Abstract

A novel Monte Carlo model is proposed to acquire the reflective polarization information from a rough surface with arbitrary layers and profiles. Based on the micro-facets theory, the local normal vectors can be randomly sampled from the normal vector distribution of each layer. The incident light that propagates inside of the multi-layer media will be traced until being collected after leaving the surface or be ignored due to lacking enough energy. The simulated results (by our proposed theoretical model) agree well with the reported measured data and the analytical models from SCATMECH, which demonstrates the correctness and effectiveness of our model. Based on our model, the effects of the surface layer number, the surface geometry, the incident wavelength and polarization states of incidence on the reflective polarization from multi-layer surfaces have been analyzed in detail, which can be a guide in tasks such as target detection and so on.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Monte Carlo simulation of spectral reflectance and BRDF of the bubble layer in the upper ocean

Lanxin Ma, Fuqiang Wang, Chengan Wang, Chengchao Wang, and Jianyu Tan
Opt. Express 23(19) 24274-24289 (2015)

Investigation of the spectral reflectance and bidirectional reflectance distribution function of sea foam layer by the Monte Carlo method

L. X. Ma, F. Q. Wang, C. A. Wang, C. C. Wang, and J. Y. Tan
Appl. Opt. 54(33) 9863-9874 (2015)

Optical roughness BRDF model for reverse Monte Carlo simulation of real material thermal radiation transfer

Peiran Su, Qitai Eri, and Qiang Wang
Appl. Opt. 53(11) 2324-2330 (2014)

