Abstract

We report a lateral-drilled DBR fiber laser which contains a defective parabola-like opening inside the cavity fabricated by the CO2-laser exposure and study the laser responsivity to external refractive index (RI). Surrounding materials can readily reach the vicinity of the fiber core via the opening and interact with the laser mode. Research shows that the laser emission power mainly relies on changes of external RI while the lasing wavelength on temperature. The effects of structural parameters, pump power, and external refractive index on the RI responsivity of the device are demonstrated. The lasing threshold condition is also concerned. This work provides an opportunity for controlling emission characteristics of the DBR fiber laser through modification of external RI value, of which the results are valuable for the potential applications in optical sensing, tunable lasing, and etc.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Research on a novel composite structure Er3+-doped DBR fiber laser with a π-phase shifted FBG

Yanjie Zhao, Jun Chang, Qingpu Wang, Jiasheng Ni, Zhiqiang Song, Haifeng Qi, Chang Wang, Pengpeng Wang, Liang Gao, Zhihui Sun, Guangping Lv, Tongyu Liu, and Gangding Peng
Opt. Express 21(19) 22515-22522 (2013)

High temperature resistant ultra-short DBR Yb-doped fiber laser

Hushan Wang, Songsong Xiong, Jiazheng Song, Fengyan Zhao, Zhijun Yan, Xiaohu Hong, Ting Zhang, Wei Zhang, Kaiming Zhou, Cheng Li, and Yishan Wang
Appl. Opt. 58(16) 4474-4478 (2019)

References

  • View by:
  • |
  • |
  • |

  1. G. A. Ball and W. H. Glenn, “Design of a single-mode linear-cavity erbium fiber laser utilizing Bragg reflectors,” J. Lightwave Technol. 10(10), 1338–1343 (1992).
    [Crossref]
  2. L. Dong, W. H. Loh, J. E. Caplen, J. D. Minelly, K. Hsu, and L. Reekie, “Efficient single-frequency fiber lasers with novel photosensitive Er/Yb optical fibers,” Opt. Lett. 22(10), 694–696 (1997).
    [Crossref] [PubMed]
  3. W. H. Loh, B. N. Samson, L. Dong, G. J. Cowle, and K. Hsu, “High performance single frequency fiber grating-based Erbium:Ytterbium-codoped fiber lasers,” J. Lightwave Technol. 16(1), 114–118 (1998).
    [Crossref]
  4. B. O. Guan, Y. Zhang, H. J. Wang, D. Chen, and H. Y. Tam, “High-temperature-resistant distributed Bragg reflector fiber laser written in Er/Yb co-doped fiber,” Opt. Express 16(5), 2958–2964 (2008).
    [Crossref] [PubMed]
  5. A. C. Wong, W. H. Chung, C. Lu, and H. Y. Tam, “Composite structure distributed Bragg reflector fiber laser for simultaneous two-parameter sensing,” IEEE Photonics Technol. Lett. 22(19), 1464–1466 (2010).
    [Crossref]
  6. Y. Zhang, B. O. Guan, and H. Y. Tam, “Characteristics of the distributed Bragg reflector fiber laser sensor for lateral force measurement,” Opt. Commun. 281(18), 4619–4622 (2008).
    [Crossref]
  7. J. Wo, M. Jiang, M. Malnou, Q. Sun, J. Zhang, P. P. Shum, and D. Liu, “Twist sensor based on axial strain insensitive distributed Bragg reflector fiber laser,” Opt. Express 20(3), 2844–2850 (2012).
    [Crossref] [PubMed]
  8. L. Cheng, J. Han, Z. Guo, L. Jin, and B. O. Guan, “Faraday-rotation-based miniature magnetic field sensor using polarimetric heterodyning fiber grating laser,” Opt. Lett. 38(5), 688–690 (2013).
    [Crossref] [PubMed]
  9. B. O. Guan, H. Y. Tam, S. T. Lau, and H. L. Chan, “Ultrasonic hydrophone based on distributed Bragg reflector fiber laser,” IEEE Photonics Technol. Lett. 17(1), 169–171 (2005).
    [Crossref]
  10. L. Y. Shao, X. Dong, A. P. Zhang, H. Y. Tam, and S. He, “High-resolution strain and temperature sensor based on distributed Bragg reflector fiber laser,” IEEE Photonics Technol. Lett. 19(20), 1598–1600 (2007).
    [Crossref]
  11. J. S. Zyskind, V. Mizrahi, D. J. DiGiovanni, and J. W. Sulhoff, “Short single-frequency erbium-doped fiber laser,” Electron. Lett. 28(15), 1385–1387 (1992).
    [Crossref]
  12. D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives,” J. Opt. Soc. Am. B 27(11), B63–B92 (2010).
    [Crossref]
  13. G. A. Ball, G. Meltz, and W. W. Morey, “Polarimetric heterodyning Bragg-grating fiber-laser sensor,” Opt. Lett. 18(22), 1976–1978 (1993).
    [Crossref] [PubMed]
  14. A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Atkins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
    [Crossref]
  15. K. M. Nowak, H. J. Baker, and D. R. Hall, “Efficient laser polishing of silica micro-optic components,” Appl. Opt. 45(1), 162–171 (2006).
    [Crossref] [PubMed]
  16. L. P. Sun, J. Li, S. Gao, L. Jin, Y. Ran, and B. O. Guan, “Fabrication of elliptic microfibers with CO2 laser for high-sensitivity refractive index sensing,” Opt. Lett. 39(12), 3531–3534 (2014).
    [Crossref] [PubMed]
  17. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 2007), Chap. 15.

