Abstract

Spectral broadening in bulk material is a simple, robust and low-cost method to extend the bandwidth of a laser source. Consequently, it enables ultrashort pulse compression. Experiments with a 38 MHz repetition rate, 50 W average power Kerr-lens mode-locked thin-disk oscillator were performed. The initially 1.2 μJ, 250 fs pulses are compressed to 43 fs by means of self-phase modulation in a single 15 mm thick quartz crystal and subsequent chirped-mirror compression. The losses due to spatial nonlinear effects are only about 40 %. A second broadening stage reduced the Fourier transform limit to 15 fs. It is shown that the intensity noise of the oscillator is preserved independent of the broadening factor. Simulations manifest the peak power scalability of the concept and show that it is applicable to a wide range of input pulse durations and energies.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Temporal pulse compression in a xenon-filled Kagome-type hollow-core photonic crystal fiber at high average power

O. H. Heckl, C. J. Saraceno, C. R. E. Baer, T. Südmeyer, Y. Y. Wang, Y. Cheng, F. Benabid, and U. Keller
Opt. Express 19(20) 19142-19149 (2011)

Multi-gigawatt ultrashort pulses at high repetition rate and average power from two-stage nonlinear compression

S. Hädrich, H. Carstens, J. Rothhardt, J. Limpert, and A. Tünnermann
Opt. Express 19(8) 7546-7552 (2011)

Sub-4 fs laser pulses at high average power and high repetition rate from an all-solid-state setup

Chih-Hsuan Lu, Tobias Witting, Anton Husakou, Marc J.J. Vrakking, A. H. Kung, and Federico J. Furch
Opt. Express 26(7) 8941-8956 (2018)

References

  • View by:
  • |
  • |
  • |

  1. N. Bloembergen, “From nanosecond to femtosecond science,” Rev. Mod. Phys. 71, S283–S287 (1999).
    [Crossref]
  2. A. H. Zewail, “Femtochemistry: atomic-scale dynamics of the chemical bond,” J. Phys. Chem. A 104, 5660–5694 (2000).
    [Crossref]
  3. S. T. Cundiff and J. Ye, “Colloquium : Femtosecond optical frequency combs,” Rev. Mod. Phys. 75, 325–342 (2003).
    [Crossref]
  4. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nature Photon. 2, 219–225 (2008).
    [Crossref]
  5. S. T. Cundiff and A. M. Weiner, “Optical arbitrary waveform generation,” Nature Photon. 4, 760–766 (2010).
    [Crossref]
  6. M. Hentschel, R. Kienberger, C. Spielmann, G. A. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, and F. Krausz, “Attosecond metrology,” Nature 414, 509–513 (2001).
    [Crossref] [PubMed]
  7. F. Krausz and M. I. Stockman, “Attosecond metrology: from electron capture to future signal processing,” Nature Photon. 8, 205–213 (2014).
    [Crossref]
  8. A. Schiffrin, T. Paasch-Colberg, N. Karpowicz, V. Apalkov, D. Gerster, S. Muhlbrandt, M. Korbman, J. Reichert, M. Schultze, S. Holzner, J. V. Barth, R. Kienberger, R. Ernstorfer, V. S. Yakovlev, M. I. Stockman, and F. Krausz, “Optical-field-induced current in dielectrics,” Nature 493, 70–74 (2013).
    [Crossref]
  9. T. T. Luu, M. Garg, S. Y. Kruchinin, A. Moulet, M. T. Hassan, and E. Goulielmakis, “Extreme ultraviolet high-harmonic spectroscopy of solids,” Nature 521, 498–502 (2015).
    [Crossref] [PubMed]
  10. T. Brabec and F. Krausz, “Intense few-cycle laser fields: Frontiers of nonlinear optics,” Rev. Mod. Phys. 72, 545–591 (2000).
    [Crossref]
  11. M. T. Hassan, T. T. Luu, A. Moulet, O. Raskazovskaya, P. Zhokhov, M. Garg, N. Karpowicz, A. M. Zheltikov, V. Pervak, F. Krausz, and E. Goulielmakis, “Optical attosecond pulses and tracking the nonlinear response of bound electrons,” Nature 530, 66–70 (2016).
    [Crossref] [PubMed]
  12. F. X. Kärtner, Few-Cycle Laser Pulse Generation and Its Applications (Springer, 2004).
    [Crossref]
  13. S. Rausch, T. Binhammer, A. Harth, J. Kim, R. Ell, F. X. Kärtner, and U. Morgner, “Controlled waveforms on the single-cycle scale from a femtosecond oscillator,” Opt. Express 16, 9739–9745 (2008).
    [Crossref] [PubMed]
  14. S. H. Cho, F. X. Kärtner, U. Morgner, E. P. Ippen, J. G. Fujimoto, J. E. Cunningham, and W. H. Knox, “Generation of 90-nJ pulses with a 4-MHz repetition-rate Kerr-lens mode-locked Ti:Al2O3 laser operating with net positive and negative intracavity dispersion,” Opt. Lett. 26, 560–562 (2001).
    [Crossref]
  15. S. Naumov, A. Fernandez, R. Graf, P. Dombi, F. Krausz, and A. Apolonski, “Approaching the microjoule frontier with femtosecond laser oscillators,” New J. Phys. 7, 216 (2005).
    [Crossref]
  16. H. Fattahi, H. G. Barros, M. Gorjan, T. Nubbemeyer, B. Alsaif, C. Y. Teisset, M. Schultze, S. Prinz, M. Haefner, M. Ueffing, A. Alismail, L. Vámos, A. Schwarz, O. Pronin, J. Brons, X. T. Geng, G. Arisholm, M. Ciappina, V. S. Yakovlev, D.-E. Kim, A. M. Azzeer, N. Karpowicz, D. Sutter, Z. Major, T. Metzger, and F. Krausz, “Third-generation femtosecond technology,” Optica 1, 45–63 (2014).
    [Crossref]
  17. C. Gohle, T. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H. A. Schuessler, F. Krausz, and T. W. Hänsch, “A frequency comb in the extreme ultraviolet,” Nature 436, 234–237 (2005).
    [Crossref] [PubMed]
  18. M. Krebs, S. Hadrich, S. Demmler, J. Rothhardt, A. Zair, L. Chipperfield, J. Limpert, and A. Tünnermann, “Towards isolated attosecond pulses at megahertz repetition rates,” Nature Photon. 7, 555–559 (2013).
    [Crossref]
  19. Y. Liu, S. Tschuch, M. Dürr, A. Rudenko, R. Moshammer, J. Ullrich, M. Siegel, and U. Morgner, “Towards non-sequential double ionization of Ne and Ar using a femtosecond laser oscillator,” Opt. Express 15, 18103–18110 (2007).
    [Crossref] [PubMed]
  20. A. Mikkelsen, J. Schwenke, T. Fordell, G. Luo, K. Klunder, E. Hilner, N. Anttu, A. A. Zakharov, E. Lundgren, J. Mauritsson, J. N. Andersen, H. Q. Xu, and A. L’Huillier, “Photoemission electron microscopy using extreme ultraviolet attosecond pulse trains,” Rev. Sci. Instrum. 80, 123703 (2009).
    [Crossref]
  21. C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fibre lasers,” Nature Photon. 7, 861–867 (2013).
    [Crossref]
  22. P. Russbueldt, D. Hoffmann, M. Hofer, J. Lohring, J. Luttmann, A. Meissner, J. Weitenberg, M. Traub, T. Sartorius, D. Esser, R. Wester, P. Loosen, and R. Poprawe, “Innoslab amplifiers,” IEEE J. Sel. Top. Quantum Electron. 21, 447–463 (2015).
    [Crossref]
  23. T. Metzger, M. Gorjan, M. Ueffing, C. Y. Teisset, M. Schultze, R. Bessing, M. Häfner, S. Prinz, D. Sutter, K. Michel, H. Barros, Z. Major, and F. Krausz, in CLEO: Applications and Technology, (Optical Society of America, 2014), p. JTh4L.1.
  24. D. Bauer, I. Zawischa, D. H. Sutter, A. Killi, and T. Dekorsy, “Mode-locked Yb:YAG thin-disk oscillator with 41 μJ pulse energy at 145 W average infrared power and high power frequency conversion,” Opt. Express 20, 9698–9704 (2012).
    [Crossref] [PubMed]
  25. C. J. Saraceno, F. Emaury, C. Schriber, M. Hoffmann, M. Golling, T. Südmeyer, and U. Keller, “Ultrafast thin-disk laser with 80μJ pulse energy and 242 W of average power,” Opt. Lett. 39, 9–12 (2014).
    [Crossref]
  26. C. J. Saraceno, F. Emaury, O. H. Heckl, C. R. E. Baer, M. Hoffmann, C. Schriber, M. Golling, T. Südmeyer, and U. Keller, “275 W average output power from a femtosecond thin disk oscillator operated in a vacuum environment,” Opt. Express 20, 23535–23541 (2012).
    [Crossref] [PubMed]
  27. J. Brons, V. Pervak, E. Fedulova, D. Bauer, D. Sutter, V. Kalashnikov, A. Apolonskiy, O. Pronin, and F. Krausz, “Energy scaling of Kerr-lens mode-locked thin-disk oscillators,” Opt. Lett. 39, 6442–6445 (2014).
    [Crossref] [PubMed]
  28. J. Brons, V. Pervak, M. Seidel, D. Bauer, D. Sutter, O. Pronin, and F. Krausz, in Advanced Solid State Lasers, (Optical Society of America, 2015), p. ATh3A.1.
  29. O. Pronin, M. Seidel, F. Lücking, J. Brons, E. Fedulova, M. Trubetskov, V. Pervak, A. Apolonski, T. Udem, and F. Krausz, “High-power multi-megahertz source of waveform-stabilized few-cycle light,” Nat. Commun. 6, 6988 (2015).
    [Crossref] [PubMed]
  30. J. Zhang, J. Brons, M. Seidel, V. Pervak, V. Kalashnikov, Z. Wei, A. Apolonski, F. Krausz, and O. Pronin, in The European Conference on Lasers and Electro-Optics, (Optical Society of America, 2015), p. PDA.1.
  31. W. H. Knox, R. L. Fork, M. C. Downer, R. H. Stolen, C. V. Shank, and J. A. Valdmanis, “Optical pulse compression to 8 fs at a 5 khz repetition rate,” Appl. Phys. Lett. 46, 1120–1121 (1985).
    [Crossref]
  32. R. L. Fork, C. H. B. Cruz, P. C. Becker, and C. V. Shank, “Compression of optical pulses to six femtoseconds by using cubic phase compensation,” Opt. Lett. 12, 483–485 (1987).
    [Crossref] [PubMed]
  33. T. Südmeyer, F. Brunner, E. Innerhofer, R. Paschotta, K. Furusawa, J. C. Baggett, T. M. Monro, D. J. Richardson, and U. Keller, “Nonlinear femtosecond pulse compression at high average power levels by use of a large-mode-area holey fiber,” Opt. Lett. 28, 1951–1953 (2003).
    [Crossref] [PubMed]
  34. C. Jocher, T. Eidam, S. Hädrich, J. Limpert, and A. Tünnermann, “Sub 25 fs pulses from solid-core nonlinear compression stage at 250 W of average power,” Opt. Lett. 37, 4407–4409 (2012).
    [Crossref] [PubMed]
  35. A. V. Smith, B. Do, G. Hadley, and R. L. Farrow, “Optical damage limits to pulse energy from fibers,” IEEE J. Sel. Top. Quantum Electron. 15, 153–158 (2009).
    [Crossref]
  36. C. Rolland and P. B. Corkum, “Compression of high-power optical pulses,” J. Opt. Soc. Am. B 5, 641–647 (1988).
    [Crossref]
  37. V. Petrov, W. Rudolph, and B. Wilhelmi, “Compression of high-energy femtosecond light pulses by self-phase modulation in bulk media,” J. Mod. Opt. 36, 587–595 (1989).
    [Crossref]
  38. P. Chernev and V. Petrov, “Self-focusing of short light pulses in dispersive media,” Opt. Commun. 87, 28–32 (1992).
    [Crossref]
  39. P. Chernev and V. Petrov, “Self-focusing of light pulses in the presence of normal group-velocity dispersion,” Opt. Lett. 17, 172–174 (1992).
    [Crossref] [PubMed]
  40. N. Milosevic, G. Tempea, and T. Brabec, “Optical pulse compression: bulk media versus hollow waveguides,” Opt. Lett. 25, 672–674 (2000).
    [Crossref]
  41. M. Nisoli, S. De Silvestri, and O. Svelto, “Generation of high energy 10 fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68, 2793–2795 (1996).
    [Crossref]
  42. C.-H. Lu, Y.-J. Tsou, H.-Y. Chen, B.-H. Chen, Y.-C. Cheng, S.-D. Yang, M.-C. Chen, C.-C. Hsu, and A. H. Kung, “Generation of intense supercontinuum in condensed media,” Optica 1, 400–406 (2014).
    [Crossref]
  43. J. C. Travers, W. Chang, J. Nold, N. Y. Joly, and P. S. J. Russell, “Ultrafast nonlinear optics in gas-filled hollow-core photonic crystal fibers (invited),” J. Opt. Soc. Am. B 28, A11–A26 (2011).
    [Crossref]
  44. F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399–402 (2002).
    [Crossref] [PubMed]
  45. O. H. Heckl, C. J. Saraceno, C. R. E. Baer, T. Südmeyer, Y. Y. Wang, Y. Cheng, F. Benabid, and U. Keller, “Temporal pulse compression in a xenon-filled kagome-type hollow-core photonic crystal fiber at high average power,” Opt. Express 19, 19142–19149 (2011).
    [Crossref] [PubMed]
  46. F. Emaury, C. J. Saraceno, B. Debord, D. Ghosh, A. Diebold, F. Gèrôme, T. Südmeyer, F. Benabid, and U. Keller, “Efficient spectral broadening in the 100-W average power regime using gas-filled Kagome HC-PCF and pulse compression,” Opt. Lett. 39, 6843–6846 (2014).
    [Crossref] [PubMed]
  47. K. F. Mak, M. Seidel, O. Pronin, M. H. Frosz, A. Abdolvand, V. Pervak, A. Apolonski, F. Krausz, J. C. Travers, and P. S. J. Russell, “Compressing μJ-level pulses from 250 fs to sub-10 fs at 38-MHz repetition rate using two gas-filled hollow-core photonic crystal fiber stages,” Opt. Lett. 40, 1238–1241 (2015).
    [Crossref] [PubMed]
  48. M. Gebhardt, C. Gaida, S. Hädrich, F. Stutzki, C. Jauregui, J. Limpert, and A. Tünnermann, “Nonlinear compression of an ultrashort-pulse thulium-based fiber laser to sub-70 fs in Kagome photonic crystal fiber,” Opt. Lett. 40, 2770–2773 (2015).
    [Crossref] [PubMed]
  49. S. Hädrich, M. Krebs, A. Hoffmann, A. Klenke, J. Rothhardt, J. Limpert, and A. Tünnermann, “Exploring new avenues in high repetition rate table-top coherent extreme ultraviolet sources,” Light Sci Appl 4, e320 (2015).
    [Crossref]
  50. M. Seidel, J. Brons, E. Fedulova, V. Pervak, A. Apolonski, O. Pronin, and F. Krausz, in CLEO: Science and Innovations, (Optical Society of America, 2014), p. STh5C.9.
  51. P. M. W. French, “The generation of ultrashort laser pulses,” Rep. Prog. Phys. 58, 169 (1995).
    [Crossref]
  52. R. W. Boyd, Nonlinear Optics (Academic2008), Chap. 7.
  53. A. Yariv, Quantum Electronics (John Wiley and Sons, Inc., 1989), Chap 18.
  54. M. Centurion, M. A. Porter, P. G. Kevrekidis, and D. Psaltis, “Nonlinearity management in optics: Experiment, theory, and simulation,” Phys. Rev. Lett. 97, 033903 (2006).
    [Crossref] [PubMed]
  55. O. Pronin, J. Brons, C. Grasse, V. Pervak, G. Boehm, M.-C. Amann, V. L. Kalashnikov, A. Apolonski, and F. Krausz, “High-power 200 fs Kerr-lens mode-locked Yb:YAG thin-disk oscillator,” Opt. Lett. 36, 4746–4748 (2011).
    [Crossref] [PubMed]
  56. R. R. Alfano and S. L. Shapiro, “Emission in the region 4000 to 7000 å via four-photon coupling in glass,” Phys. Rev. Lett. 24, 584–587 (1970).
    [Crossref]
  57. A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441, 47–189 (2007).
    [Crossref]
  58. M. Bradler, P. Baum, and E. Riedle, “Femtosecond continuum generation in bulk laser host materials with sub-μJ pump pulses,” Appl. Phys. B 97, 561–574 (2009).
    [Crossref]
  59. Newport, “Spatial filters,” http://www.newport.com/Spatial-Filters/144910/1033/content.aspx (2015/11/13).
  60. G. Arisholm, “General numerical methods for simulating second-order nonlinear interactions in birefringent media,” J. Opt. Soc. Am. B 14, 2543–2549 (1997).
    [Crossref]
  61. G. Arisholm, “Quantum noise initiation and macroscopic fluctuations in optical parametric oscillators,” J. Opt. Soc. Am. B 16, 117–127 (1999).
    [Crossref]
  62. G. Ghosh, “Dispersion-equation coefficients for the refractive index and birefringence of calcite and quartz crystals,” Opt. Commun. 163, 95–102 (1999).
    [Crossref]
  63. D. Milam, “Review and assessment of measured values of the nonlinear refractive-index coefficient of fused silica,” Appl. Opt. 37, 546–550 (1998).
    [Crossref]
  64. N. Krebs, I. Pugliesi, and E. Riedle, “Pulse compression of ultrashort uv pulses by self-phase modulation in bulk material,” Appl. Sci. 3, 153 (2013).
    [Crossref]
  65. U. Møller, Y. Yu, I. Kubat, C. R. Petersen, X. Gai, L. Brilland, D. Méchin, C. Caillaud, J. Troles, B. Luther-Davies, and O. Bang, “Multi-milliwatt mid-infrared supercontinuum generation in a suspended core chalcogenide fiber,” Opt. Express 23, 3282–3291 (2015).
    [Crossref] [PubMed]
  66. F. Silva, D. R. Austin, A. Thai, M. Baudisch, M. Hemmer, D. Faccio, A. Couairon, and J. Biegert, “Multi-octave supercontinuum generation from mid-infrared filamentation in a bulk crystal,” Nat. Commun. 3, 807 (2012).
    [Crossref] [PubMed]
  67. F. Emaury, A. Diebold, C. J. Saraceno, and U. Keller, “Compact extreme ultraviolet source at megahertz pulse repetition rate with a low-noise ultrafast thin-disk laser oscillator,” Optica 2, 980–984 (2015).
    [Crossref]
  68. D. H. Reitze, A. M. Weiner, and D. E. Leaird, “High-power femtosecond optical pulse compression by using spatial solitons,” Opt. Lett. 16, 1409–1411 (1991).
    [Crossref] [PubMed]

