Abstract

We theoretically study the nonlinear compression of the 10-mJ, 62-fs, 3.6-µm laser pulses in an argon gas-filled hollow-core fiber with large diameter of 1000 µm. Using a pressure gradient to restrict undesirable nonlinear effect such as ionization, especially at the entrance, we obtain the intense 18.3-fs (~1.5 cycle) pulses at 3.6 µm only through compression with CaF2 crystal, which can be used as an ultrafast source for strong field driven experiments. In addition, we calculate and discuss the relation between optimal fiber length and coupling efficiency for a given bandwidth. These results are useful for the design of using hollow-core fiber to compress the high-energy pulses with long wavelength.

© 2016 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. H. Zewail, “Laser femtochemistry,” Science 242(4886), 1645–1653 (1988).
    [Crossref] [PubMed]
  2. T. Suzuki, S. Minemoto, T. Kanai, and H. Sakai, “Optimal control of multiphoton ionization processes in aligned I2 molecules with time-dependent polarization pulses,” Phys. Rev. Lett. 92(13), 133005 (2004).
    [Crossref] [PubMed]
  3. Y. Liu, X. Liu, Y. Deng, C. Wu, H. Jiang, and Q. Gong, “Selective steering of molecular multiple dissociative channels with strong few-cycle laser pulses,” Phys. Rev. Lett. 106(7), 073004 (2011).
    [Crossref] [PubMed]
  4. E. Goulielmakis, M. Schultze, M. Hofstetter, V. S. Yakovlev, J. Gagnon, M. Uiberacker, A. L. Aquila, E. M. Gullikson, D. T. Attwood, R. Kienberger, F. Krausz, and U. Kleineberg, “Single-cycle nonlinear optics,” Science 320(5883), 1614–1617 (2008).
    [Crossref] [PubMed]
  5. E. Goulielmakis, Z.-H. Loh, A. Wirth, R. Santra, N. Rohringer, V. S. Yakovlev, S. Zherebtsov, T. Pfeifer, A. M. Azzeer, M. F. Kling, S. R. Leone, and F. Krausz, “Real-time observation of valence electron motion,” Nature 466(7307), 739–743 (2010).
    [Crossref] [PubMed]
  6. D. M. Smith, S. Cusack, A. W. Colman, C. K. Folland, G. R. Harris, and J. M. Murphy, “Improved surface temperature prediction for the coming decade from a global climate model,” Science 317(5839), 796–799 (2007).
    [Crossref] [PubMed]
  7. P. B. Corkum, “Plasma perspective on strong field multiphoton ionization,” Phys. Rev. Lett. 71(13), 1994–1997 (1993).
    [Crossref] [PubMed]
  8. M. Nisoli, S. De Silvestri, and O. Svelto, “Generation of high energy 10 fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68(20), 2793–2795 (1996).
    [Crossref]
  9. M. Nisoli, S. De Silvestri, O. Svelto, R. Szipöcs, K. Ferencz, C. Spielmann, S. Sartania, and F. Krausz, “Compression of high-energy laser pulses below 5 fs,” Opt. Lett. 22(8), 522–524 (1997).
    [Crossref] [PubMed]
  10. S. Bohman, A. Suda, T. Kanai, S. Yamaguchi, and K. Midorikawa, “Generation of 5.0 fs, 5.0 mJ pulses at 1kHz using hollow-fiber pulse compression,” Opt. Lett. 35(11), 1887–1889 (2010).
    [Crossref] [PubMed]
  11. C. C. Wang and G. W. Racette, “Measurement of parametric gain accompanying optical difference frequency generation,” Appl. Phys. Lett. 6(8), 169–171 (1965).
    [Crossref]
  12. S. E. Harris, M. K. Oshman, and R. L. Byer, “Observation of tunable optical parametric fluorescence,” Phys. Rev. Lett. 18(18), 732–734 (1967).
    [Crossref]
  13. V. V. Yakovlev, B. Kohler, and K. R. Wilson, “Broadly tunable 30-fs pulses produced by optical parametric amplification,” Opt. Lett. 19(23), 2000–2002 (1994).
    [Crossref] [PubMed]
  14. F. Rotermund, V. Petrov, and F. Noack, “Difference-frequency generation of intense femtosecond pulses in the mid-IR (4–12 μm) using HgGa2S4 and AgGaS2,” Opt. Commun. 185(1–3), 177–183 (2000).
    [Crossref]
  15. A. Baltuška, T. Fuji, and T. Kobayashi, “Controlling the carrier-envelope phase of ultrashort light pulses with optical parametric amplifiers,” Phys. Rev. Lett. 88(13), 133901 (2002).
    [Crossref] [PubMed]
  16. C. Li, D. Wang, L. Song, J. Liu, P. Liu, C. Xu, Y. Leng, R. Li, and Z. Xu, “Generation of carrier-envelope phase stabilized intense 1.5 cycle pulses at 1.75 μm,” Opt. Express 19(7), 6783–6789 (2011).
    [Crossref] [PubMed]
  17. V. Cardin, N. Thiré, S. Beaulieu, V. Wanie, F. Légaré, and B. E. Schmidt, “0.42 TW 2-cycle pulses at 1.8 μm via hollow-core fiber compression,” Appl. Phys. Lett. 107(18), 181101 (2015).
    [Crossref]
  18. N. Thiré, S. Beaulieu, V. Cardin, A. Laramée, V. Wanie, B. E. Schmidt, and F. Légaré, “10 mJ 5-cycle pulses at 1.8 μm through optical parametric amplification,” Appl. Phys. Lett. 106(9), 091110 (2015).
    [Crossref]
  19. D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56(3), 219–221 (1985).
    [Crossref]
  20. A. Dubietis, G. Jonušauskas, and A. Piskarskas, “Powerful femtosecond pulse generation by chirped and stretched pulse parametric amplification in BBO crystal,” Opt. Commun. 88(4–6), 437–440 (1992).
    [Crossref]
  21. G. Andriukaitis, T. Balčiūnas, S. Ališauskas, A. Pugžlys, A. Baltuška, T. Popmintchev, M. C. Chen, M. M. Murnane, and H. C. Kapteyn, “90 GW peak power few-cycle mid-infrared pulses from an optical parametric amplifier,” Opt. Lett. 36(15), 2755–2757 (2011).
    [Crossref] [PubMed]
  22. K. Zhao, H. Zhong, P. Yuan, G. Xie, J. Wang, J. Ma, and L. Qian, “Generation of 120 GW mid-infrared pulses from a widely tunable noncollinear optical parametric amplifier,” Opt. Lett. 38(13), 2159–2161 (2013).
    [Crossref] [PubMed]
  23. Y. Chen, Y. Y. Li, W. K. Li, X. Y. Guo, and Y. X. Leng, “Generation of high beam quality, high-energy and broadband tunable mid-infrared pulse from a KTA optical parametric amplifier,” Opt. Commun. 365, 7–13 (2016).
    [Crossref]
  24. C. Courtois, A. Couairon, B. Cros, J. R. Marques, and G. Matthieussent, “Propagation of intense ultrashort laser pulses in a plasma filled capillary tube: Simulations and experiments,” Phys. Plasmas 8(7), 3445–3456 (2001).
    [Crossref]
  25. D. Wang, Y. Leng, and Z. Huang, “Divided-pulse compression with gas-filled hollow-core fiber for generation of high-energy few-cycle pulses,” J. Opt. Soc. Am. B 31(6), 1248–1254 (2014).
    [Crossref]
  26. Z. Y. Huang, D. Wang, Y. X. Leng, and Y. Dai, “Tuning the central wavelength by hundreds of nanometers using ultrafast molecular phase modulation,” Phys. Rev. A 91(4), 043809 (2015).
    [Crossref]
  27. A. M. Perelomov, V. S. Popov, and M. V. Terent’ev, “Ionization of atoms in an alternating electric field,” Sov. Phys. JETP 23(5), 924–934 (1966).
  28. L. Bergé, S. Skupin, R. Nuter, J. Kasparian, and J. P. Wolf, “Ultrashort filaments of light in weakly ionized, optically transparent media,” Rep. Prog. Phys. 70(10), 1633–1713 (2007).
    [Crossref]
  29. E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” ATT Tech. J. 43(4), 1783–1809 (1964).
  30. R. K. Nubling and J. A. Harrington, “Launch conditions and mode coupling in hollow-glass waveguides,” Opt. Eng. 37(9), 2454–2458 (1998).
    [Crossref]
  31. S. C. Pinault and M. J. Potasek, “Frequency broadening by self-phase modulation in optical fibers,” J. Opt. Soc. Am. B 2(8), 1318–1319 (1985).
    [Crossref]
  32. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).

