Abstract

Terahertz (THz) air-photonics employs nonlinear interactions of ultrashort laser pulses in air to generate and detect THz pulses. As air is virtually non-dispersive, the optical-THz phase matching condition is automatically met, thus permitting the generation and detection of ultra-broadband THz pulses covering the entire THz spectral range without any gaps. Air-photonics naturally offers unique opportunities for ultra-broadband transient THz spectroscopy, yet many critical challenges inherent to this technique must first be resolved. Here, we present explicit guidelines for ultra-broadband transient THz spectroscopy with air-photonics, including a novel method for self-referenced signal acquisition minimizing the phase error, and the numerically-accurate approach to the transient reflectance data analysis.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ultra-broadband THz time-domain spectroscopy of common polymers using THz air photonics

Francesco D’Angelo, Zoltán Mics, Mischa Bonn, and Dmitry Turchinovich
Opt. Express 22(10) 12475-12485 (2014)

Solid-state-biased coherent detection of ultra-broadband terahertz pulses

Alessandro Tomasino, Anna Mazhorova, Matteo Clerici, Marco Peccianti, Sze-Phing Ho, Yoann Jestin, Alessia Pasquazi, Andrey Markov, Xin Jin, Riccardo Piccoli, Sebastien Delprat, Mohamed Chaker, Alessandro Busacca, Jalil Ali, Luca Razzari, and Roberto Morandotti
Optica 4(11) 1358-1362 (2017)

Design and performance of reflective terahertz air-biased-coherent-detection for time-domain spectroscopy

I-Chen Ho, Xiaoyu Guo, and X.-C. Zhang
Opt. Express 18(3) 2872-2883 (2010)

