Abstract

We demonstrate the capability of polarized third-harmonic generation (THG) for high contrast imaging of three-dimensional microstructures fabricated by photopolymerization. Using circular polarization of fundamental light, background-free optically-sectioned THG images were obtained from laser-written photopolymerized microstructures. The technique has great potential for simple and noninvasive characterization of photopolymerized devices, which typically show poor contrast in conventional light microscopy.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Harmonic microscopy of isotropic and anisotropic microstructure of the human cornea

Nicolas Olivier, Florent Aptel, Karsten Plamann, Marie-Claire Schanne-Klein, and Emmanuel Beaurepaire
Opt. Express 18(5) 5028-5040 (2010)

Third- and second-harmonic generation microscopy of individual metal nanocones using cylindrical vector beams

Godofredo Bautista, Mikko J. Huttunen, Juha M. Kontio, Janne Simonen, and Martti Kauranen
Opt. Express 21(19) 21918-21923 (2013)

Real three-dimensional microstructures fabricated by photopolymerization of resins through two-photon absorption

Hong-Bo Sun, Takeshi Kawakami, Ying Xu, Jia-Yu Ye, Shigeki Matuso, Hiroaki Misawa, Masafumi Miwa, and Reizo Kaneko
Opt. Lett. 25(15) 1110-1112 (2000)

References

  • View by:
  • |
  • |
  • |

  1. R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2008).
  2. Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett. 70(8), 922–924 (1997).
    [Crossref]
  3. J. Squier, M. Müller, G. Brakenhoff, and K. R. Wilson, “Third harmonic generation microscopy,” Opt. Express 3(9), 315–324 (1998).
    [Crossref] [PubMed]
  4. M. Müller, J. Squier, K. R. Wilson, and G. J. Brakenhoff, “3D microscopy of transparent objects using third-harmonic generation,” J. Microsc. 191(3), 266–274 (1998).
    [Crossref] [PubMed]
  5. D. Yelin and Y. Silberberg, “Laser scanning third-harmonic-generation microscopy in biology,” Opt. Express 5(8), 169–175 (1999).
    [Crossref] [PubMed]
  6. D. Yelin, Y. Silberberg, Y. Barad, and J. S. Patel, “Depth-resolved imaging of nematic liquid crystals by third-harmonic microscopy,” Appl. Phys. Lett. 74(21), 3107 (1999).
    [Crossref]
  7. D. Débarre, W. Supatto, and E. Beaurepaire, “Structure sensitivity in third-harmonic generation microscopy,” Opt. Lett. 30(16), 2134–2136 (2005).
    [Crossref] [PubMed]
  8. D. Débarre, W. Supatto, A.-M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M.-C. Schanne-Klein, and E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nat. Methods 3(1), 47–53 (2006).
    [Crossref] [PubMed]
  9. D. Oron, E. Tal, and Y. Silberberg, “Depth-resolved multiphoton polarization microscopy by third-harmonic generation,” Opt. Lett. 28(23), 2315–2317 (2003).
    [Crossref] [PubMed]
  10. N. Olivier and E. Beaurepaire, “Third-harmonic generation microscopy with focus-engineered beams: a numerical study,” Opt. Express 16(19), 14703–14715 (2008).
    [Crossref] [PubMed]
  11. O. Masihzadeh, P. Schlup, and R. A. Bartels, “Enhanced spatial resolution in third-harmonic microscopy through polarization switching,” Opt. Lett. 34(8), 1240–1242 (2009).
    [Crossref] [PubMed]
  12. O. Masihzadeh, P. Schlup, and R. A. Bartels, “Control and measurement of spatially inhomogeneous polarization distributions in third-harmonic generation microscopy,” Opt. Lett. 34(7), 1090–1092 (2009).
    [Crossref] [PubMed]
  13. S. Yang and Q. Zhan, “Third-harmonic generation microscopy with tightly focused radial polarization,” J. Opt. A, Pure Appl. Opt. 10(12), 125103 (2008).
    [Crossref]
  14. G. Bautista, M. J. Huttunen, J. M. Kontio, J. Simonen, and M. Kauranen, “Third- and second-harmonic generation microscopy of individual metal nanocones using cylindrical vector beams,” Opt. Express 21(19), 21918–21923 (2013).
    [Crossref] [PubMed]
  15. M. Zimmerley, P. Mahou, D. Débarre, M.-C. Schanne-Klein, and E. Beaurepaire, “Probing Ordered Lipid Assemblies with Polarized Third-Harmonic-Generation Microscopy,” Phys. Rev. X 3(1), 011002 (2013).
    [Crossref]
  16. N. Olivier, F. Aptel, K. Plamann, M.-C. Schanne-Klein, and E. Beaurepaire, “Harmonic microscopy of isotropic and anisotropic microstructure of the human cornea,” Opt. Express 18(5), 5028–5040 (2010).
    [Crossref] [PubMed]
  17. G. Bautista, S. G. Pfisterer, M. J. Huttunen, S. Ranjan, K. Kanerva, E. Ikonen, and M. Kauranen, “Polarized THG microscopy identifies compositionally different lipid droplets in mammalian cells,” Biophys. J. 107(10), 2230–2236 (2014).
    [Crossref] [PubMed]
  18. M. Lippitz, M. A. van Dijk, and M. Orrit, “Third-harmonic generation from single gold nanoparticles,” Nano Lett. 5(4), 799–802 (2005).
    [Crossref] [PubMed]
  19. O. Schwartz and D. Oron, “Background-Free Third Harmonic Imaging of Gold Nanorods,” Nano Lett. 9(12), 4093–4097 (2009).
    [Crossref] [PubMed]
  20. S. Maruo, O. Nakamura, and S. Kawata, “Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Opt. Lett. 22(2), 132–134 (1997).
    [Crossref] [PubMed]
  21. S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
    [Crossref] [PubMed]
  22. H.-B. Sun and S. Kawata, “Two-Photon Photopolymerization and 3D Lithographic Microfabrication,” Adv. Polym. Sci. 170, 169–273 (2006).
    [Crossref]
  23. J. Serbin, A. Ovsianikov, and B. Chichkov, “Fabrication of woodpile structures by two-photon polymerization and investigation of their optical properties,” Opt. Express 12(21), 5221–5228 (2004).
    [Crossref] [PubMed]
  24. S. Wu, J. Serbin, and M. Gu, “Two-photon polymerization for three-dimensional micro-fabrication,” J. Photochem. Photobiol. Chem. 181(1), 1–11 (2006).
    [Crossref]
  25. M. Farsari and B. N. Chichkov, “Material processing: Two-photon fabrication,” Nat. Photonics 3(8), 450–452 (2009).
    [Crossref]
  26. G. Bautista, M. J. Romero, G. Tapang, and V. R. Daria, “Parallel two-photon photopolymerization of microgear patterns,” Opt. Commun. 282(18), 3746–3750 (2009).
    [Crossref]
  27. T. S. Drakakis, G. Papadakis, K. Sambani, G. Filippidis, S. Georgiou, E. Gizeli, C. Fotakis, and M. Farsari, “Construction of three-dimensional biomolecule structures employing femtosecond lasers,” Appl. Phys. Lett. 89(14), 144108 (2006).
    [Crossref]
  28. J. H. Strickler and W. W. Webb, “Three-dimensional optical data storage in refractive media by two-photon point excitation,” Opt. Lett. 16(22), 1780–1782 (1991).
    [Crossref] [PubMed]
  29. S. Kimura and T. Wilson, “Confocal scanning dark-field polarization microscopy,” Appl. Opt. 33(7), 1274–1278 (1994).
    [Crossref] [PubMed]
  30. L. Muntean, R. Planques, A. L. D. Kilcoyne, S. R. Leone, M. K. Gilles, and W. D. Hinsberg, “Chemical mapping of polymer photoresists by scanning transmission x-ray microscopy,” J. Vac. Sci. Technol. B 23(4), 1630 (2005).
    [Crossref]
  31. J. Choi, K.-S. Lee, J. P. Rolland, T. Anderson, and M. C. Richardson, “Nondestructive 3-D imaging of femtosecond laser written volumetric structures using optical coherence microscopy,” Appl. Phys., A Mater. Sci. Process. 104(1), 289–294 (2011).
    [Crossref]
  32. V. Tribuzi, R. D. Fonseca, D. S. Correa, and C. R. Mendonça, “Birefringent microstructures fabricated by two-photon polymerization containing an azopolymer,” Opt. Mater. Express 3(1), 21–26 (2013).
    [Crossref]
  33. H.-B. Sun, T. Tanaka, K. Takada, and S. Kawata, “Two-photon photopolymerization and diagnosis of three-dimensional microstructures containing fluorescent dyes,” Appl. Phys. Lett. 79(10), 1411 (2001).
    [Crossref]
  34. E. Van Keuren and W. Schrof, “Fluorescence Recovery after Two-Photon Bleaching for the Study of Dye Diffusion in Polymer Systems,” Macromolecules 36(13), 5002–5007 (2003).
    [Crossref]
  35. P. Kunwar, J. Hassinen, G. Bautista, R. H. A. Ras, and J. Toivonen, “Direct laser writing of photostable fluorescent silver nanoclusters in polymer films,” ACS Nano 8(11), 11165–11171 (2014).
    [Crossref] [PubMed]
  36. P. Kunwar, J. Hassinen, G. Bautista, R. H. A. Ras, and J. Toivonen, “Sub-micron scale patterning of fluorescent silver nanoclusters using low-power laser,” Sci. Rep. 6, 23998 (2016).
    [Crossref] [PubMed]
  37. P. Kunwar, L. Turquet, J. Hassinen, R. H. A. Ras, J. Toivonen, and G. Bautista, “Holographic patterning of fluorescent microstructures comprising silver nanoclusters,” Opt. Mater. Express 6(3), 946–951 (2016).
    [Crossref]
  38. B. Dragnea, J. Preusser, J. M. Szarko, S. R. Leone, and W. D. Hinsberg, “Pattern characterization of deep-ultraviolet photoresists by near-field infrared microscopy,” J. Vac. Sci. Technol. B 19(1), 142 (2001).
    [Crossref]
  39. T. Baldacchini, M. Zimmerley, C. H. Kuo, E. O. Potma, and R. Zadoyan, “Characterization of microstructures fabricated by two-photon polymerization using coherent anti-stokes Raman scattering microscopy,” J. Phys. Chem. B 113(38), 12663–12668 (2009).
    [Crossref] [PubMed]
  40. T. Baldacchini and R. Zadoyan, “In situ and real time monitoring of two-photon polymerization using broadband coherent anti-Stokes Raman scattering microscopy,” Opt. Express 18(18), 19219–19231 (2010).
    [Crossref] [PubMed]
  41. L. J. Jiang, Y. S. Zhou, W. Xiong, Y. Gao, X. Huang, L. Jiang, T. Baldacchini, J.-F. Silvain, and Y. F. Lu, “Two-photon polymerization: investigation of chemical and mechanical properties of resins using Raman microspectroscopy,” Opt. Lett. 39(10), 3034–3037 (2014).
    [Crossref] [PubMed]
  42. G. D. Marshall, A. Jesacher, A. Thayil, M. J. Withford, and M. Booth, “Three-dimensional imaging of direct-written photonic structures,” Opt. Lett. 36(5), 695–697 (2011).
    [Crossref] [PubMed]
  43. A. Jesacher, P. S. Salter, and M. J. Booth, “Refractive index profiling of direct laser written waveguides: tomographic phase imaging,” Opt. Mater. Express 3(9), 1223–1232 (2013).
    [Crossref]
  44. A. Selimis, G. J. Tserevelakis, S. Kogou, P. Pouli, G. Filippidis, N. Sapogova, N. Bityurin, and C. Fotakis, “Nonlinear microscopy techniques for assessing the UV laser polymer interactions,” Opt. Express 20(4), 3990–3996 (2012).
    [Crossref] [PubMed]