2016 (1)

Y. Chen, Y. Y. Li, W. K. Li, X. Y. Guo, and Y. X. Leng, “Generation of high beam quality, high-energy and broadband tunable mid-infrared pulse from a KTA optical parametric amplifier,” Opt. Commun. 365, 7–13 (2016).
[Crossref]

2015 (3)

V. Cardin, N. Thiré, S. Beaulieu, V. Wanie, F. Légaré, and B. E. Schmidt, “0.42 TW 2-cycle pulses at 1.8 μm via hollow-core fiber compression,” Appl. Phys. Lett. 107(18), 181101 (2015).
[Crossref]

N. Thiré, S. Beaulieu, V. Cardin, A. Laramée, V. Wanie, B. E. Schmidt, and F. Légaré, “10 mJ 5-cycle pulses at 1.8 μm through optical parametric amplification,” Appl. Phys. Lett. 106(9), 091110 (2015).
[Crossref]

Z. Y. Huang, D. Wang, Y. X. Leng, and Y. Dai, “Tuning the central wavelength by hundreds of nanometers using ultrafast molecular phase modulation,” Phys. Rev. A 91(4), 043809 (2015).
[Crossref]

2014 (1)

2013 (1)

2011 (3)

2010 (2)

E. Goulielmakis, Z.-H. Loh, A. Wirth, R. Santra, N. Rohringer, V. S. Yakovlev, S. Zherebtsov, T. Pfeifer, A. M. Azzeer, M. F. Kling, S. R. Leone, and F. Krausz, “Real-time observation of valence electron motion,” Nature 466(7307), 739–743 (2010).
[Crossref] [PubMed]

S. Bohman, A. Suda, T. Kanai, S. Yamaguchi, and K. Midorikawa, “Generation of 5.0 fs, 5.0 mJ pulses at 1kHz using hollow-fiber pulse compression,” Opt. Lett. 35(11), 1887–1889 (2010).
[Crossref] [PubMed]

2008 (1)

E. Goulielmakis, M. Schultze, M. Hofstetter, V. S. Yakovlev, J. Gagnon, M. Uiberacker, A. L. Aquila, E. M. Gullikson, D. T. Attwood, R. Kienberger, F. Krausz, and U. Kleineberg, “Single-cycle nonlinear optics,” Science 320(5883), 1614–1617 (2008).
[Crossref] [PubMed]

2007 (2)

D. M. Smith, S. Cusack, A. W. Colman, C. K. Folland, G. R. Harris, and J. M. Murphy, “Improved surface temperature prediction for the coming decade from a global climate model,” Science 317(5839), 796–799 (2007).
[Crossref] [PubMed]

L. Bergé, S. Skupin, R. Nuter, J. Kasparian, and J. P. Wolf, “Ultrashort filaments of light in weakly ionized, optically transparent media,” Rep. Prog. Phys. 70(10), 1633–1713 (2007).
[Crossref]

2004 (1)

T. Suzuki, S. Minemoto, T. Kanai, and H. Sakai, “Optimal control of multiphoton ionization processes in aligned I2 molecules with time-dependent polarization pulses,” Phys. Rev. Lett. 92(13), 133005 (2004).
[Crossref] [PubMed]

2002 (1)

A. Baltuška, T. Fuji, and T. Kobayashi, “Controlling the carrier-envelope phase of ultrashort light pulses with optical parametric amplifiers,” Phys. Rev. Lett. 88(13), 133901 (2002).
[Crossref] [PubMed]

2001 (1)

C. Courtois, A. Couairon, B. Cros, J. R. Marques, and G. Matthieussent, “Propagation of intense ultrashort laser pulses in a plasma filled capillary tube: Simulations and experiments,” Phys. Plasmas 8(7), 3445–3456 (2001).
[Crossref]

2000 (1)

F. Rotermund, V. Petrov, and F. Noack, “Difference-frequency generation of intense femtosecond pulses in the mid-IR (4–12 μm) using HgGa2S4 and AgGaS2,” Opt. Commun. 185(1–3), 177–183 (2000).
[Crossref]

1998 (1)

R. K. Nubling and J. A. Harrington, “Launch conditions and mode coupling in hollow-glass waveguides,” Opt. Eng. 37(9), 2454–2458 (1998).
[Crossref]

1997 (1)

1996 (1)

M. Nisoli, S. De Silvestri, and O. Svelto, “Generation of high energy 10 fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68(20), 2793–2795 (1996).
[Crossref]

1994 (1)

1993 (1)

P. B. Corkum, “Plasma perspective on strong field multiphoton ionization,” Phys. Rev. Lett. 71(13), 1994–1997 (1993).
[Crossref] [PubMed]

1992 (1)

A. Dubietis, G. Jonušauskas, and A. Piskarskas, “Powerful femtosecond pulse generation by chirped and stretched pulse parametric amplification in BBO crystal,” Opt. Commun. 88(4–6), 437–440 (1992).
[Crossref]

1988 (1)

A. H. Zewail, “Laser femtochemistry,” Science 242(4886), 1645–1653 (1988).
[Crossref] [PubMed]

1985 (2)

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56(3), 219–221 (1985).
[Crossref]

S. C. Pinault and M. J. Potasek, “Frequency broadening by self-phase modulation in optical fibers,” J. Opt. Soc. Am. B 2(8), 1318–1319 (1985).
[Crossref]

1967 (1)

S. E. Harris, M. K. Oshman, and R. L. Byer, “Observation of tunable optical parametric fluorescence,” Phys. Rev. Lett. 18(18), 732–734 (1967).
[Crossref]

1966 (1)

A. M. Perelomov, V. S. Popov, and M. V. Terent’ev, “Ionization of atoms in an alternating electric field,” Sov. Phys. JETP 23(5), 924–934 (1966).