2014 (1)

2013 (1)

2012 (1)

2010 (2)

D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives,” J. Opt. Soc. Am. B 27(11), B63–B92 (2010).
[Crossref]

A. C. Wong, W. H. Chung, C. Lu, and H. Y. Tam, “Composite structure distributed Bragg reflector fiber laser for simultaneous two-parameter sensing,” IEEE Photonics Technol. Lett. 22(19), 1464–1466 (2010).
[Crossref]

2008 (2)

Y. Zhang, B. O. Guan, and H. Y. Tam, “Characteristics of the distributed Bragg reflector fiber laser sensor for lateral force measurement,” Opt. Commun. 281(18), 4619–4622 (2008).
[Crossref]

B. O. Guan, Y. Zhang, H. J. Wang, D. Chen, and H. Y. Tam, “High-temperature-resistant distributed Bragg reflector fiber laser written in Er/Yb co-doped fiber,” Opt. Express 16(5), 2958–2964 (2008).
[Crossref] [PubMed]

2007 (1)

L. Y. Shao, X. Dong, A. P. Zhang, H. Y. Tam, and S. He, “High-resolution strain and temperature sensor based on distributed Bragg reflector fiber laser,” IEEE Photonics Technol. Lett. 19(20), 1598–1600 (2007).
[Crossref]

2006 (1)

2005 (1)

B. O. Guan, H. Y. Tam, S. T. Lau, and H. L. Chan, “Ultrasonic hydrophone based on distributed Bragg reflector fiber laser,” IEEE Photonics Technol. Lett. 17(1), 169–171 (2005).
[Crossref]

1998 (1)

1997 (2)

L. Dong, W. H. Loh, J. E. Caplen, J. D. Minelly, K. Hsu, and L. Reekie, “Efficient single-frequency fiber lasers with novel photosensitive Er/Yb optical fibers,” Opt. Lett. 22(10), 694–696 (1997).
[Crossref] [PubMed]

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Atkins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

1993 (1)

1992 (2)

J. S. Zyskind, V. Mizrahi, D. J. DiGiovanni, and J. W. Sulhoff, “Short single-frequency erbium-doped fiber laser,” Electron. Lett. 28(15), 1385–1387 (1992).
[Crossref]

G. A. Ball and W. H. Glenn, “Design of a single-mode linear-cavity erbium fiber laser utilizing Bragg reflectors,” J. Lightwave Technol. 10(10), 1338–1343 (1992).
[Crossref]

Atkins, C. G.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Atkins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

Baker, H. J.

Ball, G. A.

G. A. Ball, G. Meltz, and W. W. Morey, “Polarimetric heterodyning Bragg-grating fiber-laser sensor,” Opt. Lett. 18(22), 1976–1978 (1993).
[Crossref] [PubMed]

G. A. Ball and W. H. Glenn, “Design of a single-mode linear-cavity erbium fiber laser utilizing Bragg reflectors,” J. Lightwave Technol. 10(10), 1338–1343 (1992).
[Crossref]

Caplen, J. E.

Chan, H. L.

B. O. Guan, H. Y. Tam, S. T. Lau, and H. L. Chan, “Ultrasonic hydrophone based on distributed Bragg reflector fiber laser,” IEEE Photonics Technol. Lett. 17(1), 169–171 (2005).
[Crossref]

Chen, D.

Cheng, L.

Chung, W. H.

A. C. Wong, W. H. Chung, C. Lu, and H. Y. Tam, “Composite structure distributed Bragg reflector fiber laser for simultaneous two-parameter sensing,” IEEE Photonics Technol. Lett. 22(19), 1464–1466 (2010).
[Crossref]

Clarkson, W. A.

Cowle, G. J.

Davis, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Atkins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

DiGiovanni, D. J.