2016 (2)

P. Kunwar, J. Hassinen, G. Bautista, R. H. A. Ras, and J. Toivonen, “Sub-micron scale patterning of fluorescent silver nanoclusters using low-power laser,” Sci. Rep. 6, 23998 (2016).
[Crossref] [PubMed]

P. Kunwar, L. Turquet, J. Hassinen, R. H. A. Ras, J. Toivonen, and G. Bautista, “Holographic patterning of fluorescent microstructures comprising silver nanoclusters,” Opt. Mater. Express 6(3), 946–951 (2016).
[Crossref]

2014 (3)

L. J. Jiang, Y. S. Zhou, W. Xiong, Y. Gao, X. Huang, L. Jiang, T. Baldacchini, J.-F. Silvain, and Y. F. Lu, “Two-photon polymerization: investigation of chemical and mechanical properties of resins using Raman microspectroscopy,” Opt. Lett. 39(10), 3034–3037 (2014).
[Crossref] [PubMed]

P. Kunwar, J. Hassinen, G. Bautista, R. H. A. Ras, and J. Toivonen, “Direct laser writing of photostable fluorescent silver nanoclusters in polymer films,” ACS Nano 8(11), 11165–11171 (2014).
[Crossref] [PubMed]

G. Bautista, S. G. Pfisterer, M. J. Huttunen, S. Ranjan, K. Kanerva, E. Ikonen, and M. Kauranen, “Polarized THG microscopy identifies compositionally different lipid droplets in mammalian cells,” Biophys. J. 107(10), 2230–2236 (2014).
[Crossref] [PubMed]

2013 (4)

2012 (1)

2011 (2)

G. D. Marshall, A. Jesacher, A. Thayil, M. J. Withford, and M. Booth, “Three-dimensional imaging of direct-written photonic structures,” Opt. Lett. 36(5), 695–697 (2011).
[Crossref] [PubMed]

J. Choi, K.-S. Lee, J. P. Rolland, T. Anderson, and M. C. Richardson, “Nondestructive 3-D imaging of femtosecond laser written volumetric structures using optical coherence microscopy,” Appl. Phys., A Mater. Sci. Process. 104(1), 289–294 (2011).
[Crossref]

2010 (2)

2009 (6)

O. Masihzadeh, P. Schlup, and R. A. Bartels, “Control and measurement of spatially inhomogeneous polarization distributions in third-harmonic generation microscopy,” Opt. Lett. 34(7), 1090–1092 (2009).
[Crossref] [PubMed]

O. Masihzadeh, P. Schlup, and R. A. Bartels, “Enhanced spatial resolution in third-harmonic microscopy through polarization switching,” Opt. Lett. 34(8), 1240–1242 (2009).
[Crossref] [PubMed]

T. Baldacchini, M. Zimmerley, C. H. Kuo, E. O. Potma, and R. Zadoyan, “Characterization of microstructures fabricated by two-photon polymerization using coherent anti-stokes Raman scattering microscopy,” J. Phys. Chem. B 113(38), 12663–12668 (2009).
[Crossref] [PubMed]

M. Farsari and B. N. Chichkov, “Material processing: Two-photon fabrication,” Nat. Photonics 3(8), 450–452 (2009).
[Crossref]

G. Bautista, M. J. Romero, G. Tapang, and V. R. Daria, “Parallel two-photon photopolymerization of microgear patterns,” Opt. Commun. 282(18), 3746–3750 (2009).
[Crossref]

O. Schwartz and D. Oron, “Background-Free Third Harmonic Imaging of Gold Nanorods,” Nano Lett. 9(12), 4093–4097 (2009).
[Crossref] [PubMed]

2008 (2)

S. Yang and Q. Zhan, “Third-harmonic generation microscopy with tightly focused radial polarization,” J. Opt. A, Pure Appl. Opt. 10(12), 125103 (2008).
[Crossref]

N. Olivier and E. Beaurepaire, “Third-harmonic generation microscopy with focus-engineered beams: a numerical study,” Opt. Express 16(19), 14703–14715 (2008).
[Crossref] [PubMed]

2006 (4)