1965 (1)

C. C. Wang and G. W. Racette, “Measurement of parametric gain accompanying optical difference frequency generation,” Appl. Phys. Lett. 6(8), 169–171 (1965).
[Crossref]

1964 (1)

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” ATT Tech. J. 43(4), 1783–1809 (1964).

Ališauskas, S.

Andriukaitis, G.

Aquila, A. L.

E. Goulielmakis, M. Schultze, M. Hofstetter, V. S. Yakovlev, J. Gagnon, M. Uiberacker, A. L. Aquila, E. M. Gullikson, D. T. Attwood, R. Kienberger, F. Krausz, and U. Kleineberg, “Single-cycle nonlinear optics,” Science 320(5883), 1614–1617 (2008).
[Crossref] [PubMed]

Attwood, D. T.

E. Goulielmakis, M. Schultze, M. Hofstetter, V. S. Yakovlev, J. Gagnon, M. Uiberacker, A. L. Aquila, E. M. Gullikson, D. T. Attwood, R. Kienberger, F. Krausz, and U. Kleineberg, “Single-cycle nonlinear optics,” Science 320(5883), 1614–1617 (2008).
[Crossref] [PubMed]

Azzeer, A. M.

E. Goulielmakis, Z.-H. Loh, A. Wirth, R. Santra, N. Rohringer, V. S. Yakovlev, S. Zherebtsov, T. Pfeifer, A. M. Azzeer, M. F. Kling, S. R. Leone, and F. Krausz, “Real-time observation of valence electron motion,” Nature 466(7307), 739–743 (2010).
[Crossref] [PubMed]

Balciunas, T.

Baltuška, A.

Beaulieu, S.

V. Cardin, N. Thiré, S. Beaulieu, V. Wanie, F. Légaré, and B. E. Schmidt, “0.42 TW 2-cycle pulses at 1.8 μm via hollow-core fiber compression,” Appl. Phys. Lett. 107(18), 181101 (2015).
[Crossref]

N. Thiré, S. Beaulieu, V. Cardin, A. Laramée, V. Wanie, B. E. Schmidt, and F. Légaré, “10 mJ 5-cycle pulses at 1.8 μm through optical parametric amplification,” Appl. Phys. Lett. 106(9), 091110 (2015).
[Crossref]

Bergé, L.

L. Bergé, S. Skupin, R. Nuter, J. Kasparian, and J. P. Wolf, “Ultrashort filaments of light in weakly ionized, optically transparent media,” Rep. Prog. Phys. 70(10), 1633–1713 (2007).
[Crossref]

Bohman, S.

Byer, R. L.

S. E. Harris, M. K. Oshman, and R. L. Byer, “Observation of tunable optical parametric fluorescence,” Phys. Rev. Lett. 18(18), 732–734 (1967).
[Crossref]

Cardin, V.

N. Thiré, S. Beaulieu, V. Cardin, A. Laramée, V. Wanie, B. E. Schmidt, and F. Légaré, “10 mJ 5-cycle pulses at 1.8 μm through optical parametric amplification,” Appl. Phys. Lett. 106(9), 091110 (2015).
[Crossref]

V. Cardin, N. Thiré, S. Beaulieu, V. Wanie, F. Légaré, and B. E. Schmidt, “0.42 TW 2-cycle pulses at 1.8 μm via hollow-core fiber compression,” Appl. Phys. Lett. 107(18), 181101 (2015).
[Crossref]

Chen, M. C.

Chen, Y.

Y. Chen, Y. Y. Li, W. K. Li, X. Y. Guo, and Y. X. Leng, “Generation of high beam quality, high-energy and broadband tunable mid-infrared pulse from a KTA optical parametric amplifier,” Opt. Commun. 365, 7–13 (2016).
[Crossref]

Colman, A. W.

D. M. Smith, S. Cusack, A. W. Colman, C. K. Folland, G. R. Harris, and J. M. Murphy, “Improved surface temperature prediction for the coming decade from a global climate model,” Science 317(5839), 796–799 (2007).
[Crossref] [PubMed]

Corkum, P. B.

P. B. Corkum, “Plasma perspective on strong field multiphoton ionization,” Phys. Rev. Lett. 71(13), 1994–1997 (1993).
[Crossref] [PubMed]

Couairon, A.

C. Courtois, A. Couairon, B. Cros, J. R. Marques, and G. Matthieussent, “Propagation of intense ultrashort laser pulses in a plasma filled capillary tube: Simulations and experiments,” Phys. Plasmas 8(7), 3445–3456 (2001).
[Crossref]

Courtois, C.

C. Courtois, A. Couairon, B. Cros, J. R. Marques, and G. Matthieussent, “Propagation of intense ultrashort laser pulses in a plasma filled capillary tube: Simulations and experiments,” Phys. Plasmas 8(7), 3445–3456 (2001).
[Crossref]

Cros, B.

C. Courtois, A. Couairon, B. Cros, J. R. Marques, and G. Matthieussent, “Propagation of intense ultrashort laser pulses in a plasma filled capillary tube: Simulations and experiments,” Phys. Plasmas 8(7), 3445–3456 (2001).
[Crossref]

Cusack, S.

D. M. Smith, S. Cusack, A. W. Colman, C. K. Folland, G. R. Harris, and J. M. Murphy, “Improved surface temperature prediction for the coming decade from a global climate model,” Science 317(5839), 796–799 (2007).
[Crossref] [PubMed]

Dai, Y.

Z. Y. Huang, D. Wang, Y. X. Leng, and Y. Dai, “Tuning the central wavelength by hundreds of nanometers using ultrafast molecular phase modulation,” Phys. Rev. A 91(4), 043809 (2015).
[Crossref]

De Silvestri, S.

M. Nisoli, S. De Silvestri, O. Svelto, R. Szipöcs, K. Ferencz, C. Spielmann, S. Sartania, and F. Krausz, “Compression of high-energy laser pulses below 5 fs,” Opt. Lett. 22(8), 522–524 (1997).
[Crossref] [PubMed]

M. Nisoli, S. De Silvestri, and O. Svelto, “Generation of high energy 10 fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68(20), 2793–2795 (1996).
[Crossref]

Deng, Y.

Y. Liu, X. Liu, Y. Deng, C. Wu, H. Jiang, and Q. Gong, “Selective steering of molecular multiple dissociative channels with strong few-cycle laser pulses,” Phys. Rev. Lett. 106(7), 073004 (2011).
[Crossref] [PubMed]

Dubietis, A.