J. S. Zyskind, V. Mizrahi, D. J. DiGiovanni, and J. W. Sulhoff, “Short single-frequency erbium-doped fiber laser,” Electron. Lett. 28(15), 1385–1387 (1992).
[Crossref]

Dong, L.

Dong, X.

L. Y. Shao, X. Dong, A. P. Zhang, H. Y. Tam, and S. He, “High-resolution strain and temperature sensor based on distributed Bragg reflector fiber laser,” IEEE Photonics Technol. Lett. 19(20), 1598–1600 (2007).
[Crossref]

Friebele, E. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Atkins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

Gao, S.

Glenn, W. H.

G. A. Ball and W. H. Glenn, “Design of a single-mode linear-cavity erbium fiber laser utilizing Bragg reflectors,” J. Lightwave Technol. 10(10), 1338–1343 (1992).
[Crossref]

Guan, B. O.

Guo, Z.

Hall, D. R.

Han, J.

He, S.

L. Y. Shao, X. Dong, A. P. Zhang, H. Y. Tam, and S. He, “High-resolution strain and temperature sensor based on distributed Bragg reflector fiber laser,” IEEE Photonics Technol. Lett. 19(20), 1598–1600 (2007).
[Crossref]

Hsu, K.

Jiang, M.

Jin, L.

Kersey, A. D.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Atkins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

Koo, K. P.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Atkins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

Lau, S. T.

B. O. Guan, H. Y. Tam, S. T. Lau, and H. L. Chan, “Ultrasonic hydrophone based on distributed Bragg reflector fiber laser,” IEEE Photonics Technol. Lett. 17(1), 169–171 (2005).
[Crossref]

LeBlanc, M.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Atkins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

Li, J.

Liu, D.

Loh, W. H.

Lu, C.

A. C. Wong, W. H. Chung, C. Lu, and H. Y. Tam, “Composite structure distributed Bragg reflector fiber laser for simultaneous two-parameter sensing,” IEEE Photonics Technol. Lett. 22(19), 1464–1466 (2010).
[Crossref]

Malnou, M.

Meltz, G.

Minelly, J. D.

Mizrahi, V.

J. S. Zyskind, V. Mizrahi, D. J. DiGiovanni, and J. W. Sulhoff, “Short single-frequency erbium-doped fiber laser,” Electron. Lett. 28(15), 1385–1387 (1992).
[Crossref]

Morey, W. W.

Nilsson, J.

Nowak, K. M.

Patrick, H. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Atkins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

Putnam, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Atkins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

Ran, Y.

Reekie, L.

Richardson, D. J.

Samson, B. N.

Shao, L. Y.

L. Y. Shao, X. Dong, A. P. Zhang, H. Y. Tam, and S. He, “High-resolution strain and temperature sensor based on distributed Bragg reflector fiber laser,” IEEE Photonics Technol. Lett. 19(20), 1598–1600 (2007).
[Crossref]

Shum, P. P.

Sulhoff, J. W.

J. S. Zyskind, V. Mizrahi, D. J. DiGiovanni, and J. W. Sulhoff, “Short single-frequency erbium-doped fiber laser,” Electron. Lett. 28(15), 1385–1387 (1992).
[Crossref]

Sun, L. P.

Sun, Q.

Tam, H. Y.

A. C. Wong, W. H. Chung, C. Lu, and H. Y. Tam, “Composite structure distributed Bragg reflector fiber laser for simultaneous two-parameter sensing,” IEEE Photonics Technol. Lett. 22(19), 1464–1466 (2010).
[Crossref]

Y. Zhang, B. O. Guan, and H. Y. Tam, “Characteristics of the distributed Bragg reflector fiber laser sensor for lateral force measurement,” Opt. Commun. 281(18), 4619–4622 (2008).
[Crossref]

B. O. Guan, Y. Zhang, H. J. Wang, D. Chen, and H. Y. Tam, “High-temperature-resistant distributed Bragg reflector fiber laser written in Er/Yb co-doped fiber,” Opt. Express 16(5), 2958–2964 (2008).
[Crossref] [PubMed]

L. Y. Shao, X. Dong, A. P. Zhang, H. Y. Tam, and S. He, “High-resolution strain and temperature sensor based on distributed Bragg reflector fiber laser,” IEEE Photonics Technol. Lett. 19(20), 1598–1600 (2007).
[Crossref]

B. O. Guan, H. Y. Tam, S. T. Lau, and H. L. Chan, “Ultrasonic hydrophone based on distributed Bragg reflector fiber laser,” IEEE Photonics Technol. Lett. 17(1), 169–171 (2005).
[Crossref]

Wang, H. J.

Wo, J.

Wong, A. C.

