. Dam-Hansen, “Color control for tunable white LED lighting system,” Opt. Eng.in press.

Jiri Cech, B.

B. Jiri Cech, H. Pranov, G. Kofod, M. Matschuk, S. Murthy, and R. Taboryski, “Surface roughness reduction using spray-coated hydrogen silsesquioxane reflow,” Appl. Surf. Sci. 280, 424–430 (2013).
[Crossref]

Johnson, E.

P. Zhang, G. Londe, J. Sung, E. Johnson, M. Lee, and H. J. Cho, “Microlens fabrication using an etched glass master,” Microsyst. Technol. 13(3–4), 339–342 (2007).

Kang, S.

S. Kim and S. Kang, “Replication qualities and optical properties of UV-moulded microlens arrays,” J. Phys. D Appl. Phys. 36(20), 2451–2456 (2003).
[Crossref]

Kärkkäinen, A.

Kay, R. W.

G. Liu, W. Yu, H. Li, J. Gao, D. Flynn, R. W. Kay, S. Cargill, C. Tonry, M. K. Patel, C. Bailey, and M. P. Y. Desmulliez, “Microstructure formation in a thick polymer by electrostatic-induced lithography,” J. Micromech. Microeng. 23(3), 035018 (2013).
[Crossref]

Kim, D. S.

B. K. Lee, D. S. Kim, and T. H. Kwon, “Replication of microlens arrays by injection molding,” Microsyst. Technol. 10(6–7), 531–535 (2004).
[Crossref]

Kim, H. C.

S. Park, Y. Jeong, J. Kim, K. Choi, H. C. Kim, D. S. Chung, and K. Chun, “Fabricaton of poly(dimethylsiloxane) microlens for laser-induced fluorescence detection,” Jpn. J. Appl. Phys. 45(6B), 5614–5617 (2006).
[Crossref]

Kim, J.

S. Park, Y. Jeong, J. Kim, K. Choi, H. C. Kim, D. S. Chung, and K. Chun, “Fabricaton of poly(dimethylsiloxane) microlens for laser-induced fluorescence detection,” Jpn. J. Appl. Phys. 45(6B), 5614–5617 (2006).
[Crossref]

Kim, S.

S. Kim and S. Kang, “Replication qualities and optical properties of UV-moulded microlens arrays,” J. Phys. D Appl. Phys. 36(20), 2451–2456 (2003).
[Crossref]

Kofod, G.

B. Jiri Cech, H. Pranov, G. Kofod, M. Matschuk, S. Murthy, and R. Taboryski, “Surface roughness reduction using spray-coated hydrogen silsesquioxane reflow,” Appl. Surf. Sci. 280, 424–430 (2013).
[Crossref]

Kudaev, S.

P. Schreiber, S. Kudaev, P. Dannberg, and U. D. Zeitner, “Homogeneous LED-illumination using microlens arrays,” Proc. SPIE 5942, 59420K (2005).
[Crossref]

Kumar, A. S.

H. M. Leung, G. Zhou, H. Yu, F. S. Chau, and A. S. Kumar, “Diamond turning and soft lithography processes for liquid tunable lenses,” J. Micromech. Microeng. 20(2), 025021 (2010).
[Crossref]

Kwon, T. H.

B. K. Lee, D. S. Kim, and T. H. Kwon, “Replication of microlens arrays by injection molding,” Microsyst. Technol. 10(6–7), 531–535 (2004).
[Crossref]

Lam, Y. C.

R. K. Jena, C. Y. Yue, Y. C. Lam, P. S. Tang, and A. Gupta, “Comparison of different molds (epoxy, polymer and silicon) for microfabrication by hot embossing technique,” Sens. Actuators B Chem. 163(1), 233–241 (2012).
[Crossref]

Lee, B. K.

B. K. Lee, D. S. Kim, and T. H. Kwon, “Replication of microlens arrays by injection molding,” Microsyst. Technol. 10(6–7), 531–535 (2004).
[Crossref]

Lee, M.

P. Zhang, G. Londe, J. Sung, E. Johnson, M. Lee, and H. J. Cho, “Microlens fabrication using an etched glass master,” Microsyst. Technol. 13(3–4), 339–342 (2007).

Leung, H. M.