References

  • View by:
  • |
  • |
  • |

  1. G. Atteia and M. Collins, “Ship detection performance using simulated dual-polarization radarsat constellation mission data,” Int. J. Remote Sens. 36(6), 1705–1727 (2015).
    [Crossref]
  2. J. S. Tyo, D. H. Goldstein, D. B. Chenault, and J. A. Shaw, “Polarization in remote sensing--introduction,” Appl. Opt. 45(22), 5451–5452 (2006).
    [Crossref] [PubMed]
  3. F. Xu, H. Wang, Y. Q. Jin, X. Liu, R. Wang, and Y. Deng, “Impact of cross-polarization isolation on polarimetric target decomposition and target detection,” Radio Sci. 50(4), 327–338 (2015).
    [Crossref]
  4. H. Chen and L. B. Wolff, “Polarization phase-based method for material classification and object recognition in computer vision,” in IEEE Conference on Computer Vision and Pattern Recognition, (IEEE Computer Society, 1996), 128.
    [Crossref]
  5. L. B. Wolff, “Polarization-based material classification from specular reflection,” IEEE Trans. Pattern Anal. Mach. Intell. 12(11), 1059–1071 (1990).
    [Crossref]
  6. L. B. Wolff and T. E. Boult, “Constraining object features using a polarization reflectance model,” IEEE Trans. Pattern Anal. Mach. Intell. 13(7), 635–657 (1991).
    [Crossref]
  7. K. E. Torrance and E. M. Sparrow, “Theory for off-specular reflection from roughened surfaces,” J. Opt. Soc. Am. 57(9), 1105–1112 (1967).
    [Crossref]
  8. R. G. Priest and T. A. Gerner, “Polarimetric BRDF in the microfacet model: Theory and measurements,” Meeting of the Military Sensing Symposia Specialty Group on Passive Sensors 1, 169–181 (2000).
  9. R. G. Priest and S. R. Meier, “Polarimetric microfacet scattering theory with applications to absorptive and reflective surfaces,” Opt. Eng. 41(5), 988–993 (2002).
    [Crossref]
  10. M. W. Hyde, J. D. Schmidt, and M. J. Havrilla, “A geometrical optics polarimetric bidirectional reflectance distribution function for dielectric and metallic surfaces,” Opt. Express 17(24), 22138–22153 (2009).
    [Crossref] [PubMed]
  11. J. Pan, Q. Chen, W. Qian, and L. Geng, “Results of a new polarimetric BRDF simulation of metallic surfaces,” Infrared Phys. Technol. 72, 58–67 (2015).
    [Crossref]
  12. W. Jakob, E. D’Eon, O. Jakob, and S. Marschner, “A comprehensive framework for rendering layered materials,” ACM Trans. Graph. 33, 1–14 (2014).
  13. A. Weidlich and A. Wilkie, “Arbitrarily layered micro-facet surfaces,” in 5th International Conference on Computer Graphics and Interactive Techniques, (ACM, 2007), 171–178.
  14. T. A. Germer and E. Marx, “Ray model of light scattering by flake pigments or rough surfaces with smooth transparent coatings,” Appl. Opt. 43(6), 1266–1274 (2004).
    [Crossref] [PubMed]
  15. C. Bordier, C. Andraud, and J. Lafait, “Model of light scattering that includes polarization effects by multilayered media,” J. Opt. Soc. Am. A 25(6), 1406–1419 (2008).
    [Crossref] [PubMed]
  16. M. P. Hobson and J. E. Baldwin, “Markov-Chain Monte Carlo approach to the design of multilayer thin-film optical coatings,” Appl. Opt. 43(13), 2651–2660 (2004).
    [Crossref] [PubMed]
  17. L. Wang, S. L. Jacques, and L. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
    [Crossref] [PubMed]
  18. I. Meglinski, “Monte Carlo simulation of reflection spectra of random multilayer media strongly scattering and absorbing light,” Quantum Electron. 31(12), 1101–1107 (2001).
    [Crossref]
  19. E. R. Freniere, G. G. Gregory, and R. A. Hassler, “Polarization models for Monte Carlo ray tracing,” in SPIE's International Symposium on Optical Science, Engineering, and Instrumentation, 1999)
  20. J. Ramella-Roman, S. Prahl, and S. Jacques, “Three Monte Carlo programs of polarized light transport into scattering media: part I,” Opt. Express 13(12), 4420–4438 (2005).
    [Crossref] [PubMed]
  21. R. D. M. Garcia, “Some issues related to polarized radiative transfer in a multilayer medium with a changing index of refraction,” in Journal of Physics: Conference Series, (IOP Publishing, 2012), 12005–12014(12010).
  22. R. D. M. Garcia, “Fresnel boundary and interface conditions for polarized radiative transfer in a multilayer medium,” J. Quant. Spectrosc. Radiat. Transf. 113(4), 306–317 (2012).
    [Crossref]
  23. R. D. M. Garcia, “Radiative transfer with polarization in a multi-layer medium subject to fresnel boundary and interface conditions,” J. Quant. Spectrosc. Radiat. Transf. 115, 28–45 (2013).
    [Crossref]
  24. G. W. Kattawar, G. N. Plass, and J. A. Guinn., “Monte Carlo calculations of the polarization of radiation in the earth’s atmosphere-ocean system,” J. Phys. Oceanogr. 3(4), 353–372 (1973).
    [Crossref]
  25. E. R. Sommersten, J. K. Lotsberg, K. Stamnes, and J. J. Stamnes, “Discrete ordinate and Monte Carlo simulations for polarized radiative transfer in a coupled system consisting of two media with different refractive indices,” J. Quant. Spectrosc. Radiat. Transf. 111(4), 616–633 (2010).
    [Crossref]
  26. X. Wang and L. V. Wang, “Propagation of polarized light in birefringent turbid media: A Monte Carlo study,” J. Biomed. Opt. 7(3), 279–290 (2002).
    [Crossref] [PubMed]
  27. M. Xu, “Electric field Monte Carlo simulation of polarized light propagation in turbid media,” Opt. Express 12(26), 6530–6539 (2004).
    [Crossref] [PubMed]
  28. J. M. Zhao, J. Y. Tan, and L. H. Liu, “Monte Carlo method for polarized radiative transfer in gradient-index media,” J. Quant. Spectrosc. Radiat. Transf. 152, 114–126 (2014).
  29. D. Goldstein, Polarized light, second edition revised and expanded (Marcel Dekker Inc, New York, 2003).
  30. B. Michael, C. M. Decusatis, J. M. Enoch, V. Lakshaminarayannan, G. Li, and C. MacDonald, Handbook of Optics, 3rd ed. (McGraw-Hill, 2009), Vol. 1.
  31. M. Ashikhmin and P. Shirley, “An anisotropic phong brdf model,” J. Graphics Tools 5(2), 25–32 (2000).
    [Crossref]
  32. M. Ashikmin, S. Premo, and P. Shirley, “A microfacet-based brdf generator,” in Proceedings of the 27th annual conference on Computer graphics and interactive techniques, (ACM Press/Addison-Wesley Publishing Co., 2000), pp. 65–74.
  33. V. Thilak, D. G. Voelz, and C. D. Creusere, “Polarization-based index of refraction and reflection angle estimation for remote sensing applications,” Appl. Opt. 46(30), 7527–7536 (2007).
    [Crossref] [PubMed]
  34. T. Germer, “SCATMECH v 7.0: Polarized light scattering C++ class library,” (NIST, 2015).
  35. S. K. Shevell, The Science of Color (Elsevier, 2003).