2016 (1)

M. T. Hassan, T. T. Luu, A. Moulet, O. Raskazovskaya, P. Zhokhov, M. Garg, N. Karpowicz, A. M. Zheltikov, V. Pervak, F. Krausz, and E. Goulielmakis, “Optical attosecond pulses and tracking the nonlinear response of bound electrons,” Nature 530, 66–70 (2016).
[Crossref] [PubMed]

2015 (8)

T. T. Luu, M. Garg, S. Y. Kruchinin, A. Moulet, M. T. Hassan, and E. Goulielmakis, “Extreme ultraviolet high-harmonic spectroscopy of solids,” Nature 521, 498–502 (2015).
[Crossref] [PubMed]

P. Russbueldt, D. Hoffmann, M. Hofer, J. Lohring, J. Luttmann, A. Meissner, J. Weitenberg, M. Traub, T. Sartorius, D. Esser, R. Wester, P. Loosen, and R. Poprawe, “Innoslab amplifiers,” IEEE J. Sel. Top. Quantum Electron. 21, 447–463 (2015).
[Crossref]

O. Pronin, M. Seidel, F. Lücking, J. Brons, E. Fedulova, M. Trubetskov, V. Pervak, A. Apolonski, T. Udem, and F. Krausz, “High-power multi-megahertz source of waveform-stabilized few-cycle light,” Nat. Commun. 6, 6988 (2015).
[Crossref] [PubMed]

S. Hädrich, M. Krebs, A. Hoffmann, A. Klenke, J. Rothhardt, J. Limpert, and A. Tünnermann, “Exploring new avenues in high repetition rate table-top coherent extreme ultraviolet sources,” Light Sci Appl 4, e320 (2015).
[Crossref]

U. Møller, Y. Yu, I. Kubat, C. R. Petersen, X. Gai, L. Brilland, D. Méchin, C. Caillaud, J. Troles, B. Luther-Davies, and O. Bang, “Multi-milliwatt mid-infrared supercontinuum generation in a suspended core chalcogenide fiber,” Opt. Express 23, 3282–3291 (2015).
[Crossref] [PubMed]

K. F. Mak, M. Seidel, O. Pronin, M. H. Frosz, A. Abdolvand, V. Pervak, A. Apolonski, F. Krausz, J. C. Travers, and P. S. J. Russell, “Compressing μJ-level pulses from 250 fs to sub-10 fs at 38-MHz repetition rate using two gas-filled hollow-core photonic crystal fiber stages,” Opt. Lett. 40, 1238–1241 (2015).
[Crossref] [PubMed]

M. Gebhardt, C. Gaida, S. Hädrich, F. Stutzki, C. Jauregui, J. Limpert, and A. Tünnermann, “Nonlinear compression of an ultrashort-pulse thulium-based fiber laser to sub-70 fs in Kagome photonic crystal fiber,” Opt. Lett. 40, 2770–2773 (2015).
[Crossref] [PubMed]

F. Emaury, A. Diebold, C. J. Saraceno, and U. Keller, “Compact extreme ultraviolet source at megahertz pulse repetition rate with a low-noise ultrafast thin-disk laser oscillator,” Optica 2, 980–984 (2015).
[Crossref]

2014 (6)

C. J. Saraceno, F. Emaury, C. Schriber, M. Hoffmann, M. Golling, T. Südmeyer, and U. Keller, “Ultrafast thin-disk laser with 80μJ pulse energy and 242 W of average power,” Opt. Lett. 39, 9–12 (2014).
[Crossref]

H. Fattahi, H. G. Barros, M. Gorjan, T. Nubbemeyer, B. Alsaif, C. Y. Teisset, M. Schultze, S. Prinz, M. Haefner, M. Ueffing, A. Alismail, L. Vámos, A. Schwarz, O. Pronin, J. Brons, X. T. Geng, G. Arisholm, M. Ciappina, V. S. Yakovlev, D.-E. Kim, A. M. Azzeer, N. Karpowicz, D. Sutter, Z. Major, T. Metzger, and F. Krausz, “Third-generation femtosecond technology,” Optica 1, 45–63 (2014).
[Crossref]

J. Brons, V. Pervak, E. Fedulova, D. Bauer, D. Sutter, V. Kalashnikov, A. Apolonskiy, O. Pronin, and F. Krausz, “Energy scaling of Kerr-lens mode-locked thin-disk oscillators,” Opt. Lett. 39, 6442–6445 (2014).
[Crossref] [PubMed]

F. Emaury, C. J. Saraceno, B. Debord, D. Ghosh, A. Diebold, F. Gèrôme, T. Südmeyer, F. Benabid, and U. Keller, “Efficient spectral broadening in the 100-W average power regime using gas-filled Kagome HC-PCF and pulse compression,” Opt. Lett. 39, 6843–6846 (2014).
[Crossref] [PubMed]

C.-H. Lu, Y.-J. Tsou, H.-Y. Chen, B.-H. Chen, Y.-C. Cheng, S.-D. Yang, M.-C. Chen, C.-C. Hsu, and A. H. Kung, “Generation of intense supercontinuum in condensed media,” Optica 1, 400–406 (2014).
[Crossref]

F. Krausz and M. I. Stockman, “Attosecond metrology: from electron capture to future signal processing,” Nature Photon. 8, 205–213 (2014).
[Crossref]

2013 (4)

A. Schiffrin, T. Paasch-Colberg, N. Karpowicz, V. Apalkov, D. Gerster, S. Muhlbrandt, M. Korbman, J. Reichert, M. Schultze, S. Holzner, J. V. Barth, R. Kienberger, R. Ernstorfer, V. S. Yakovlev, M. I. Stockman, and F. Krausz, “Optical-field-induced current in dielectrics,” Nature 493, 70–74 (2013).
[Crossref]

M. Krebs, S. Hadrich, S. Demmler, J. Rothhardt, A. Zair, L. Chipperfield, J. Limpert, and A. Tünnermann, “Towards isolated attosecond pulses at megahertz repetition rates,” Nature Photon. 7, 555–559 (2013).
[Crossref]

C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fibre lasers,” Nature Photon. 7, 861–867 (2013).
[Crossref]

N. Krebs, I. Pugliesi, and E. Riedle, “Pulse compression of ultrashort uv pulses by self-phase modulation in bulk material,” Appl. Sci. 3, 153 (2013).
[Crossref]

2012 (4)

2011 (3)

2010 (1)

S. T. Cundiff and A. M. Weiner, “Optical arbitrary waveform generation,” Nature Photon. 4, 760–766 (2010).
[Crossref]

2009 (3)

A. Mikkelsen, J. Schwenke, T. Fordell, G. Luo, K. Klunder, E. Hilner, N. Anttu, A. A. Zakharov, E. Lundgren, J. Mauritsson, J. N. Andersen, H. Q. Xu, and A. L’Huillier, “Photoemission electron microscopy using extreme ultraviolet attosecond pulse trains,” Rev. Sci. Instrum. 80, 123703 (2009).
[Crossref]

M. Bradler, P. Baum, and E. Riedle, “Femtosecond continuum generation in bulk laser host materials with sub-μJ pump pulses,” Appl. Phys. B 97, 561–574 (2009).
[Crossref]

A. V. Smith, B. Do, G. Hadley, and R. L. Farrow, “Optical damage limits to pulse energy from fibers,” IEEE J. Sel. Top. Quantum Electron. 15, 153–158 (2009).
[Crossref]

2008 (2)

2007 (2)

2006 (1)

M. Centurion, M. A. Porter, P. G. Kevrekidis, and D. Psaltis, “Nonlinearity management in optics: Experiment, theory, and simulation,” Phys. Rev. Lett. 97, 033903 (2006).
[Crossref] [PubMed]

2005 (2)

S. Naumov, A. Fernandez, R. Graf, P. Dombi, F. Krausz, and A. Apolonski, “Approaching the microjoule frontier with femtosecond laser oscillators,” New J. Phys. 7, 216 (2005).
[Crossref]

C. Gohle, T. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H. A. Schuessler, F. Krausz, and T. W. Hänsch, “A frequency comb in the extreme ultraviolet,” Nature 436, 234–237 (2005).
[Crossref] [PubMed]

2003 (2)

2002 (1)

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399–402 (2002).
[Crossref] [PubMed]

2001 (2)

2000 (3)

A. H. Zewail, “Femtochemistry: atomic-scale dynamics of the chemical bond,” J. Phys. Chem. A 104, 5660–5694 (2000).
[Crossref]

T. Brabec and F. Krausz, “Intense few-cycle laser fields: Frontiers of nonlinear optics,” Rev. Mod. Phys. 72, 545–591 (2000).
[Crossref]

N. Milosevic, G. Tempea, and T. Brabec, “Optical pulse compression: bulk media versus hollow waveguides,” Opt. Lett. 25, 672–674 (2000).
[Crossref]

1999 (3)

N. Bloembergen, “From nanosecond to femtosecond science,” Rev. Mod. Phys. 71, S283–S287 (1999).
[Crossref]

G. Arisholm, “Quantum noise initiation and macroscopic fluctuations in optical parametric oscillators,” J. Opt. Soc. Am. B 16, 117–127 (1999).
[Crossref]

G. Ghosh, “Dispersion-equation coefficients for the refractive index and birefringence of calcite and quartz crystals,” Opt. Commun. 163, 95–102 (1999).
[Crossref]

1998 (1)

1997 (1)

1996 (1)

M. Nisoli, S. De Silvestri, and O. Svelto, “Generation of high energy 10 fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68, 2793–2795 (1996).
[Crossref]

1995 (1)

P. M. W. French, “The generation of ultrashort laser pulses,” Rep. Prog. Phys. 58, 169 (1995).
[Crossref]

1992 (2)

P. Chernev and V. Petrov, “Self-focusing of short light pulses in dispersive media,” Opt. Commun. 87, 28–32 (1992).
[Crossref]

P. Chernev and V. Petrov, “Self-focusing of light pulses in the presence of normal group-velocity dispersion,” Opt. Lett. 17, 172–174 (1992).
[Crossref] [PubMed]

1991 (1)

1989 (1)

V. Petrov, W. Rudolph, and B. Wilhelmi, “Compression of high-energy femtosecond light pulses by self-phase modulation in bulk media,” J. Mod. Opt. 36, 587–595 (1989).
[Crossref]

1988 (1)

1987 (1)

1985 (1)

W. H. Knox, R. L. Fork, M. C. Downer, R. H. Stolen, C. V. Shank, and J. A. Valdmanis, “Optical pulse compression to 8 fs at a 5 khz repetition rate,” Appl. Phys. Lett. 46, 1120–1121 (1985).
[Crossref]

1970 (1)

R. R. Alfano and S. L. Shapiro, “Emission in the region 4000 to 7000 å via four-photon coupling in glass,” Phys. Rev. Lett. 24, 584–587 (1970).
[Crossref]

Abdolvand, A.

Alfano, R. R.

R. R. Alfano and S. L. Shapiro, “Emission in the region 4000 to 7000 å via four-photon coupling in glass,” Phys. Rev. Lett. 24, 584–587 (1970).
[Crossref]

Alismail, A.

Alsaif, B.

Amann, M.-C.

Andersen, J. N.

A. Mikkelsen, J. Schwenke, T. Fordell, G. Luo, K. Klunder, E. Hilner, N. Anttu, A. A. Zakharov, E. Lundgren, J. Mauritsson, J. N. Andersen, H. Q. Xu, and A. L’Huillier, “Photoemission electron microscopy using extreme ultraviolet attosecond pulse trains,” Rev. Sci. Instrum. 80, 123703 (2009).
[Crossref]

Antonopoulos, G.

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399–402 (2002).
[Crossref] [PubMed]

Anttu, N.

A. Mikkelsen, J. Schwenke, T. Fordell, G. Luo, K. Klunder, E. Hilner, N. Anttu, A. A. Zakharov, E. Lundgren, J. Mauritsson, J. N. Andersen, H. Q. Xu, and A. L’Huillier, “Photoemission electron microscopy using extreme ultraviolet attosecond pulse trains,” Rev. Sci. Instrum. 80, 123703 (2009).
[Crossref]

Apalkov, V.