H. M. Leung, G. Zhou, H. Yu, F. S. Chau, and A. S. Kumar, “Diamond turning and soft lithography processes for liquid tunable lenses,” J. Micromech. Microeng. 20(2), 025021 (2010).
[Crossref]

Li, H.

G. Liu, W. Yu, H. Li, J. Gao, D. Flynn, R. W. Kay, S. Cargill, C. Tonry, M. K. Patel, C. Bailey, and M. P. Y. Desmulliez, “Microstructure formation in a thick polymer by electrostatic-induced lithography,” J. Micromech. Microeng. 23(3), 035018 (2013).
[Crossref]

Li, L.

Liu, G.

G. Liu, W. Yu, H. Li, J. Gao, D. Flynn, R. W. Kay, S. Cargill, C. Tonry, M. K. Patel, C. Bailey, and M. P. Y. Desmulliez, “Microstructure formation in a thick polymer by electrostatic-induced lithography,” J. Micromech. Microeng. 23(3), 035018 (2013).
[Crossref]

Liu, Y.

Y. Liu, P. Zhang, Y. Deng, P. Hao, J. Fan, M. Chi, and Y. Wu, “Polymeric microlens array fabricated with PDMS mold-based hot embossing,” J. Micromechanics Microengineering 24, 095028 (2014).

Londe, G.

P. Zhang, G. Londe, J. Sung, E. Johnson, M. Lee, and H. J. Cho, “Microlens fabrication using an etched glass master,” Microsyst. Technol. 13(3–4), 339–342 (2007).

Loose, R.

S. Scheiding, A. Y. Yi, A. Gebhardt, R. Loose, L. Li, S. Risse, R. Eberhardt, and A. Tünnermann, “Diamond milling or turning for the fabrication of micro lens arrays: comparing different diamond machining technologies,” Proc. SPIE 7927, 79270N (2011).
[Crossref]

Matschuk, M.

B. Jiri Cech, H. Pranov, G. Kofod, M. Matschuk, S. Murthy, and R. Taboryski, “Surface roughness reduction using spray-coated hydrogen silsesquioxane reflow,” Appl. Surf. Sci. 280, 424–430 (2013).
[Crossref]

McCall, B.

B. McCall and T. S. Tkaczyk, “Rapid fabrication of miniature lens arrays by four-axis single point diamond machining,” Opt. Express 21(3), 3557–3572 (2013).
[Crossref] [PubMed]

B. McCall and T. S. Tkaczyk, “Fabrication of plastic microlens array for array microscopy by three-dimensional diamond micromilling,” Opt. Eng. 49(10), 103401 (2010).
[Crossref] [PubMed]

Meister, D.

D. Meister and O. World, “Methods for estimating lens thickness,” Opt. World 26(201), 1–5 (1997).

Miñano, J. C.

J. C. Miñano, M. Hernández, P. Benítez, J. Blen, O. Dross, R. Mohedano, and A. Santamaría, “Free-form integrator array optics,” Proc. SPIE 5942, 59420C (2005).
[Crossref]

Mohedano, R.

J. C. Miñano, M. Hernández, P. Benítez, J. Blen, O. Dross, R. Mohedano, and A. Santamaría, “Free-form integrator array optics,” Proc. SPIE 5942, 59420C (2005).
[Crossref]

Möller, S.

S. Möller and S. R. Forrest, “Improved light out-coupling in organic light emitting diodes employing ordered microlens arrays,” J. Appl. Phys. 91(5), 3324–3327 (2002).
[Crossref]

Murthy, S.

B. Jiri Cech, H. Pranov, G. Kofod, M. Matschuk, S. Murthy, and R. Taboryski, “Surface roughness reduction using spray-coated hydrogen silsesquioxane reflow,” Appl. Surf. Sci. 280, 424–430 (2013).
[Crossref]

Naessens, K.

Ottevaere, H.

Park, S.

S. Park, Y. Jeong, J. Kim, K. Choi, H. C. Kim, D. S. Chung, and K. Chun, “Fabricaton of poly(dimethylsiloxane) microlens for laser-induced fluorescence detection,” Jpn. J. Appl. Phys. 45(6B), 5614–5617 (2006).
[Crossref]

Patel, M. K.