2015 (3)

F. Xu, H. Wang, Y. Q. Jin, X. Liu, R. Wang, and Y. Deng, “Impact of cross-polarization isolation on polarimetric target decomposition and target detection,” Radio Sci. 50(4), 327–338 (2015).
[Crossref]

G. Atteia and M. Collins, “Ship detection performance using simulated dual-polarization radarsat constellation mission data,” Int. J. Remote Sens. 36(6), 1705–1727 (2015).
[Crossref]

J. Pan, Q. Chen, W. Qian, and L. Geng, “Results of a new polarimetric BRDF simulation of metallic surfaces,” Infrared Phys. Technol. 72, 58–67 (2015).
[Crossref]

2014 (2)

W. Jakob, E. D’Eon, O. Jakob, and S. Marschner, “A comprehensive framework for rendering layered materials,” ACM Trans. Graph. 33, 1–14 (2014).

J. M. Zhao, J. Y. Tan, and L. H. Liu, “Monte Carlo method for polarized radiative transfer in gradient-index media,” J. Quant. Spectrosc. Radiat. Transf. 152, 114–126 (2014).

2013 (1)

R. D. M. Garcia, “Radiative transfer with polarization in a multi-layer medium subject to fresnel boundary and interface conditions,” J. Quant. Spectrosc. Radiat. Transf. 115, 28–45 (2013).
[Crossref]

2012 (1)

R. D. M. Garcia, “Fresnel boundary and interface conditions for polarized radiative transfer in a multilayer medium,” J. Quant. Spectrosc. Radiat. Transf. 113(4), 306–317 (2012).
[Crossref]

2010 (1)

E. R. Sommersten, J. K. Lotsberg, K. Stamnes, and J. J. Stamnes, “Discrete ordinate and Monte Carlo simulations for polarized radiative transfer in a coupled system consisting of two media with different refractive indices,” J. Quant. Spectrosc. Radiat. Transf. 111(4), 616–633 (2010).
[Crossref]

2009 (1)

2008 (1)

2007 (1)

2006 (1)

2005 (1)

2004 (3)

2002 (2)

X. Wang and L. V. Wang, “Propagation of polarized light in birefringent turbid media: A Monte Carlo study,” J. Biomed. Opt. 7(3), 279–290 (2002).
[Crossref] [PubMed]

R. G. Priest and S. R. Meier, “Polarimetric microfacet scattering theory with applications to absorptive and reflective surfaces,” Opt. Eng. 41(5), 988–993 (2002).
[Crossref]

2001 (1)

I. Meglinski, “Monte Carlo simulation of reflection spectra of random multilayer media strongly scattering and absorbing light,” Quantum Electron. 31(12), 1101–1107 (2001).
[Crossref]

2000 (2)

R. G. Priest and T. A. Gerner, “Polarimetric BRDF in the microfacet model: Theory and measurements,” Meeting of the Military Sensing Symposia Specialty Group on Passive Sensors 1, 169–181 (2000).

M. Ashikhmin and P. Shirley, “An anisotropic phong brdf model,” J. Graphics Tools 5(2), 25–32 (2000).
[Crossref]

1995 (1)

L. Wang, S. L. Jacques, and L. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
[Crossref] [PubMed]

1991 (1)

L. B. Wolff and T. E. Boult, “Constraining object features using a polarization reflectance model,” IEEE Trans. Pattern Anal. Mach. Intell. 13(7), 635–657 (1991).
[Crossref]

1990 (1)

L. B. Wolff, “Polarization-based material classification from specular reflection,” IEEE Trans. Pattern Anal. Mach. Intell. 12(11), 1059–1071 (1990).
[Crossref]

1973 (1)

G. W. Kattawar, G. N. Plass, and J. A. Guinn., “Monte Carlo calculations of the polarization of radiation in the earth’s atmosphere-ocean system,” J. Phys. Oceanogr. 3(4), 353–372 (1973).
[Crossref]

1967 (1)

Andraud, C.

Ashikhmin, M.