A. Dubietis, G. Jonušauskas, and A. Piskarskas, “Powerful femtosecond pulse generation by chirped and stretched pulse parametric amplification in BBO crystal,” Opt. Commun. 88(4–6), 437–440 (1992).
[Crossref]

Ferencz, K.

Folland, C. K.

D. M. Smith, S. Cusack, A. W. Colman, C. K. Folland, G. R. Harris, and J. M. Murphy, “Improved surface temperature prediction for the coming decade from a global climate model,” Science 317(5839), 796–799 (2007).
[Crossref] [PubMed]

Fuji, T.

A. Baltuška, T. Fuji, and T. Kobayashi, “Controlling the carrier-envelope phase of ultrashort light pulses with optical parametric amplifiers,” Phys. Rev. Lett. 88(13), 133901 (2002).
[Crossref] [PubMed]

Gagnon, J.

E. Goulielmakis, M. Schultze, M. Hofstetter, V. S. Yakovlev, J. Gagnon, M. Uiberacker, A. L. Aquila, E. M. Gullikson, D. T. Attwood, R. Kienberger, F. Krausz, and U. Kleineberg, “Single-cycle nonlinear optics,” Science 320(5883), 1614–1617 (2008).
[Crossref] [PubMed]

Gong, Q.

Y. Liu, X. Liu, Y. Deng, C. Wu, H. Jiang, and Q. Gong, “Selective steering of molecular multiple dissociative channels with strong few-cycle laser pulses,” Phys. Rev. Lett. 106(7), 073004 (2011).
[Crossref] [PubMed]

Goulielmakis, E.

E. Goulielmakis, Z.-H. Loh, A. Wirth, R. Santra, N. Rohringer, V. S. Yakovlev, S. Zherebtsov, T. Pfeifer, A. M. Azzeer, M. F. Kling, S. R. Leone, and F. Krausz, “Real-time observation of valence electron motion,” Nature 466(7307), 739–743 (2010).
[Crossref] [PubMed]

E. Goulielmakis, M. Schultze, M. Hofstetter, V. S. Yakovlev, J. Gagnon, M. Uiberacker, A. L. Aquila, E. M. Gullikson, D. T. Attwood, R. Kienberger, F. Krausz, and U. Kleineberg, “Single-cycle nonlinear optics,” Science 320(5883), 1614–1617 (2008).
[Crossref] [PubMed]

Gullikson, E. M.

E. Goulielmakis, M. Schultze, M. Hofstetter, V. S. Yakovlev, J. Gagnon, M. Uiberacker, A. L. Aquila, E. M. Gullikson, D. T. Attwood, R. Kienberger, F. Krausz, and U. Kleineberg, “Single-cycle nonlinear optics,” Science 320(5883), 1614–1617 (2008).
[Crossref] [PubMed]

Guo, X. Y.

Y. Chen, Y. Y. Li, W. K. Li, X. Y. Guo, and Y. X. Leng, “Generation of high beam quality, high-energy and broadband tunable mid-infrared pulse from a KTA optical parametric amplifier,” Opt. Commun. 365, 7–13 (2016).
[Crossref]

Harrington, J. A.

R. K. Nubling and J. A. Harrington, “Launch conditions and mode coupling in hollow-glass waveguides,” Opt. Eng. 37(9), 2454–2458 (1998).
[Crossref]

Harris, G. R.

D. M. Smith, S. Cusack, A. W. Colman, C. K. Folland, G. R. Harris, and J. M. Murphy, “Improved surface temperature prediction for the coming decade from a global climate model,” Science 317(5839), 796–799 (2007).
[Crossref] [PubMed]

Harris, S. E.

S. E. Harris, M. K. Oshman, and R. L. Byer, “Observation of tunable optical parametric fluorescence,” Phys. Rev. Lett. 18(18), 732–734 (1967).
[Crossref]

Hofstetter, M.

E. Goulielmakis, M. Schultze, M. Hofstetter, V. S. Yakovlev, J. Gagnon, M. Uiberacker, A. L. Aquila, E. M. Gullikson, D. T. Attwood, R. Kienberger, F. Krausz, and U. Kleineberg, “Single-cycle nonlinear optics,” Science 320(5883), 1614–1617 (2008).
[Crossref] [PubMed]

Huang, Z.

Huang, Z. Y.

Z. Y. Huang, D. Wang, Y. X. Leng, and Y. Dai, “Tuning the central wavelength by hundreds of nanometers using ultrafast molecular phase modulation,” Phys. Rev. A 91(4), 043809 (2015).
[Crossref]

Jiang, H.

Y. Liu, X. Liu, Y. Deng, C. Wu, H. Jiang, and Q. Gong, “Selective steering of molecular multiple dissociative channels with strong few-cycle laser pulses,” Phys. Rev. Lett. 106(7), 073004 (2011).
[Crossref] [PubMed]

Jonušauskas, G.

A. Dubietis, G. Jonušauskas, and A. Piskarskas, “Powerful femtosecond pulse generation by chirped and stretched pulse parametric amplification in BBO crystal,” Opt. Commun. 88(4–6), 437–440 (1992).
[Crossref]

Kanai, T.

S. Bohman, A. Suda, T. Kanai, S. Yamaguchi, and K. Midorikawa, “Generation of 5.0 fs, 5.0 mJ pulses at 1kHz using hollow-fiber pulse compression,” Opt. Lett. 35(11), 1887–1889 (2010).
[Crossref] [PubMed]

T. Suzuki, S. Minemoto, T. Kanai, and H. Sakai, “Optimal control of multiphoton ionization processes in aligned I2 molecules with time-dependent polarization pulses,” Phys. Rev. Lett. 92(13), 133005 (2004).
[Crossref] [PubMed]

Kapteyn, H. C.

Kasparian, J.

L. Bergé, S. Skupin, R. Nuter, J. Kasparian, and J. P. Wolf, “Ultrashort filaments of light in weakly ionized, optically transparent media,” Rep. Prog. Phys. 70(10), 1633–1713 (2007).
[Crossref]

Kienberger, R.

E. Goulielmakis, M. Schultze, M. Hofstetter, V. S. Yakovlev, J. Gagnon, M. Uiberacker, A. L. Aquila, E. M. Gullikson, D. T. Attwood, R. Kienberger, F. Krausz, and U. Kleineberg, “Single-cycle nonlinear optics,” Science 320(5883), 1614–1617 (2008).
[Crossref] [PubMed]

Kleineberg, U.

E. Goulielmakis, M. Schultze, M. Hofstetter, V. S. Yakovlev, J. Gagnon, M. Uiberacker, A. L. Aquila, E. M. Gullikson, D. T. Attwood, R. Kienberger, F. Krausz, and U. Kleineberg, “Single-cycle nonlinear optics,” Science 320(5883), 1614–1617 (2008).
[Crossref] [PubMed]

Kling, M. F.