G. Liu, W. Yu, H. Li, J. Gao, D. Flynn, R. W. Kay, S. Cargill, C. Tonry, M. K. Patel, C. Bailey, and M. P. Y. Desmulliez, “Microstructure formation in a thick polymer by electrostatic-induced lithography,” J. Micromech. Microeng. 23(3), 035018 (2013).
[Crossref]

Pedersen, H. C.

M. Chakrabarti, H. C. Pedersen, P. B. Poulsen, and C. Dam-Hansen, “C., “Focusable, color tunable white and efficient LED stage lighting,” Opt. Eng.in press.

Petzold, O. N.

V. N. Goral, Y.-C. Hsieh, O. N. Petzold, R. A. Faris, and P. K. Yuen, “Hot embossing of plastic microfluidic devices using poly(dimethylsiloxane) molds,” J. Micromech. Microeng. 21(1), 017002 (2011).
[Crossref]

Peytavi, R.

E. Roy, B. Voisin, J. F. Gravel, R. Peytavi, D. Boudreau, and T. Veres, “Microlens array fabrication by enhanced thermal reflow process: towards efficient collection of fluorescence light from microarrays,” Microelectron. Eng. 86(11), 2255–2261 (2009).
[Crossref]

Poulsen, P. B.

M. Chakrabarti, H. C. Pedersen, P. B. Poulsen, and C. Dam-Hansen, “C., “Focusable, color tunable white and efficient LED stage lighting,” Opt. Eng.in press.

Pranov, H.

B. Jiri Cech, H. Pranov, G. Kofod, M. Matschuk, S. Murthy, and R. Taboryski, “Surface roughness reduction using spray-coated hydrogen silsesquioxane reflow,” Appl. Surf. Sci. 280, 424–430 (2013).
[Crossref]

Purnawali, H.

L. Sun, W. M. Huang, Z. Ding, Y. Zhao, C. C. Wang, H. Purnawali, and C. Tang, “Stimulus-responsive shape memory materials,” Mater. Des. 33(2012), 578–640 (2011).

Y. Zhao, C. C. Wang, W. M. Huang, H. Purnawali, and L. An, “Formation of micro protrusive lens arrays atop poly(methyl methacrylate),” Opt. Express 19(27), 26000–26005 (2011).
[Crossref] [PubMed]

Rantala, J.

Risse, S.

S. Scheiding, A. Y. Yi, A. Gebhardt, L. Li, S. Risse, R. Eberhardt, and A. Tünnermann, “Freeform manufacturing of a microoptical lens array on a steep curved substrate by use of a voice coil fast tool servo,” Opt. Express 19(24), 23938–23951 (2011).
[Crossref] [PubMed]

S. Scheiding, A. Y. Yi, A. Gebhardt, R. Loose, L. Li, S. Risse, R. Eberhardt, and A. Tünnermann, “Diamond milling or turning for the fabrication of micro lens arrays: comparing different diamond machining technologies,” Proc. SPIE 7927, 79270N (2011).
[Crossref]

Rogers, J.

Roy, E.

E. Roy, B. Voisin, J. F. Gravel, R. Peytavi, D. Boudreau, and T. Veres, “Microlens array fabrication by enhanced thermal reflow process: towards efficient collection of fluorescence light from microarrays,” Microelectron. Eng. 86(11), 2255–2261 (2009).
[Crossref]

Santamaría, A.

J. C. Miñano, M. Hernández, P. Benítez, J. Blen, O. Dross, R. Mohedano, and A. Santamaría, “Free-form integrator array optics,” Proc. SPIE 5942, 59420C (2005).
[Crossref]

Scheiding, S.

S. Scheiding, A. Y. Yi, A. Gebhardt, R. Loose, L. Li, S. Risse, R. Eberhardt, and A. Tünnermann, “Diamond milling or turning for the fabrication of micro lens arrays: comparing different diamond machining technologies,” Proc. SPIE 7927, 79270N (2011).
[Crossref]

S. Scheiding, A. Y. Yi, A. Gebhardt, L. Li, S. Risse, R. Eberhardt, and A. Tünnermann, “Freeform manufacturing of a microoptical lens array on a steep curved substrate by use of a voice coil fast tool servo,” Opt. Express 19(24), 23938–23951 (2011).
[Crossref] [PubMed]

Schreiber, P.