M. Ashikhmin and P. Shirley, “An anisotropic phong brdf model,” J. Graphics Tools 5(2), 25–32 (2000).
[Crossref]

Ashikmin, M.

M. Ashikmin, S. Premo, and P. Shirley, “A microfacet-based brdf generator,” in Proceedings of the 27th annual conference on Computer graphics and interactive techniques, (ACM Press/Addison-Wesley Publishing Co., 2000), pp. 65–74.

Atteia, G.

G. Atteia and M. Collins, “Ship detection performance using simulated dual-polarization radarsat constellation mission data,” Int. J. Remote Sens. 36(6), 1705–1727 (2015).
[Crossref]

Baldwin, J. E.

Bordier, C.

Boult, T. E.

L. B. Wolff and T. E. Boult, “Constraining object features using a polarization reflectance model,” IEEE Trans. Pattern Anal. Mach. Intell. 13(7), 635–657 (1991).
[Crossref]

Chen, H.

H. Chen and L. B. Wolff, “Polarization phase-based method for material classification and object recognition in computer vision,” in IEEE Conference on Computer Vision and Pattern Recognition, (IEEE Computer Society, 1996), 128.
[Crossref]

Chen, Q.

J. Pan, Q. Chen, W. Qian, and L. Geng, “Results of a new polarimetric BRDF simulation of metallic surfaces,” Infrared Phys. Technol. 72, 58–67 (2015).
[Crossref]

Chenault, D. B.

Collins, M.

G. Atteia and M. Collins, “Ship detection performance using simulated dual-polarization radarsat constellation mission data,” Int. J. Remote Sens. 36(6), 1705–1727 (2015).
[Crossref]

Creusere, C. D.

D’Eon, E.

W. Jakob, E. D’Eon, O. Jakob, and S. Marschner, “A comprehensive framework for rendering layered materials,” ACM Trans. Graph. 33, 1–14 (2014).

Deng, Y.

F. Xu, H. Wang, Y. Q. Jin, X. Liu, R. Wang, and Y. Deng, “Impact of cross-polarization isolation on polarimetric target decomposition and target detection,” Radio Sci. 50(4), 327–338 (2015).
[Crossref]

Garcia, R. D. M.

R. D. M. Garcia, “Radiative transfer with polarization in a multi-layer medium subject to fresnel boundary and interface conditions,” J. Quant. Spectrosc. Radiat. Transf. 115, 28–45 (2013).
[Crossref]

R. D. M. Garcia, “Fresnel boundary and interface conditions for polarized radiative transfer in a multilayer medium,” J. Quant. Spectrosc. Radiat. Transf. 113(4), 306–317 (2012).
[Crossref]

Geng, L.

J. Pan, Q. Chen, W. Qian, and L. Geng, “Results of a new polarimetric BRDF simulation of metallic surfaces,” Infrared Phys. Technol. 72, 58–67 (2015).
[Crossref]

Germer, T.

T. Germer, “SCATMECH v 7.0: Polarized light scattering C++ class library,” (NIST, 2015).

Germer, T. A.

Gerner, T. A.

R. G. Priest and T. A. Gerner, “Polarimetric BRDF in the microfacet model: Theory and measurements,” Meeting of the Military Sensing Symposia Specialty Group on Passive Sensors 1, 169–181 (2000).

Goldstein, D. H.

Guinn, J. A.

G. W. Kattawar, G. N. Plass, and J. A. Guinn., “Monte Carlo calculations of the polarization of radiation in the earth’s atmosphere-ocean system,” J. Phys. Oceanogr. 3(4), 353–372 (1973).
[Crossref]

Havrilla, M. J.

Hobson, M. P.

Hyde, M. W.

Jacques, S.

Jacques, S. L.

L. Wang, S. L. Jacques, and L. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
[Crossref] [PubMed]

Jakob, O.

W. Jakob, E. D’Eon, O. Jakob, and S. Marschner, “A comprehensive framework for rendering layered materials,” ACM Trans. Graph. 33, 1–14 (2014).

Jakob, W.

W. Jakob, E. D’Eon, O. Jakob, and S. Marschner, “A comprehensive framework for rendering layered materials,” ACM Trans. Graph. 33, 1–14 (2014).

Jin, Y. Q.