D. Débarre, W. Supatto, A.-M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M.-C. Schanne-Klein, and E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nat. Methods 3(1), 47–53 (2006).
[Crossref] [PubMed]

T. S. Drakakis, G. Papadakis, K. Sambani, G. Filippidis, S. Georgiou, E. Gizeli, C. Fotakis, and M. Farsari, “Construction of three-dimensional biomolecule structures employing femtosecond lasers,” Appl. Phys. Lett. 89(14), 144108 (2006).
[Crossref]

H.-B. Sun and S. Kawata, “Two-Photon Photopolymerization and 3D Lithographic Microfabrication,” Adv. Polym. Sci. 170, 169–273 (2006).
[Crossref]

S. Wu, J. Serbin, and M. Gu, “Two-photon polymerization for three-dimensional micro-fabrication,” J. Photochem. Photobiol. Chem. 181(1), 1–11 (2006).
[Crossref]

2005 (3)

M. Lippitz, M. A. van Dijk, and M. Orrit, “Third-harmonic generation from single gold nanoparticles,” Nano Lett. 5(4), 799–802 (2005).
[Crossref] [PubMed]

D. Débarre, W. Supatto, and E. Beaurepaire, “Structure sensitivity in third-harmonic generation microscopy,” Opt. Lett. 30(16), 2134–2136 (2005).
[Crossref] [PubMed]

L. Muntean, R. Planques, A. L. D. Kilcoyne, S. R. Leone, M. K. Gilles, and W. D. Hinsberg, “Chemical mapping of polymer photoresists by scanning transmission x-ray microscopy,” J. Vac. Sci. Technol. B 23(4), 1630 (2005).
[Crossref]

2004 (1)

2003 (2)

D. Oron, E. Tal, and Y. Silberberg, “Depth-resolved multiphoton polarization microscopy by third-harmonic generation,” Opt. Lett. 28(23), 2315–2317 (2003).
[Crossref] [PubMed]

E. Van Keuren and W. Schrof, “Fluorescence Recovery after Two-Photon Bleaching for the Study of Dye Diffusion in Polymer Systems,” Macromolecules 36(13), 5002–5007 (2003).
[Crossref]

2001 (3)

B. Dragnea, J. Preusser, J. M. Szarko, S. R. Leone, and W. D. Hinsberg, “Pattern characterization of deep-ultraviolet photoresists by near-field infrared microscopy,” J. Vac. Sci. Technol. B 19(1), 142 (2001).
[Crossref]

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
[Crossref] [PubMed]

H.-B. Sun, T. Tanaka, K. Takada, and S. Kawata, “Two-photon photopolymerization and diagnosis of three-dimensional microstructures containing fluorescent dyes,” Appl. Phys. Lett. 79(10), 1411 (2001).
[Crossref]

1999 (2)

D. Yelin, Y. Silberberg, Y. Barad, and J. S. Patel, “Depth-resolved imaging of nematic liquid crystals by third-harmonic microscopy,” Appl. Phys. Lett. 74(21), 3107 (1999).
[Crossref]

D. Yelin and Y. Silberberg, “Laser scanning third-harmonic-generation microscopy in biology,” Opt. Express 5(8), 169–175 (1999).
[Crossref] [PubMed]

1998 (2)

J. Squier, M. Müller, G. Brakenhoff, and K. R. Wilson, “Third harmonic generation microscopy,” Opt. Express 3(9), 315–324 (1998).
[Crossref] [PubMed]

M. Müller, J. Squier, K. R. Wilson, and G. J. Brakenhoff, “3D microscopy of transparent objects using third-harmonic generation,” J. Microsc. 191(3), 266–274 (1998).
[Crossref] [PubMed]

1997 (2)

Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett. 70(8), 922–924 (1997).
[Crossref]

S. Maruo, O. Nakamura, and S. Kawata, “Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Opt. Lett. 22(2), 132–134 (1997).
[Crossref] [PubMed]

1994 (1)

1991 (1)

Anderson, T.

J. Choi, K.-S. Lee, J. P. Rolland, T. Anderson, and M. C. Richardson, “Nondestructive 3-D imaging of femtosecond laser written volumetric structures using optical coherence microscopy,” Appl. Phys., A Mater. Sci. Process. 104(1), 289–294 (2011).
[Crossref]

Aptel, F.

Baldacchini, T.

Barad, Y.

D. Yelin, Y. Silberberg, Y. Barad, and J. S. Patel, “Depth-resolved imaging of nematic liquid crystals by third-harmonic microscopy,” Appl. Phys. Lett. 74(21), 3107 (1999).
[Crossref]

Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett. 70(8), 922–924 (1997).
[Crossref]

Bartels, R. A.

Bautista, G.

P. Kunwar, L. Turquet, J. Hassinen, R. H. A. Ras, J. Toivonen, and G. Bautista, “Holographic patterning of fluorescent microstructures comprising silver nanoclusters,” Opt. Mater. Express 6(3), 946–951 (2016).
[Crossref]

P. Kunwar, J. Hassinen, G. Bautista, R. H. A. Ras, and J. Toivonen, “Sub-micron scale patterning of fluorescent silver nanoclusters using low-power laser,” Sci. Rep. 6, 23998 (2016).
[Crossref] [PubMed]

G. Bautista, S. G. Pfisterer, M. J. Huttunen, S. Ranjan, K. Kanerva, E. Ikonen, and M. Kauranen, “Polarized THG microscopy identifies compositionally different lipid droplets in mammalian cells,” Biophys. J. 107(10), 2230–2236 (2014).
[Crossref] [PubMed]

P. Kunwar, J. Hassinen, G. Bautista, R. H. A. Ras, and J. Toivonen, “Direct laser writing of photostable fluorescent silver nanoclusters in polymer films,” ACS Nano 8(11), 11165–11171 (2014).
[Crossref] [PubMed]

G. Bautista, M. J. Huttunen, J. M. Kontio, J. Simonen, and M. Kauranen, “Third- and second-harmonic generation microscopy of individual metal nanocones using cylindrical vector beams,” Opt. Express 21(19), 21918–21923 (2013).
[Crossref] [PubMed]

G. Bautista, M. J. Romero, G. Tapang, and V. R. Daria, “Parallel two-photon photopolymerization of microgear patterns,” Opt. Commun. 282(18), 3746–3750 (2009).
[Crossref]

Beaurepaire, E.

M. Zimmerley, P. Mahou, D. Débarre, M.-C. Schanne-Klein, and E. Beaurepaire, “Probing Ordered Lipid Assemblies with Polarized Third-Harmonic-Generation Microscopy,” Phys. Rev. X 3(1), 011002 (2013).
[Crossref]

N. Olivier, F. Aptel, K. Plamann, M.-C. Schanne-Klein, and E. Beaurepaire, “Harmonic microscopy of isotropic and anisotropic microstructure of the human cornea,” Opt. Express 18(5), 5028–5040 (2010).
[Crossref] [PubMed]

N. Olivier and E. Beaurepaire, “Third-harmonic generation microscopy with focus-engineered beams: a numerical study,” Opt. Express 16(19), 14703–14715 (2008).
[Crossref] [PubMed]

D. Débarre, W. Supatto, A.-M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M.-C. Schanne-Klein, and E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nat. Methods 3(1), 47–53 (2006).
[Crossref] [PubMed]

D. Débarre, W. Supatto, and E. Beaurepaire, “Structure sensitivity in third-harmonic generation microscopy,” Opt. Lett. 30(16), 2134–2136 (2005).
[Crossref] [PubMed]

Bityurin, N.

Booth, M.

Booth, M. J.

Brakenhoff, G.

Brakenhoff, G. J.

M. Müller, J. Squier, K. R. Wilson, and G. J. Brakenhoff, “3D microscopy of transparent objects using third-harmonic generation,” J. Microsc. 191(3), 266–274 (1998).
[Crossref] [PubMed]

Chichkov, B.

Chichkov, B. N.

M. Farsari and B. N. Chichkov, “Material processing: Two-photon fabrication,” Nat. Photonics 3(8), 450–452 (2009).
[Crossref]

Choi, J.