P. Schreiber, S. Kudaev, P. Dannberg, and U. D. Zeitner, “Homogeneous LED-illumination using microlens arrays,” Proc. SPIE 5942, 59420K (2005).
[Crossref]

Si, J.

J. Yong, F. Chen, Q. Yang, G. Du, H. Bian, D. Zhang, J. Si, F. Yun, and X. Hou, “Rapid fabrication of large-area concave microlens arrays on PDMS by a femtosecond laser,” ACS Appl. Mater. Interfaces 5(19), 9382–9385 (2013).
[Crossref] [PubMed]

Stevens, R. F.

D. Daly, R. F. Stevens, M. C. Hutley, and N. Davies, “The manufacture of microlenses by melting photoresist,” Meas. Sci. Technol. 1(8), 759–766 (1990).
[Crossref]

Su, G.-D. J.

W.-C. Chen, T.-J. Wu, W.-J. Wu, and G.-D. J. Su, “Fabrication of inkjet-printed SU-8 photoresist microlenses using hydrophilic confinement,” J. Micromech. Microeng. 23(6), 065008 (2013).
[Crossref]

Suleski, T. J.

Sun, L.

L. Sun, W. M. Huang, Z. Ding, Y. Zhao, C. C. Wang, H. Purnawali, and C. Tang, “Stimulus-responsive shape memory materials,” Mater. Des. 33(2012), 578–640 (2011).

Sung, J.

P. Zhang, G. Londe, J. Sung, E. Johnson, M. Lee, and H. J. Cho, “Microlens fabrication using an etched glass master,” Microsyst. Technol. 13(3–4), 339–342 (2007).

Taboryski, R.

B. Jiri Cech, H. Pranov, G. Kofod, M. Matschuk, S. Murthy, and R. Taboryski, “Surface roughness reduction using spray-coated hydrogen silsesquioxane reflow,” Appl. Surf. Sci. 280, 424–430 (2013).
[Crossref]

Tanaka, S.

K. Totsu, K. Fujishiro, S. Tanaka, and M. Esashi, “Fabrication of three-dimensional microstructure using maskless gray-scale lithography,” Sens. Actuators A Phys. 130–131, 387–392 (2006).
[Crossref]

Tang, C.

L. Sun, W. M. Huang, Z. Ding, Y. Zhao, C. C. Wang, H. Purnawali, and C. Tang, “Stimulus-responsive shape memory materials,” Mater. Des. 33(2012), 578–640 (2011).

Tang, P. S.

R. K. Jena, C. Y. Yue, Y. C. Lam, P. S. Tang, and A. Gupta, “Comparison of different molds (epoxy, polymer and silicon) for microfabrication by hot embossing technique,” Sens. Actuators B Chem. 163(1), 233–241 (2012).
[Crossref]

Te Kolste, R. D.

Thienpont, H.

Thorseth, A.

M. Chakrabarti, A. Thorseth, J. Jepsen, D. D. Corell, and C. Dam-Hansen, “Color control for tunable white LED lighting system,” Opt. Eng.in press.

Tkaczyk, T.

Tkaczyk, T. S.

B. McCall and T. S. Tkaczyk, “Rapid fabrication of miniature lens arrays by four-axis single point diamond machining,” Opt. Express 21(3), 3557–3572 (2013).
[Crossref] [PubMed]

B. McCall and T. S. Tkaczyk, “Fabrication of plastic microlens array for array microscopy by three-dimensional diamond micromilling,” Opt. Eng. 49(10), 103401 (2010).
[Crossref] [PubMed]

Tonry, C.

G. Liu, W. Yu, H. Li, J. Gao, D. Flynn, R. W. Kay, S. Cargill, C. Tonry, M. K. Patel, C. Bailey, and M. P. Y. Desmulliez, “Microstructure formation in a thick polymer by electrostatic-induced lithography,” J. Micromech. Microeng. 23(3), 035018 (2013).
[Crossref]

Totsu, K.

K. Totsu, K. Fujishiro, S. Tanaka, and M. Esashi, “Fabrication of three-dimensional microstructure using maskless gray-scale lithography,” Sens. Actuators A Phys. 130–131, 387–392 (2006).
[Crossref]

Tünnermann, A.