F. Xu, H. Wang, Y. Q. Jin, X. Liu, R. Wang, and Y. Deng, “Impact of cross-polarization isolation on polarimetric target decomposition and target detection,” Radio Sci. 50(4), 327–338 (2015).
[Crossref]

Kattawar, G. W.

G. W. Kattawar, G. N. Plass, and J. A. Guinn., “Monte Carlo calculations of the polarization of radiation in the earth’s atmosphere-ocean system,” J. Phys. Oceanogr. 3(4), 353–372 (1973).
[Crossref]

Lafait, J.

Liu, L. H.

J. M. Zhao, J. Y. Tan, and L. H. Liu, “Monte Carlo method for polarized radiative transfer in gradient-index media,” J. Quant. Spectrosc. Radiat. Transf. 152, 114–126 (2014).

Liu, X.

F. Xu, H. Wang, Y. Q. Jin, X. Liu, R. Wang, and Y. Deng, “Impact of cross-polarization isolation on polarimetric target decomposition and target detection,” Radio Sci. 50(4), 327–338 (2015).
[Crossref]

Lotsberg, J. K.

E. R. Sommersten, J. K. Lotsberg, K. Stamnes, and J. J. Stamnes, “Discrete ordinate and Monte Carlo simulations for polarized radiative transfer in a coupled system consisting of two media with different refractive indices,” J. Quant. Spectrosc. Radiat. Transf. 111(4), 616–633 (2010).
[Crossref]

Marschner, S.

W. Jakob, E. D’Eon, O. Jakob, and S. Marschner, “A comprehensive framework for rendering layered materials,” ACM Trans. Graph. 33, 1–14 (2014).

Marx, E.

Meglinski, I.

I. Meglinski, “Monte Carlo simulation of reflection spectra of random multilayer media strongly scattering and absorbing light,” Quantum Electron. 31(12), 1101–1107 (2001).
[Crossref]

Meier, S. R.

R. G. Priest and S. R. Meier, “Polarimetric microfacet scattering theory with applications to absorptive and reflective surfaces,” Opt. Eng. 41(5), 988–993 (2002).
[Crossref]

Pan, J.

J. Pan, Q. Chen, W. Qian, and L. Geng, “Results of a new polarimetric BRDF simulation of metallic surfaces,” Infrared Phys. Technol. 72, 58–67 (2015).
[Crossref]

Plass, G. N.

G. W. Kattawar, G. N. Plass, and J. A. Guinn., “Monte Carlo calculations of the polarization of radiation in the earth’s atmosphere-ocean system,” J. Phys. Oceanogr. 3(4), 353–372 (1973).
[Crossref]

Prahl, S.

Premo, S.

M. Ashikmin, S. Premo, and P. Shirley, “A microfacet-based brdf generator,” in Proceedings of the 27th annual conference on Computer graphics and interactive techniques, (ACM Press/Addison-Wesley Publishing Co., 2000), pp. 65–74.

Priest, R. G.

R. G. Priest and S. R. Meier, “Polarimetric microfacet scattering theory with applications to absorptive and reflective surfaces,” Opt. Eng. 41(5), 988–993 (2002).
[Crossref]

R. G. Priest and T. A. Gerner, “Polarimetric BRDF in the microfacet model: Theory and measurements,” Meeting of the Military Sensing Symposia Specialty Group on Passive Sensors 1, 169–181 (2000).

Qian, W.

J. Pan, Q. Chen, W. Qian, and L. Geng, “Results of a new polarimetric BRDF simulation of metallic surfaces,” Infrared Phys. Technol. 72, 58–67 (2015).
[Crossref]

Ramella-Roman, J.

Schmidt, J. D.

Shaw, J. A.

Shirley, P.

M. Ashikhmin and P. Shirley, “An anisotropic phong brdf model,” J. Graphics Tools 5(2), 25–32 (2000).
[Crossref]

M. Ashikmin, S. Premo, and P. Shirley, “A microfacet-based brdf generator,” in Proceedings of the 27th annual conference on Computer graphics and interactive techniques, (ACM Press/Addison-Wesley Publishing Co., 2000), pp. 65–74.

Sommersten, E. R.

E. R. Sommersten, J. K. Lotsberg, K. Stamnes, and J. J. Stamnes, “Discrete ordinate and Monte Carlo simulations for polarized radiative transfer in a coupled system consisting of two media with different refractive indices,” J. Quant. Spectrosc. Radiat. Transf. 111(4), 616–633 (2010).
[Crossref]

Sparrow, E. M.