J. Choi, K.-S. Lee, J. P. Rolland, T. Anderson, and M. C. Richardson, “Nondestructive 3-D imaging of femtosecond laser written volumetric structures using optical coherence microscopy,” Appl. Phys., A Mater. Sci. Process. 104(1), 289–294 (2011).
[Crossref]

Combettes, L.

D. Débarre, W. Supatto, A.-M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M.-C. Schanne-Klein, and E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nat. Methods 3(1), 47–53 (2006).
[Crossref] [PubMed]

Correa, D. S.

Daria, V. R.

G. Bautista, M. J. Romero, G. Tapang, and V. R. Daria, “Parallel two-photon photopolymerization of microgear patterns,” Opt. Commun. 282(18), 3746–3750 (2009).
[Crossref]

Débarre, D.

M. Zimmerley, P. Mahou, D. Débarre, M.-C. Schanne-Klein, and E. Beaurepaire, “Probing Ordered Lipid Assemblies with Polarized Third-Harmonic-Generation Microscopy,” Phys. Rev. X 3(1), 011002 (2013).
[Crossref]

D. Débarre, W. Supatto, A.-M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M.-C. Schanne-Klein, and E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nat. Methods 3(1), 47–53 (2006).
[Crossref] [PubMed]

D. Débarre, W. Supatto, and E. Beaurepaire, “Structure sensitivity in third-harmonic generation microscopy,” Opt. Lett. 30(16), 2134–2136 (2005).
[Crossref] [PubMed]

Dragnea, B.

B. Dragnea, J. Preusser, J. M. Szarko, S. R. Leone, and W. D. Hinsberg, “Pattern characterization of deep-ultraviolet photoresists by near-field infrared microscopy,” J. Vac. Sci. Technol. B 19(1), 142 (2001).
[Crossref]

Drakakis, T. S.

T. S. Drakakis, G. Papadakis, K. Sambani, G. Filippidis, S. Georgiou, E. Gizeli, C. Fotakis, and M. Farsari, “Construction of three-dimensional biomolecule structures employing femtosecond lasers,” Appl. Phys. Lett. 89(14), 144108 (2006).
[Crossref]

Eisenberg, H.

Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett. 70(8), 922–924 (1997).
[Crossref]

Fabre, A.

D. Débarre, W. Supatto, A.-M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M.-C. Schanne-Klein, and E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nat. Methods 3(1), 47–53 (2006).
[Crossref] [PubMed]

Farsari, M.

M. Farsari and B. N. Chichkov, “Material processing: Two-photon fabrication,” Nat. Photonics 3(8), 450–452 (2009).
[Crossref]

T. S. Drakakis, G. Papadakis, K. Sambani, G. Filippidis, S. Georgiou, E. Gizeli, C. Fotakis, and M. Farsari, “Construction of three-dimensional biomolecule structures employing femtosecond lasers,” Appl. Phys. Lett. 89(14), 144108 (2006).
[Crossref]

Filippidis, G.

A. Selimis, G. J. Tserevelakis, S. Kogou, P. Pouli, G. Filippidis, N. Sapogova, N. Bityurin, and C. Fotakis, “Nonlinear microscopy techniques for assessing the UV laser polymer interactions,” Opt. Express 20(4), 3990–3996 (2012).
[Crossref] [PubMed]

T. S. Drakakis, G. Papadakis, K. Sambani, G. Filippidis, S. Georgiou, E. Gizeli, C. Fotakis, and M. Farsari, “Construction of three-dimensional biomolecule structures employing femtosecond lasers,” Appl. Phys. Lett. 89(14), 144108 (2006).
[Crossref]

Fonseca, R. D.

Fotakis, C.

A. Selimis, G. J. Tserevelakis, S. Kogou, P. Pouli, G. Filippidis, N. Sapogova, N. Bityurin, and C. Fotakis, “Nonlinear microscopy techniques for assessing the UV laser polymer interactions,” Opt. Express 20(4), 3990–3996 (2012).
[Crossref] [PubMed]

T. S. Drakakis, G. Papadakis, K. Sambani, G. Filippidis, S. Georgiou, E. Gizeli, C. Fotakis, and M. Farsari, “Construction of three-dimensional biomolecule structures employing femtosecond lasers,” Appl. Phys. Lett. 89(14), 144108 (2006).
[Crossref]

Gao, Y.

Georgiou, S.

T. S. Drakakis, G. Papadakis, K. Sambani, G. Filippidis, S. Georgiou, E. Gizeli, C. Fotakis, and M. Farsari, “Construction of three-dimensional biomolecule structures employing femtosecond lasers,” Appl. Phys. Lett. 89(14), 144108 (2006).
[Crossref]

Gilles, M. K.

L. Muntean, R. Planques, A. L. D. Kilcoyne, S. R. Leone, M. K. Gilles, and W. D. Hinsberg, “Chemical mapping of polymer photoresists by scanning transmission x-ray microscopy,” J. Vac. Sci. Technol. B 23(4), 1630 (2005).
[Crossref]

Gizeli, E.

T. S. Drakakis, G. Papadakis, K. Sambani, G. Filippidis, S. Georgiou, E. Gizeli, C. Fotakis, and M. Farsari, “Construction of three-dimensional biomolecule structures employing femtosecond lasers,” Appl. Phys. Lett. 89(14), 144108 (2006).
[Crossref]

Gu, M.

S. Wu, J. Serbin, and M. Gu, “Two-photon polymerization for three-dimensional micro-fabrication,” J. Photochem. Photobiol. Chem. 181(1), 1–11 (2006).
[Crossref]

Hassinen, J.

P. Kunwar, J. Hassinen, G. Bautista, R. H. A. Ras, and J. Toivonen, “Sub-micron scale patterning of fluorescent silver nanoclusters using low-power laser,” Sci. Rep. 6, 23998 (2016).
[Crossref] [PubMed]

P. Kunwar, L. Turquet, J. Hassinen, R. H. A. Ras, J. Toivonen, and G. Bautista, “Holographic patterning of fluorescent microstructures comprising silver nanoclusters,” Opt. Mater. Express 6(3), 946–951 (2016).
[Crossref]

P. Kunwar, J. Hassinen, G. Bautista, R. H. A. Ras, and J. Toivonen, “Direct laser writing of photostable fluorescent silver nanoclusters in polymer films,” ACS Nano 8(11), 11165–11171 (2014).
[Crossref] [PubMed]

Hinsberg, W. D.

L. Muntean, R. Planques, A. L. D. Kilcoyne, S. R. Leone, M. K. Gilles, and W. D. Hinsberg, “Chemical mapping of polymer photoresists by scanning transmission x-ray microscopy,” J. Vac. Sci. Technol. B 23(4), 1630 (2005).
[Crossref]

B. Dragnea, J. Preusser, J. M. Szarko, S. R. Leone, and W. D. Hinsberg, “Pattern characterization of deep-ultraviolet photoresists by near-field infrared microscopy,” J. Vac. Sci. Technol. B 19(1), 142 (2001).
[Crossref]

Horowitz, M.

Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett. 70(8), 922–924 (1997).
[Crossref]

Huang, X.

Huttunen, M. J.

G. Bautista, S. G. Pfisterer, M. J. Huttunen, S. Ranjan, K. Kanerva, E. Ikonen, and M. Kauranen, “Polarized THG microscopy identifies compositionally different lipid droplets in mammalian cells,” Biophys. J. 107(10), 2230–2236 (2014).
[Crossref] [PubMed]

G. Bautista, M. J. Huttunen, J. M. Kontio, J. Simonen, and M. Kauranen, “Third- and second-harmonic generation microscopy of individual metal nanocones using cylindrical vector beams,” Opt. Express 21(19), 21918–21923 (2013).
[Crossref] [PubMed]

Ikonen, E.

G. Bautista, S. G. Pfisterer, M. J. Huttunen, S. Ranjan, K. Kanerva, E. Ikonen, and M. Kauranen, “Polarized THG microscopy identifies compositionally different lipid droplets in mammalian cells,” Biophys. J. 107(10), 2230–2236 (2014).
[Crossref] [PubMed]

Jesacher, A.