A. Schiffrin, T. Paasch-Colberg, N. Karpowicz, V. Apalkov, D. Gerster, S. Muhlbrandt, M. Korbman, J. Reichert, M. Schultze, S. Holzner, J. V. Barth, R. Kienberger, R. Ernstorfer, V. S. Yakovlev, M. I. Stockman, and F. Krausz, “Optical-field-induced current in dielectrics,” Nature 493, 70–74 (2013).
[Crossref]

Apolonski, A.

O. Pronin, M. Seidel, F. Lücking, J. Brons, E. Fedulova, M. Trubetskov, V. Pervak, A. Apolonski, T. Udem, and F. Krausz, “High-power multi-megahertz source of waveform-stabilized few-cycle light,” Nat. Commun. 6, 6988 (2015).
[Crossref] [PubMed]

K. F. Mak, M. Seidel, O. Pronin, M. H. Frosz, A. Abdolvand, V. Pervak, A. Apolonski, F. Krausz, J. C. Travers, and P. S. J. Russell, “Compressing μJ-level pulses from 250 fs to sub-10 fs at 38-MHz repetition rate using two gas-filled hollow-core photonic crystal fiber stages,” Opt. Lett. 40, 1238–1241 (2015).
[Crossref] [PubMed]

O. Pronin, J. Brons, C. Grasse, V. Pervak, G. Boehm, M.-C. Amann, V. L. Kalashnikov, A. Apolonski, and F. Krausz, “High-power 200 fs Kerr-lens mode-locked Yb:YAG thin-disk oscillator,” Opt. Lett. 36, 4746–4748 (2011).
[Crossref] [PubMed]

S. Naumov, A. Fernandez, R. Graf, P. Dombi, F. Krausz, and A. Apolonski, “Approaching the microjoule frontier with femtosecond laser oscillators,” New J. Phys. 7, 216 (2005).
[Crossref]

J. Zhang, J. Brons, M. Seidel, V. Pervak, V. Kalashnikov, Z. Wei, A. Apolonski, F. Krausz, and O. Pronin, in The European Conference on Lasers and Electro-Optics, (Optical Society of America, 2015), p. PDA.1.

M. Seidel, J. Brons, E. Fedulova, V. Pervak, A. Apolonski, O. Pronin, and F. Krausz, in CLEO: Science and Innovations, (Optical Society of America, 2014), p. STh5C.9.

Apolonskiy, A.

Arisholm, G.

Austin, D. R.

F. Silva, D. R. Austin, A. Thai, M. Baudisch, M. Hemmer, D. Faccio, A. Couairon, and J. Biegert, “Multi-octave supercontinuum generation from mid-infrared filamentation in a bulk crystal,” Nat. Commun. 3, 807 (2012).
[Crossref] [PubMed]

Azzeer, A. M.

Baer, C. R. E.

Baggett, J. C.

Bang, O.

Barros, H.

T. Metzger, M. Gorjan, M. Ueffing, C. Y. Teisset, M. Schultze, R. Bessing, M. Häfner, S. Prinz, D. Sutter, K. Michel, H. Barros, Z. Major, and F. Krausz, in CLEO: Applications and Technology, (Optical Society of America, 2014), p. JTh4L.1.

Barros, H. G.

Barth, J. V.

A. Schiffrin, T. Paasch-Colberg, N. Karpowicz, V. Apalkov, D. Gerster, S. Muhlbrandt, M. Korbman, J. Reichert, M. Schultze, S. Holzner, J. V. Barth, R. Kienberger, R. Ernstorfer, V. S. Yakovlev, M. I. Stockman, and F. Krausz, “Optical-field-induced current in dielectrics,” Nature 493, 70–74 (2013).
[Crossref]

Baudisch, M.

F. Silva, D. R. Austin, A. Thai, M. Baudisch, M. Hemmer, D. Faccio, A. Couairon, and J. Biegert, “Multi-octave supercontinuum generation from mid-infrared filamentation in a bulk crystal,” Nat. Commun. 3, 807 (2012).
[Crossref] [PubMed]

Bauer, D.

Baum, P.

M. Bradler, P. Baum, and E. Riedle, “Femtosecond continuum generation in bulk laser host materials with sub-μJ pump pulses,” Appl. Phys. B 97, 561–574 (2009).
[Crossref]

Becker, P. C.

Benabid, F.

Bessing, R.

T. Metzger, M. Gorjan, M. Ueffing, C. Y. Teisset, M. Schultze, R. Bessing, M. Häfner, S. Prinz, D. Sutter, K. Michel, H. Barros, Z. Major, and F. Krausz, in CLEO: Applications and Technology, (Optical Society of America, 2014), p. JTh4L.1.

Biegert, J.

F. Silva, D. R. Austin, A. Thai, M. Baudisch, M. Hemmer, D. Faccio, A. Couairon, and J. Biegert, “Multi-octave supercontinuum generation from mid-infrared filamentation in a bulk crystal,” Nat. Commun. 3, 807 (2012).
[Crossref] [PubMed]

Binhammer, T.

Bloembergen, N.

N. Bloembergen, “From nanosecond to femtosecond science,” Rev. Mod. Phys. 71, S283–S287 (1999).
[Crossref]

Boehm, G.

Boyd, R. W.

R. W. Boyd, Nonlinear Optics (Academic2008), Chap. 7.

Brabec, T.

M. Hentschel, R. Kienberger, C. Spielmann, G. A. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, and F. Krausz, “Attosecond metrology,” Nature 414, 509–513 (2001).
[Crossref] [PubMed]

T. Brabec and F. Krausz, “Intense few-cycle laser fields: Frontiers of nonlinear optics,” Rev. Mod. Phys. 72, 545–591 (2000).
[Crossref]

N. Milosevic, G. Tempea, and T. Brabec, “Optical pulse compression: bulk media versus hollow waveguides,” Opt. Lett. 25, 672–674 (2000).
[Crossref]

Bradler, M.

M. Bradler, P. Baum, and E. Riedle, “Femtosecond continuum generation in bulk laser host materials with sub-μJ pump pulses,” Appl. Phys. B 97, 561–574 (2009).
[Crossref]

Brilland, L.

Brons, J.

O. Pronin, M. Seidel, F. Lücking, J. Brons, E. Fedulova, M. Trubetskov, V. Pervak, A. Apolonski, T. Udem, and F. Krausz, “High-power multi-megahertz source of waveform-stabilized few-cycle light,” Nat. Commun. 6, 6988 (2015).
[Crossref] [PubMed]

J. Brons, V. Pervak, E. Fedulova, D. Bauer, D. Sutter, V. Kalashnikov, A. Apolonskiy, O. Pronin, and F. Krausz, “Energy scaling of Kerr-lens mode-locked thin-disk oscillators,” Opt. Lett. 39, 6442–6445 (2014).
[Crossref] [PubMed]

H. Fattahi, H. G. Barros, M. Gorjan, T. Nubbemeyer, B. Alsaif, C. Y. Teisset, M. Schultze, S. Prinz, M. Haefner, M. Ueffing, A. Alismail, L. Vámos, A. Schwarz, O. Pronin, J. Brons, X. T. Geng, G. Arisholm, M. Ciappina, V. S. Yakovlev, D.-E. Kim, A. M. Azzeer, N. Karpowicz, D. Sutter, Z. Major, T. Metzger, and F. Krausz, “Third-generation femtosecond technology,” Optica 1, 45–63 (2014).
[Crossref]

O. Pronin, J. Brons, C. Grasse, V. Pervak, G. Boehm, M.-C. Amann, V. L. Kalashnikov, A. Apolonski, and F. Krausz, “High-power 200 fs Kerr-lens mode-locked Yb:YAG thin-disk oscillator,” Opt. Lett. 36, 4746–4748 (2011).
[Crossref] [PubMed]

M. Seidel, J. Brons, E. Fedulova, V. Pervak, A. Apolonski, O. Pronin, and F. Krausz, in CLEO: Science and Innovations, (Optical Society of America, 2014), p. STh5C.9.

J. Zhang, J. Brons, M. Seidel, V. Pervak, V. Kalashnikov, Z. Wei, A. Apolonski, F. Krausz, and O. Pronin, in The European Conference on Lasers and Electro-Optics, (Optical Society of America, 2015), p. PDA.1.

J. Brons, V. Pervak, M. Seidel, D. Bauer, D. Sutter, O. Pronin, and F. Krausz, in Advanced Solid State Lasers, (Optical Society of America, 2015), p. ATh3A.1.

Brunner, F.

Caillaud, C.

Centurion, M.

M. Centurion, M. A. Porter, P. G. Kevrekidis, and D. Psaltis, “Nonlinearity management in optics: Experiment, theory, and simulation,” Phys. Rev. Lett. 97, 033903 (2006).
[Crossref] [PubMed]

Chang, W.

Chen, B.-H.

Chen, H.-Y.

Chen, M.-C.

Cheng, Y.

Cheng, Y.-C.

Chernev, P.

P. Chernev and V. Petrov, “Self-focusing of light pulses in the presence of normal group-velocity dispersion,” Opt. Lett. 17, 172–174 (1992).
[Crossref] [PubMed]

P. Chernev and V. Petrov, “Self-focusing of short light pulses in dispersive media,” Opt. Commun. 87, 28–32 (1992).
[Crossref]

Chipperfield, L.

M. Krebs, S. Hadrich, S. Demmler, J. Rothhardt, A. Zair, L. Chipperfield, J. Limpert, and A. Tünnermann, “Towards isolated attosecond pulses at megahertz repetition rates,” Nature Photon. 7, 555–559 (2013).
[Crossref]

Cho, S. H.

Ciappina, M.

Corkum, P.

M. Hentschel, R. Kienberger, C. Spielmann, G. A. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, and F. Krausz, “Attosecond metrology,” Nature 414, 509–513 (2001).
[Crossref] [PubMed]

Corkum, P. B.

Couairon, A.

F. Silva, D. R. Austin, A. Thai, M. Baudisch, M. Hemmer, D. Faccio, A. Couairon, and J. Biegert, “Multi-octave supercontinuum generation from mid-infrared filamentation in a bulk crystal,” Nat. Commun. 3, 807 (2012).
[Crossref] [PubMed]

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441, 47–189 (2007).
[Crossref]

Cruz, C. H. B.

Cundiff, S. T.

S. T. Cundiff and A. M. Weiner, “Optical arbitrary waveform generation,” Nature Photon. 4, 760–766 (2010).
[Crossref]

S. T. Cundiff and J. Ye, “Colloquium : Femtosecond optical frequency combs,” Rev. Mod. Phys. 75, 325–342 (2003).
[Crossref]

Cunningham, J. E.

De Silvestri, S.

M. Nisoli, S. De Silvestri, and O. Svelto, “Generation of high energy 10 fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68, 2793–2795 (1996).
[Crossref]

Debord, B.

Dekorsy, T.

Demmler, S.

M. Krebs, S. Hadrich, S. Demmler, J. Rothhardt, A. Zair, L. Chipperfield, J. Limpert, and A. Tünnermann, “Towards isolated attosecond pulses at megahertz repetition rates,” Nature Photon. 7, 555–559 (2013).
[Crossref]

Diebold, A.

Do, B.

A. V. Smith, B. Do, G. Hadley, and R. L. Farrow, “Optical damage limits to pulse energy from fibers,” IEEE J. Sel. Top. Quantum Electron. 15, 153–158 (2009).
[Crossref]

Dombi, P.

S. Naumov, A. Fernandez, R. Graf, P. Dombi, F. Krausz, and A. Apolonski, “Approaching the microjoule frontier with femtosecond laser oscillators,” New J. Phys. 7, 216 (2005).
[Crossref]

Downer, M. C.

W. H. Knox, R. L. Fork, M. C. Downer, R. H. Stolen, C. V. Shank, and J. A. Valdmanis, “Optical pulse compression to 8 fs at a 5 khz repetition rate,” Appl. Phys. Lett. 46, 1120–1121 (1985).
[Crossref]

Drescher, M.

M. Hentschel, R. Kienberger, C. Spielmann, G. A. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, and F. Krausz, “Attosecond metrology,” Nature 414, 509–513 (2001).
[Crossref] [PubMed]

Dürr, M.

Eidam, T.

Ell, R.

Emaury, F.

Ernstorfer, R.

A. Schiffrin, T. Paasch-Colberg, N. Karpowicz, V. Apalkov, D. Gerster, S. Muhlbrandt, M. Korbman, J. Reichert, M. Schultze, S. Holzner, J. V. Barth, R. Kienberger, R. Ernstorfer, V. S. Yakovlev, M. I. Stockman, and F. Krausz, “Optical-field-induced current in dielectrics,” Nature 493, 70–74 (2013).
[Crossref]

Esser, D.

P. Russbueldt, D. Hoffmann, M. Hofer, J. Lohring, J. Luttmann, A. Meissner, J. Weitenberg, M. Traub, T. Sartorius, D. Esser, R. Wester, P. Loosen, and R. Poprawe, “Innoslab amplifiers,” IEEE J. Sel. Top. Quantum Electron. 21, 447–463 (2015).
[Crossref]

Faccio, D.

F. Silva, D. R. Austin, A. Thai, M. Baudisch, M. Hemmer, D. Faccio, A. Couairon, and J. Biegert, “Multi-octave supercontinuum generation from mid-infrared filamentation in a bulk crystal,” Nat. Commun. 3, 807 (2012).
[Crossref] [PubMed]

Farrow, R. L.

A. V. Smith, B. Do, G. Hadley, and R. L. Farrow, “Optical damage limits to pulse energy from fibers,” IEEE J. Sel. Top. Quantum Electron. 15, 153–158 (2009).
[Crossref]

Fattahi, H.

Fedulova, E.

O. Pronin, M. Seidel, F. Lücking, J. Brons, E. Fedulova, M. Trubetskov, V. Pervak, A. Apolonski, T. Udem, and F. Krausz, “High-power multi-megahertz source of waveform-stabilized few-cycle light,” Nat. Commun. 6, 6988 (2015).
[Crossref] [PubMed]

J. Brons, V. Pervak, E. Fedulova, D. Bauer, D. Sutter, V. Kalashnikov, A. Apolonskiy, O. Pronin, and F. Krausz, “Energy scaling of Kerr-lens mode-locked thin-disk oscillators,” Opt. Lett. 39, 6442–6445 (2014).
[Crossref] [PubMed]

M. Seidel, J. Brons, E. Fedulova, V. Pervak, A. Apolonski, O. Pronin, and F. Krausz, in CLEO: Science and Innovations, (Optical Society of America, 2014), p. STh5C.9.

Fernandez, A.

S. Naumov, A. Fernandez, R. Graf, P. Dombi, F. Krausz, and A. Apolonski, “Approaching the microjoule frontier with femtosecond laser oscillators,” New J. Phys. 7, 216 (2005).
[Crossref]

Fordell, T.

A. Mikkelsen, J. Schwenke, T. Fordell, G. Luo, K. Klunder, E. Hilner, N. Anttu, A. A. Zakharov, E. Lundgren, J. Mauritsson, J. N. Andersen, H. Q. Xu, and A. L’Huillier, “Photoemission electron microscopy using extreme ultraviolet attosecond pulse trains,” Rev. Sci. Instrum. 80, 123703 (2009).
[Crossref]

Fork, R. L.