S. Scheiding, A. Y. Yi, A. Gebhardt, R. Loose, L. Li, S. Risse, R. Eberhardt, and A. Tünnermann, “Diamond milling or turning for the fabrication of micro lens arrays: comparing different diamond machining technologies,” Proc. SPIE 7927, 79270N (2011).
[Crossref]

S. Scheiding, A. Y. Yi, A. Gebhardt, L. Li, S. Risse, R. Eberhardt, and A. Tünnermann, “Freeform manufacturing of a microoptical lens array on a steep curved substrate by use of a voice coil fast tool servo,” Opt. Express 19(24), 23938–23951 (2011).
[Crossref] [PubMed]

Van Daele, P.

Veres, T.

E. Roy, B. Voisin, J. F. Gravel, R. Peytavi, D. Boudreau, and T. Veres, “Microlens array fabrication by enhanced thermal reflow process: towards efficient collection of fluorescence light from microarrays,” Microelectron. Eng. 86(11), 2255–2261 (2009).
[Crossref]

Voisin, B.

E. Roy, B. Voisin, J. F. Gravel, R. Peytavi, D. Boudreau, and T. Veres, “Microlens array fabrication by enhanced thermal reflow process: towards efficient collection of fluorescence light from microarrays,” Microelectron. Eng. 86(11), 2255–2261 (2009).
[Crossref]

Wang, C. C.

Y. Zhao, W. M. Huang, and C. C. Wang, “Thermo/chemo-responsive shape memory effect for micro/nano patterning atop polymers,” Nanosci. Nanotechnol. Lett. 4(9), 862–878 (2012).
[Crossref]

L. Sun, W. M. Huang, Z. Ding, Y. Zhao, C. C. Wang, H. Purnawali, and C. Tang, “Stimulus-responsive shape memory materials,” Mater. Des. 33(2012), 578–640 (2011).

Y. Zhao, C. C. Wang, W. M. Huang, H. Purnawali, and L. An, “Formation of micro protrusive lens arrays atop poly(methyl methacrylate),” Opt. Express 19(27), 26000–26005 (2011).
[Crossref] [PubMed]

World, O.

D. Meister and O. World, “Methods for estimating lens thickness,” Opt. World 26(201), 1–5 (1997).

Wu, T.-J.

W.-C. Chen, T.-J. Wu, W.-J. Wu, and G.-D. J. Su, “Fabrication of inkjet-printed SU-8 photoresist microlenses using hydrophilic confinement,” J. Micromech. Microeng. 23(6), 065008 (2013).
[Crossref]

Wu, W.-J.

W.-C. Chen, T.-J. Wu, W.-J. Wu, and G.-D. J. Su, “Fabrication of inkjet-printed SU-8 photoresist microlenses using hydrophilic confinement,” J. Micromech. Microeng. 23(6), 065008 (2013).
[Crossref]

Wu, Y.

Y. Liu, P. Zhang, Y. Deng, P. Hao, J. Fan, M. Chi, and Y. Wu, “Polymeric microlens array fabricated with PDMS mold-based hot embossing,” J. Micromechanics Microengineering 24, 095028 (2014).

Yang, Q.

J. Yong, F. Chen, Q. Yang, G. Du, H. Bian, D. Zhang, J. Si, F. Yun, and X. Hou, “Rapid fabrication of large-area concave microlens arrays on PDMS by a femtosecond laser,” ACS Appl. Mater. Interfaces 5(19), 9382–9385 (2013).
[Crossref] [PubMed]

Yi, A. Y.

Yong, J.

J. Yong, F. Chen, Q. Yang, G. Du, H. Bian, D. Zhang, J. Si, F. Yun, and X. Hou, “Rapid fabrication of large-area concave microlens arrays on PDMS by a femtosecond laser,” ACS Appl. Mater. Interfaces 5(19), 9382–9385 (2013).
[Crossref] [PubMed]

Yu, H.

H. M. Leung, G. Zhou, H. Yu, F. S. Chau, and A. S. Kumar, “Diamond turning and soft lithography processes for liquid tunable lenses,” J. Micromech. Microeng. 20(2), 025021 (2010).
[Crossref]

Yu, W.