References

  • View by:
  • |
  • |
  • |

  1. D. Grischkowsky, S. Keiding, M. V. Exter, and C. Fattinger, “Far-infrared time-domain spectroscopy with tera-hertz beams of dielectrics and semiconductors,” J. Opt. Soc. Am. B 7, 2006–2015 (1990).
    [Crossref]
  2. P. Jepsen, D. Cooke, and M. Koch, “Terahertz spectroscopy and imaging – modern techniques and applications,” Laser Photonics Rev. 5, 124–166 (2011).
    [Crossref]
  3. R. Ulbricht, E. Hendry, J. Shan, T. F. Heinz, and M. Bonn, “Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy,” Rev. Mod. Phys. 83, 543 (2011).
    [Crossref]
  4. D. J. Cook and R. M. Hochstrasser, “Intense terahertz pulses by four-wave rectification in air,” Opt. Lett. 25, 1210–1212 (2000).
    [Crossref]
  5. N. Karpowicz, J. Dai, X. Lu, Y. Chen, M. Yamaguchi, H. Zhao, X.-C. Zhang, L. Zhang, C. Zhang, M. Price-Gallagher, C. Fletcher, O. Mamer, A. Lesimple, and K. Johnson, “Coherent heterodyne time-domain spectrometry covering the entire ”terahertz gap”,” Appl. Phys. Lett. 92, 011131 (2008).
    [Crossref]
  6. K. Y. Kim, A. J. Taylor, J. H. Glownia, and G. Rodriguez, “Coherent control of terahertz supercontinuum generation in ultrafast lasergas interactions,” Nat. Photonics 2, 605–609 (2008).
    [Crossref]
  7. N. Karpowicz, X. Lu, and X.-C. Zhang, “Terahertz gas photonics,” J. Mod. Opt. 56, 1137–1150 (2009).
    [Crossref]
  8. X. Lu and X.-C. Zhang, “Investigation of ultra-broadband terahertz time-domain spectroscopy with terahertz wave gas photonics,” Front. Optoelectron. 7, 121–155 (2014).
    [Crossref]
  9. K. Y. Kim, J. H. Glownia, A. J. Taylor, and G. Rodriguez, “Terahertz emission from ultrafast ionizing air in symmetry-broken laser fields,” Opt. Express 15, 4577–4584 (2007).
    [Crossref] [PubMed]
  10. P. Klarskov, A. C. Strikwerda, K. Iwaszczuk, and P. U. Jepsen, “Experimental three-dimensional beam profiling and modeling of a terahertz beam generated from a two-color air plasma,” New J. Phys. 15, 075012 (2013).
    [Crossref]
  11. F. Buccheri and X.-C. Zhang, “Terahertz emission from laser-induced microplasma in ambient air,” Optica 2, 366–369 (2015).
    [Crossref]
  12. J. Liu and X. C. Zhang, “Birefringence and absorption coefficients of alpha barium borate in terahertz range,” J. Appl. Phys. 106, 023107 (2009).
    [Crossref]
  13. F. D’Angelo, Z. Mics, M. Bonn, and D. Turchinovich, “Ultra-broadband thz time-domain spectroscopy of common polymers using thz air photonics,” Opt. Express 22, 12475–12485 (2014).
    [Crossref]
  14. N. Vieweg, B. M. Fischer, M. Reuter, P. Kula, R. Dabrowski, M. A. Celik, G. Frenking, M. Koch, and P. U. Jepsen, “Ultrabroadband terahertz spectroscopy of a liquid crystal,” Opt. Express 20, 28249–28256 (2012).
    [Crossref] [PubMed]
  15. I.-C. Ho, X. Guo, and X.-C. Zhang, “Design and performance of reflective terahertz air-biased-coherent-detection for time-domain spectroscopy,” Opt. Express 18, 2872–2883 (2010).
    [Crossref] [PubMed]
  16. D. G. Cooke, F. C. Krebs, and P. U. Jepsen, “Direct observation of sub-100 fs mobile charge generation in a polymer-fullerene film,” Phys. Rev. Lett. 108, 056603 (2012).
    [Crossref] [PubMed]
  17. D. G. Cooke, A. Meldrum, and P. Uhd Jepsen, “Ultrabroadband terahertz conductivity of Si nanocrystal films,” Appl. Phys. Lett. 101, 211107 (2012).
    [Crossref]
  18. D. G. Cooke, P. U. Jepsen, J. Y. Lek, Y. M. Lam, F. Sy, and M. M. Dignam, “Picosecond dynamics of internal exciton transitions in cdse nanorods,” Phys. Rev. B 88, 241307 (2013).
    [Crossref]
  19. D. A. Valverde-Chávez, C. S. Ponseca, C. C. Stoumpos, A. Yartsev, M. G. Kanatzidis, V. Sundström, and D. G. Cooke, “Intrinsic femtosecond charge generation dynamics in single crystal CH3NH3PbI3,” Energy Environ. Sci. 8, 3700–3707 (2015).
    [Crossref]
  20. T. I. Jeon and D. Grischkowsky, “Observation of a Cole-Davidson type complex conductivity in the limit of very low carrier densities in doped silicon,” Appl. Phys. Lett. 72, 2259–2261 (1998).
    [Crossref]
  21. S. C. Howells and L. A. Schlie, “Transient terahertz reflection spectroscopy of undoped InSb from 0.1 to 1.1 THz,” Appl. Phys. Lett. 69, 550 (1996).
    [Crossref]
  22. A. Pashkin, M. Porer, M. Beyer, K. W. Kim, A. Dubroka, C. Bernhard, X. Yao, Y. Dagan, R. Hackl, A. Erb, J. Demsar, R. Huber, and A. Leitenstorfer, “Femtosecond response of quasiparticles and phonons in superconducting YBa2Cu3O7−δ studied by wideband terahertz spectroscopy,” Phys. Rev. Lett. 105, 067001 (2010).
    [Crossref]
  23. K. W. Kim, A. Pashkin, H. Schäfer, M. Beyer, M. Porer, T. Wolf, C. Bernhard, J. Demsar, R. Huber, and A. Leitenstorfer, “Ultrafast transient generation of spin-density-wave order in the normal state of BaFe2As2 driven by coherent lattice vibrations,” Nat. Mater. 11, 497–501 (2012).
    [Crossref] [PubMed]
  24. L. Thrane, R. H. Jacobsen, P. Uhd Jepsen, and S. R. Keiding, “THz reflection spectroscopy of liquid water,” Chem. Phys. Lett. 240, 330–333 (1995).
    [Crossref]
  25. T.-I. Jeon and D. Grischkowsky, “Characterization of optically dense, doped semiconductors by reflection THz time domain spectroscopy,” Appl. Phys. Lett. 72, 3032 (1998).
    [Crossref]
  26. A. Pashkin, M. Kempa, H. Němec, F. Kadlec, and P. Kužel, “Phase-sensitive time-domain terahertz reflection spectroscopy,” Rev. Sci. Instrum. 74, 4711 (2003).
    [Crossref]
  27. H. Zhong, C. Zhang, L. Zhang, Y. Zhao, and X.-C. Zhang, “A phase feature extraction technique for terahertz reflection spectroscopy,” Appl. Phys. Lett. 92, 221106 (2008).
    [Crossref]
  28. S. Nashima, O. Morikawa, K. Takata, and M. Hangyo, “Measurement of optical properties of highly doped silicon by terahertz time domain reflection spectroscopy,” Appl. Phys. Lett. 79, 3923–3925 (2001).
    [Crossref]
  29. C. Kadlec, V. Skoromets, F. Kadlec, H. Němec, J. Hlinka, J. Schubert, G. Panaitov, and P. Kužel, “Temperature and electric field tuning of the ferroelectric soft mode in a strained SrTiO3/DyScO3 heterostructure,” Phys. Rev. B 80, 174116 (2009).
    [Crossref]
  30. K. Iwaszczuk, D. G. Cooke, M. Fujiwara, H. Hashimoto, and P. U. Jepsen, “Simultaneous reference and differential waveform acquisition in time-resolved terahertz spectroscopy,” Opt. Express 17, 21969–21976 (2009).
    [Crossref] [PubMed]
  31. Q. Wu and X. Zhang, “Ultrafast electro-optic field sensors,” Appl. Phys. Lett. 68, 1995–1997 (1996).
  32. G. Gallot and D. Grischkowsky, “Electro-optic detection of terahertz radiation,” J. Opt. Soc. Am. B 16, 1204 (1999).
    [Crossref]
  33. J. Blakemore, “Semiconducting and other major properties of gallium arsenide,” J. Appl. Phys. 53, R123–R181 (1982).
    [Crossref]
  34. P. Y. Yu and M. Cardona, “Fundamentals of Semiconductors - Physics and Materials Properties,” (Springer, 2005).
    [Crossref]
  35. H. C. Casey, D. D. Sell, and K. W. Wecht, “Concentration dependence of the absorption coefficient for n- and p-type GaAs between 1.3 and 1.6 eV,” J. Appl. Phys. 46, 250–257 (1975).
    [Crossref]
  36. M. Beard, G. Turner, and C. Schmuttenmaer, “Transient photoconductivity in GaAs as measured by time-resolved terahertz spectroscopy,” Phys. Rev. B 62, 15764–15777 (2000).
    [Crossref]
  37. Z. Mics, A. D’Angio, S. A. Jensen, M. Bonn, and D. Turchinovich, “Density-dependent electron scattering in photoexcited GaAs in strongly diffusive regime,” Appl. Phys. Lett. 102, 231120 (2013).
    [Crossref]
  38. P. Kužel and H. Němec, “Terahertz conductivity in nanoscaled systems: effective medium theory aspects,” J. Phys. D. Appl. Phys. 47, 374005 (2014).
    [Crossref]
  39. R. Jacobsson, “V light reflection from films of continuously varying refractive index,” Prog. Opt. 5, 250–255 (1966).