Stamnes, J. J.

E. R. Sommersten, J. K. Lotsberg, K. Stamnes, and J. J. Stamnes, “Discrete ordinate and Monte Carlo simulations for polarized radiative transfer in a coupled system consisting of two media with different refractive indices,” J. Quant. Spectrosc. Radiat. Transf. 111(4), 616–633 (2010).
[Crossref]

Stamnes, K.

E. R. Sommersten, J. K. Lotsberg, K. Stamnes, and J. J. Stamnes, “Discrete ordinate and Monte Carlo simulations for polarized radiative transfer in a coupled system consisting of two media with different refractive indices,” J. Quant. Spectrosc. Radiat. Transf. 111(4), 616–633 (2010).
[Crossref]

Tan, J. Y.

J. M. Zhao, J. Y. Tan, and L. H. Liu, “Monte Carlo method for polarized radiative transfer in gradient-index media,” J. Quant. Spectrosc. Radiat. Transf. 152, 114–126 (2014).

Thilak, V.

Torrance, K. E.

Tyo, J. S.

Voelz, D. G.

Wang, H.

F. Xu, H. Wang, Y. Q. Jin, X. Liu, R. Wang, and Y. Deng, “Impact of cross-polarization isolation on polarimetric target decomposition and target detection,” Radio Sci. 50(4), 327–338 (2015).
[Crossref]

Wang, L.

L. Wang, S. L. Jacques, and L. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
[Crossref] [PubMed]

Wang, L. V.

X. Wang and L. V. Wang, “Propagation of polarized light in birefringent turbid media: A Monte Carlo study,” J. Biomed. Opt. 7(3), 279–290 (2002).
[Crossref] [PubMed]

Wang, R.

F. Xu, H. Wang, Y. Q. Jin, X. Liu, R. Wang, and Y. Deng, “Impact of cross-polarization isolation on polarimetric target decomposition and target detection,” Radio Sci. 50(4), 327–338 (2015).
[Crossref]

Wang, X.

X. Wang and L. V. Wang, “Propagation of polarized light in birefringent turbid media: A Monte Carlo study,” J. Biomed. Opt. 7(3), 279–290 (2002).
[Crossref] [PubMed]

Weidlich, A.

A. Weidlich and A. Wilkie, “Arbitrarily layered micro-facet surfaces,” in 5th International Conference on Computer Graphics and Interactive Techniques, (ACM, 2007), 171–178.

Wilkie, A.

A. Weidlich and A. Wilkie, “Arbitrarily layered micro-facet surfaces,” in 5th International Conference on Computer Graphics and Interactive Techniques, (ACM, 2007), 171–178.

Wolff, L. B.

L. B. Wolff and T. E. Boult, “Constraining object features using a polarization reflectance model,” IEEE Trans. Pattern Anal. Mach. Intell. 13(7), 635–657 (1991).
[Crossref]

L. B. Wolff, “Polarization-based material classification from specular reflection,” IEEE Trans. Pattern Anal. Mach. Intell. 12(11), 1059–1071 (1990).
[Crossref]

H. Chen and L. B. Wolff, “Polarization phase-based method for material classification and object recognition in computer vision,” in IEEE Conference on Computer Vision and Pattern Recognition, (IEEE Computer Society, 1996), 128.
[Crossref]

Xu, F.

F. Xu, H. Wang, Y. Q. Jin, X. Liu, R. Wang, and Y. Deng, “Impact of cross-polarization isolation on polarimetric target decomposition and target detection,” Radio Sci. 50(4), 327–338 (2015).
[Crossref]

Xu, M.

Zhao, J. M.

J. M. Zhao, J. Y. Tan, and L. H. Liu, “Monte Carlo method for polarized radiative transfer in gradient-index media,” J. Quant. Spectrosc. Radiat. Transf. 152, 114–126 (2014).

Zheng, L.

L. Wang, S. L. Jacques, and L. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
[Crossref] [PubMed]

ACM Trans. Graph. (1)

W. Jakob, E. D’Eon, O. Jakob, and S. Marschner, “A comprehensive framework for rendering layered materials,” ACM Trans. Graph. 33, 1–14 (2014).