Jiang, L.

Jiang, L. J.

Kanerva, K.

G. Bautista, S. G. Pfisterer, M. J. Huttunen, S. Ranjan, K. Kanerva, E. Ikonen, and M. Kauranen, “Polarized THG microscopy identifies compositionally different lipid droplets in mammalian cells,” Biophys. J. 107(10), 2230–2236 (2014).
[Crossref] [PubMed]

Kauranen, M.

G. Bautista, S. G. Pfisterer, M. J. Huttunen, S. Ranjan, K. Kanerva, E. Ikonen, and M. Kauranen, “Polarized THG microscopy identifies compositionally different lipid droplets in mammalian cells,” Biophys. J. 107(10), 2230–2236 (2014).
[Crossref] [PubMed]

G. Bautista, M. J. Huttunen, J. M. Kontio, J. Simonen, and M. Kauranen, “Third- and second-harmonic generation microscopy of individual metal nanocones using cylindrical vector beams,” Opt. Express 21(19), 21918–21923 (2013).
[Crossref] [PubMed]

Kawata, S.

H.-B. Sun and S. Kawata, “Two-Photon Photopolymerization and 3D Lithographic Microfabrication,” Adv. Polym. Sci. 170, 169–273 (2006).
[Crossref]

H.-B. Sun, T. Tanaka, K. Takada, and S. Kawata, “Two-photon photopolymerization and diagnosis of three-dimensional microstructures containing fluorescent dyes,” Appl. Phys. Lett. 79(10), 1411 (2001).
[Crossref]

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
[Crossref] [PubMed]

S. Maruo, O. Nakamura, and S. Kawata, “Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Opt. Lett. 22(2), 132–134 (1997).
[Crossref] [PubMed]

Kilcoyne, A. L. D.

L. Muntean, R. Planques, A. L. D. Kilcoyne, S. R. Leone, M. K. Gilles, and W. D. Hinsberg, “Chemical mapping of polymer photoresists by scanning transmission x-ray microscopy,” J. Vac. Sci. Technol. B 23(4), 1630 (2005).
[Crossref]

Kimura, S.

Kogou, S.

Kontio, J. M.

Kunwar, P.

P. Kunwar, J. Hassinen, G. Bautista, R. H. A. Ras, and J. Toivonen, “Sub-micron scale patterning of fluorescent silver nanoclusters using low-power laser,” Sci. Rep. 6, 23998 (2016).
[Crossref] [PubMed]

P. Kunwar, L. Turquet, J. Hassinen, R. H. A. Ras, J. Toivonen, and G. Bautista, “Holographic patterning of fluorescent microstructures comprising silver nanoclusters,” Opt. Mater. Express 6(3), 946–951 (2016).
[Crossref]

P. Kunwar, J. Hassinen, G. Bautista, R. H. A. Ras, and J. Toivonen, “Direct laser writing of photostable fluorescent silver nanoclusters in polymer films,” ACS Nano 8(11), 11165–11171 (2014).
[Crossref] [PubMed]

Kuo, C. H.

T. Baldacchini, M. Zimmerley, C. H. Kuo, E. O. Potma, and R. Zadoyan, “Characterization of microstructures fabricated by two-photon polymerization using coherent anti-stokes Raman scattering microscopy,” J. Phys. Chem. B 113(38), 12663–12668 (2009).
[Crossref] [PubMed]

Lee, K.-S.

J. Choi, K.-S. Lee, J. P. Rolland, T. Anderson, and M. C. Richardson, “Nondestructive 3-D imaging of femtosecond laser written volumetric structures using optical coherence microscopy,” Appl. Phys., A Mater. Sci. Process. 104(1), 289–294 (2011).
[Crossref]

Leone, S. R.

L. Muntean, R. Planques, A. L. D. Kilcoyne, S. R. Leone, M. K. Gilles, and W. D. Hinsberg, “Chemical mapping of polymer photoresists by scanning transmission x-ray microscopy,” J. Vac. Sci. Technol. B 23(4), 1630 (2005).
[Crossref]

B. Dragnea, J. Preusser, J. M. Szarko, S. R. Leone, and W. D. Hinsberg, “Pattern characterization of deep-ultraviolet photoresists by near-field infrared microscopy,” J. Vac. Sci. Technol. B 19(1), 142 (2001).
[Crossref]

Lippitz, M.

M. Lippitz, M. A. van Dijk, and M. Orrit, “Third-harmonic generation from single gold nanoparticles,” Nano Lett. 5(4), 799–802 (2005).
[Crossref] [PubMed]

Lu, Y. F.

Mahou, P.

M. Zimmerley, P. Mahou, D. Débarre, M.-C. Schanne-Klein, and E. Beaurepaire, “Probing Ordered Lipid Assemblies with Polarized Third-Harmonic-Generation Microscopy,” Phys. Rev. X 3(1), 011002 (2013).
[Crossref]

Marshall, G. D.

Maruo, S.

Masihzadeh, O.

Mendonça, C. R.

Müller, M.

M. Müller, J. Squier, K. R. Wilson, and G. J. Brakenhoff, “3D microscopy of transparent objects using third-harmonic generation,” J. Microsc. 191(3), 266–274 (1998).
[Crossref] [PubMed]

J. Squier, M. Müller, G. Brakenhoff, and K. R. Wilson, “Third harmonic generation microscopy,” Opt. Express 3(9), 315–324 (1998).
[Crossref] [PubMed]

Muntean, L.

L. Muntean, R. Planques, A. L. D. Kilcoyne, S. R. Leone, M. K. Gilles, and W. D. Hinsberg, “Chemical mapping of polymer photoresists by scanning transmission x-ray microscopy,” J. Vac. Sci. Technol. B 23(4), 1630 (2005).
[Crossref]

Nakamura, O.

Olivier, N.

Oron, D.

Orrit, M.

M. Lippitz, M. A. van Dijk, and M. Orrit, “Third-harmonic generation from single gold nanoparticles,” Nano Lett. 5(4), 799–802 (2005).
[Crossref] [PubMed]

Ovsianikov, A.

Papadakis, G.

T. S. Drakakis, G. Papadakis, K. Sambani, G. Filippidis, S. Georgiou, E. Gizeli, C. Fotakis, and M. Farsari, “Construction of three-dimensional biomolecule structures employing femtosecond lasers,” Appl. Phys. Lett. 89(14), 144108 (2006).
[Crossref]

Patel, J. S.

D. Yelin, Y. Silberberg, Y. Barad, and J. S. Patel, “Depth-resolved imaging of nematic liquid crystals by third-harmonic microscopy,” Appl. Phys. Lett. 74(21), 3107 (1999).
[Crossref]

Pena, A.-M.

D. Débarre, W. Supatto, A.-M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M.-C. Schanne-Klein, and E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nat. Methods 3(1), 47–53 (2006).
[Crossref] [PubMed]

Pfisterer, S. G.

G. Bautista, S. G. Pfisterer, M. J. Huttunen, S. Ranjan, K. Kanerva, E. Ikonen, and M. Kauranen, “Polarized THG microscopy identifies compositionally different lipid droplets in mammalian cells,” Biophys. J. 107(10), 2230–2236 (2014).
[Crossref] [PubMed]

Plamann, K.

Planques, R.

L. Muntean, R. Planques, A. L. D. Kilcoyne, S. R. Leone, M. K. Gilles, and W. D. Hinsberg, “Chemical mapping of polymer photoresists by scanning transmission x-ray microscopy,” J. Vac. Sci. Technol. B 23(4), 1630 (2005).
[Crossref]

Potma, E. O.

T. Baldacchini, M. Zimmerley, C. H. Kuo, E. O. Potma, and R. Zadoyan, “Characterization of microstructures fabricated by two-photon polymerization using coherent anti-stokes Raman scattering microscopy,” J. Phys. Chem. B 113(38), 12663–12668 (2009).
[Crossref] [PubMed]

Pouli, P.