E. Goulielmakis, Z.-H. Loh, A. Wirth, R. Santra, N. Rohringer, V. S. Yakovlev, S. Zherebtsov, T. Pfeifer, A. M. Azzeer, M. F. Kling, S. R. Leone, and F. Krausz, “Real-time observation of valence electron motion,” Nature 466(7307), 739–743 (2010).
[Crossref] [PubMed]

Kobayashi, T.

A. Baltuška, T. Fuji, and T. Kobayashi, “Controlling the carrier-envelope phase of ultrashort light pulses with optical parametric amplifiers,” Phys. Rev. Lett. 88(13), 133901 (2002).
[Crossref] [PubMed]

Kohler, B.

Krausz, F.

E. Goulielmakis, Z.-H. Loh, A. Wirth, R. Santra, N. Rohringer, V. S. Yakovlev, S. Zherebtsov, T. Pfeifer, A. M. Azzeer, M. F. Kling, S. R. Leone, and F. Krausz, “Real-time observation of valence electron motion,” Nature 466(7307), 739–743 (2010).
[Crossref] [PubMed]

E. Goulielmakis, M. Schultze, M. Hofstetter, V. S. Yakovlev, J. Gagnon, M. Uiberacker, A. L. Aquila, E. M. Gullikson, D. T. Attwood, R. Kienberger, F. Krausz, and U. Kleineberg, “Single-cycle nonlinear optics,” Science 320(5883), 1614–1617 (2008).
[Crossref] [PubMed]

M. Nisoli, S. De Silvestri, O. Svelto, R. Szipöcs, K. Ferencz, C. Spielmann, S. Sartania, and F. Krausz, “Compression of high-energy laser pulses below 5 fs,” Opt. Lett. 22(8), 522–524 (1997).
[Crossref] [PubMed]

Laramée, A.

N. Thiré, S. Beaulieu, V. Cardin, A. Laramée, V. Wanie, B. E. Schmidt, and F. Légaré, “10 mJ 5-cycle pulses at 1.8 μm through optical parametric amplification,” Appl. Phys. Lett. 106(9), 091110 (2015).
[Crossref]

Légaré, F.

V. Cardin, N. Thiré, S. Beaulieu, V. Wanie, F. Légaré, and B. E. Schmidt, “0.42 TW 2-cycle pulses at 1.8 μm via hollow-core fiber compression,” Appl. Phys. Lett. 107(18), 181101 (2015).
[Crossref]

N. Thiré, S. Beaulieu, V. Cardin, A. Laramée, V. Wanie, B. E. Schmidt, and F. Légaré, “10 mJ 5-cycle pulses at 1.8 μm through optical parametric amplification,” Appl. Phys. Lett. 106(9), 091110 (2015).
[Crossref]

Leng, Y.

Leng, Y. X.

Y. Chen, Y. Y. Li, W. K. Li, X. Y. Guo, and Y. X. Leng, “Generation of high beam quality, high-energy and broadband tunable mid-infrared pulse from a KTA optical parametric amplifier,” Opt. Commun. 365, 7–13 (2016).
[Crossref]

Z. Y. Huang, D. Wang, Y. X. Leng, and Y. Dai, “Tuning the central wavelength by hundreds of nanometers using ultrafast molecular phase modulation,” Phys. Rev. A 91(4), 043809 (2015).
[Crossref]

Leone, S. R.

E. Goulielmakis, Z.-H. Loh, A. Wirth, R. Santra, N. Rohringer, V. S. Yakovlev, S. Zherebtsov, T. Pfeifer, A. M. Azzeer, M. F. Kling, S. R. Leone, and F. Krausz, “Real-time observation of valence electron motion,” Nature 466(7307), 739–743 (2010).
[Crossref] [PubMed]

Li, C.

Li, R.

Li, W. K.

Y. Chen, Y. Y. Li, W. K. Li, X. Y. Guo, and Y. X. Leng, “Generation of high beam quality, high-energy and broadband tunable mid-infrared pulse from a KTA optical parametric amplifier,” Opt. Commun. 365, 7–13 (2016).
[Crossref]

Li, Y. Y.

Y. Chen, Y. Y. Li, W. K. Li, X. Y. Guo, and Y. X. Leng, “Generation of high beam quality, high-energy and broadband tunable mid-infrared pulse from a KTA optical parametric amplifier,” Opt. Commun. 365, 7–13 (2016).
[Crossref]

Liu, J.

Liu, P.

Liu, X.

Y. Liu, X. Liu, Y. Deng, C. Wu, H. Jiang, and Q. Gong, “Selective steering of molecular multiple dissociative channels with strong few-cycle laser pulses,” Phys. Rev. Lett. 106(7), 073004 (2011).
[Crossref] [PubMed]

Liu, Y.

Y. Liu, X. Liu, Y. Deng, C. Wu, H. Jiang, and Q. Gong, “Selective steering of molecular multiple dissociative channels with strong few-cycle laser pulses,” Phys. Rev. Lett. 106(7), 073004 (2011).
[Crossref] [PubMed]

Loh, Z.-H.

E. Goulielmakis, Z.-H. Loh, A. Wirth, R. Santra, N. Rohringer, V. S. Yakovlev, S. Zherebtsov, T. Pfeifer, A. M. Azzeer, M. F. Kling, S. R. Leone, and F. Krausz, “Real-time observation of valence electron motion,” Nature 466(7307), 739–743 (2010).
[Crossref] [PubMed]

Ma, J.

Marcatili, E. A. J.

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” ATT Tech. J. 43(4), 1783–1809 (1964).

Marques, J. R.

C. Courtois, A. Couairon, B. Cros, J. R. Marques, and G. Matthieussent, “Propagation of intense ultrashort laser pulses in a plasma filled capillary tube: Simulations and experiments,” Phys. Plasmas 8(7), 3445–3456 (2001).
[Crossref]

Matthieussent, G.

C. Courtois, A. Couairon, B. Cros, J. R. Marques, and G. Matthieussent, “Propagation of intense ultrashort laser pulses in a plasma filled capillary tube: Simulations and experiments,” Phys. Plasmas 8(7), 3445–3456 (2001).
[Crossref]

Midorikawa, K.

Minemoto, S.

T. Suzuki, S. Minemoto, T. Kanai, and H. Sakai, “Optimal control of multiphoton ionization processes in aligned I2 molecules with time-dependent polarization pulses,” Phys. Rev. Lett. 92(13), 133005 (2004).
[Crossref] [PubMed]

Mourou, G.

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56(3), 219–221 (1985).
[Crossref]

Murnane, M. M.

Murphy, J. M.

D. M. Smith, S. Cusack, A. W. Colman, C. K. Folland, G. R. Harris, and J. M. Murphy, “Improved surface temperature prediction for the coming decade from a global climate model,” Science 317(5839), 796–799 (2007).
[Crossref] [PubMed]

Nisoli, M.