Appl. Opt. (4)

Comput. Methods Programs Biomed. (1)

L. Wang, S. L. Jacques, and L. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
[Crossref] [PubMed]

IEEE Trans. Pattern Anal. Mach. Intell. (2)

L. B. Wolff, “Polarization-based material classification from specular reflection,” IEEE Trans. Pattern Anal. Mach. Intell. 12(11), 1059–1071 (1990).
[Crossref]

L. B. Wolff and T. E. Boult, “Constraining object features using a polarization reflectance model,” IEEE Trans. Pattern Anal. Mach. Intell. 13(7), 635–657 (1991).
[Crossref]

Infrared Phys. Technol. (1)

J. Pan, Q. Chen, W. Qian, and L. Geng, “Results of a new polarimetric BRDF simulation of metallic surfaces,” Infrared Phys. Technol. 72, 58–67 (2015).
[Crossref]

Int. J. Remote Sens. (1)

G. Atteia and M. Collins, “Ship detection performance using simulated dual-polarization radarsat constellation mission data,” Int. J. Remote Sens. 36(6), 1705–1727 (2015).
[Crossref]

J. Biomed. Opt. (1)

X. Wang and L. V. Wang, “Propagation of polarized light in birefringent turbid media: A Monte Carlo study,” J. Biomed. Opt. 7(3), 279–290 (2002).
[Crossref] [PubMed]

J. Graphics Tools (1)

M. Ashikhmin and P. Shirley, “An anisotropic phong brdf model,” J. Graphics Tools 5(2), 25–32 (2000).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

J. Phys. Oceanogr. (1)

G. W. Kattawar, G. N. Plass, and J. A. Guinn., “Monte Carlo calculations of the polarization of radiation in the earth’s atmosphere-ocean system,” J. Phys. Oceanogr. 3(4), 353–372 (1973).
[Crossref]

J. Quant. Spectrosc. Radiat. Transf. (4)

E. R. Sommersten, J. K. Lotsberg, K. Stamnes, and J. J. Stamnes, “Discrete ordinate and Monte Carlo simulations for polarized radiative transfer in a coupled system consisting of two media with different refractive indices,” J. Quant. Spectrosc. Radiat. Transf. 111(4), 616–633 (2010).
[Crossref]

R. D. M. Garcia, “Fresnel boundary and interface conditions for polarized radiative transfer in a multilayer medium,” J. Quant. Spectrosc. Radiat. Transf. 113(4), 306–317 (2012).
[Crossref]

R. D. M. Garcia, “Radiative transfer with polarization in a multi-layer medium subject to fresnel boundary and interface conditions,” J. Quant. Spectrosc. Radiat. Transf. 115, 28–45 (2013).
[Crossref]

J. M. Zhao, J. Y. Tan, and L. H. Liu, “Monte Carlo method for polarized radiative transfer in gradient-index media,” J. Quant. Spectrosc. Radiat. Transf. 152, 114–126 (2014).

Meeting of the Military Sensing Symposia Specialty Group on Passive Sensors (1)

R. G. Priest and T. A. Gerner, “Polarimetric BRDF in the microfacet model: Theory and measurements,” Meeting of the Military Sensing Symposia Specialty Group on Passive Sensors 1, 169–181 (2000).

Opt. Eng. (1)

R. G. Priest and S. R. Meier, “Polarimetric microfacet scattering theory with applications to absorptive and reflective surfaces,” Opt. Eng. 41(5), 988–993 (2002).
[Crossref]

Opt. Express (3)

Quantum Electron. (1)

I. Meglinski, “Monte Carlo simulation of reflection spectra of random multilayer media strongly scattering and absorbing light,” Quantum Electron. 31(12), 1101–1107 (2001).
[Crossref]

Radio Sci. (1)

F. Xu, H. Wang, Y. Q. Jin, X. Liu, R. Wang, and Y. Deng, “Impact of cross-polarization isolation on polarimetric target decomposition and target detection,” Radio Sci. 50(4), 327–338 (2015).
[Crossref]

Other (9)

H. Chen and L. B. Wolff, “Polarization phase-based method for material classification and object recognition in computer vision,” in IEEE Conference on Computer Vision and Pattern Recognition, (IEEE Computer Society, 1996), 128.
[Crossref]

A. Weidlich and A. Wilkie, “Arbitrarily layered micro-facet surfaces,” in 5th International Conference on Computer Graphics and Interactive Techniques, (ACM, 2007), 171–178.