G. Liu, W. Yu, H. Li, J. Gao, D. Flynn, R. W. Kay, S. Cargill, C. Tonry, M. K. Patel, C. Bailey, and M. P. Y. Desmulliez, “Microstructure formation in a thick polymer by electrostatic-induced lithography,” J. Micromech. Microeng. 23(3), 035018 (2013).
[Crossref]

Yue, C. Y.

R. K. Jena, C. Y. Yue, Y. C. Lam, P. S. Tang, and A. Gupta, “Comparison of different molds (epoxy, polymer and silicon) for microfabrication by hot embossing technique,” Sens. Actuators B Chem. 163(1), 233–241 (2012).
[Crossref]

Yuen, P. K.

V. N. Goral, Y.-C. Hsieh, O. N. Petzold, R. A. Faris, and P. K. Yuen, “Hot embossing of plastic microfluidic devices using poly(dimethylsiloxane) molds,” J. Micromech. Microeng. 21(1), 017002 (2011).
[Crossref]

Yun, F.

J. Yong, F. Chen, Q. Yang, G. Du, H. Bian, D. Zhang, J. Si, F. Yun, and X. Hou, “Rapid fabrication of large-area concave microlens arrays on PDMS by a femtosecond laser,” ACS Appl. Mater. Interfaces 5(19), 9382–9385 (2013).
[Crossref] [PubMed]

Zeitner, U. D.

P. Schreiber, S. Kudaev, P. Dannberg, and U. D. Zeitner, “Homogeneous LED-illumination using microlens arrays,” Proc. SPIE 5942, 59420K (2005).
[Crossref]

Zhang, D.

J. Yong, F. Chen, Q. Yang, G. Du, H. Bian, D. Zhang, J. Si, F. Yun, and X. Hou, “Rapid fabrication of large-area concave microlens arrays on PDMS by a femtosecond laser,” ACS Appl. Mater. Interfaces 5(19), 9382–9385 (2013).
[Crossref] [PubMed]

Zhang, P.

Y. Liu, P. Zhang, Y. Deng, P. Hao, J. Fan, M. Chi, and Y. Wu, “Polymeric microlens array fabricated with PDMS mold-based hot embossing,” J. Micromechanics Microengineering 24, 095028 (2014).

P. Zhang, G. Londe, J. Sung, E. Johnson, M. Lee, and H. J. Cho, “Microlens fabrication using an etched glass master,” Microsyst. Technol. 13(3–4), 339–342 (2007).

Zhao, Y.

Y. Zhao, W. M. Huang, and C. C. Wang, “Thermo/chemo-responsive shape memory effect for micro/nano patterning atop polymers,” Nanosci. Nanotechnol. Lett. 4(9), 862–878 (2012).
[Crossref]

L. Sun, W. M. Huang, Z. Ding, Y. Zhao, C. C. Wang, H. Purnawali, and C. Tang, “Stimulus-responsive shape memory materials,” Mater. Des. 33(2012), 578–640 (2011).

Y. Zhao, C. C. Wang, W. M. Huang, H. Purnawali, and L. An, “Formation of micro protrusive lens arrays atop poly(methyl methacrylate),” Opt. Express 19(27), 26000–26005 (2011).
[Crossref] [PubMed]

Zhou, G.

H. M. Leung, G. Zhou, H. Yu, F. S. Chau, and A. S. Kumar, “Diamond turning and soft lithography processes for liquid tunable lenses,” J. Micromech. Microeng. 20(2), 025021 (2010).
[Crossref]

ACS Appl. Mater. Interfaces (1)

J. Yong, F. Chen, Q. Yang, G. Du, H. Bian, D. Zhang, J. Si, F. Yun, and X. Hou, “Rapid fabrication of large-area concave microlens arrays on PDMS by a femtosecond laser,” ACS Appl. Mater. Interfaces 5(19), 9382–9385 (2013).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Surf. Sci. (1)

B. Jiri Cech, H. Pranov, G. Kofod, M. Matschuk, S. Murthy, and R. Taboryski, “Surface roughness reduction using spray-coated hydrogen silsesquioxane reflow,” Appl. Surf. Sci. 280, 424–430 (2013).
[Crossref]

J. Appl. Phys. (1)

S. Möller and S. R. Forrest, “Improved light out-coupling in organic light emitting diodes employing ordered microlens arrays,” J. Appl. Phys. 91(5), 3324–3327 (2002).
[Crossref]