2015 (2)

D. A. Valverde-Chávez, C. S. Ponseca, C. C. Stoumpos, A. Yartsev, M. G. Kanatzidis, V. Sundström, and D. G. Cooke, “Intrinsic femtosecond charge generation dynamics in single crystal CH3NH3PbI3,” Energy Environ. Sci. 8, 3700–3707 (2015).
[Crossref]

F. Buccheri and X.-C. Zhang, “Terahertz emission from laser-induced microplasma in ambient air,” Optica 2, 366–369 (2015).
[Crossref]

2014 (3)

F. D’Angelo, Z. Mics, M. Bonn, and D. Turchinovich, “Ultra-broadband thz time-domain spectroscopy of common polymers using thz air photonics,” Opt. Express 22, 12475–12485 (2014).
[Crossref]

X. Lu and X.-C. Zhang, “Investigation of ultra-broadband terahertz time-domain spectroscopy with terahertz wave gas photonics,” Front. Optoelectron. 7, 121–155 (2014).
[Crossref]

P. Kužel and H. Němec, “Terahertz conductivity in nanoscaled systems: effective medium theory aspects,” J. Phys. D. Appl. Phys. 47, 374005 (2014).
[Crossref]

2013 (3)

Z. Mics, A. D’Angio, S. A. Jensen, M. Bonn, and D. Turchinovich, “Density-dependent electron scattering in photoexcited GaAs in strongly diffusive regime,” Appl. Phys. Lett. 102, 231120 (2013).
[Crossref]

P. Klarskov, A. C. Strikwerda, K. Iwaszczuk, and P. U. Jepsen, “Experimental three-dimensional beam profiling and modeling of a terahertz beam generated from a two-color air plasma,” New J. Phys. 15, 075012 (2013).
[Crossref]

D. G. Cooke, P. U. Jepsen, J. Y. Lek, Y. M. Lam, F. Sy, and M. M. Dignam, “Picosecond dynamics of internal exciton transitions in cdse nanorods,” Phys. Rev. B 88, 241307 (2013).
[Crossref]