M. Nisoli, S. De Silvestri, O. Svelto, R. Szipöcs, K. Ferencz, C. Spielmann, S. Sartania, and F. Krausz, “Compression of high-energy laser pulses below 5 fs,” Opt. Lett. 22(8), 522–524 (1997).
[Crossref] [PubMed]

M. Nisoli, S. De Silvestri, and O. Svelto, “Generation of high energy 10 fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68(20), 2793–2795 (1996).
[Crossref]

Noack, F.

F. Rotermund, V. Petrov, and F. Noack, “Difference-frequency generation of intense femtosecond pulses in the mid-IR (4–12 μm) using HgGa2S4 and AgGaS2,” Opt. Commun. 185(1–3), 177–183 (2000).
[Crossref]

Nubling, R. K.

R. K. Nubling and J. A. Harrington, “Launch conditions and mode coupling in hollow-glass waveguides,” Opt. Eng. 37(9), 2454–2458 (1998).
[Crossref]

Nuter, R.

L. Bergé, S. Skupin, R. Nuter, J. Kasparian, and J. P. Wolf, “Ultrashort filaments of light in weakly ionized, optically transparent media,” Rep. Prog. Phys. 70(10), 1633–1713 (2007).
[Crossref]

Oshman, M. K.

S. E. Harris, M. K. Oshman, and R. L. Byer, “Observation of tunable optical parametric fluorescence,” Phys. Rev. Lett. 18(18), 732–734 (1967).
[Crossref]

Perelomov, A. M.

A. M. Perelomov, V. S. Popov, and M. V. Terent’ev, “Ionization of atoms in an alternating electric field,” Sov. Phys. JETP 23(5), 924–934 (1966).

Petrov, V.

F. Rotermund, V. Petrov, and F. Noack, “Difference-frequency generation of intense femtosecond pulses in the mid-IR (4–12 μm) using HgGa2S4 and AgGaS2,” Opt. Commun. 185(1–3), 177–183 (2000).
[Crossref]

Pfeifer, T.

E. Goulielmakis, Z.-H. Loh, A. Wirth, R. Santra, N. Rohringer, V. S. Yakovlev, S. Zherebtsov, T. Pfeifer, A. M. Azzeer, M. F. Kling, S. R. Leone, and F. Krausz, “Real-time observation of valence electron motion,” Nature 466(7307), 739–743 (2010).
[Crossref] [PubMed]

Pinault, S. C.

Piskarskas, A.

A. Dubietis, G. Jonušauskas, and A. Piskarskas, “Powerful femtosecond pulse generation by chirped and stretched pulse parametric amplification in BBO crystal,” Opt. Commun. 88(4–6), 437–440 (1992).
[Crossref]

Popmintchev, T.

Popov, V. S.

A. M. Perelomov, V. S. Popov, and M. V. Terent’ev, “Ionization of atoms in an alternating electric field,” Sov. Phys. JETP 23(5), 924–934 (1966).

Potasek, M. J.

Pugžlys, A.

Qian, L.

Racette, G. W.

C. C. Wang and G. W. Racette, “Measurement of parametric gain accompanying optical difference frequency generation,” Appl. Phys. Lett. 6(8), 169–171 (1965).
[Crossref]

Rohringer, N.

E. Goulielmakis, Z.-H. Loh, A. Wirth, R. Santra, N. Rohringer, V. S. Yakovlev, S. Zherebtsov, T. Pfeifer, A. M. Azzeer, M. F. Kling, S. R. Leone, and F. Krausz, “Real-time observation of valence electron motion,” Nature 466(7307), 739–743 (2010).
[Crossref] [PubMed]

Rotermund, F.

F. Rotermund, V. Petrov, and F. Noack, “Difference-frequency generation of intense femtosecond pulses in the mid-IR (4–12 μm) using HgGa2S4 and AgGaS2,” Opt. Commun. 185(1–3), 177–183 (2000).
[Crossref]

Sakai, H.

T. Suzuki, S. Minemoto, T. Kanai, and H. Sakai, “Optimal control of multiphoton ionization processes in aligned I2 molecules with time-dependent polarization pulses,” Phys. Rev. Lett. 92(13), 133005 (2004).
[Crossref] [PubMed]

Santra, R.

E. Goulielmakis, Z.-H. Loh, A. Wirth, R. Santra, N. Rohringer, V. S. Yakovlev, S. Zherebtsov, T. Pfeifer, A. M. Azzeer, M. F. Kling, S. R. Leone, and F. Krausz, “Real-time observation of valence electron motion,” Nature 466(7307), 739–743 (2010).
[Crossref] [PubMed]

Sartania, S.

Schmeltzer, R. A.

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” ATT Tech. J. 43(4), 1783–1809 (1964).

Schmidt, B. E.

N. Thiré, S. Beaulieu, V. Cardin, A. Laramée, V. Wanie, B. E. Schmidt, and F. Légaré, “10 mJ 5-cycle pulses at 1.8 μm through optical parametric amplification,” Appl. Phys. Lett. 106(9), 091110 (2015).
[Crossref]

V. Cardin, N. Thiré, S. Beaulieu, V. Wanie, F. Légaré, and B. E. Schmidt, “0.42 TW 2-cycle pulses at 1.8 μm via hollow-core fiber compression,” Appl. Phys. Lett. 107(18), 181101 (2015).
[Crossref]

Schultze, M.

E. Goulielmakis, M. Schultze, M. Hofstetter, V. S. Yakovlev, J. Gagnon, M. Uiberacker, A. L. Aquila, E. M. Gullikson, D. T. Attwood, R. Kienberger, F. Krausz, and U. Kleineberg, “Single-cycle nonlinear optics,” Science 320(5883), 1614–1617 (2008).
[Crossref] [PubMed]

Skupin, S.

L. Bergé, S. Skupin, R. Nuter, J. Kasparian, and J. P. Wolf, “Ultrashort filaments of light in weakly ionized, optically transparent media,” Rep. Prog. Phys. 70(10), 1633–1713 (2007).
[Crossref]

Smith, D. M.

D. M. Smith, S. Cusack, A. W. Colman, C. K. Folland, G. R. Harris, and J. M. Murphy, “Improved surface temperature prediction for the coming decade from a global climate model,” Science 317(5839), 796–799 (2007).
[Crossref] [PubMed]

Song, L.

Spielmann, C.

Strickland, D.

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56(3), 219–221 (1985).
[Crossref]

Suda, A.

Suzuki, T.

T. Suzuki, S. Minemoto, T. Kanai, and H. Sakai, “Optimal control of multiphoton ionization processes in aligned I2 molecules with time-dependent polarization pulses,” Phys. Rev. Lett. 92(13), 133005 (2004).
[Crossref] [PubMed]

Svelto, O.

M. Nisoli, S. De Silvestri, O. Svelto, R. Szipöcs, K. Ferencz, C. Spielmann, S. Sartania, and F. Krausz, “Compression of high-energy laser pulses below 5 fs,” Opt. Lett. 22(8), 522–524 (1997).
[Crossref] [PubMed]

M. Nisoli, S. De Silvestri, and O. Svelto, “Generation of high energy 10 fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68(20), 2793–2795 (1996).
[Crossref]

Szipöcs, R.