E. R. Freniere, G. G. Gregory, and R. A. Hassler, “Polarization models for Monte Carlo ray tracing,” in SPIE's International Symposium on Optical Science, Engineering, and Instrumentation, 1999)

R. D. M. Garcia, “Some issues related to polarized radiative transfer in a multilayer medium with a changing index of refraction,” in Journal of Physics: Conference Series, (IOP Publishing, 2012), 12005–12014(12010).

D. Goldstein, Polarized light, second edition revised and expanded (Marcel Dekker Inc, New York, 2003).

B. Michael, C. M. Decusatis, J. M. Enoch, V. Lakshaminarayannan, G. Li, and C. MacDonald, Handbook of Optics, 3rd ed. (McGraw-Hill, 2009), Vol. 1.

M. Ashikmin, S. Premo, and P. Shirley, “A microfacet-based brdf generator,” in Proceedings of the 27th annual conference on Computer graphics and interactive techniques, (ACM Press/Addison-Wesley Publishing Co., 2000), pp. 65–74.

T. Germer, “SCATMECH v 7.0: Polarized light scattering C++ class library,” (NIST, 2015).

S. K. Shevell, The Science of Color (Elsevier, 2003).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Reflection and refraction at interface.

Fig. 2
Fig. 2

Model of multi-layer surface.

Fig. 3
Fig. 3

(a) Surface composed of the micro-facets in the XYZ coordinate system, (b) the schematics of a single micro-facet.

Fig. 4
Fig. 4

Polarization coordinate system rotation.

Fig. 5
Fig. 5

Multi-layer reflections and refractions.

Fig. 6
Fig. 6

Comparisons with measured data of the aluminum surfaces (a) and flat green paint (b).

Fig. 7
Fig. 7

Comparison with single-layer analytical BRDF model.

Fig. 8
Fig. 8

Comparison of the results between our proposed mode and the analytical BRDF model for the multi-layer sample.

Fig. 9
Fig. 9

The reflective polarization information from 3 layers, 6 layers and 8 layers samples.

Fig. 10
Fig. 10

Reflection distributions of the samples with difference surface parameters.

Fig. 11
Fig. 11

Polarization reflection distribution of copper under three wavelengths.

Fig. 12
Fig. 12

Polarization reflection distribution of aluminum under three wavelengths.

Fig. 13
Fig. 13

The polarization reflection of the incidence with different polarization state.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

F s = ( R s E s ) 2 = ( n 0 cos θ i a) 2 + b 2 ( n 0 cos θ i +a) 2 + b 2
F p = ( R p E p ) 2 = (a n 0 sin θ i tan θ i ) 2 + b 2 (a+ n 0 sin θ i tan θ i ) 2 + b 2 F s
tan δ s = 2b n 0 cos θ i n 0 2 cos 2 θ i a 2 b 2
tan δ p = 2 n 0 cos θ i [ ( n 1 2 k 2 )b2 n 1 ka ] ( n 1 2 + k 2 ) 2 cos 2 θ i n 0 2 ( a 2 + b 2 )
2 a 2 = ( n 1 2 k 2 n 0 sin 2 θ i ) 2 +4 n 1 2 k 2 + n 1 2 k 2 n 0 sin 2 θ i
2 b 2 = ( n 1 2 k 2 n 0 sin 2 θ i ) 2 +4 n 1 2 k 2 n 1 2 + k 2 + n 0 sin 2 θ i
M r = 1 2 ( F s + F p F s F p F s F p F s + F p 0 0 2 F s F p cos( δ s δ p ) 2 F s F p sin( δ s δ p ) 2 F s F p sin( δ s δ p ) 2 F s F p cos( δ s δ p ) )
M t = 1 2 ( T s + T p T s T p T s T p T s + T p 0 0 2 T s T p cos( δ s δ p ) 2 T s T p sin( δ s δ p ) 2 T s T p sin( δ s δ p ) 2 T s T p cos( δ s δ p ) )
D(n)= ( e x +2)( e y +2) 2π cos θ e x cos 2 δ+ e y sin 2 δ
δ=arctan( e x +1 e y +1 tan( π ξ 1 2 )) cosθ= ξ 2 ( e x cos 2 δ+ e y sin 2 δ+1) 1
R ( θ ) rot =( cosθ sinθ sinθ cosθ ) M ( θ ) rot =( 1 0 0 cos2θ 0 0 sin2θ 0 0 sin2θ 0 0 cos2θ 0 0 1 )

Metrics