Preusser, J.

B. Dragnea, J. Preusser, J. M. Szarko, S. R. Leone, and W. D. Hinsberg, “Pattern characterization of deep-ultraviolet photoresists by near-field infrared microscopy,” J. Vac. Sci. Technol. B 19(1), 142 (2001).
[Crossref]

Ranjan, S.

G. Bautista, S. G. Pfisterer, M. J. Huttunen, S. Ranjan, K. Kanerva, E. Ikonen, and M. Kauranen, “Polarized THG microscopy identifies compositionally different lipid droplets in mammalian cells,” Biophys. J. 107(10), 2230–2236 (2014).
[Crossref] [PubMed]

Ras, R. H. A.

P. Kunwar, J. Hassinen, G. Bautista, R. H. A. Ras, and J. Toivonen, “Sub-micron scale patterning of fluorescent silver nanoclusters using low-power laser,” Sci. Rep. 6, 23998 (2016).
[Crossref] [PubMed]

P. Kunwar, L. Turquet, J. Hassinen, R. H. A. Ras, J. Toivonen, and G. Bautista, “Holographic patterning of fluorescent microstructures comprising silver nanoclusters,” Opt. Mater. Express 6(3), 946–951 (2016).
[Crossref]

P. Kunwar, J. Hassinen, G. Bautista, R. H. A. Ras, and J. Toivonen, “Direct laser writing of photostable fluorescent silver nanoclusters in polymer films,” ACS Nano 8(11), 11165–11171 (2014).
[Crossref] [PubMed]

Richardson, M. C.

J. Choi, K.-S. Lee, J. P. Rolland, T. Anderson, and M. C. Richardson, “Nondestructive 3-D imaging of femtosecond laser written volumetric structures using optical coherence microscopy,” Appl. Phys., A Mater. Sci. Process. 104(1), 289–294 (2011).
[Crossref]

Rolland, J. P.

J. Choi, K.-S. Lee, J. P. Rolland, T. Anderson, and M. C. Richardson, “Nondestructive 3-D imaging of femtosecond laser written volumetric structures using optical coherence microscopy,” Appl. Phys., A Mater. Sci. Process. 104(1), 289–294 (2011).
[Crossref]

Romero, M. J.

G. Bautista, M. J. Romero, G. Tapang, and V. R. Daria, “Parallel two-photon photopolymerization of microgear patterns,” Opt. Commun. 282(18), 3746–3750 (2009).
[Crossref]

Salter, P. S.

Sambani, K.

T. S. Drakakis, G. Papadakis, K. Sambani, G. Filippidis, S. Georgiou, E. Gizeli, C. Fotakis, and M. Farsari, “Construction of three-dimensional biomolecule structures employing femtosecond lasers,” Appl. Phys. Lett. 89(14), 144108 (2006).
[Crossref]

Sapogova, N.

Schanne-Klein, M.-C.

M. Zimmerley, P. Mahou, D. Débarre, M.-C. Schanne-Klein, and E. Beaurepaire, “Probing Ordered Lipid Assemblies with Polarized Third-Harmonic-Generation Microscopy,” Phys. Rev. X 3(1), 011002 (2013).
[Crossref]

N. Olivier, F. Aptel, K. Plamann, M.-C. Schanne-Klein, and E. Beaurepaire, “Harmonic microscopy of isotropic and anisotropic microstructure of the human cornea,” Opt. Express 18(5), 5028–5040 (2010).
[Crossref] [PubMed]

D. Débarre, W. Supatto, A.-M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M.-C. Schanne-Klein, and E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nat. Methods 3(1), 47–53 (2006).
[Crossref] [PubMed]

Schlup, P.

Schrof, W.

E. Van Keuren and W. Schrof, “Fluorescence Recovery after Two-Photon Bleaching for the Study of Dye Diffusion in Polymer Systems,” Macromolecules 36(13), 5002–5007 (2003).
[Crossref]

Schwartz, O.

O. Schwartz and D. Oron, “Background-Free Third Harmonic Imaging of Gold Nanorods,” Nano Lett. 9(12), 4093–4097 (2009).
[Crossref] [PubMed]

Selimis, A.

Serbin, J.

S. Wu, J. Serbin, and M. Gu, “Two-photon polymerization for three-dimensional micro-fabrication,” J. Photochem. Photobiol. Chem. 181(1), 1–11 (2006).
[Crossref]

J. Serbin, A. Ovsianikov, and B. Chichkov, “Fabrication of woodpile structures by two-photon polymerization and investigation of their optical properties,” Opt. Express 12(21), 5221–5228 (2004).
[Crossref] [PubMed]

Silberberg, Y.

D. Oron, E. Tal, and Y. Silberberg, “Depth-resolved multiphoton polarization microscopy by third-harmonic generation,” Opt. Lett. 28(23), 2315–2317 (2003).
[Crossref] [PubMed]

D. Yelin and Y. Silberberg, “Laser scanning third-harmonic-generation microscopy in biology,” Opt. Express 5(8), 169–175 (1999).
[Crossref] [PubMed]

D. Yelin, Y. Silberberg, Y. Barad, and J. S. Patel, “Depth-resolved imaging of nematic liquid crystals by third-harmonic microscopy,” Appl. Phys. Lett. 74(21), 3107 (1999).
[Crossref]

Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett. 70(8), 922–924 (1997).
[Crossref]

Silvain, J.-F.

Simonen, J.

Squier, J.

J. Squier, M. Müller, G. Brakenhoff, and K. R. Wilson, “Third harmonic generation microscopy,” Opt. Express 3(9), 315–324 (1998).
[Crossref] [PubMed]

M. Müller, J. Squier, K. R. Wilson, and G. J. Brakenhoff, “3D microscopy of transparent objects using third-harmonic generation,” J. Microsc. 191(3), 266–274 (1998).
[Crossref] [PubMed]

Strickler, J. H.

Sun, H. B.

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
[Crossref] [PubMed]

Sun, H.-B.

H.-B. Sun and S. Kawata, “Two-Photon Photopolymerization and 3D Lithographic Microfabrication,” Adv. Polym. Sci. 170, 169–273 (2006).
[Crossref]

H.-B. Sun, T. Tanaka, K. Takada, and S. Kawata, “Two-photon photopolymerization and diagnosis of three-dimensional microstructures containing fluorescent dyes,” Appl. Phys. Lett. 79(10), 1411 (2001).
[Crossref]

Supatto, W.

D. Débarre, W. Supatto, A.-M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M.-C. Schanne-Klein, and E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nat. Methods 3(1), 47–53 (2006).
[Crossref] [PubMed]

D. Débarre, W. Supatto, and E. Beaurepaire, “Structure sensitivity in third-harmonic generation microscopy,” Opt. Lett. 30(16), 2134–2136 (2005).
[Crossref] [PubMed]

Szarko, J. M.

B. Dragnea, J. Preusser, J. M. Szarko, S. R. Leone, and W. D. Hinsberg, “Pattern characterization of deep-ultraviolet photoresists by near-field infrared microscopy,” J. Vac. Sci. Technol. B 19(1), 142 (2001).
[Crossref]

Takada, K.

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
[Crossref] [PubMed]

H.-B. Sun, T. Tanaka, K. Takada, and S. Kawata, “Two-photon photopolymerization and diagnosis of three-dimensional microstructures containing fluorescent dyes,” Appl. Phys. Lett. 79(10), 1411 (2001).
[Crossref]

Tal, E.

Tanaka, T.

H.-B. Sun, T. Tanaka, K. Takada, and S. Kawata, “Two-photon photopolymerization and diagnosis of three-dimensional microstructures containing fluorescent dyes,” Appl. Phys. Lett. 79(10), 1411 (2001).
[Crossref]

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
[Crossref] [PubMed]

Tapang, G.

G. Bautista, M. J. Romero, G. Tapang, and V. R. Daria, “Parallel two-photon photopolymerization of microgear patterns,” Opt. Commun. 282(18), 3746–3750 (2009).
[Crossref]

Thayil, A.

Toivonen, J.