R. L. Fork, C. H. B. Cruz, P. C. Becker, and C. V. Shank, “Compression of optical pulses to six femtoseconds by using cubic phase compensation,” Opt. Lett. 12, 483–485 (1987).
[Crossref] [PubMed]

W. H. Knox, R. L. Fork, M. C. Downer, R. H. Stolen, C. V. Shank, and J. A. Valdmanis, “Optical pulse compression to 8 fs at a 5 khz repetition rate,” Appl. Phys. Lett. 46, 1120–1121 (1985).
[Crossref]

French, P. M. W.

P. M. W. French, “The generation of ultrashort laser pulses,” Rep. Prog. Phys. 58, 169 (1995).
[Crossref]

Frosz, M. H.

Fujimoto, J. G.

Furusawa, K.

Gai, X.

Gaida, C.

Garg, M.

M. T. Hassan, T. T. Luu, A. Moulet, O. Raskazovskaya, P. Zhokhov, M. Garg, N. Karpowicz, A. M. Zheltikov, V. Pervak, F. Krausz, and E. Goulielmakis, “Optical attosecond pulses and tracking the nonlinear response of bound electrons,” Nature 530, 66–70 (2016).
[Crossref] [PubMed]

T. T. Luu, M. Garg, S. Y. Kruchinin, A. Moulet, M. T. Hassan, and E. Goulielmakis, “Extreme ultraviolet high-harmonic spectroscopy of solids,” Nature 521, 498–502 (2015).
[Crossref] [PubMed]

Gattass, R. R.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nature Photon. 2, 219–225 (2008).
[Crossref]

Gebhardt, M.

Geng, X. T.

Gèrôme, F.

Gerster, D.

A. Schiffrin, T. Paasch-Colberg, N. Karpowicz, V. Apalkov, D. Gerster, S. Muhlbrandt, M. Korbman, J. Reichert, M. Schultze, S. Holzner, J. V. Barth, R. Kienberger, R. Ernstorfer, V. S. Yakovlev, M. I. Stockman, and F. Krausz, “Optical-field-induced current in dielectrics,” Nature 493, 70–74 (2013).
[Crossref]

Ghosh, D.

Ghosh, G.

G. Ghosh, “Dispersion-equation coefficients for the refractive index and birefringence of calcite and quartz crystals,” Opt. Commun. 163, 95–102 (1999).
[Crossref]

Gohle, C.

C. Gohle, T. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H. A. Schuessler, F. Krausz, and T. W. Hänsch, “A frequency comb in the extreme ultraviolet,” Nature 436, 234–237 (2005).
[Crossref] [PubMed]

Golling, M.

Gorjan, M.

Goulielmakis, E.

M. T. Hassan, T. T. Luu, A. Moulet, O. Raskazovskaya, P. Zhokhov, M. Garg, N. Karpowicz, A. M. Zheltikov, V. Pervak, F. Krausz, and E. Goulielmakis, “Optical attosecond pulses and tracking the nonlinear response of bound electrons,” Nature 530, 66–70 (2016).
[Crossref] [PubMed]

T. T. Luu, M. Garg, S. Y. Kruchinin, A. Moulet, M. T. Hassan, and E. Goulielmakis, “Extreme ultraviolet high-harmonic spectroscopy of solids,” Nature 521, 498–502 (2015).
[Crossref] [PubMed]

Graf, R.

S. Naumov, A. Fernandez, R. Graf, P. Dombi, F. Krausz, and A. Apolonski, “Approaching the microjoule frontier with femtosecond laser oscillators,” New J. Phys. 7, 216 (2005).
[Crossref]

Grasse, C.

Hadley, G.

A. V. Smith, B. Do, G. Hadley, and R. L. Farrow, “Optical damage limits to pulse energy from fibers,” IEEE J. Sel. Top. Quantum Electron. 15, 153–158 (2009).
[Crossref]

Hadrich, S.

M. Krebs, S. Hadrich, S. Demmler, J. Rothhardt, A. Zair, L. Chipperfield, J. Limpert, and A. Tünnermann, “Towards isolated attosecond pulses at megahertz repetition rates,” Nature Photon. 7, 555–559 (2013).
[Crossref]

Hädrich, S.

Haefner, M.

Häfner, M.

T. Metzger, M. Gorjan, M. Ueffing, C. Y. Teisset, M. Schultze, R. Bessing, M. Häfner, S. Prinz, D. Sutter, K. Michel, H. Barros, Z. Major, and F. Krausz, in CLEO: Applications and Technology, (Optical Society of America, 2014), p. JTh4L.1.

Hänsch, T. W.

C. Gohle, T. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H. A. Schuessler, F. Krausz, and T. W. Hänsch, “A frequency comb in the extreme ultraviolet,” Nature 436, 234–237 (2005).
[Crossref] [PubMed]

Harth, A.

Hassan, M. T.

M. T. Hassan, T. T. Luu, A. Moulet, O. Raskazovskaya, P. Zhokhov, M. Garg, N. Karpowicz, A. M. Zheltikov, V. Pervak, F. Krausz, and E. Goulielmakis, “Optical attosecond pulses and tracking the nonlinear response of bound electrons,” Nature 530, 66–70 (2016).
[Crossref] [PubMed]

T. T. Luu, M. Garg, S. Y. Kruchinin, A. Moulet, M. T. Hassan, and E. Goulielmakis, “Extreme ultraviolet high-harmonic spectroscopy of solids,” Nature 521, 498–502 (2015).
[Crossref] [PubMed]

Heckl, O. H.

Heinzmann, U.

M. Hentschel, R. Kienberger, C. Spielmann, G. A. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, and F. Krausz, “Attosecond metrology,” Nature 414, 509–513 (2001).
[Crossref] [PubMed]

Hemmer, M.

F. Silva, D. R. Austin, A. Thai, M. Baudisch, M. Hemmer, D. Faccio, A. Couairon, and J. Biegert, “Multi-octave supercontinuum generation from mid-infrared filamentation in a bulk crystal,” Nat. Commun. 3, 807 (2012).
[Crossref] [PubMed]

Hentschel, M.

M. Hentschel, R. Kienberger, C. Spielmann, G. A. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, and F. Krausz, “Attosecond metrology,” Nature 414, 509–513 (2001).
[Crossref] [PubMed]

Herrmann, M.

C. Gohle, T. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H. A. Schuessler, F. Krausz, and T. W. Hänsch, “A frequency comb in the extreme ultraviolet,” Nature 436, 234–237 (2005).
[Crossref] [PubMed]

Hilner, E.

A. Mikkelsen, J. Schwenke, T. Fordell, G. Luo, K. Klunder, E. Hilner, N. Anttu, A. A. Zakharov, E. Lundgren, J. Mauritsson, J. N. Andersen, H. Q. Xu, and A. L’Huillier, “Photoemission electron microscopy using extreme ultraviolet attosecond pulse trains,” Rev. Sci. Instrum. 80, 123703 (2009).
[Crossref]

Hofer, M.

P. Russbueldt, D. Hoffmann, M. Hofer, J. Lohring, J. Luttmann, A. Meissner, J. Weitenberg, M. Traub, T. Sartorius, D. Esser, R. Wester, P. Loosen, and R. Poprawe, “Innoslab amplifiers,” IEEE J. Sel. Top. Quantum Electron. 21, 447–463 (2015).
[Crossref]

Hoffmann, A.

S. Hädrich, M. Krebs, A. Hoffmann, A. Klenke, J. Rothhardt, J. Limpert, and A. Tünnermann, “Exploring new avenues in high repetition rate table-top coherent extreme ultraviolet sources,” Light Sci Appl 4, e320 (2015).
[Crossref]

Hoffmann, D.

P. Russbueldt, D. Hoffmann, M. Hofer, J. Lohring, J. Luttmann, A. Meissner, J. Weitenberg, M. Traub, T. Sartorius, D. Esser, R. Wester, P. Loosen, and R. Poprawe, “Innoslab amplifiers,” IEEE J. Sel. Top. Quantum Electron. 21, 447–463 (2015).
[Crossref]

Hoffmann, M.

Holzner, S.

A. Schiffrin, T. Paasch-Colberg, N. Karpowicz, V. Apalkov, D. Gerster, S. Muhlbrandt, M. Korbman, J. Reichert, M. Schultze, S. Holzner, J. V. Barth, R. Kienberger, R. Ernstorfer, V. S. Yakovlev, M. I. Stockman, and F. Krausz, “Optical-field-induced current in dielectrics,” Nature 493, 70–74 (2013).
[Crossref]

Holzwarth, R.

C. Gohle, T. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H. A. Schuessler, F. Krausz, and T. W. Hänsch, “A frequency comb in the extreme ultraviolet,” Nature 436, 234–237 (2005).
[Crossref] [PubMed]

Hsu, C.-C.

Innerhofer, E.

Ippen, E. P.

Jauregui, C.

Jocher, C.

Joly, N. Y.

Kalashnikov, V.

J. Brons, V. Pervak, E. Fedulova, D. Bauer, D. Sutter, V. Kalashnikov, A. Apolonskiy, O. Pronin, and F. Krausz, “Energy scaling of Kerr-lens mode-locked thin-disk oscillators,” Opt. Lett. 39, 6442–6445 (2014).
[Crossref] [PubMed]

J. Zhang, J. Brons, M. Seidel, V. Pervak, V. Kalashnikov, Z. Wei, A. Apolonski, F. Krausz, and O. Pronin, in The European Conference on Lasers and Electro-Optics, (Optical Society of America, 2015), p. PDA.1.

Kalashnikov, V. L.

Karpowicz, N.

M. T. Hassan, T. T. Luu, A. Moulet, O. Raskazovskaya, P. Zhokhov, M. Garg, N. Karpowicz, A. M. Zheltikov, V. Pervak, F. Krausz, and E. Goulielmakis, “Optical attosecond pulses and tracking the nonlinear response of bound electrons,” Nature 530, 66–70 (2016).
[Crossref] [PubMed]

H. Fattahi, H. G. Barros, M. Gorjan, T. Nubbemeyer, B. Alsaif, C. Y. Teisset, M. Schultze, S. Prinz, M. Haefner, M. Ueffing, A. Alismail, L. Vámos, A. Schwarz, O. Pronin, J. Brons, X. T. Geng, G. Arisholm, M. Ciappina, V. S. Yakovlev, D.-E. Kim, A. M. Azzeer, N. Karpowicz, D. Sutter, Z. Major, T. Metzger, and F. Krausz, “Third-generation femtosecond technology,” Optica 1, 45–63 (2014).
[Crossref]

A. Schiffrin, T. Paasch-Colberg, N. Karpowicz, V. Apalkov, D. Gerster, S. Muhlbrandt, M. Korbman, J. Reichert, M. Schultze, S. Holzner, J. V. Barth, R. Kienberger, R. Ernstorfer, V. S. Yakovlev, M. I. Stockman, and F. Krausz, “Optical-field-induced current in dielectrics,” Nature 493, 70–74 (2013).
[Crossref]

Kärtner, F. X.

Keller, U.

F. Emaury, A. Diebold, C. J. Saraceno, and U. Keller, “Compact extreme ultraviolet source at megahertz pulse repetition rate with a low-noise ultrafast thin-disk laser oscillator,” Optica 2, 980–984 (2015).
[Crossref]

F. Emaury, C. J. Saraceno, B. Debord, D. Ghosh, A. Diebold, F. Gèrôme, T. Südmeyer, F. Benabid, and U. Keller, “Efficient spectral broadening in the 100-W average power regime using gas-filled Kagome HC-PCF and pulse compression,” Opt. Lett. 39, 6843–6846 (2014).
[Crossref] [PubMed]

C. J. Saraceno, F. Emaury, C. Schriber, M. Hoffmann, M. Golling, T. Südmeyer, and U. Keller, “Ultrafast thin-disk laser with 80μJ pulse energy and 242 W of average power,” Opt. Lett. 39, 9–12 (2014).
[Crossref]

C. J. Saraceno, F. Emaury, O. H. Heckl, C. R. E. Baer, M. Hoffmann, C. Schriber, M. Golling, T. Südmeyer, and U. Keller, “275 W average output power from a femtosecond thin disk oscillator operated in a vacuum environment,” Opt. Express 20, 23535–23541 (2012).
[Crossref] [PubMed]

O. H. Heckl, C. J. Saraceno, C. R. E. Baer, T. Südmeyer, Y. Y. Wang, Y. Cheng, F. Benabid, and U. Keller, “Temporal pulse compression in a xenon-filled kagome-type hollow-core photonic crystal fiber at high average power,” Opt. Express 19, 19142–19149 (2011).
[Crossref] [PubMed]

T. Südmeyer, F. Brunner, E. Innerhofer, R. Paschotta, K. Furusawa, J. C. Baggett, T. M. Monro, D. J. Richardson, and U. Keller, “Nonlinear femtosecond pulse compression at high average power levels by use of a large-mode-area holey fiber,” Opt. Lett. 28, 1951–1953 (2003).
[Crossref] [PubMed]

Kevrekidis, P. G.

M. Centurion, M. A. Porter, P. G. Kevrekidis, and D. Psaltis, “Nonlinearity management in optics: Experiment, theory, and simulation,” Phys. Rev. Lett. 97, 033903 (2006).
[Crossref] [PubMed]

Kienberger, R.

A. Schiffrin, T. Paasch-Colberg, N. Karpowicz, V. Apalkov, D. Gerster, S. Muhlbrandt, M. Korbman, J. Reichert, M. Schultze, S. Holzner, J. V. Barth, R. Kienberger, R. Ernstorfer, V. S. Yakovlev, M. I. Stockman, and F. Krausz, “Optical-field-induced current in dielectrics,” Nature 493, 70–74 (2013).
[Crossref]

M. Hentschel, R. Kienberger, C. Spielmann, G. A. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, and F. Krausz, “Attosecond metrology,” Nature 414, 509–513 (2001).
[Crossref] [PubMed]

Killi, A.

Kim, D.-E.

Kim, J.

Klenke, A.

S. Hädrich, M. Krebs, A. Hoffmann, A. Klenke, J. Rothhardt, J. Limpert, and A. Tünnermann, “Exploring new avenues in high repetition rate table-top coherent extreme ultraviolet sources,” Light Sci Appl 4, e320 (2015).
[Crossref]

Klunder, K.

A. Mikkelsen, J. Schwenke, T. Fordell, G. Luo, K. Klunder, E. Hilner, N. Anttu, A. A. Zakharov, E. Lundgren, J. Mauritsson, J. N. Andersen, H. Q. Xu, and A. L’Huillier, “Photoemission electron microscopy using extreme ultraviolet attosecond pulse trains,” Rev. Sci. Instrum. 80, 123703 (2009).
[Crossref]

Knight, J. C.

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399–402 (2002).
[Crossref] [PubMed]

Knox, W. H.

Korbman, M.

A. Schiffrin, T. Paasch-Colberg, N. Karpowicz, V. Apalkov, D. Gerster, S. Muhlbrandt, M. Korbman, J. Reichert, M. Schultze, S. Holzner, J. V. Barth, R. Kienberger, R. Ernstorfer, V. S. Yakovlev, M. I. Stockman, and F. Krausz, “Optical-field-induced current in dielectrics,” Nature 493, 70–74 (2013).
[Crossref]

Krausz, F.