A. C. Wong, W. H. Chung, C. Lu, and H. Y. Tam, “Composite structure distributed Bragg reflector fiber laser for simultaneous two-parameter sensing,” IEEE Photonics Technol. Lett. 22(19), 1464–1466 (2010).
[Crossref]

Zhang, A. P.

L. Y. Shao, X. Dong, A. P. Zhang, H. Y. Tam, and S. He, “High-resolution strain and temperature sensor based on distributed Bragg reflector fiber laser,” IEEE Photonics Technol. Lett. 19(20), 1598–1600 (2007).
[Crossref]

Zhang, J.

Zhang, Y.

B. O. Guan, Y. Zhang, H. J. Wang, D. Chen, and H. Y. Tam, “High-temperature-resistant distributed Bragg reflector fiber laser written in Er/Yb co-doped fiber,” Opt. Express 16(5), 2958–2964 (2008).
[Crossref] [PubMed]

Y. Zhang, B. O. Guan, and H. Y. Tam, “Characteristics of the distributed Bragg reflector fiber laser sensor for lateral force measurement,” Opt. Commun. 281(18), 4619–4622 (2008).
[Crossref]

Zyskind, J. S.

J. S. Zyskind, V. Mizrahi, D. J. DiGiovanni, and J. W. Sulhoff, “Short single-frequency erbium-doped fiber laser,” Electron. Lett. 28(15), 1385–1387 (1992).
[Crossref]

Appl. Opt. (1)

Electron. Lett. (1)

J. S. Zyskind, V. Mizrahi, D. J. DiGiovanni, and J. W. Sulhoff, “Short single-frequency erbium-doped fiber laser,” Electron. Lett. 28(15), 1385–1387 (1992).
[Crossref]

IEEE Photonics Technol. Lett. (3)

B. O. Guan, H. Y. Tam, S. T. Lau, and H. L. Chan, “Ultrasonic hydrophone based on distributed Bragg reflector fiber laser,” IEEE Photonics Technol. Lett. 17(1), 169–171 (2005).
[Crossref]

L. Y. Shao, X. Dong, A. P. Zhang, H. Y. Tam, and S. He, “High-resolution strain and temperature sensor based on distributed Bragg reflector fiber laser,” IEEE Photonics Technol. Lett. 19(20), 1598–1600 (2007).
[Crossref]

A. C. Wong, W. H. Chung, C. Lu, and H. Y. Tam, “Composite structure distributed Bragg reflector fiber laser for simultaneous two-parameter sensing,” IEEE Photonics Technol. Lett. 22(19), 1464–1466 (2010).
[Crossref]

J. Lightwave Technol. (3)

G. A. Ball and W. H. Glenn, “Design of a single-mode linear-cavity erbium fiber laser utilizing Bragg reflectors,” J. Lightwave Technol. 10(10), 1338–1343 (1992).
[Crossref]

W. H. Loh, B. N. Samson, L. Dong, G. J. Cowle, and K. Hsu, “High performance single frequency fiber grating-based Erbium:Ytterbium-codoped fiber lasers,” J. Lightwave Technol. 16(1), 114–118 (1998).
[Crossref]

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Atkins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

Y. Zhang, B. O. Guan, and H. Y. Tam, “Characteristics of the distributed Bragg reflector fiber laser sensor for lateral force measurement,” Opt. Commun. 281(18), 4619–4622 (2008).
[Crossref]

Opt. Express (2)

Opt. Lett. (4)

Other (1)

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 2007), Chap. 15.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 The proposed DBR fiber laser configuration. A parabola-like opening is formed inside the cavity by CO2 laser exposure.
Fig. 2
Fig. 2 (a) Microphotograph of the fabricated opening in the cavity of DBR fiber laser. The opening width and depth are in general given by W = 100μm~150μm and h = 40μm~60μm, respectively. (b) Typical emission spectra of the DBR fiber laser before and after CO2 laser machining, with parameters W = 136.5μm and h = 59.3μm, respectively.
Fig. 3
Fig. 3 (a) Laser emission spectra at different RIs, with W = 139.7μm, h = 58.9 μm, and Ppump = 26mw. Inset shows the enlarged image of the spectra near the laser power peak. (b) Laser emission power and lasing wavelength as a function of external RI.
Fig. 4
Fig. 4 Variation RI responsivity with pump power.
Fig. 5
Fig. 5 (a) Laser emission power function of pump power at different external RIs. (b) Laser emission power function of external RI at different pump powers.
Fig. 6
Fig. 6 (a) Laser emission spectra of the laser at different temperatures with Ppump = 26mw. (b) Variations of the lasing wavelength and the output power with temperature varying from 30°C to 100 °C.

Tables (1)

Tables Icon

Table 1 Measured RI responsivities with respect to different opening sizes at Ppump = 26mw.

Metrics