P. Kunwar, J. Hassinen, G. Bautista, R. H. A. Ras, and J. Toivonen, “Sub-micron scale patterning of fluorescent silver nanoclusters using low-power laser,” Sci. Rep. 6, 23998 (2016).
[Crossref] [PubMed]

P. Kunwar, L. Turquet, J. Hassinen, R. H. A. Ras, J. Toivonen, and G. Bautista, “Holographic patterning of fluorescent microstructures comprising silver nanoclusters,” Opt. Mater. Express 6(3), 946–951 (2016).
[Crossref]

P. Kunwar, J. Hassinen, G. Bautista, R. H. A. Ras, and J. Toivonen, “Direct laser writing of photostable fluorescent silver nanoclusters in polymer films,” ACS Nano 8(11), 11165–11171 (2014).
[Crossref] [PubMed]

Tordjmann, T.

D. Débarre, W. Supatto, A.-M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M.-C. Schanne-Klein, and E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nat. Methods 3(1), 47–53 (2006).
[Crossref] [PubMed]

Tribuzi, V.

Tserevelakis, G. J.

Turquet, L.

van Dijk, M. A.

M. Lippitz, M. A. van Dijk, and M. Orrit, “Third-harmonic generation from single gold nanoparticles,” Nano Lett. 5(4), 799–802 (2005).
[Crossref] [PubMed]

Van Keuren, E.

E. Van Keuren and W. Schrof, “Fluorescence Recovery after Two-Photon Bleaching for the Study of Dye Diffusion in Polymer Systems,” Macromolecules 36(13), 5002–5007 (2003).
[Crossref]

Webb, W. W.

Wilson, K. R.

J. Squier, M. Müller, G. Brakenhoff, and K. R. Wilson, “Third harmonic generation microscopy,” Opt. Express 3(9), 315–324 (1998).
[Crossref] [PubMed]

M. Müller, J. Squier, K. R. Wilson, and G. J. Brakenhoff, “3D microscopy of transparent objects using third-harmonic generation,” J. Microsc. 191(3), 266–274 (1998).
[Crossref] [PubMed]

Wilson, T.

Withford, M. J.

Wu, S.

S. Wu, J. Serbin, and M. Gu, “Two-photon polymerization for three-dimensional micro-fabrication,” J. Photochem. Photobiol. Chem. 181(1), 1–11 (2006).
[Crossref]

Xiong, W.

Yang, S.

S. Yang and Q. Zhan, “Third-harmonic generation microscopy with tightly focused radial polarization,” J. Opt. A, Pure Appl. Opt. 10(12), 125103 (2008).
[Crossref]

Yelin, D.

D. Yelin, Y. Silberberg, Y. Barad, and J. S. Patel, “Depth-resolved imaging of nematic liquid crystals by third-harmonic microscopy,” Appl. Phys. Lett. 74(21), 3107 (1999).
[Crossref]

D. Yelin and Y. Silberberg, “Laser scanning third-harmonic-generation microscopy in biology,” Opt. Express 5(8), 169–175 (1999).
[Crossref] [PubMed]

Zadoyan, R.

T. Baldacchini and R. Zadoyan, “In situ and real time monitoring of two-photon polymerization using broadband coherent anti-Stokes Raman scattering microscopy,” Opt. Express 18(18), 19219–19231 (2010).
[Crossref] [PubMed]

T. Baldacchini, M. Zimmerley, C. H. Kuo, E. O. Potma, and R. Zadoyan, “Characterization of microstructures fabricated by two-photon polymerization using coherent anti-stokes Raman scattering microscopy,” J. Phys. Chem. B 113(38), 12663–12668 (2009).
[Crossref] [PubMed]

Zhan, Q.

S. Yang and Q. Zhan, “Third-harmonic generation microscopy with tightly focused radial polarization,” J. Opt. A, Pure Appl. Opt. 10(12), 125103 (2008).
[Crossref]

Zhou, Y. S.

Zimmerley, M.

M. Zimmerley, P. Mahou, D. Débarre, M.-C. Schanne-Klein, and E. Beaurepaire, “Probing Ordered Lipid Assemblies with Polarized Third-Harmonic-Generation Microscopy,” Phys. Rev. X 3(1), 011002 (2013).
[Crossref]

T. Baldacchini, M. Zimmerley, C. H. Kuo, E. O. Potma, and R. Zadoyan, “Characterization of microstructures fabricated by two-photon polymerization using coherent anti-stokes Raman scattering microscopy,” J. Phys. Chem. B 113(38), 12663–12668 (2009).
[Crossref] [PubMed]

ACS Nano (1)

P. Kunwar, J. Hassinen, G. Bautista, R. H. A. Ras, and J. Toivonen, “Direct laser writing of photostable fluorescent silver nanoclusters in polymer films,” ACS Nano 8(11), 11165–11171 (2014).
[Crossref] [PubMed]

Adv. Polym. Sci. (1)

H.-B. Sun and S. Kawata, “Two-Photon Photopolymerization and 3D Lithographic Microfabrication,” Adv. Polym. Sci. 170, 169–273 (2006).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (4)

T. S. Drakakis, G. Papadakis, K. Sambani, G. Filippidis, S. Georgiou, E. Gizeli, C. Fotakis, and M. Farsari, “Construction of three-dimensional biomolecule structures employing femtosecond lasers,” Appl. Phys. Lett. 89(14), 144108 (2006).
[Crossref]

H.-B. Sun, T. Tanaka, K. Takada, and S. Kawata, “Two-photon photopolymerization and diagnosis of three-dimensional microstructures containing fluorescent dyes,” Appl. Phys. Lett. 79(10), 1411 (2001).
[Crossref]

Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett. 70(8), 922–924 (1997).
[Crossref]

D. Yelin, Y. Silberberg, Y. Barad, and J. S. Patel, “Depth-resolved imaging of nematic liquid crystals by third-harmonic microscopy,” Appl. Phys. Lett. 74(21), 3107 (1999).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

J. Choi, K.-S. Lee, J. P. Rolland, T. Anderson, and M. C. Richardson, “Nondestructive 3-D imaging of femtosecond laser written volumetric structures using optical coherence microscopy,” Appl. Phys., A Mater. Sci. Process. 104(1), 289–294 (2011).
[Crossref]

Biophys. J. (1)

G. Bautista, S. G. Pfisterer, M. J. Huttunen, S. Ranjan, K. Kanerva, E. Ikonen, and M. Kauranen, “Polarized THG microscopy identifies compositionally different lipid droplets in mammalian cells,” Biophys. J. 107(10), 2230–2236 (2014).
[Crossref] [PubMed]

J. Microsc. (1)

M. Müller, J. Squier, K. R. Wilson, and G. J. Brakenhoff, “3D microscopy of transparent objects using third-harmonic generation,” J. Microsc. 191(3), 266–274 (1998).
[Crossref] [PubMed]

J. Opt. A, Pure Appl. Opt. (1)

S. Yang and Q. Zhan, “Third-harmonic generation microscopy with tightly focused radial polarization,” J. Opt. A, Pure Appl. Opt. 10(12), 125103 (2008).
[Crossref]

J. Photochem. Photobiol. Chem. (1)

S. Wu, J. Serbin, and M. Gu, “Two-photon polymerization for three-dimensional micro-fabrication,” J. Photochem. Photobiol. Chem. 181(1), 1–11 (2006).
[Crossref]

J. Phys. Chem. B (1)

T. Baldacchini, M. Zimmerley, C. H. Kuo, E. O. Potma, and R. Zadoyan, “Characterization of microstructures fabricated by two-photon polymerization using coherent anti-stokes Raman scattering microscopy,” J. Phys. Chem. B 113(38), 12663–12668 (2009).
[Crossref] [PubMed]

J. Vac. Sci. Technol. B (2)

L. Muntean, R. Planques, A. L. D. Kilcoyne, S. R. Leone, M. K. Gilles, and W. D. Hinsberg, “Chemical mapping of polymer photoresists by scanning transmission x-ray microscopy,” J. Vac. Sci. Technol. B 23(4), 1630 (2005).
[Crossref]