Terent’ev, M. V.

A. M. Perelomov, V. S. Popov, and M. V. Terent’ev, “Ionization of atoms in an alternating electric field,” Sov. Phys. JETP 23(5), 924–934 (1966).

Thiré, N.

V. Cardin, N. Thiré, S. Beaulieu, V. Wanie, F. Légaré, and B. E. Schmidt, “0.42 TW 2-cycle pulses at 1.8 μm via hollow-core fiber compression,” Appl. Phys. Lett. 107(18), 181101 (2015).
[Crossref]

N. Thiré, S. Beaulieu, V. Cardin, A. Laramée, V. Wanie, B. E. Schmidt, and F. Légaré, “10 mJ 5-cycle pulses at 1.8 μm through optical parametric amplification,” Appl. Phys. Lett. 106(9), 091110 (2015).
[Crossref]

Uiberacker, M.

E. Goulielmakis, M. Schultze, M. Hofstetter, V. S. Yakovlev, J. Gagnon, M. Uiberacker, A. L. Aquila, E. M. Gullikson, D. T. Attwood, R. Kienberger, F. Krausz, and U. Kleineberg, “Single-cycle nonlinear optics,” Science 320(5883), 1614–1617 (2008).
[Crossref] [PubMed]

Wang, C. C.

C. C. Wang and G. W. Racette, “Measurement of parametric gain accompanying optical difference frequency generation,” Appl. Phys. Lett. 6(8), 169–171 (1965).
[Crossref]

Wang, D.

Wang, J.

Wanie, V.

V. Cardin, N. Thiré, S. Beaulieu, V. Wanie, F. Légaré, and B. E. Schmidt, “0.42 TW 2-cycle pulses at 1.8 μm via hollow-core fiber compression,” Appl. Phys. Lett. 107(18), 181101 (2015).
[Crossref]

N. Thiré, S. Beaulieu, V. Cardin, A. Laramée, V. Wanie, B. E. Schmidt, and F. Légaré, “10 mJ 5-cycle pulses at 1.8 μm through optical parametric amplification,” Appl. Phys. Lett. 106(9), 091110 (2015).
[Crossref]

Wilson, K. R.

Wirth, A.

E. Goulielmakis, Z.-H. Loh, A. Wirth, R. Santra, N. Rohringer, V. S. Yakovlev, S. Zherebtsov, T. Pfeifer, A. M. Azzeer, M. F. Kling, S. R. Leone, and F. Krausz, “Real-time observation of valence electron motion,” Nature 466(7307), 739–743 (2010).
[Crossref] [PubMed]

Wolf, J. P.

L. Bergé, S. Skupin, R. Nuter, J. Kasparian, and J. P. Wolf, “Ultrashort filaments of light in weakly ionized, optically transparent media,” Rep. Prog. Phys. 70(10), 1633–1713 (2007).
[Crossref]

Wu, C.

Y. Liu, X. Liu, Y. Deng, C. Wu, H. Jiang, and Q. Gong, “Selective steering of molecular multiple dissociative channels with strong few-cycle laser pulses,” Phys. Rev. Lett. 106(7), 073004 (2011).
[Crossref] [PubMed]

Xie, G.

Xu, C.

Xu, Z.

Yakovlev, V. S.

E. Goulielmakis, Z.-H. Loh, A. Wirth, R. Santra, N. Rohringer, V. S. Yakovlev, S. Zherebtsov, T. Pfeifer, A. M. Azzeer, M. F. Kling, S. R. Leone, and F. Krausz, “Real-time observation of valence electron motion,” Nature 466(7307), 739–743 (2010).
[Crossref] [PubMed]

E. Goulielmakis, M. Schultze, M. Hofstetter, V. S. Yakovlev, J. Gagnon, M. Uiberacker, A. L. Aquila, E. M. Gullikson, D. T. Attwood, R. Kienberger, F. Krausz, and U. Kleineberg, “Single-cycle nonlinear optics,” Science 320(5883), 1614–1617 (2008).
[Crossref] [PubMed]

Yakovlev, V. V.

Yamaguchi, S.

Yuan, P.

Zewail, A. H.

A. H. Zewail, “Laser femtochemistry,” Science 242(4886), 1645–1653 (1988).
[Crossref] [PubMed]

Zhao, K.

Zherebtsov, S.

E. Goulielmakis, Z.-H. Loh, A. Wirth, R. Santra, N. Rohringer, V. S. Yakovlev, S. Zherebtsov, T. Pfeifer, A. M. Azzeer, M. F. Kling, S. R. Leone, and F. Krausz, “Real-time observation of valence electron motion,” Nature 466(7307), 739–743 (2010).
[Crossref] [PubMed]

Zhong, H.

Appl. Phys. Lett. (4)

M. Nisoli, S. De Silvestri, and O. Svelto, “Generation of high energy 10 fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68(20), 2793–2795 (1996).
[Crossref]

C. C. Wang and G. W. Racette, “Measurement of parametric gain accompanying optical difference frequency generation,” Appl. Phys. Lett. 6(8), 169–171 (1965).
[Crossref]

V. Cardin, N. Thiré, S. Beaulieu, V. Wanie, F. Légaré, and B. E. Schmidt, “0.42 TW 2-cycle pulses at 1.8 μm via hollow-core fiber compression,” Appl. Phys. Lett. 107(18), 181101 (2015).
[Crossref]

N. Thiré, S. Beaulieu, V. Cardin, A. Laramée, V. Wanie, B. E. Schmidt, and F. Légaré, “10 mJ 5-cycle pulses at 1.8 μm through optical parametric amplification,” Appl. Phys. Lett. 106(9), 091110 (2015).
[Crossref]

ATT Tech. J. (1)

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” ATT Tech. J. 43(4), 1783–1809 (1964).