J. Lightwave Technol. (1)

J. Micromech. Microeng. (4)

V. N. Goral, Y.-C. Hsieh, O. N. Petzold, R. A. Faris, and P. K. Yuen, “Hot embossing of plastic microfluidic devices using poly(dimethylsiloxane) molds,” J. Micromech. Microeng. 21(1), 017002 (2011).
[Crossref]

W.-C. Chen, T.-J. Wu, W.-J. Wu, and G.-D. J. Su, “Fabrication of inkjet-printed SU-8 photoresist microlenses using hydrophilic confinement,” J. Micromech. Microeng. 23(6), 065008 (2013).
[Crossref]

G. Liu, W. Yu, H. Li, J. Gao, D. Flynn, R. W. Kay, S. Cargill, C. Tonry, M. K. Patel, C. Bailey, and M. P. Y. Desmulliez, “Microstructure formation in a thick polymer by electrostatic-induced lithography,” J. Micromech. Microeng. 23(3), 035018 (2013).
[Crossref]

H. M. Leung, G. Zhou, H. Yu, F. S. Chau, and A. S. Kumar, “Diamond turning and soft lithography processes for liquid tunable lenses,” J. Micromech. Microeng. 20(2), 025021 (2010).
[Crossref]

J. Micromechanics Microengineering (1)

Y. Liu, P. Zhang, Y. Deng, P. Hao, J. Fan, M. Chi, and Y. Wu, “Polymeric microlens array fabricated with PDMS mold-based hot embossing,” J. Micromechanics Microengineering 24, 095028 (2014).

J. Phys. D Appl. Phys. (1)

S. Kim and S. Kang, “Replication qualities and optical properties of UV-moulded microlens arrays,” J. Phys. D Appl. Phys. 36(20), 2451–2456 (2003).
[Crossref]

Jpn. J. Appl. Phys. (1)

S. Park, Y. Jeong, J. Kim, K. Choi, H. C. Kim, D. S. Chung, and K. Chun, “Fabricaton of poly(dimethylsiloxane) microlens for laser-induced fluorescence detection,” Jpn. J. Appl. Phys. 45(6B), 5614–5617 (2006).
[Crossref]

Mater. Des. (1)

L. Sun, W. M. Huang, Z. Ding, Y. Zhao, C. C. Wang, H. Purnawali, and C. Tang, “Stimulus-responsive shape memory materials,” Mater. Des. 33(2012), 578–640 (2011).

Meas. Sci. Technol. (1)

D. Daly, R. F. Stevens, M. C. Hutley, and N. Davies, “The manufacture of microlenses by melting photoresist,” Meas. Sci. Technol. 1(8), 759–766 (1990).
[Crossref]

Microelectron. Eng. (1)

E. Roy, B. Voisin, J. F. Gravel, R. Peytavi, D. Boudreau, and T. Veres, “Microlens array fabrication by enhanced thermal reflow process: towards efficient collection of fluorescence light from microarrays,” Microelectron. Eng. 86(11), 2255–2261 (2009).
[Crossref]

Microsyst. Technol. (2)

P. Zhang, G. Londe, J. Sung, E. Johnson, M. Lee, and H. J. Cho, “Microlens fabrication using an etched glass master,” Microsyst. Technol. 13(3–4), 339–342 (2007).

B. K. Lee, D. S. Kim, and T. H. Kwon, “Replication of microlens arrays by injection molding,” Microsyst. Technol. 10(6–7), 531–535 (2004).
[Crossref]

Nanosci. Nanotechnol. Lett. (1)

Y. Zhao, W. M. Huang, and C. C. Wang, “Thermo/chemo-responsive shape memory effect for micro/nano patterning atop polymers,” Nanosci. Nanotechnol. Lett. 4(9), 862–878 (2012).
[Crossref]

Opt. Eng. (1)

B. McCall and T. S. Tkaczyk, “Fabrication of plastic microlens array for array microscopy by three-dimensional diamond micromilling,” Opt. Eng. 49(10), 103401 (2010).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Lett. (1)

Opt. World (1)

D. Meister and O. World, “Methods for estimating lens thickness,” Opt. World 26(201), 1–5 (1997).

Proc. SPIE (3)