2012 (4)

D. G. Cooke, F. C. Krebs, and P. U. Jepsen, “Direct observation of sub-100 fs mobile charge generation in a polymer-fullerene film,” Phys. Rev. Lett. 108, 056603 (2012).
[Crossref] [PubMed]

D. G. Cooke, A. Meldrum, and P. Uhd Jepsen, “Ultrabroadband terahertz conductivity of Si nanocrystal films,” Appl. Phys. Lett. 101, 211107 (2012).
[Crossref]

K. W. Kim, A. Pashkin, H. Schäfer, M. Beyer, M. Porer, T. Wolf, C. Bernhard, J. Demsar, R. Huber, and A. Leitenstorfer, “Ultrafast transient generation of spin-density-wave order in the normal state of BaFe2As2 driven by coherent lattice vibrations,” Nat. Mater. 11, 497–501 (2012).
[Crossref] [PubMed]

N. Vieweg, B. M. Fischer, M. Reuter, P. Kula, R. Dabrowski, M. A. Celik, G. Frenking, M. Koch, and P. U. Jepsen, “Ultrabroadband terahertz spectroscopy of a liquid crystal,” Opt. Express 20, 28249–28256 (2012).
[Crossref] [PubMed]

2011 (2)

P. Jepsen, D. Cooke, and M. Koch, “Terahertz spectroscopy and imaging – modern techniques and applications,” Laser Photonics Rev. 5, 124–166 (2011).
[Crossref]

R. Ulbricht, E. Hendry, J. Shan, T. F. Heinz, and M. Bonn, “Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy,” Rev. Mod. Phys. 83, 543 (2011).
[Crossref]

2010 (2)

A. Pashkin, M. Porer, M. Beyer, K. W. Kim, A. Dubroka, C. Bernhard, X. Yao, Y. Dagan, R. Hackl, A. Erb, J. Demsar, R. Huber, and A. Leitenstorfer, “Femtosecond response of quasiparticles and phonons in superconducting YBa2Cu3O7−δ studied by wideband terahertz spectroscopy,” Phys. Rev. Lett. 105, 067001 (2010).
[Crossref]

I.-C. Ho, X. Guo, and X.-C. Zhang, “Design and performance of reflective terahertz air-biased-coherent-detection for time-domain spectroscopy,” Opt. Express 18, 2872–2883 (2010).
[Crossref] [PubMed]

2009 (4)

K. Iwaszczuk, D. G. Cooke, M. Fujiwara, H. Hashimoto, and P. U. Jepsen, “Simultaneous reference and differential waveform acquisition in time-resolved terahertz spectroscopy,” Opt. Express 17, 21969–21976 (2009).
[Crossref] [PubMed]

C. Kadlec, V. Skoromets, F. Kadlec, H. Němec, J. Hlinka, J. Schubert, G. Panaitov, and P. Kužel, “Temperature and electric field tuning of the ferroelectric soft mode in a strained SrTiO3/DyScO3 heterostructure,” Phys. Rev. B 80, 174116 (2009).
[Crossref]

J. Liu and X. C. Zhang, “Birefringence and absorption coefficients of alpha barium borate in terahertz range,” J. Appl. Phys. 106, 023107 (2009).
[Crossref]

N. Karpowicz, X. Lu, and X.-C. Zhang, “Terahertz gas photonics,” J. Mod. Opt. 56, 1137–1150 (2009).
[Crossref]

2008 (3)

N. Karpowicz, J. Dai, X. Lu, Y. Chen, M. Yamaguchi, H. Zhao, X.-C. Zhang, L. Zhang, C. Zhang, M. Price-Gallagher, C. Fletcher, O. Mamer, A. Lesimple, and K. Johnson, “Coherent heterodyne time-domain spectrometry covering the entire ”terahertz gap”,” Appl. Phys. Lett. 92, 011131 (2008).
[Crossref]

K. Y. Kim, A. J. Taylor, J. H. Glownia, and G. Rodriguez, “Coherent control of terahertz supercontinuum generation in ultrafast lasergas interactions,” Nat. Photonics 2, 605–609 (2008).
[Crossref]

H. Zhong, C. Zhang, L. Zhang, Y. Zhao, and X.-C. Zhang, “A phase feature extraction technique for terahertz reflection spectroscopy,” Appl. Phys. Lett. 92, 221106 (2008).
[Crossref]

2007 (1)

2003 (1)

A. Pashkin, M. Kempa, H. Němec, F. Kadlec, and P. Kužel, “Phase-sensitive time-domain terahertz reflection spectroscopy,” Rev. Sci. Instrum. 74, 4711 (2003).
[Crossref]