M. T. Hassan, T. T. Luu, A. Moulet, O. Raskazovskaya, P. Zhokhov, M. Garg, N. Karpowicz, A. M. Zheltikov, V. Pervak, F. Krausz, and E. Goulielmakis, “Optical attosecond pulses and tracking the nonlinear response of bound electrons,” Nature 530, 66–70 (2016).
[Crossref] [PubMed]

O. Pronin, M. Seidel, F. Lücking, J. Brons, E. Fedulova, M. Trubetskov, V. Pervak, A. Apolonski, T. Udem, and F. Krausz, “High-power multi-megahertz source of waveform-stabilized few-cycle light,” Nat. Commun. 6, 6988 (2015).
[Crossref] [PubMed]

K. F. Mak, M. Seidel, O. Pronin, M. H. Frosz, A. Abdolvand, V. Pervak, A. Apolonski, F. Krausz, J. C. Travers, and P. S. J. Russell, “Compressing μJ-level pulses from 250 fs to sub-10 fs at 38-MHz repetition rate using two gas-filled hollow-core photonic crystal fiber stages,” Opt. Lett. 40, 1238–1241 (2015).
[Crossref] [PubMed]

J. Brons, V. Pervak, E. Fedulova, D. Bauer, D. Sutter, V. Kalashnikov, A. Apolonskiy, O. Pronin, and F. Krausz, “Energy scaling of Kerr-lens mode-locked thin-disk oscillators,” Opt. Lett. 39, 6442–6445 (2014).
[Crossref] [PubMed]

H. Fattahi, H. G. Barros, M. Gorjan, T. Nubbemeyer, B. Alsaif, C. Y. Teisset, M. Schultze, S. Prinz, M. Haefner, M. Ueffing, A. Alismail, L. Vámos, A. Schwarz, O. Pronin, J. Brons, X. T. Geng, G. Arisholm, M. Ciappina, V. S. Yakovlev, D.-E. Kim, A. M. Azzeer, N. Karpowicz, D. Sutter, Z. Major, T. Metzger, and F. Krausz, “Third-generation femtosecond technology,” Optica 1, 45–63 (2014).
[Crossref]

F. Krausz and M. I. Stockman, “Attosecond metrology: from electron capture to future signal processing,” Nature Photon. 8, 205–213 (2014).
[Crossref]

A. Schiffrin, T. Paasch-Colberg, N. Karpowicz, V. Apalkov, D. Gerster, S. Muhlbrandt, M. Korbman, J. Reichert, M. Schultze, S. Holzner, J. V. Barth, R. Kienberger, R. Ernstorfer, V. S. Yakovlev, M. I. Stockman, and F. Krausz, “Optical-field-induced current in dielectrics,” Nature 493, 70–74 (2013).
[Crossref]

O. Pronin, J. Brons, C. Grasse, V. Pervak, G. Boehm, M.-C. Amann, V. L. Kalashnikov, A. Apolonski, and F. Krausz, “High-power 200 fs Kerr-lens mode-locked Yb:YAG thin-disk oscillator,” Opt. Lett. 36, 4746–4748 (2011).
[Crossref] [PubMed]

S. Naumov, A. Fernandez, R. Graf, P. Dombi, F. Krausz, and A. Apolonski, “Approaching the microjoule frontier with femtosecond laser oscillators,” New J. Phys. 7, 216 (2005).
[Crossref]

C. Gohle, T. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H. A. Schuessler, F. Krausz, and T. W. Hänsch, “A frequency comb in the extreme ultraviolet,” Nature 436, 234–237 (2005).
[Crossref] [PubMed]

M. Hentschel, R. Kienberger, C. Spielmann, G. A. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, and F. Krausz, “Attosecond metrology,” Nature 414, 509–513 (2001).
[Crossref] [PubMed]

T. Brabec and F. Krausz, “Intense few-cycle laser fields: Frontiers of nonlinear optics,” Rev. Mod. Phys. 72, 545–591 (2000).
[Crossref]

T. Metzger, M. Gorjan, M. Ueffing, C. Y. Teisset, M. Schultze, R. Bessing, M. Häfner, S. Prinz, D. Sutter, K. Michel, H. Barros, Z. Major, and F. Krausz, in CLEO: Applications and Technology, (Optical Society of America, 2014), p. JTh4L.1.

J. Zhang, J. Brons, M. Seidel, V. Pervak, V. Kalashnikov, Z. Wei, A. Apolonski, F. Krausz, and O. Pronin, in The European Conference on Lasers and Electro-Optics, (Optical Society of America, 2015), p. PDA.1.

J. Brons, V. Pervak, M. Seidel, D. Bauer, D. Sutter, O. Pronin, and F. Krausz, in Advanced Solid State Lasers, (Optical Society of America, 2015), p. ATh3A.1.

M. Seidel, J. Brons, E. Fedulova, V. Pervak, A. Apolonski, O. Pronin, and F. Krausz, in CLEO: Science and Innovations, (Optical Society of America, 2014), p. STh5C.9.

Krebs, M.

S. Hädrich, M. Krebs, A. Hoffmann, A. Klenke, J. Rothhardt, J. Limpert, and A. Tünnermann, “Exploring new avenues in high repetition rate table-top coherent extreme ultraviolet sources,” Light Sci Appl 4, e320 (2015).
[Crossref]

M. Krebs, S. Hadrich, S. Demmler, J. Rothhardt, A. Zair, L. Chipperfield, J. Limpert, and A. Tünnermann, “Towards isolated attosecond pulses at megahertz repetition rates,” Nature Photon. 7, 555–559 (2013).
[Crossref]

Krebs, N.

N. Krebs, I. Pugliesi, and E. Riedle, “Pulse compression of ultrashort uv pulses by self-phase modulation in bulk material,” Appl. Sci. 3, 153 (2013).
[Crossref]

Kruchinin, S. Y.

T. T. Luu, M. Garg, S. Y. Kruchinin, A. Moulet, M. T. Hassan, and E. Goulielmakis, “Extreme ultraviolet high-harmonic spectroscopy of solids,” Nature 521, 498–502 (2015).
[Crossref] [PubMed]

Kubat, I.

Kung, A. H.

L’Huillier, A.

A. Mikkelsen, J. Schwenke, T. Fordell, G. Luo, K. Klunder, E. Hilner, N. Anttu, A. A. Zakharov, E. Lundgren, J. Mauritsson, J. N. Andersen, H. Q. Xu, and A. L’Huillier, “Photoemission electron microscopy using extreme ultraviolet attosecond pulse trains,” Rev. Sci. Instrum. 80, 123703 (2009).
[Crossref]

Leaird, D. E.

Limpert, J.

S. Hädrich, M. Krebs, A. Hoffmann, A. Klenke, J. Rothhardt, J. Limpert, and A. Tünnermann, “Exploring new avenues in high repetition rate table-top coherent extreme ultraviolet sources,” Light Sci Appl 4, e320 (2015).
[Crossref]

M. Gebhardt, C. Gaida, S. Hädrich, F. Stutzki, C. Jauregui, J. Limpert, and A. Tünnermann, “Nonlinear compression of an ultrashort-pulse thulium-based fiber laser to sub-70 fs in Kagome photonic crystal fiber,” Opt. Lett. 40, 2770–2773 (2015).
[Crossref] [PubMed]

C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fibre lasers,” Nature Photon. 7, 861–867 (2013).
[Crossref]

M. Krebs, S. Hadrich, S. Demmler, J. Rothhardt, A. Zair, L. Chipperfield, J. Limpert, and A. Tünnermann, “Towards isolated attosecond pulses at megahertz repetition rates,” Nature Photon. 7, 555–559 (2013).
[Crossref]

C. Jocher, T. Eidam, S. Hädrich, J. Limpert, and A. Tünnermann, “Sub 25 fs pulses from solid-core nonlinear compression stage at 250 W of average power,” Opt. Lett. 37, 4407–4409 (2012).
[Crossref] [PubMed]

Liu, Y.

Lohring, J.

P. Russbueldt, D. Hoffmann, M. Hofer, J. Lohring, J. Luttmann, A. Meissner, J. Weitenberg, M. Traub, T. Sartorius, D. Esser, R. Wester, P. Loosen, and R. Poprawe, “Innoslab amplifiers,” IEEE J. Sel. Top. Quantum Electron. 21, 447–463 (2015).
[Crossref]

Loosen, P.

P. Russbueldt, D. Hoffmann, M. Hofer, J. Lohring, J. Luttmann, A. Meissner, J. Weitenberg, M. Traub, T. Sartorius, D. Esser, R. Wester, P. Loosen, and R. Poprawe, “Innoslab amplifiers,” IEEE J. Sel. Top. Quantum Electron. 21, 447–463 (2015).
[Crossref]

Lu, C.-H.

Lücking, F.

O. Pronin, M. Seidel, F. Lücking, J. Brons, E. Fedulova, M. Trubetskov, V. Pervak, A. Apolonski, T. Udem, and F. Krausz, “High-power multi-megahertz source of waveform-stabilized few-cycle light,” Nat. Commun. 6, 6988 (2015).
[Crossref] [PubMed]

Lundgren, E.

A. Mikkelsen, J. Schwenke, T. Fordell, G. Luo, K. Klunder, E. Hilner, N. Anttu, A. A. Zakharov, E. Lundgren, J. Mauritsson, J. N. Andersen, H. Q. Xu, and A. L’Huillier, “Photoemission electron microscopy using extreme ultraviolet attosecond pulse trains,” Rev. Sci. Instrum. 80, 123703 (2009).
[Crossref]

Luo, G.

A. Mikkelsen, J. Schwenke, T. Fordell, G. Luo, K. Klunder, E. Hilner, N. Anttu, A. A. Zakharov, E. Lundgren, J. Mauritsson, J. N. Andersen, H. Q. Xu, and A. L’Huillier, “Photoemission electron microscopy using extreme ultraviolet attosecond pulse trains,” Rev. Sci. Instrum. 80, 123703 (2009).
[Crossref]

Luther-Davies, B.

Luttmann, J.

P. Russbueldt, D. Hoffmann, M. Hofer, J. Lohring, J. Luttmann, A. Meissner, J. Weitenberg, M. Traub, T. Sartorius, D. Esser, R. Wester, P. Loosen, and R. Poprawe, “Innoslab amplifiers,” IEEE J. Sel. Top. Quantum Electron. 21, 447–463 (2015).
[Crossref]

Luu, T. T.

M. T. Hassan, T. T. Luu, A. Moulet, O. Raskazovskaya, P. Zhokhov, M. Garg, N. Karpowicz, A. M. Zheltikov, V. Pervak, F. Krausz, and E. Goulielmakis, “Optical attosecond pulses and tracking the nonlinear response of bound electrons,” Nature 530, 66–70 (2016).
[Crossref] [PubMed]

T. T. Luu, M. Garg, S. Y. Kruchinin, A. Moulet, M. T. Hassan, and E. Goulielmakis, “Extreme ultraviolet high-harmonic spectroscopy of solids,” Nature 521, 498–502 (2015).
[Crossref] [PubMed]

Major, Z.

Mak, K. F.

Mauritsson, J.

A. Mikkelsen, J. Schwenke, T. Fordell, G. Luo, K. Klunder, E. Hilner, N. Anttu, A. A. Zakharov, E. Lundgren, J. Mauritsson, J. N. Andersen, H. Q. Xu, and A. L’Huillier, “Photoemission electron microscopy using extreme ultraviolet attosecond pulse trains,” Rev. Sci. Instrum. 80, 123703 (2009).
[Crossref]

Mazur, E.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nature Photon. 2, 219–225 (2008).
[Crossref]

Méchin, D.

Meissner, A.

P. Russbueldt, D. Hoffmann, M. Hofer, J. Lohring, J. Luttmann, A. Meissner, J. Weitenberg, M. Traub, T. Sartorius, D. Esser, R. Wester, P. Loosen, and R. Poprawe, “Innoslab amplifiers,” IEEE J. Sel. Top. Quantum Electron. 21, 447–463 (2015).
[Crossref]

Metzger, T.

Michel, K.

T. Metzger, M. Gorjan, M. Ueffing, C. Y. Teisset, M. Schultze, R. Bessing, M. Häfner, S. Prinz, D. Sutter, K. Michel, H. Barros, Z. Major, and F. Krausz, in CLEO: Applications and Technology, (Optical Society of America, 2014), p. JTh4L.1.

Mikkelsen, A.

A. Mikkelsen, J. Schwenke, T. Fordell, G. Luo, K. Klunder, E. Hilner, N. Anttu, A. A. Zakharov, E. Lundgren, J. Mauritsson, J. N. Andersen, H. Q. Xu, and A. L’Huillier, “Photoemission electron microscopy using extreme ultraviolet attosecond pulse trains,” Rev. Sci. Instrum. 80, 123703 (2009).
[Crossref]

Milam, D.

Milosevic, N.

M. Hentschel, R. Kienberger, C. Spielmann, G. A. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, and F. Krausz, “Attosecond metrology,” Nature 414, 509–513 (2001).
[Crossref] [PubMed]

N. Milosevic, G. Tempea, and T. Brabec, “Optical pulse compression: bulk media versus hollow waveguides,” Opt. Lett. 25, 672–674 (2000).
[Crossref]

Møller, U.

Monro, T. M.

Morgner, U.

Moshammer, R.

Moulet, A.

M. T. Hassan, T. T. Luu, A. Moulet, O. Raskazovskaya, P. Zhokhov, M. Garg, N. Karpowicz, A. M. Zheltikov, V. Pervak, F. Krausz, and E. Goulielmakis, “Optical attosecond pulses and tracking the nonlinear response of bound electrons,” Nature 530, 66–70 (2016).
[Crossref] [PubMed]

T. T. Luu, M. Garg, S. Y. Kruchinin, A. Moulet, M. T. Hassan, and E. Goulielmakis, “Extreme ultraviolet high-harmonic spectroscopy of solids,” Nature 521, 498–502 (2015).
[Crossref] [PubMed]

Muhlbrandt, S.

A. Schiffrin, T. Paasch-Colberg, N. Karpowicz, V. Apalkov, D. Gerster, S. Muhlbrandt, M. Korbman, J. Reichert, M. Schultze, S. Holzner, J. V. Barth, R. Kienberger, R. Ernstorfer, V. S. Yakovlev, M. I. Stockman, and F. Krausz, “Optical-field-induced current in dielectrics,” Nature 493, 70–74 (2013).
[Crossref]

Mysyrowicz, A.

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441, 47–189 (2007).
[Crossref]

Naumov, S.

S. Naumov, A. Fernandez, R. Graf, P. Dombi, F. Krausz, and A. Apolonski, “Approaching the microjoule frontier with femtosecond laser oscillators,” New J. Phys. 7, 216 (2005).
[Crossref]

Nisoli, M.

M. Nisoli, S. De Silvestri, and O. Svelto, “Generation of high energy 10 fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68, 2793–2795 (1996).
[Crossref]

Nold, J.

Nubbemeyer, T.

Paasch-Colberg, T.

A. Schiffrin, T. Paasch-Colberg, N. Karpowicz, V. Apalkov, D. Gerster, S. Muhlbrandt, M. Korbman, J. Reichert, M. Schultze, S. Holzner, J. V. Barth, R. Kienberger, R. Ernstorfer, V. S. Yakovlev, M. I. Stockman, and F. Krausz, “Optical-field-induced current in dielectrics,” Nature 493, 70–74 (2013).
[Crossref]

Paschotta, R.

Pervak, V.