J. Opt. Soc. Am. B (2)

Nature (1)

E. Goulielmakis, Z.-H. Loh, A. Wirth, R. Santra, N. Rohringer, V. S. Yakovlev, S. Zherebtsov, T. Pfeifer, A. M. Azzeer, M. F. Kling, S. R. Leone, and F. Krausz, “Real-time observation of valence electron motion,” Nature 466(7307), 739–743 (2010).
[Crossref] [PubMed]

Opt. Commun. (4)

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56(3), 219–221 (1985).
[Crossref]

A. Dubietis, G. Jonušauskas, and A. Piskarskas, “Powerful femtosecond pulse generation by chirped and stretched pulse parametric amplification in BBO crystal,” Opt. Commun. 88(4–6), 437–440 (1992).
[Crossref]

F. Rotermund, V. Petrov, and F. Noack, “Difference-frequency generation of intense femtosecond pulses in the mid-IR (4–12 μm) using HgGa2S4 and AgGaS2,” Opt. Commun. 185(1–3), 177–183 (2000).
[Crossref]

Y. Chen, Y. Y. Li, W. K. Li, X. Y. Guo, and Y. X. Leng, “Generation of high beam quality, high-energy and broadband tunable mid-infrared pulse from a KTA optical parametric amplifier,” Opt. Commun. 365, 7–13 (2016).
[Crossref]

Opt. Eng. (1)

R. K. Nubling and J. A. Harrington, “Launch conditions and mode coupling in hollow-glass waveguides,” Opt. Eng. 37(9), 2454–2458 (1998).
[Crossref]

Opt. Express (1)

Opt. Lett. (5)

Phys. Plasmas (1)

C. Courtois, A. Couairon, B. Cros, J. R. Marques, and G. Matthieussent, “Propagation of intense ultrashort laser pulses in a plasma filled capillary tube: Simulations and experiments,” Phys. Plasmas 8(7), 3445–3456 (2001).
[Crossref]

Phys. Rev. A (1)

Z. Y. Huang, D. Wang, Y. X. Leng, and Y. Dai, “Tuning the central wavelength by hundreds of nanometers using ultrafast molecular phase modulation,” Phys. Rev. A 91(4), 043809 (2015).
[Crossref]

Phys. Rev. Lett. (5)

P. B. Corkum, “Plasma perspective on strong field multiphoton ionization,” Phys. Rev. Lett. 71(13), 1994–1997 (1993).
[Crossref] [PubMed]

T. Suzuki, S. Minemoto, T. Kanai, and H. Sakai, “Optimal control of multiphoton ionization processes in aligned I2 molecules with time-dependent polarization pulses,” Phys. Rev. Lett. 92(13), 133005 (2004).
[Crossref] [PubMed]

Y. Liu, X. Liu, Y. Deng, C. Wu, H. Jiang, and Q. Gong, “Selective steering of molecular multiple dissociative channels with strong few-cycle laser pulses,” Phys. Rev. Lett. 106(7), 073004 (2011).
[Crossref] [PubMed]

A. Baltuška, T. Fuji, and T. Kobayashi, “Controlling the carrier-envelope phase of ultrashort light pulses with optical parametric amplifiers,” Phys. Rev. Lett. 88(13), 133901 (2002).
[Crossref] [PubMed]

S. E. Harris, M. K. Oshman, and R. L. Byer, “Observation of tunable optical parametric fluorescence,” Phys. Rev. Lett. 18(18), 732–734 (1967).
[Crossref]

Rep. Prog. Phys. (1)

L. Bergé, S. Skupin, R. Nuter, J. Kasparian, and J. P. Wolf, “Ultrashort filaments of light in weakly ionized, optically transparent media,” Rep. Prog. Phys. 70(10), 1633–1713 (2007).
[Crossref]

Science (3)

E. Goulielmakis, M. Schultze, M. Hofstetter, V. S. Yakovlev, J. Gagnon, M. Uiberacker, A. L. Aquila, E. M. Gullikson, D. T. Attwood, R. Kienberger, F. Krausz, and U. Kleineberg, “Single-cycle nonlinear optics,” Science 320(5883), 1614–1617 (2008).
[Crossref] [PubMed]

D. M. Smith, S. Cusack, A. W. Colman, C. K. Folland, G. R. Harris, and J. M. Murphy, “Improved surface temperature prediction for the coming decade from a global climate model,” Science 317(5839), 796–799 (2007).
[Crossref] [PubMed]

A. H. Zewail, “Laser femtochemistry,” Science 242(4886), 1645–1653 (1988).
[Crossref] [PubMed]

Sov. Phys. JETP (1)

A. M. Perelomov, V. S. Popov, and M. V. Terent’ev, “Ionization of atoms in an alternating electric field,” Sov. Phys. JETP 23(5), 924–934 (1966).

Other (1)

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) and (b) The temporal and spectral intensities of input pulses with an energy of 10 mJ and the duration of 62 fs at 3.6 µm, respectively. Green dotted lines represent the corresponding phase.

Fig. 2
Fig. 2

The coupling efficiency η m with respect to w/a , H E 1m (m=1,2,3) modes correspond to blue, green, and yellow solid lines, respectively. The red dot represents the optimal coupling of 0.98 at the ratio of 0.64 for fundamental mode.

Fig. 3
Fig. 3

(a) The power attenuation for different wavelength ranging from 2 μm to 5 μm; blue, green, and red solid lines represent various inner diameter of 250 μm, 500 μm, 1000 μm, respectively. Black dotted lines correspond to the wavelength of 3.6 μm. (b) The transmittance of the three modes H E 1m (m=1,2,3) in 1-m HCF with 1000-μm inner diameter.

Fig. 4
Fig. 4

(a) and (b) The temporal and spectral profiles of compressed pulses with an energy of 9.4 mJ and the duration of 17.5 fs at 3.6 µm, respectively. Green dotted lines are the corresponding phase; black dotted lines represent FTL pulses, and its duration is 15.4 fs.

Fig. 5
Fig. 5

The compressed pulses duration for different thickness of CaF2 crystal. Blue circle and red square lines, with up to 3rd order and to 5th order chirp compensation, respectively. Green dotted lines indicate the two-cycle duration of 24 fs at 3.6 μm.

Fig. 6
Fig. 6

(a) and (b) The temporal intensities of compressed pulses with up to 3rd order and to 5th order chirp compensation, respectively. The intervals marked by white dashed lines correspond to the two-cycle duration at 3.6 μm.

Fig. 7
Fig. 7

(a) and (c) The temporal profiles (blue solid lines) and the phase (green dotted lines) of compressed pulses with up to 5th order chirp compensation. (b) and (d) The corresponding spectral profiles (yellow solid lines) and phase (red dotted lines). (a)-(b) and (c)-(d) represent different thickness of of CaF2 crystal 0.7 mm and 1.6 mm, respectively.

Fig. 8
Fig. 8

(a) The FTL duration (blue circle lines) and broadening factor (green square lines) of output pulses with different fiber length for coupling efficiency 0.6. (b) The optimal fiber length (yellow circle lines) when the FTL duration of output pulses reaching ~1.3 cycle and the output pulses energy (red square lines) with respect to coupling efficiency.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

( z i L ^ )E=i T ^ [ ω 0 c n 2 h | E | 2 E ] σ 2 dE 1 2 f I E i q e 2 2c ω 0 m e ε 0 T ^ 1 [dE],
ρ t =W( ρ nt ρ)+ σ I p ρI,
η m = 4 w 2 [ 0 a r J 0 ( u m r/a) e r 2 / w 2 dr ] 2 0 a r J 0 2 ( u m r/a)dr ,
α m = [ u m 2π n core (ω) ] 2 λ 2 a 3 n 2 (ω)+1 n 2 (ω)1 ,
{ (Δω) 2 = (ω ω 0 ) 2 (ω ω 0 ) 2 (ω ω 0 ) n = (ω ω 0 ) n I(ω)dω I(ω)dω ,

Metrics