2001 (1)

S. Nashima, O. Morikawa, K. Takata, and M. Hangyo, “Measurement of optical properties of highly doped silicon by terahertz time domain reflection spectroscopy,” Appl. Phys. Lett. 79, 3923–3925 (2001).
[Crossref]

2000 (2)

M. Beard, G. Turner, and C. Schmuttenmaer, “Transient photoconductivity in GaAs as measured by time-resolved terahertz spectroscopy,” Phys. Rev. B 62, 15764–15777 (2000).
[Crossref]

D. J. Cook and R. M. Hochstrasser, “Intense terahertz pulses by four-wave rectification in air,” Opt. Lett. 25, 1210–1212 (2000).
[Crossref]

1999 (1)

1998 (2)

T.-I. Jeon and D. Grischkowsky, “Characterization of optically dense, doped semiconductors by reflection THz time domain spectroscopy,” Appl. Phys. Lett. 72, 3032 (1998).
[Crossref]

T. I. Jeon and D. Grischkowsky, “Observation of a Cole-Davidson type complex conductivity in the limit of very low carrier densities in doped silicon,” Appl. Phys. Lett. 72, 2259–2261 (1998).
[Crossref]

1996 (2)

S. C. Howells and L. A. Schlie, “Transient terahertz reflection spectroscopy of undoped InSb from 0.1 to 1.1 THz,” Appl. Phys. Lett. 69, 550 (1996).
[Crossref]

Q. Wu and X. Zhang, “Ultrafast electro-optic field sensors,” Appl. Phys. Lett. 68, 1995–1997 (1996).

1995 (1)

L. Thrane, R. H. Jacobsen, P. Uhd Jepsen, and S. R. Keiding, “THz reflection spectroscopy of liquid water,” Chem. Phys. Lett. 240, 330–333 (1995).
[Crossref]

1990 (1)

1982 (1)

J. Blakemore, “Semiconducting and other major properties of gallium arsenide,” J. Appl. Phys. 53, R123–R181 (1982).
[Crossref]

1975 (1)

H. C. Casey, D. D. Sell, and K. W. Wecht, “Concentration dependence of the absorption coefficient for n- and p-type GaAs between 1.3 and 1.6 eV,” J. Appl. Phys. 46, 250–257 (1975).
[Crossref]

1966 (1)

R. Jacobsson, “V light reflection from films of continuously varying refractive index,” Prog. Opt. 5, 250–255 (1966).

Beard, M.

M. Beard, G. Turner, and C. Schmuttenmaer, “Transient photoconductivity in GaAs as measured by time-resolved terahertz spectroscopy,” Phys. Rev. B 62, 15764–15777 (2000).
[Crossref]

Bernhard, C.

K. W. Kim, A. Pashkin, H. Schäfer, M. Beyer, M. Porer, T. Wolf, C. Bernhard, J. Demsar, R. Huber, and A. Leitenstorfer, “Ultrafast transient generation of spin-density-wave order in the normal state of BaFe2As2 driven by coherent lattice vibrations,” Nat. Mater. 11, 497–501 (2012).
[Crossref] [PubMed]

A. Pashkin, M. Porer, M. Beyer, K. W. Kim, A. Dubroka, C. Bernhard, X. Yao, Y. Dagan, R. Hackl, A. Erb, J. Demsar, R. Huber, and A. Leitenstorfer, “Femtosecond response of quasiparticles and phonons in superconducting YBa2Cu3O7−δ studied by wideband terahertz spectroscopy,” Phys. Rev. Lett. 105, 067001 (2010).
[Crossref]

Beyer, M.

K. W. Kim, A. Pashkin, H. Schäfer, M. Beyer, M. Porer, T. Wolf, C. Bernhard, J. Demsar, R. Huber, and A. Leitenstorfer, “Ultrafast transient generation of spin-density-wave order in the normal state of BaFe2As2 driven by coherent lattice vibrations,” Nat. Mater. 11, 497–501 (2012).
[Crossref] [PubMed]

A. Pashkin, M. Porer, M. Beyer, K. W. Kim, A. Dubroka, C. Bernhard, X. Yao, Y. Dagan, R. Hackl, A. Erb, J. Demsar, R. Huber, and A. Leitenstorfer, “Femtosecond response of quasiparticles and phonons in superconducting YBa2Cu3O7−δ studied by wideband terahertz spectroscopy,” Phys. Rev. Lett. 105, 067001 (2010).
[Crossref]

Blakemore, J.