M. T. Hassan, T. T. Luu, A. Moulet, O. Raskazovskaya, P. Zhokhov, M. Garg, N. Karpowicz, A. M. Zheltikov, V. Pervak, F. Krausz, and E. Goulielmakis, “Optical attosecond pulses and tracking the nonlinear response of bound electrons,” Nature 530, 66–70 (2016).
[Crossref] [PubMed]

O. Pronin, M. Seidel, F. Lücking, J. Brons, E. Fedulova, M. Trubetskov, V. Pervak, A. Apolonski, T. Udem, and F. Krausz, “High-power multi-megahertz source of waveform-stabilized few-cycle light,” Nat. Commun. 6, 6988 (2015).
[Crossref] [PubMed]

K. F. Mak, M. Seidel, O. Pronin, M. H. Frosz, A. Abdolvand, V. Pervak, A. Apolonski, F. Krausz, J. C. Travers, and P. S. J. Russell, “Compressing μJ-level pulses from 250 fs to sub-10 fs at 38-MHz repetition rate using two gas-filled hollow-core photonic crystal fiber stages,” Opt. Lett. 40, 1238–1241 (2015).
[Crossref] [PubMed]

J. Brons, V. Pervak, E. Fedulova, D. Bauer, D. Sutter, V. Kalashnikov, A. Apolonskiy, O. Pronin, and F. Krausz, “Energy scaling of Kerr-lens mode-locked thin-disk oscillators,” Opt. Lett. 39, 6442–6445 (2014).
[Crossref] [PubMed]

O. Pronin, J. Brons, C. Grasse, V. Pervak, G. Boehm, M.-C. Amann, V. L. Kalashnikov, A. Apolonski, and F. Krausz, “High-power 200 fs Kerr-lens mode-locked Yb:YAG thin-disk oscillator,” Opt. Lett. 36, 4746–4748 (2011).
[Crossref] [PubMed]

J. Zhang, J. Brons, M. Seidel, V. Pervak, V. Kalashnikov, Z. Wei, A. Apolonski, F. Krausz, and O. Pronin, in The European Conference on Lasers and Electro-Optics, (Optical Society of America, 2015), p. PDA.1.

M. Seidel, J. Brons, E. Fedulova, V. Pervak, A. Apolonski, O. Pronin, and F. Krausz, in CLEO: Science and Innovations, (Optical Society of America, 2014), p. STh5C.9.

J. Brons, V. Pervak, M. Seidel, D. Bauer, D. Sutter, O. Pronin, and F. Krausz, in Advanced Solid State Lasers, (Optical Society of America, 2015), p. ATh3A.1.

Petersen, C. R.

Petrov, V.

P. Chernev and V. Petrov, “Self-focusing of short light pulses in dispersive media,” Opt. Commun. 87, 28–32 (1992).
[Crossref]

P. Chernev and V. Petrov, “Self-focusing of light pulses in the presence of normal group-velocity dispersion,” Opt. Lett. 17, 172–174 (1992).
[Crossref] [PubMed]

V. Petrov, W. Rudolph, and B. Wilhelmi, “Compression of high-energy femtosecond light pulses by self-phase modulation in bulk media,” J. Mod. Opt. 36, 587–595 (1989).
[Crossref]

Poprawe, R.

P. Russbueldt, D. Hoffmann, M. Hofer, J. Lohring, J. Luttmann, A. Meissner, J. Weitenberg, M. Traub, T. Sartorius, D. Esser, R. Wester, P. Loosen, and R. Poprawe, “Innoslab amplifiers,” IEEE J. Sel. Top. Quantum Electron. 21, 447–463 (2015).
[Crossref]

Porter, M. A.

M. Centurion, M. A. Porter, P. G. Kevrekidis, and D. Psaltis, “Nonlinearity management in optics: Experiment, theory, and simulation,” Phys. Rev. Lett. 97, 033903 (2006).
[Crossref] [PubMed]

Prinz, S.

Pronin, O.

O. Pronin, M. Seidel, F. Lücking, J. Brons, E. Fedulova, M. Trubetskov, V. Pervak, A. Apolonski, T. Udem, and F. Krausz, “High-power multi-megahertz source of waveform-stabilized few-cycle light,” Nat. Commun. 6, 6988 (2015).
[Crossref] [PubMed]

K. F. Mak, M. Seidel, O. Pronin, M. H. Frosz, A. Abdolvand, V. Pervak, A. Apolonski, F. Krausz, J. C. Travers, and P. S. J. Russell, “Compressing μJ-level pulses from 250 fs to sub-10 fs at 38-MHz repetition rate using two gas-filled hollow-core photonic crystal fiber stages,” Opt. Lett. 40, 1238–1241 (2015).
[Crossref] [PubMed]

H. Fattahi, H. G. Barros, M. Gorjan, T. Nubbemeyer, B. Alsaif, C. Y. Teisset, M. Schultze, S. Prinz, M. Haefner, M. Ueffing, A. Alismail, L. Vámos, A. Schwarz, O. Pronin, J. Brons, X. T. Geng, G. Arisholm, M. Ciappina, V. S. Yakovlev, D.-E. Kim, A. M. Azzeer, N. Karpowicz, D. Sutter, Z. Major, T. Metzger, and F. Krausz, “Third-generation femtosecond technology,” Optica 1, 45–63 (2014).
[Crossref]

J. Brons, V. Pervak, E. Fedulova, D. Bauer, D. Sutter, V. Kalashnikov, A. Apolonskiy, O. Pronin, and F. Krausz, “Energy scaling of Kerr-lens mode-locked thin-disk oscillators,” Opt. Lett. 39, 6442–6445 (2014).
[Crossref] [PubMed]

O. Pronin, J. Brons, C. Grasse, V. Pervak, G. Boehm, M.-C. Amann, V. L. Kalashnikov, A. Apolonski, and F. Krausz, “High-power 200 fs Kerr-lens mode-locked Yb:YAG thin-disk oscillator,” Opt. Lett. 36, 4746–4748 (2011).
[Crossref] [PubMed]

M. Seidel, J. Brons, E. Fedulova, V. Pervak, A. Apolonski, O. Pronin, and F. Krausz, in CLEO: Science and Innovations, (Optical Society of America, 2014), p. STh5C.9.

J. Zhang, J. Brons, M. Seidel, V. Pervak, V. Kalashnikov, Z. Wei, A. Apolonski, F. Krausz, and O. Pronin, in The European Conference on Lasers and Electro-Optics, (Optical Society of America, 2015), p. PDA.1.

J. Brons, V. Pervak, M. Seidel, D. Bauer, D. Sutter, O. Pronin, and F. Krausz, in Advanced Solid State Lasers, (Optical Society of America, 2015), p. ATh3A.1.

Psaltis, D.

M. Centurion, M. A. Porter, P. G. Kevrekidis, and D. Psaltis, “Nonlinearity management in optics: Experiment, theory, and simulation,” Phys. Rev. Lett. 97, 033903 (2006).
[Crossref] [PubMed]

Pugliesi, I.

N. Krebs, I. Pugliesi, and E. Riedle, “Pulse compression of ultrashort uv pulses by self-phase modulation in bulk material,” Appl. Sci. 3, 153 (2013).
[Crossref]

Raskazovskaya, O.

M. T. Hassan, T. T. Luu, A. Moulet, O. Raskazovskaya, P. Zhokhov, M. Garg, N. Karpowicz, A. M. Zheltikov, V. Pervak, F. Krausz, and E. Goulielmakis, “Optical attosecond pulses and tracking the nonlinear response of bound electrons,” Nature 530, 66–70 (2016).
[Crossref] [PubMed]

Rausch, S.

Rauschenberger, J.

C. Gohle, T. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H. A. Schuessler, F. Krausz, and T. W. Hänsch, “A frequency comb in the extreme ultraviolet,” Nature 436, 234–237 (2005).
[Crossref] [PubMed]

Reichert, J.

A. Schiffrin, T. Paasch-Colberg, N. Karpowicz, V. Apalkov, D. Gerster, S. Muhlbrandt, M. Korbman, J. Reichert, M. Schultze, S. Holzner, J. V. Barth, R. Kienberger, R. Ernstorfer, V. S. Yakovlev, M. I. Stockman, and F. Krausz, “Optical-field-induced current in dielectrics,” Nature 493, 70–74 (2013).
[Crossref]

Reider, G. A.

M. Hentschel, R. Kienberger, C. Spielmann, G. A. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, and F. Krausz, “Attosecond metrology,” Nature 414, 509–513 (2001).
[Crossref] [PubMed]

Reitze, D. H.

Richardson, D. J.

Riedle, E.

N. Krebs, I. Pugliesi, and E. Riedle, “Pulse compression of ultrashort uv pulses by self-phase modulation in bulk material,” Appl. Sci. 3, 153 (2013).
[Crossref]

M. Bradler, P. Baum, and E. Riedle, “Femtosecond continuum generation in bulk laser host materials with sub-μJ pump pulses,” Appl. Phys. B 97, 561–574 (2009).
[Crossref]

Rolland, C.

Rothhardt, J.

S. Hädrich, M. Krebs, A. Hoffmann, A. Klenke, J. Rothhardt, J. Limpert, and A. Tünnermann, “Exploring new avenues in high repetition rate table-top coherent extreme ultraviolet sources,” Light Sci Appl 4, e320 (2015).
[Crossref]

M. Krebs, S. Hadrich, S. Demmler, J. Rothhardt, A. Zair, L. Chipperfield, J. Limpert, and A. Tünnermann, “Towards isolated attosecond pulses at megahertz repetition rates,” Nature Photon. 7, 555–559 (2013).
[Crossref]

Rudenko, A.

Rudolph, W.

V. Petrov, W. Rudolph, and B. Wilhelmi, “Compression of high-energy femtosecond light pulses by self-phase modulation in bulk media,” J. Mod. Opt. 36, 587–595 (1989).
[Crossref]

Russbueldt, P.

P. Russbueldt, D. Hoffmann, M. Hofer, J. Lohring, J. Luttmann, A. Meissner, J. Weitenberg, M. Traub, T. Sartorius, D. Esser, R. Wester, P. Loosen, and R. Poprawe, “Innoslab amplifiers,” IEEE J. Sel. Top. Quantum Electron. 21, 447–463 (2015).
[Crossref]

Russell, P. S. J.

Saraceno, C. J.

Sartorius, T.

P. Russbueldt, D. Hoffmann, M. Hofer, J. Lohring, J. Luttmann, A. Meissner, J. Weitenberg, M. Traub, T. Sartorius, D. Esser, R. Wester, P. Loosen, and R. Poprawe, “Innoslab amplifiers,” IEEE J. Sel. Top. Quantum Electron. 21, 447–463 (2015).
[Crossref]

Schiffrin, A.

A. Schiffrin, T. Paasch-Colberg, N. Karpowicz, V. Apalkov, D. Gerster, S. Muhlbrandt, M. Korbman, J. Reichert, M. Schultze, S. Holzner, J. V. Barth, R. Kienberger, R. Ernstorfer, V. S. Yakovlev, M. I. Stockman, and F. Krausz, “Optical-field-induced current in dielectrics,” Nature 493, 70–74 (2013).
[Crossref]

Schriber, C.

Schuessler, H. A.

C. Gohle, T. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H. A. Schuessler, F. Krausz, and T. W. Hänsch, “A frequency comb in the extreme ultraviolet,” Nature 436, 234–237 (2005).
[Crossref] [PubMed]

Schultze, M.

H. Fattahi, H. G. Barros, M. Gorjan, T. Nubbemeyer, B. Alsaif, C. Y. Teisset, M. Schultze, S. Prinz, M. Haefner, M. Ueffing, A. Alismail, L. Vámos, A. Schwarz, O. Pronin, J. Brons, X. T. Geng, G. Arisholm, M. Ciappina, V. S. Yakovlev, D.-E. Kim, A. M. Azzeer, N. Karpowicz, D. Sutter, Z. Major, T. Metzger, and F. Krausz, “Third-generation femtosecond technology,” Optica 1, 45–63 (2014).
[Crossref]

A. Schiffrin, T. Paasch-Colberg, N. Karpowicz, V. Apalkov, D. Gerster, S. Muhlbrandt, M. Korbman, J. Reichert, M. Schultze, S. Holzner, J. V. Barth, R. Kienberger, R. Ernstorfer, V. S. Yakovlev, M. I. Stockman, and F. Krausz, “Optical-field-induced current in dielectrics,” Nature 493, 70–74 (2013).
[Crossref]

T. Metzger, M. Gorjan, M. Ueffing, C. Y. Teisset, M. Schultze, R. Bessing, M. Häfner, S. Prinz, D. Sutter, K. Michel, H. Barros, Z. Major, and F. Krausz, in CLEO: Applications and Technology, (Optical Society of America, 2014), p. JTh4L.1.

Schwarz, A.

Schwenke, J.

A. Mikkelsen, J. Schwenke, T. Fordell, G. Luo, K. Klunder, E. Hilner, N. Anttu, A. A. Zakharov, E. Lundgren, J. Mauritsson, J. N. Andersen, H. Q. Xu, and A. L’Huillier, “Photoemission electron microscopy using extreme ultraviolet attosecond pulse trains,” Rev. Sci. Instrum. 80, 123703 (2009).
[Crossref]

Seidel, M.

O. Pronin, M. Seidel, F. Lücking, J. Brons, E. Fedulova, M. Trubetskov, V. Pervak, A. Apolonski, T. Udem, and F. Krausz, “High-power multi-megahertz source of waveform-stabilized few-cycle light,” Nat. Commun. 6, 6988 (2015).
[Crossref] [PubMed]

K. F. Mak, M. Seidel, O. Pronin, M. H. Frosz, A. Abdolvand, V. Pervak, A. Apolonski, F. Krausz, J. C. Travers, and P. S. J. Russell, “Compressing μJ-level pulses from 250 fs to sub-10 fs at 38-MHz repetition rate using two gas-filled hollow-core photonic crystal fiber stages,” Opt. Lett. 40, 1238–1241 (2015).
[Crossref] [PubMed]

J. Zhang, J. Brons, M. Seidel, V. Pervak, V. Kalashnikov, Z. Wei, A. Apolonski, F. Krausz, and O. Pronin, in The European Conference on Lasers and Electro-Optics, (Optical Society of America, 2015), p. PDA.1.

J. Brons, V. Pervak, M. Seidel, D. Bauer, D. Sutter, O. Pronin, and F. Krausz, in Advanced Solid State Lasers, (Optical Society of America, 2015), p. ATh3A.1.

M. Seidel, J. Brons, E. Fedulova, V. Pervak, A. Apolonski, O. Pronin, and F. Krausz, in CLEO: Science and Innovations, (Optical Society of America, 2014), p. STh5C.9.

Shank, C. V.

R. L. Fork, C. H. B. Cruz, P. C. Becker, and C. V. Shank, “Compression of optical pulses to six femtoseconds by using cubic phase compensation,” Opt. Lett. 12, 483–485 (1987).
[Crossref] [PubMed]

W. H. Knox, R. L. Fork, M. C. Downer, R. H. Stolen, C. V. Shank, and J. A. Valdmanis, “Optical pulse compression to 8 fs at a 5 khz repetition rate,” Appl. Phys. Lett. 46, 1120–1121 (1985).
[Crossref]

Shapiro, S. L.

R. R. Alfano and S. L. Shapiro, “Emission in the region 4000 to 7000 å via four-photon coupling in glass,” Phys. Rev. Lett. 24, 584–587 (1970).
[Crossref]

Siegel, M.

Silva, F.

F. Silva, D. R. Austin, A. Thai, M. Baudisch, M. Hemmer, D. Faccio, A. Couairon, and J. Biegert, “Multi-octave supercontinuum generation from mid-infrared filamentation in a bulk crystal,” Nat. Commun. 3, 807 (2012).
[Crossref] [PubMed]

Smith, A. V.