B. Dragnea, J. Preusser, J. M. Szarko, S. R. Leone, and W. D. Hinsberg, “Pattern characterization of deep-ultraviolet photoresists by near-field infrared microscopy,” J. Vac. Sci. Technol. B 19(1), 142 (2001).
[Crossref]

Macromolecules (1)

E. Van Keuren and W. Schrof, “Fluorescence Recovery after Two-Photon Bleaching for the Study of Dye Diffusion in Polymer Systems,” Macromolecules 36(13), 5002–5007 (2003).
[Crossref]

Nano Lett. (2)

M. Lippitz, M. A. van Dijk, and M. Orrit, “Third-harmonic generation from single gold nanoparticles,” Nano Lett. 5(4), 799–802 (2005).
[Crossref] [PubMed]

O. Schwartz and D. Oron, “Background-Free Third Harmonic Imaging of Gold Nanorods,” Nano Lett. 9(12), 4093–4097 (2009).
[Crossref] [PubMed]

Nat. Methods (1)

D. Débarre, W. Supatto, A.-M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M.-C. Schanne-Klein, and E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nat. Methods 3(1), 47–53 (2006).
[Crossref] [PubMed]

Nat. Photonics (1)

M. Farsari and B. N. Chichkov, “Material processing: Two-photon fabrication,” Nat. Photonics 3(8), 450–452 (2009).
[Crossref]

Nature (1)

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
[Crossref] [PubMed]

Opt. Commun. (1)

G. Bautista, M. J. Romero, G. Tapang, and V. R. Daria, “Parallel two-photon photopolymerization of microgear patterns,” Opt. Commun. 282(18), 3746–3750 (2009).
[Crossref]

Opt. Express (8)

J. Squier, M. Müller, G. Brakenhoff, and K. R. Wilson, “Third harmonic generation microscopy,” Opt. Express 3(9), 315–324 (1998).
[Crossref] [PubMed]

D. Yelin and Y. Silberberg, “Laser scanning third-harmonic-generation microscopy in biology,” Opt. Express 5(8), 169–175 (1999).
[Crossref] [PubMed]

J. Serbin, A. Ovsianikov, and B. Chichkov, “Fabrication of woodpile structures by two-photon polymerization and investigation of their optical properties,” Opt. Express 12(21), 5221–5228 (2004).
[Crossref] [PubMed]

N. Olivier and E. Beaurepaire, “Third-harmonic generation microscopy with focus-engineered beams: a numerical study,” Opt. Express 16(19), 14703–14715 (2008).
[Crossref] [PubMed]

N. Olivier, F. Aptel, K. Plamann, M.-C. Schanne-Klein, and E. Beaurepaire, “Harmonic microscopy of isotropic and anisotropic microstructure of the human cornea,” Opt. Express 18(5), 5028–5040 (2010).
[Crossref] [PubMed]

T. Baldacchini and R. Zadoyan, “In situ and real time monitoring of two-photon polymerization using broadband coherent anti-Stokes Raman scattering microscopy,” Opt. Express 18(18), 19219–19231 (2010).
[Crossref] [PubMed]

A. Selimis, G. J. Tserevelakis, S. Kogou, P. Pouli, G. Filippidis, N. Sapogova, N. Bityurin, and C. Fotakis, “Nonlinear microscopy techniques for assessing the UV laser polymer interactions,” Opt. Express 20(4), 3990–3996 (2012).
[Crossref] [PubMed]

G. Bautista, M. J. Huttunen, J. M. Kontio, J. Simonen, and M. Kauranen, “Third- and second-harmonic generation microscopy of individual metal nanocones using cylindrical vector beams,” Opt. Express 21(19), 21918–21923 (2013).
[Crossref] [PubMed]

Opt. Lett. (8)

L. J. Jiang, Y. S. Zhou, W. Xiong, Y. Gao, X. Huang, L. Jiang, T. Baldacchini, J.-F. Silvain, and Y. F. Lu, “Two-photon polymerization: investigation of chemical and mechanical properties of resins using Raman microspectroscopy,” Opt. Lett. 39(10), 3034–3037 (2014).
[Crossref] [PubMed]

G. D. Marshall, A. Jesacher, A. Thayil, M. J. Withford, and M. Booth, “Three-dimensional imaging of direct-written photonic structures,” Opt. Lett. 36(5), 695–697 (2011).
[Crossref] [PubMed]

O. Masihzadeh, P. Schlup, and R. A. Bartels, “Control and measurement of spatially inhomogeneous polarization distributions in third-harmonic generation microscopy,” Opt. Lett. 34(7), 1090–1092 (2009).
[Crossref] [PubMed]

O. Masihzadeh, P. Schlup, and R. A. Bartels, “Enhanced spatial resolution in third-harmonic microscopy through polarization switching,” Opt. Lett. 34(8), 1240–1242 (2009).
[Crossref] [PubMed]

D. Débarre, W. Supatto, and E. Beaurepaire, “Structure sensitivity in third-harmonic generation microscopy,” Opt. Lett. 30(16), 2134–2136 (2005).
[Crossref] [PubMed]

J. H. Strickler and W. W. Webb, “Three-dimensional optical data storage in refractive media by two-photon point excitation,” Opt. Lett. 16(22), 1780–1782 (1991).
[Crossref] [PubMed]

S. Maruo, O. Nakamura, and S. Kawata, “Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Opt. Lett. 22(2), 132–134 (1997).
[Crossref] [PubMed]

D. Oron, E. Tal, and Y. Silberberg, “Depth-resolved multiphoton polarization microscopy by third-harmonic generation,” Opt. Lett. 28(23), 2315–2317 (2003).
[Crossref] [PubMed]

Opt. Mater. Express (3)

Phys. Rev. X (1)

M. Zimmerley, P. Mahou, D. Débarre, M.-C. Schanne-Klein, and E. Beaurepaire, “Probing Ordered Lipid Assemblies with Polarized Third-Harmonic-Generation Microscopy,” Phys. Rev. X 3(1), 011002 (2013).
[Crossref]

Sci. Rep. (1)

P. Kunwar, J. Hassinen, G. Bautista, R. H. A. Ras, and J. Toivonen, “Sub-micron scale patterning of fluorescent silver nanoclusters using low-power laser,” Sci. Rep. 6, 23998 (2016).
[Crossref] [PubMed]

Other (1)

R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic diagram of TPP setup. L: lens, P: pinhole, DM: dichroic mirror, C: camera, F: infrared blocking filter, O: objective, S: piezo-scanning stage, LED: light emitting diode.
Fig. 2
Fig. 2 Schematic diagram of THG microscope. L: lens, P: pinhole, H/QWP: half-/quarter-wave plate, FM: flip mirror, C: camera, O: objective, S: piezo-scanning stage, F: infrared blocking and THG filters, PMT: photomultiplier tube, LED: light emitting diode.
Fig. 3
Fig. 3 THG images of TPP-made structures on SU-8 photoresist using (a) linear and (b,c) circular polarizations at an average input power of (a,b) 10 mW or (c) 70 mW. The used input polarization is shown by the green arrows. Scalebars = 5 μm. (d) THG signal line cuts across the structures using linear (blue) and circular (yellow orange) polarizations. The input power used for linear (circular) polarization is 10 (70) mW. The corresponding regions of interest in the THG images are marked with colored lines in (a) and (c). The maximum THG signal is about 250 (8000) counts per 100 ms for linear (circular) polarization.
Fig. 4
Fig. 4 Power dependence of the THG signals obtained from the TPP-made structures. Circular polarization was used. The data were taken at the regions which are marked with colored dots in Fig. 3(b). Solid lines show the cubic fit of the THG signal.
Fig. 5
Fig. 5 (a-e) Depth-resolved THG images (Δz = 1.5 μm) of TPP-made structures using circular polarization at an average input power of 60 mW. The maximum THG signal detected is about 100000 counts/s. (f) Top-view scanning electron micrograph of a developed TPP-made microstructure. Scalebars = 5 μm.

Metrics