J. Blakemore, “Semiconducting and other major properties of gallium arsenide,” J. Appl. Phys. 53, R123–R181 (1982).
[Crossref]

Bonn, M.

F. D’Angelo, Z. Mics, M. Bonn, and D. Turchinovich, “Ultra-broadband thz time-domain spectroscopy of common polymers using thz air photonics,” Opt. Express 22, 12475–12485 (2014).
[Crossref]

Z. Mics, A. D’Angio, S. A. Jensen, M. Bonn, and D. Turchinovich, “Density-dependent electron scattering in photoexcited GaAs in strongly diffusive regime,” Appl. Phys. Lett. 102, 231120 (2013).
[Crossref]

R. Ulbricht, E. Hendry, J. Shan, T. F. Heinz, and M. Bonn, “Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy,” Rev. Mod. Phys. 83, 543 (2011).
[Crossref]

Buccheri, F.

Cardona, M.

P. Y. Yu and M. Cardona, “Fundamentals of Semiconductors - Physics and Materials Properties,” (Springer, 2005).
[Crossref]

Casey, H. C.

H. C. Casey, D. D. Sell, and K. W. Wecht, “Concentration dependence of the absorption coefficient for n- and p-type GaAs between 1.3 and 1.6 eV,” J. Appl. Phys. 46, 250–257 (1975).
[Crossref]

Celik, M. A.

Chen, Y.

N. Karpowicz, J. Dai, X. Lu, Y. Chen, M. Yamaguchi, H. Zhao, X.-C. Zhang, L. Zhang, C. Zhang, M. Price-Gallagher, C. Fletcher, O. Mamer, A. Lesimple, and K. Johnson, “Coherent heterodyne time-domain spectrometry covering the entire ”terahertz gap”,” Appl. Phys. Lett. 92, 011131 (2008).
[Crossref]

Cook, D. J.

Cooke, D.

P. Jepsen, D. Cooke, and M. Koch, “Terahertz spectroscopy and imaging – modern techniques and applications,” Laser Photonics Rev. 5, 124–166 (2011).
[Crossref]

Cooke, D. G.

D. A. Valverde-Chávez, C. S. Ponseca, C. C. Stoumpos, A. Yartsev, M. G. Kanatzidis, V. Sundström, and D. G. Cooke, “Intrinsic femtosecond charge generation dynamics in single crystal CH3NH3PbI3,” Energy Environ. Sci. 8, 3700–3707 (2015).
[Crossref]

D. G. Cooke, P. U. Jepsen, J. Y. Lek, Y. M. Lam, F. Sy, and M. M. Dignam, “Picosecond dynamics of internal exciton transitions in cdse nanorods,” Phys. Rev. B 88, 241307 (2013).
[Crossref]

D. G. Cooke, A. Meldrum, and P. Uhd Jepsen, “Ultrabroadband terahertz conductivity of Si nanocrystal films,” Appl. Phys. Lett. 101, 211107 (2012).
[Crossref]

D. G. Cooke, F. C. Krebs, and P. U. Jepsen, “Direct observation of sub-100 fs mobile charge generation in a polymer-fullerene film,” Phys. Rev. Lett. 108, 056603 (2012).
[Crossref] [PubMed]

K. Iwaszczuk, D. G. Cooke, M. Fujiwara, H. Hashimoto, and P. U. Jepsen, “Simultaneous reference and differential waveform acquisition in time-resolved terahertz spectroscopy,” Opt. Express 17, 21969–21976 (2009).
[Crossref] [PubMed]

D’Angelo, F.

D’Angio, A.

Z. Mics, A. D’Angio, S. A. Jensen, M. Bonn, and D. Turchinovich, “Density-dependent electron scattering in photoexcited GaAs in strongly diffusive regime,” Appl. Phys. Lett. 102, 231120 (2013).
[Crossref]

Dabrowski, R.

Dagan, Y.

A. Pashkin, M. Porer, M. Beyer, K. W. Kim, A. Dubroka, C. Bernhard, X. Yao, Y. Dagan, R. Hackl, A. Erb, J. Demsar, R. Huber, and A. Leitenstorfer, “Femtosecond response of quasiparticles and phonons in superconducting YBa2Cu3O7−δ studied by wideband terahertz spectroscopy,” Phys. Rev. Lett. 105, 067001 (2010).
[Crossref]

Dai, J.

N. Karpowicz, J. Dai, X. Lu, Y. Chen, M. Yamaguchi, H. Zhao, X.-C. Zhang, L. Zhang, C. Zhang, M. Price-Gallagher, C. Fletcher, O. Mamer, A. Lesimple, and K. Johnson, “Coherent heterodyne time-domain spectrometry covering the entire ”terahertz gap”,” Appl. Phys. Lett. 92, 011131 (2008).
[Crossref]

Demsar, J.