J. C. Miñano, M. Hernández, P. Benítez, J. Blen, O. Dross, R. Mohedano, and A. Santamaría, “Free-form integrator array optics,” Proc. SPIE 5942, 59420C (2005).
[Crossref]

S. Scheiding, A. Y. Yi, A. Gebhardt, R. Loose, L. Li, S. Risse, R. Eberhardt, and A. Tünnermann, “Diamond milling or turning for the fabrication of micro lens arrays: comparing different diamond machining technologies,” Proc. SPIE 7927, 79270N (2011).
[Crossref]

P. Schreiber, S. Kudaev, P. Dannberg, and U. D. Zeitner, “Homogeneous LED-illumination using microlens arrays,” Proc. SPIE 5942, 59420K (2005).
[Crossref]

Sens. Actuators A Phys. (1)

K. Totsu, K. Fujishiro, S. Tanaka, and M. Esashi, “Fabrication of three-dimensional microstructure using maskless gray-scale lithography,” Sens. Actuators A Phys. 130–131, 387–392 (2006).
[Crossref]

Sens. Actuators B Chem. (1)

R. K. Jena, C. Y. Yue, Y. C. Lam, P. S. Tang, and A. Gupta, “Comparison of different molds (epoxy, polymer and silicon) for microfabrication by hot embossing technique,” Sens. Actuators B Chem. 163(1), 233–241 (2012).
[Crossref]

Other (5)

H. C. Pedersen, T. Brockmann, and C. Dam-Hansen, “Light engine for an illumination device,” EP2843301, International Bureau of the World Intellectual Property Organization (WIPO) (2015).

M. Chakrabarti, A. Thorseth, J. Jepsen, D. D. Corell, and C. Dam-Hansen, “Color control for tunable white LED lighting system,” Opt. Eng.in press.

M. Chakrabarti, H. C. Pedersen, P. B. Poulsen, and C. Dam-Hansen, “C., “Focusable, color tunable white and efficient LED stage lighting,” Opt. Eng.in press.

Micro.Chem., “MicroSprayTM,” 2016, < http://www.microchem.com/Prod-Microspray.htm >.

ISO 4287., Geometrical Product Specifications (GPS)–Surface texture: Profile method–Terms, definitions and surface texture parameters (1987).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Basic color mixing functionality of a double-sided, convex microlens array, with incident beams at angles (a) lower than and (b) higher than the acceptance angle.
Fig. 2
Fig. 2 Simulated transmission efficiency [%] of microlens array as a function of incident angle of collimated beam. Efficiency is simulated for varying exit cone angles.
Fig. 3
Fig. 3 Simulation of transmission efficiency of microlens array as a function of incidence cone for the two different materials, PMMA and PC.
Fig. 4
Fig. 4 One side of mold tool for ø65mm microlens array in a steel block.
Fig. 5
Fig. 5 Photoresist process sequence.
Fig. 6
Fig. 6 Sketch illustrating the simulation and experimental set-up for measuring angular transmission and acceptance angle of the microlens array.
Fig. 7
Fig. 7 (a) Photo of the injection molded sample; (b) Magnified view of the selected portion of the five lenslets for measuring the lens width; (c) Magnified single lenslet for height measurement.
Fig. 8
Fig. 8 Topography image with height contours for each 2 µm in the z-direction for microlens lenslet from (a) (shown 600 x 600 µm2 area) uncoated and (b) (shown 400 x 400 µm2 area) coated mold and corresponding surface variation along cross section in (c) and (d) respectively.
Fig. 9
Fig. 9 Comparison of microlens array by both simulation (Sim.) and experiment (Exp.) respectively.
Fig. 10
Fig. 10 Optical microscopic images of a single lenslet (left side) and photo of transmitted He-Ne laser beam from a single lenslet (right side) in injection molded microlens array from the (a) uncoated mold and (b) photoresist coated mold.

Tables (3)

Tables Icon

Table 1 Lens parameters for fabricated microlens.

Tables Icon

Table 2 Measure single lens parameters by 3D microscopy

Tables Icon

Table 3 Roughness Measurement According to ISO 4287:1997 [35].

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

NA=sin(θ)=n D 2* ( D 2 ) 2 + f 2 n D 2f when ( D 2 ) 2 << f 2
θ=asin(NA)asin( n D 2f )

Metrics