A. V. Smith, B. Do, G. Hadley, and R. L. Farrow, “Optical damage limits to pulse energy from fibers,” IEEE J. Sel. Top. Quantum Electron. 15, 153–158 (2009).
[Crossref]

Spielmann, C.

M. Hentschel, R. Kienberger, C. Spielmann, G. A. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, and F. Krausz, “Attosecond metrology,” Nature 414, 509–513 (2001).
[Crossref] [PubMed]

Stockman, M. I.

F. Krausz and M. I. Stockman, “Attosecond metrology: from electron capture to future signal processing,” Nature Photon. 8, 205–213 (2014).
[Crossref]

A. Schiffrin, T. Paasch-Colberg, N. Karpowicz, V. Apalkov, D. Gerster, S. Muhlbrandt, M. Korbman, J. Reichert, M. Schultze, S. Holzner, J. V. Barth, R. Kienberger, R. Ernstorfer, V. S. Yakovlev, M. I. Stockman, and F. Krausz, “Optical-field-induced current in dielectrics,” Nature 493, 70–74 (2013).
[Crossref]

Stolen, R. H.

W. H. Knox, R. L. Fork, M. C. Downer, R. H. Stolen, C. V. Shank, and J. A. Valdmanis, “Optical pulse compression to 8 fs at a 5 khz repetition rate,” Appl. Phys. Lett. 46, 1120–1121 (1985).
[Crossref]

Stutzki, F.

Südmeyer, T.

Sutter, D.

Sutter, D. H.

Svelto, O.

M. Nisoli, S. De Silvestri, and O. Svelto, “Generation of high energy 10 fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68, 2793–2795 (1996).
[Crossref]

Teisset, C. Y.

Tempea, G.

Thai, A.

F. Silva, D. R. Austin, A. Thai, M. Baudisch, M. Hemmer, D. Faccio, A. Couairon, and J. Biegert, “Multi-octave supercontinuum generation from mid-infrared filamentation in a bulk crystal,” Nat. Commun. 3, 807 (2012).
[Crossref] [PubMed]

Traub, M.

P. Russbueldt, D. Hoffmann, M. Hofer, J. Lohring, J. Luttmann, A. Meissner, J. Weitenberg, M. Traub, T. Sartorius, D. Esser, R. Wester, P. Loosen, and R. Poprawe, “Innoslab amplifiers,” IEEE J. Sel. Top. Quantum Electron. 21, 447–463 (2015).
[Crossref]

Travers, J. C.

Troles, J.

Trubetskov, M.

O. Pronin, M. Seidel, F. Lücking, J. Brons, E. Fedulova, M. Trubetskov, V. Pervak, A. Apolonski, T. Udem, and F. Krausz, “High-power multi-megahertz source of waveform-stabilized few-cycle light,” Nat. Commun. 6, 6988 (2015).
[Crossref] [PubMed]

Tschuch, S.

Tsou, Y.-J.

Tünnermann, A.

M. Gebhardt, C. Gaida, S. Hädrich, F. Stutzki, C. Jauregui, J. Limpert, and A. Tünnermann, “Nonlinear compression of an ultrashort-pulse thulium-based fiber laser to sub-70 fs in Kagome photonic crystal fiber,” Opt. Lett. 40, 2770–2773 (2015).
[Crossref] [PubMed]

S. Hädrich, M. Krebs, A. Hoffmann, A. Klenke, J. Rothhardt, J. Limpert, and A. Tünnermann, “Exploring new avenues in high repetition rate table-top coherent extreme ultraviolet sources,” Light Sci Appl 4, e320 (2015).
[Crossref]

M. Krebs, S. Hadrich, S. Demmler, J. Rothhardt, A. Zair, L. Chipperfield, J. Limpert, and A. Tünnermann, “Towards isolated attosecond pulses at megahertz repetition rates,” Nature Photon. 7, 555–559 (2013).
[Crossref]

C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fibre lasers,” Nature Photon. 7, 861–867 (2013).
[Crossref]

C. Jocher, T. Eidam, S. Hädrich, J. Limpert, and A. Tünnermann, “Sub 25 fs pulses from solid-core nonlinear compression stage at 250 W of average power,” Opt. Lett. 37, 4407–4409 (2012).
[Crossref] [PubMed]

Udem, T.

O. Pronin, M. Seidel, F. Lücking, J. Brons, E. Fedulova, M. Trubetskov, V. Pervak, A. Apolonski, T. Udem, and F. Krausz, “High-power multi-megahertz source of waveform-stabilized few-cycle light,” Nat. Commun. 6, 6988 (2015).
[Crossref] [PubMed]

C. Gohle, T. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H. A. Schuessler, F. Krausz, and T. W. Hänsch, “A frequency comb in the extreme ultraviolet,” Nature 436, 234–237 (2005).
[Crossref] [PubMed]

Ueffing, M.

Ullrich, J.

Valdmanis, J. A.

W. H. Knox, R. L. Fork, M. C. Downer, R. H. Stolen, C. V. Shank, and J. A. Valdmanis, “Optical pulse compression to 8 fs at a 5 khz repetition rate,” Appl. Phys. Lett. 46, 1120–1121 (1985).
[Crossref]

Vámos, L.

Wang, Y. Y.

Wei, Z.

J. Zhang, J. Brons, M. Seidel, V. Pervak, V. Kalashnikov, Z. Wei, A. Apolonski, F. Krausz, and O. Pronin, in The European Conference on Lasers and Electro-Optics, (Optical Society of America, 2015), p. PDA.1.

Weiner, A. M.

Weitenberg, J.

P. Russbueldt, D. Hoffmann, M. Hofer, J. Lohring, J. Luttmann, A. Meissner, J. Weitenberg, M. Traub, T. Sartorius, D. Esser, R. Wester, P. Loosen, and R. Poprawe, “Innoslab amplifiers,” IEEE J. Sel. Top. Quantum Electron. 21, 447–463 (2015).
[Crossref]

Wester, R.

P. Russbueldt, D. Hoffmann, M. Hofer, J. Lohring, J. Luttmann, A. Meissner, J. Weitenberg, M. Traub, T. Sartorius, D. Esser, R. Wester, P. Loosen, and R. Poprawe, “Innoslab amplifiers,” IEEE J. Sel. Top. Quantum Electron. 21, 447–463 (2015).
[Crossref]

Wilhelmi, B.

V. Petrov, W. Rudolph, and B. Wilhelmi, “Compression of high-energy femtosecond light pulses by self-phase modulation in bulk media,” J. Mod. Opt. 36, 587–595 (1989).
[Crossref]

Xu, H. Q.

A. Mikkelsen, J. Schwenke, T. Fordell, G. Luo, K. Klunder, E. Hilner, N. Anttu, A. A. Zakharov, E. Lundgren, J. Mauritsson, J. N. Andersen, H. Q. Xu, and A. L’Huillier, “Photoemission electron microscopy using extreme ultraviolet attosecond pulse trains,” Rev. Sci. Instrum. 80, 123703 (2009).
[Crossref]

Yakovlev, V. S.

H. Fattahi, H. G. Barros, M. Gorjan, T. Nubbemeyer, B. Alsaif, C. Y. Teisset, M. Schultze, S. Prinz, M. Haefner, M. Ueffing, A. Alismail, L. Vámos, A. Schwarz, O. Pronin, J. Brons, X. T. Geng, G. Arisholm, M. Ciappina, V. S. Yakovlev, D.-E. Kim, A. M. Azzeer, N. Karpowicz, D. Sutter, Z. Major, T. Metzger, and F. Krausz, “Third-generation femtosecond technology,” Optica 1, 45–63 (2014).
[Crossref]

A. Schiffrin, T. Paasch-Colberg, N. Karpowicz, V. Apalkov, D. Gerster, S. Muhlbrandt, M. Korbman, J. Reichert, M. Schultze, S. Holzner, J. V. Barth, R. Kienberger, R. Ernstorfer, V. S. Yakovlev, M. I. Stockman, and F. Krausz, “Optical-field-induced current in dielectrics,” Nature 493, 70–74 (2013).
[Crossref]

Yang, S.-D.

Yariv, A.

A. Yariv, Quantum Electronics (John Wiley and Sons, Inc., 1989), Chap 18.

Ye, J.

S. T. Cundiff and J. Ye, “Colloquium : Femtosecond optical frequency combs,” Rev. Mod. Phys. 75, 325–342 (2003).
[Crossref]

Yu, Y.

Zair, A.

M. Krebs, S. Hadrich, S. Demmler, J. Rothhardt, A. Zair, L. Chipperfield, J. Limpert, and A. Tünnermann, “Towards isolated attosecond pulses at megahertz repetition rates,” Nature Photon. 7, 555–559 (2013).
[Crossref]

Zakharov, A. A.

A. Mikkelsen, J. Schwenke, T. Fordell, G. Luo, K. Klunder, E. Hilner, N. Anttu, A. A. Zakharov, E. Lundgren, J. Mauritsson, J. N. Andersen, H. Q. Xu, and A. L’Huillier, “Photoemission electron microscopy using extreme ultraviolet attosecond pulse trains,” Rev. Sci. Instrum. 80, 123703 (2009).
[Crossref]

Zawischa, I.

Zewail, A. H.

A. H. Zewail, “Femtochemistry: atomic-scale dynamics of the chemical bond,” J. Phys. Chem. A 104, 5660–5694 (2000).
[Crossref]

Zhang, J.

J. Zhang, J. Brons, M. Seidel, V. Pervak, V. Kalashnikov, Z. Wei, A. Apolonski, F. Krausz, and O. Pronin, in The European Conference on Lasers and Electro-Optics, (Optical Society of America, 2015), p. PDA.1.

Zheltikov, A. M.

M. T. Hassan, T. T. Luu, A. Moulet, O. Raskazovskaya, P. Zhokhov, M. Garg, N. Karpowicz, A. M. Zheltikov, V. Pervak, F. Krausz, and E. Goulielmakis, “Optical attosecond pulses and tracking the nonlinear response of bound electrons,” Nature 530, 66–70 (2016).
[Crossref] [PubMed]

Zhokhov, P.

M. T. Hassan, T. T. Luu, A. Moulet, O. Raskazovskaya, P. Zhokhov, M. Garg, N. Karpowicz, A. M. Zheltikov, V. Pervak, F. Krausz, and E. Goulielmakis, “Optical attosecond pulses and tracking the nonlinear response of bound electrons,” Nature 530, 66–70 (2016).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. B (1)

M. Bradler, P. Baum, and E. Riedle, “Femtosecond continuum generation in bulk laser host materials with sub-μJ pump pulses,” Appl. Phys. B 97, 561–574 (2009).
[Crossref]

Appl. Phys. Lett. (2)

W. H. Knox, R. L. Fork, M. C. Downer, R. H. Stolen, C. V. Shank, and J. A. Valdmanis, “Optical pulse compression to 8 fs at a 5 khz repetition rate,” Appl. Phys. Lett. 46, 1120–1121 (1985).
[Crossref]

M. Nisoli, S. De Silvestri, and O. Svelto, “Generation of high energy 10 fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68, 2793–2795 (1996).
[Crossref]

Appl. Sci. (1)

N. Krebs, I. Pugliesi, and E. Riedle, “Pulse compression of ultrashort uv pulses by self-phase modulation in bulk material,” Appl. Sci. 3, 153 (2013).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

A. V. Smith, B. Do, G. Hadley, and R. L. Farrow, “Optical damage limits to pulse energy from fibers,” IEEE J. Sel. Top. Quantum Electron. 15, 153–158 (2009).
[Crossref]

P. Russbueldt, D. Hoffmann, M. Hofer, J. Lohring, J. Luttmann, A. Meissner, J. Weitenberg, M. Traub, T. Sartorius, D. Esser, R. Wester, P. Loosen, and R. Poprawe, “Innoslab amplifiers,” IEEE J. Sel. Top. Quantum Electron. 21, 447–463 (2015).
[Crossref]

J. Mod. Opt. (1)

V. Petrov, W. Rudolph, and B. Wilhelmi, “Compression of high-energy femtosecond light pulses by self-phase modulation in bulk media,” J. Mod. Opt. 36, 587–595 (1989).
[Crossref]

J. Opt. Soc. Am. B (4)

J. Phys. Chem. A (1)

A. H. Zewail, “Femtochemistry: atomic-scale dynamics of the chemical bond,” J. Phys. Chem. A 104, 5660–5694 (2000).
[Crossref]

Light Sci Appl (1)

S. Hädrich, M. Krebs, A. Hoffmann, A. Klenke, J. Rothhardt, J. Limpert, and A. Tünnermann, “Exploring new avenues in high repetition rate table-top coherent extreme ultraviolet sources,” Light Sci Appl 4, e320 (2015).
[Crossref]

Nat. Commun. (2)

O. Pronin, M. Seidel, F. Lücking, J. Brons, E. Fedulova, M. Trubetskov, V. Pervak, A. Apolonski, T. Udem, and F. Krausz, “High-power multi-megahertz source of waveform-stabilized few-cycle light,” Nat. Commun. 6, 6988 (2015).
[Crossref] [PubMed]

F. Silva, D. R. Austin, A. Thai, M. Baudisch, M. Hemmer, D. Faccio, A. Couairon, and J. Biegert, “Multi-octave supercontinuum generation from mid-infrared filamentation in a bulk crystal,” Nat. Commun. 3, 807 (2012).
[Crossref] [PubMed]

Nature (5)

M. Hentschel, R. Kienberger, C. Spielmann, G. A. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, and F. Krausz, “Attosecond metrology,” Nature 414, 509–513 (2001).
[Crossref] [PubMed]

A. Schiffrin, T. Paasch-Colberg, N. Karpowicz, V. Apalkov, D. Gerster, S. Muhlbrandt, M. Korbman, J. Reichert, M. Schultze, S. Holzner, J. V. Barth, R. Kienberger, R. Ernstorfer, V. S. Yakovlev, M. I. Stockman, and F. Krausz, “Optical-field-induced current in dielectrics,” Nature 493, 70–74 (2013).
[Crossref]

T. T. Luu, M. Garg, S. Y. Kruchinin, A. Moulet, M. T. Hassan, and E. Goulielmakis, “Extreme ultraviolet high-harmonic spectroscopy of solids,” Nature 521, 498–502 (2015).
[Crossref] [PubMed]

C. Gohle, T. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H. A. Schuessler, F. Krausz, and T. W. Hänsch, “A frequency comb in the extreme ultraviolet,” Nature 436, 234–237 (2005).
[Crossref] [PubMed]

M. T. Hassan, T. T. Luu, A. Moulet, O. Raskazovskaya, P. Zhokhov, M. Garg, N. Karpowicz, A. M. Zheltikov, V. Pervak, F. Krausz, and E. Goulielmakis, “Optical attosecond pulses and tracking the nonlinear response of bound electrons,” Nature 530, 66–70 (2016).
[Crossref] [PubMed]

Nature Photon. (5)

M. Krebs, S. Hadrich, S. Demmler, J. Rothhardt, A. Zair, L. Chipperfield, J. Limpert, and A. Tünnermann, “Towards isolated attosecond pulses at megahertz repetition rates,” Nature Photon. 7, 555–559 (2013).
[Crossref]

F. Krausz and M. I. Stockman, “Attosecond metrology: from electron capture to future signal processing,” Nature Photon. 8, 205–213 (2014).
[Crossref]

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nature Photon. 2, 219–225 (2008).
[Crossref]

S. T. Cundiff and A. M. Weiner, “Optical arbitrary waveform generation,” Nature Photon. 4, 760–766 (2010).
[Crossref]

C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fibre lasers,” Nature Photon. 7, 861–867 (2013).
[Crossref]