K. W. Kim, A. Pashkin, H. Schäfer, M. Beyer, M. Porer, T. Wolf, C. Bernhard, J. Demsar, R. Huber, and A. Leitenstorfer, “Ultrafast transient generation of spin-density-wave order in the normal state of BaFe2As2 driven by coherent lattice vibrations,” Nat. Mater. 11, 497–501 (2012).
[Crossref] [PubMed]

A. Pashkin, M. Porer, M. Beyer, K. W. Kim, A. Dubroka, C. Bernhard, X. Yao, Y. Dagan, R. Hackl, A. Erb, J. Demsar, R. Huber, and A. Leitenstorfer, “Femtosecond response of quasiparticles and phonons in superconducting YBa2Cu3O7−δ studied by wideband terahertz spectroscopy,” Phys. Rev. Lett. 105, 067001 (2010).
[Crossref]

Dignam, M. M.

D. G. Cooke, P. U. Jepsen, J. Y. Lek, Y. M. Lam, F. Sy, and M. M. Dignam, “Picosecond dynamics of internal exciton transitions in cdse nanorods,” Phys. Rev. B 88, 241307 (2013).
[Crossref]

Dubroka, A.

A. Pashkin, M. Porer, M. Beyer, K. W. Kim, A. Dubroka, C. Bernhard, X. Yao, Y. Dagan, R. Hackl, A. Erb, J. Demsar, R. Huber, and A. Leitenstorfer, “Femtosecond response of quasiparticles and phonons in superconducting YBa2Cu3O7−δ studied by wideband terahertz spectroscopy,” Phys. Rev. Lett. 105, 067001 (2010).
[Crossref]

Erb, A.

A. Pashkin, M. Porer, M. Beyer, K. W. Kim, A. Dubroka, C. Bernhard, X. Yao, Y. Dagan, R. Hackl, A. Erb, J. Demsar, R. Huber, and A. Leitenstorfer, “Femtosecond response of quasiparticles and phonons in superconducting YBa2Cu3O7−δ studied by wideband terahertz spectroscopy,” Phys. Rev. Lett. 105, 067001 (2010).
[Crossref]

Exter, M. V.

Fattinger, C.

Fischer, B. M.

Fletcher, C.

N. Karpowicz, J. Dai, X. Lu, Y. Chen, M. Yamaguchi, H. Zhao, X.-C. Zhang, L. Zhang, C. Zhang, M. Price-Gallagher, C. Fletcher, O. Mamer, A. Lesimple, and K. Johnson, “Coherent heterodyne time-domain spectrometry covering the entire ”terahertz gap”,” Appl. Phys. Lett. 92, 011131 (2008).
[Crossref]

Frenking, G.

Fujiwara, M.

Gallot, G.

Glownia, J. H.

K. Y. Kim, A. J. Taylor, J. H. Glownia, and G. Rodriguez, “Coherent control of terahertz supercontinuum generation in ultrafast lasergas interactions,” Nat. Photonics 2, 605–609 (2008).
[Crossref]

K. Y. Kim, J. H. Glownia, A. J. Taylor, and G. Rodriguez, “Terahertz emission from ultrafast ionizing air in symmetry-broken laser fields,” Opt. Express 15, 4577–4584 (2007).
[Crossref] [PubMed]

Grischkowsky, D.

G. Gallot and D. Grischkowsky, “Electro-optic detection of terahertz radiation,” J. Opt. Soc. Am. B 16, 1204 (1999).
[Crossref]

T.-I. Jeon and D. Grischkowsky, “Characterization of optically dense, doped semiconductors by reflection THz time domain spectroscopy,” Appl. Phys. Lett. 72, 3032 (1998).
[Crossref]

T. I. Jeon and D. Grischkowsky, “Observation of a Cole-Davidson type complex conductivity in the limit of very low carrier densities in doped silicon,” Appl. Phys. Lett. 72, 2259–2261 (1998).
[Crossref]

D. Grischkowsky, S. Keiding, M. V. Exter, and C. Fattinger, “Far-infrared time-domain spectroscopy with tera-hertz beams of dielectrics and semiconductors,” J. Opt. Soc. Am. B 7, 2006–2015 (1990).
[Crossref]

Guo, X.

Hackl, R.