New J. Phys. (1)

S. Naumov, A. Fernandez, R. Graf, P. Dombi, F. Krausz, and A. Apolonski, “Approaching the microjoule frontier with femtosecond laser oscillators,” New J. Phys. 7, 216 (2005).
[Crossref]

Opt. Commun. (2)

P. Chernev and V. Petrov, “Self-focusing of short light pulses in dispersive media,” Opt. Commun. 87, 28–32 (1992).
[Crossref]

G. Ghosh, “Dispersion-equation coefficients for the refractive index and birefringence of calcite and quartz crystals,” Opt. Commun. 163, 95–102 (1999).
[Crossref]

Opt. Express (6)

Y. Liu, S. Tschuch, M. Dürr, A. Rudenko, R. Moshammer, J. Ullrich, M. Siegel, and U. Morgner, “Towards non-sequential double ionization of Ne and Ar using a femtosecond laser oscillator,” Opt. Express 15, 18103–18110 (2007).
[Crossref] [PubMed]

S. Rausch, T. Binhammer, A. Harth, J. Kim, R. Ell, F. X. Kärtner, and U. Morgner, “Controlled waveforms on the single-cycle scale from a femtosecond oscillator,” Opt. Express 16, 9739–9745 (2008).
[Crossref] [PubMed]

O. H. Heckl, C. J. Saraceno, C. R. E. Baer, T. Südmeyer, Y. Y. Wang, Y. Cheng, F. Benabid, and U. Keller, “Temporal pulse compression in a xenon-filled kagome-type hollow-core photonic crystal fiber at high average power,” Opt. Express 19, 19142–19149 (2011).
[Crossref] [PubMed]

D. Bauer, I. Zawischa, D. H. Sutter, A. Killi, and T. Dekorsy, “Mode-locked Yb:YAG thin-disk oscillator with 41 μJ pulse energy at 145 W average infrared power and high power frequency conversion,” Opt. Express 20, 9698–9704 (2012).
[Crossref] [PubMed]

C. J. Saraceno, F. Emaury, O. H. Heckl, C. R. E. Baer, M. Hoffmann, C. Schriber, M. Golling, T. Südmeyer, and U. Keller, “275 W average output power from a femtosecond thin disk oscillator operated in a vacuum environment,” Opt. Express 20, 23535–23541 (2012).
[Crossref] [PubMed]

U. Møller, Y. Yu, I. Kubat, C. R. Petersen, X. Gai, L. Brilland, D. Méchin, C. Caillaud, J. Troles, B. Luther-Davies, and O. Bang, “Multi-milliwatt mid-infrared supercontinuum generation in a suspended core chalcogenide fiber,” Opt. Express 23, 3282–3291 (2015).
[Crossref] [PubMed]

Opt. Lett. (13)

K. F. Mak, M. Seidel, O. Pronin, M. H. Frosz, A. Abdolvand, V. Pervak, A. Apolonski, F. Krausz, J. C. Travers, and P. S. J. Russell, “Compressing μJ-level pulses from 250 fs to sub-10 fs at 38-MHz repetition rate using two gas-filled hollow-core photonic crystal fiber stages,” Opt. Lett. 40, 1238–1241 (2015).
[Crossref] [PubMed]

M. Gebhardt, C. Gaida, S. Hädrich, F. Stutzki, C. Jauregui, J. Limpert, and A. Tünnermann, “Nonlinear compression of an ultrashort-pulse thulium-based fiber laser to sub-70 fs in Kagome photonic crystal fiber,” Opt. Lett. 40, 2770–2773 (2015).
[Crossref] [PubMed]

C. Jocher, T. Eidam, S. Hädrich, J. Limpert, and A. Tünnermann, “Sub 25 fs pulses from solid-core nonlinear compression stage at 250 W of average power,” Opt. Lett. 37, 4407–4409 (2012).
[Crossref] [PubMed]

C. J. Saraceno, F. Emaury, C. Schriber, M. Hoffmann, M. Golling, T. Südmeyer, and U. Keller, “Ultrafast thin-disk laser with 80μJ pulse energy and 242 W of average power,” Opt. Lett. 39, 9–12 (2014).
[Crossref]

J. Brons, V. Pervak, E. Fedulova, D. Bauer, D. Sutter, V. Kalashnikov, A. Apolonskiy, O. Pronin, and F. Krausz, “Energy scaling of Kerr-lens mode-locked thin-disk oscillators,” Opt. Lett. 39, 6442–6445 (2014).
[Crossref] [PubMed]

F. Emaury, C. J. Saraceno, B. Debord, D. Ghosh, A. Diebold, F. Gèrôme, T. Südmeyer, F. Benabid, and U. Keller, “Efficient spectral broadening in the 100-W average power regime using gas-filled Kagome HC-PCF and pulse compression,” Opt. Lett. 39, 6843–6846 (2014).
[Crossref] [PubMed]

O. Pronin, J. Brons, C. Grasse, V. Pervak, G. Boehm, M.-C. Amann, V. L. Kalashnikov, A. Apolonski, and F. Krausz, “High-power 200 fs Kerr-lens mode-locked Yb:YAG thin-disk oscillator,” Opt. Lett. 36, 4746–4748 (2011).
[Crossref] [PubMed]

S. H. Cho, F. X. Kärtner, U. Morgner, E. P. Ippen, J. G. Fujimoto, J. E. Cunningham, and W. H. Knox, “Generation of 90-nJ pulses with a 4-MHz repetition-rate Kerr-lens mode-locked Ti:Al2O3 laser operating with net positive and negative intracavity dispersion,” Opt. Lett. 26, 560–562 (2001).
[Crossref]

T. Südmeyer, F. Brunner, E. Innerhofer, R. Paschotta, K. Furusawa, J. C. Baggett, T. M. Monro, D. J. Richardson, and U. Keller, “Nonlinear femtosecond pulse compression at high average power levels by use of a large-mode-area holey fiber,” Opt. Lett. 28, 1951–1953 (2003).
[Crossref] [PubMed]

N. Milosevic, G. Tempea, and T. Brabec, “Optical pulse compression: bulk media versus hollow waveguides,” Opt. Lett. 25, 672–674 (2000).
[Crossref]

R. L. Fork, C. H. B. Cruz, P. C. Becker, and C. V. Shank, “Compression of optical pulses to six femtoseconds by using cubic phase compensation,” Opt. Lett. 12, 483–485 (1987).
[Crossref] [PubMed]

D. H. Reitze, A. M. Weiner, and D. E. Leaird, “High-power femtosecond optical pulse compression by using spatial solitons,” Opt. Lett. 16, 1409–1411 (1991).
[Crossref] [PubMed]

P. Chernev and V. Petrov, “Self-focusing of light pulses in the presence of normal group-velocity dispersion,” Opt. Lett. 17, 172–174 (1992).
[Crossref] [PubMed]

Optica (3)

Phys. Rep. (1)

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441, 47–189 (2007).
[Crossref]

Phys. Rev. Lett. (2)

M. Centurion, M. A. Porter, P. G. Kevrekidis, and D. Psaltis, “Nonlinearity management in optics: Experiment, theory, and simulation,” Phys. Rev. Lett. 97, 033903 (2006).
[Crossref] [PubMed]

R. R. Alfano and S. L. Shapiro, “Emission in the region 4000 to 7000 å via four-photon coupling in glass,” Phys. Rev. Lett. 24, 584–587 (1970).
[Crossref]

Rep. Prog. Phys. (1)

P. M. W. French, “The generation of ultrashort laser pulses,” Rep. Prog. Phys. 58, 169 (1995).
[Crossref]

Rev. Mod. Phys. (3)

N. Bloembergen, “From nanosecond to femtosecond science,” Rev. Mod. Phys. 71, S283–S287 (1999).
[Crossref]

S. T. Cundiff and J. Ye, “Colloquium : Femtosecond optical frequency combs,” Rev. Mod. Phys. 75, 325–342 (2003).
[Crossref]

T. Brabec and F. Krausz, “Intense few-cycle laser fields: Frontiers of nonlinear optics,” Rev. Mod. Phys. 72, 545–591 (2000).
[Crossref]

Rev. Sci. Instrum. (1)

A. Mikkelsen, J. Schwenke, T. Fordell, G. Luo, K. Klunder, E. Hilner, N. Anttu, A. A. Zakharov, E. Lundgren, J. Mauritsson, J. N. Andersen, H. Q. Xu, and A. L’Huillier, “Photoemission electron microscopy using extreme ultraviolet attosecond pulse trains,” Rev. Sci. Instrum. 80, 123703 (2009).
[Crossref]

Science (1)

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399–402 (2002).
[Crossref] [PubMed]

Other (8)

J. Zhang, J. Brons, M. Seidel, V. Pervak, V. Kalashnikov, Z. Wei, A. Apolonski, F. Krausz, and O. Pronin, in The European Conference on Lasers and Electro-Optics, (Optical Society of America, 2015), p. PDA.1.

M. Seidel, J. Brons, E. Fedulova, V. Pervak, A. Apolonski, O. Pronin, and F. Krausz, in CLEO: Science and Innovations, (Optical Society of America, 2014), p. STh5C.9.

R. W. Boyd, Nonlinear Optics (Academic2008), Chap. 7.

A. Yariv, Quantum Electronics (John Wiley and Sons, Inc., 1989), Chap 18.

Newport, “Spatial filters,” http://www.newport.com/Spatial-Filters/144910/1033/content.aspx (2015/11/13).

T. Metzger, M. Gorjan, M. Ueffing, C. Y. Teisset, M. Schultze, R. Bessing, M. Häfner, S. Prinz, D. Sutter, K. Michel, H. Barros, Z. Major, and F. Krausz, in CLEO: Applications and Technology, (Optical Society of America, 2014), p. JTh4L.1.

J. Brons, V. Pervak, M. Seidel, D. Bauer, D. Sutter, O. Pronin, and F. Krausz, in Advanced Solid State Lasers, (Optical Society of America, 2015), p. ATh3A.1.

F. X. Kärtner, Few-Cycle Laser Pulse Generation and Its Applications (Springer, 2004).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Means of avoiding critical self-focusing within a nonlinear crystal. The plots are taken from simulations which are explained in more detail in section 4. A peak irradiance of 2 TW/cm2 is considered as critical (solid black line markers). (a) Single plate approach: critical self-focusing is avoided by choosing a large spot size at the entrance facet (dashed green line: 1.2 μJ, 250 fs input pulses, d = 77 μm; red line: 10 μJ, 250 fs input pulses, d = 283 μm) or by utilizing a strong beam divergence to compensate for self-focusing (blue line: 10 μJ, 250 fs input pulses, d = 67 μm, θ = 32 μm/mm). (b) Multiple plate approach: The beam irradiance is kept below the critical value inside the solid medium while the foci lie in the air gaps between the thin bulk plates (10 μJ, 250 fs input pulses).
Fig. 2
Fig. 2 Setup of the bulk broadening experiments. (a) Overview of all performed experiments. The wedge sketched by a dashed line was inserted for characterization purposes and was not present during the compression experiments. (b) Detailed sketch of the spectral broadening stages symbolized by the dotted-dashed lines in (a). The characteristic lengths t, f and zmin were varied for optimization purposes.
Fig. 3
Fig. 3 (a) Spectra measured with an OSA in dependence on zmin. The focal length was f = 25 mm. The spectrum was filtered such that only the broadened parts were measured. (b) White-light continuum generated in a 15 mm quartz crystal. The spike at 515 nm is the second harmonic generated in the quartz crystal due to its χ(2)-nonlinearity.
Fig. 4
Fig. 4 (a) Expected pulse durations in dependence on the broadening factor for compensation of first order chirp only (red squares). The compression quality (blue circles) is the ratio between the peak power of the compressed and the Fourier limited pulse. (b) Retrieved pulse after compressor. The compression quality is 64 % (c) retrieved spectrum and spectral phase. The spectrum is in good agreement with the black line in Fig. 3(a).
Fig. 5
Fig. 5 Double stage spectral broadening. The FTL is reduced from 250 fs to 15 fs after the second stage.
Fig. 6
Fig. 6 Spatiotemporal effects of bulk broadening. (a) Beam profiles measured behind optical bandpass filters of 10 nm spectral width. The profiles behind the filters centered at 1010 nm (left) and 1050 nm (right) are Gaussian while the profile after the 1030 nm filter (center) exhibits a ring structure. The profiles were measured about 20 cm behind the collimation lens. (b) The scattered light spectrum (i.e. spatially integrated spectrum, black line), the retrieved FROG spectrum (red line) and the initial oscillator spectrum (gray line). The blue solid line shows the spectrum measured after spatial filtering.
Fig. 7
Fig. 7 Intensity noise measurements after the first bulk broadening stage for different broadening factors. The 55 nm spectral full width at −10 dB of the maximum corresponds to the black line in Fig. 3(a). The excellent noise properties of the oscillator (0.1 % rms relative intensity noise in the bandwidth from 10 Hz to 500 kHz) are maintained independent of the broadening factor.
Fig. 8
Fig. 8 Simulation of the spectral broadening in a 15 mm crystalline quartz crystal. (a) Near-field pattern of the 1030 nm filtered beam profile. (b) Near-field pattern of the 1040 nm filtered beam profile. (c) Radially dependent spectra, the black line shows the spectrum of the unbroadened part located in the wing of the near field-profile, the red line shows the broadened spectrum located in the center of the near-field profile.
Fig. 9
Fig. 9 Spatially integrated and radially resolved spectra after propagation through a 15 mm quartz plate. (a) Normalized spectra for (b) – (d) and the oscillator spectrum. The spectral power is integrated over the whole beam area. (b) 1.2 μJ, 250 fs input pulses. A significant part of the input beam is broadened like it was observed in the experiment. (c) 10 μJ, 250 fs input pulses with balanced divergence and self-focusing. The broadening in the beam center is comparable to (b) but only a small fraction (≈ 4 %) of the input power is broadened. (d) 10 μJ, 250 fs input pulses without divergence. The spectral broadening is weaker than in (b) and (c). About 16 % of the total power are contained in the broadened part. All color plots are scaled linearly and normalized. The units of the radially resolved spectra are J/Hz/μm2, i.e. the pulse energies E are predicted by E = 2πΔνΔri,j riu(ri, νj), where Δν and Δr are the simulation grid spacing in frequency and space, r is the radius and u is the plotted energy density. Is is summed over all spatial grid points ri along one axis and all spectral grid points νj.
Fig. 10
Fig. 10 Simulation of propagation of a 10 μJ pulse through ten 0.5 mm plates. No Fresnel losses are considered. (a) The FTL is inversely proportional to the plate number. The FTL after 10 plates is 31 fs. (b) The spatially integrated output spectrum after ten plates (red solid line). For comparison, the output spectrum of propagating a 100 μJ, 250 fs pulse through ten plates (solid blue line) (c) The spatially resolved output spectrum after 10 plates. (d) Spectrally resolved beam profiles for 1030 nm and 1040 nm during propagation in the first air gap (FTL = 165 fs). The broadened part emerging from the beam center (bluish lines) diverges quickly while the unbroadened part (reddish lines) is focused first and diverges slowly afterwards. The propagation length inside the gap is stated in the plot legend.

Tables (1)

Tables Icon

Table 1: Summary of FTLs and Spatial Lossesa

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

P cr = π ( 0.61 ) 2 λ 2 8 n 0 n 2 ,
z sf = π d 2 λ ( P p / P cr 1 θ ) ,
f p = w 0 d p λ ,

Metrics