A. Pashkin, M. Porer, M. Beyer, K. W. Kim, A. Dubroka, C. Bernhard, X. Yao, Y. Dagan, R. Hackl, A. Erb, J. Demsar, R. Huber, and A. Leitenstorfer, “Femtosecond response of quasiparticles and phonons in superconducting YBa2Cu3O7−δ studied by wideband terahertz spectroscopy,” Phys. Rev. Lett. 105, 067001 (2010).
[Crossref]

Hangyo, M.

S. Nashima, O. Morikawa, K. Takata, and M. Hangyo, “Measurement of optical properties of highly doped silicon by terahertz time domain reflection spectroscopy,” Appl. Phys. Lett. 79, 3923–3925 (2001).
[Crossref]

Hashimoto, H.

Heinz, T. F.

R. Ulbricht, E. Hendry, J. Shan, T. F. Heinz, and M. Bonn, “Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy,” Rev. Mod. Phys. 83, 543 (2011).
[Crossref]

Hendry, E.

R. Ulbricht, E. Hendry, J. Shan, T. F. Heinz, and M. Bonn, “Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy,” Rev. Mod. Phys. 83, 543 (2011).
[Crossref]

Hlinka, J.

C. Kadlec, V. Skoromets, F. Kadlec, H. Němec, J. Hlinka, J. Schubert, G. Panaitov, and P. Kužel, “Temperature and electric field tuning of the ferroelectric soft mode in a strained SrTiO3/DyScO3 heterostructure,” Phys. Rev. B 80, 174116 (2009).
[Crossref]

Ho, I.-C.

Hochstrasser, R. M.

Howells, S. C.

S. C. Howells and L. A. Schlie, “Transient terahertz reflection spectroscopy of undoped InSb from 0.1 to 1.1 THz,” Appl. Phys. Lett. 69, 550 (1996).
[Crossref]

Huber, R.

K. W. Kim, A. Pashkin, H. Schäfer, M. Beyer, M. Porer, T. Wolf, C. Bernhard, J. Demsar, R. Huber, and A. Leitenstorfer, “Ultrafast transient generation of spin-density-wave order in the normal state of BaFe2As2 driven by coherent lattice vibrations,” Nat. Mater. 11, 497–501 (2012).
[Crossref] [PubMed]

A. Pashkin, M. Porer, M. Beyer, K. W. Kim, A. Dubroka, C. Bernhard, X. Yao, Y. Dagan, R. Hackl, A. Erb, J. Demsar, R. Huber, and A. Leitenstorfer, “Femtosecond response of quasiparticles and phonons in superconducting YBa2Cu3O7−δ studied by wideband terahertz spectroscopy,” Phys. Rev. Lett. 105, 067001 (2010).
[Crossref]

Iwaszczuk, K.

P. Klarskov, A. C. Strikwerda, K. Iwaszczuk, and P. U. Jepsen, “Experimental three-dimensional beam profiling and modeling of a terahertz beam generated from a two-color air plasma,” New J. Phys. 15, 075012 (2013).
[Crossref]

K. Iwaszczuk, D. G. Cooke, M. Fujiwara, H. Hashimoto, and P. U. Jepsen, “Simultaneous reference and differential waveform acquisition in time-resolved terahertz spectroscopy,” Opt. Express 17, 21969–21976 (2009).
[Crossref] [PubMed]

Jacobsen, R. H.

L. Thrane, R. H. Jacobsen, P. Uhd Jepsen, and S. R. Keiding, “THz reflection spectroscopy of liquid water,” Chem. Phys. Lett. 240, 330–333 (1995).
[Crossref]

Jacobsson, R.

R. Jacobsson, “V light reflection from films of continuously varying refractive index,” Prog. Opt. 5, 250–255 (1966).

Jensen, S. A.

Z. Mics, A. D’Angio, S. A. Jensen, M. Bonn, and D. Turchinovich, “Density-dependent electron scattering in photoexcited GaAs in strongly diffusive regime,” Appl. Phys. Lett. 102, 231120 (2013).
[Crossref]

Jeon, T. I.

T. I. Jeon and D. Grischkowsky, “Observation of a Cole-Davidson type complex conductivity in the limit of very low carrier densities in doped silicon,” Appl. Phys. Lett. 72, 2259–2261 (1998).
[Crossref]

Jeon, T.-I.

T.-I. Jeon and D. Grischkowsky, “Characterization of optically dense, doped semiconductors by reflection THz time domain spectroscopy,” Appl. Phys. Lett. 72, 3032 (1998).
[Crossref]

Jepsen, P.

P. Jepsen, D. Cooke, and M. Koch, “Terahertz spectroscopy and imaging – modern techniques and applications,” Laser Photonics Rev. 5, 124–166 (2011).
[Crossref]

Jepsen, P. U.

P. Klarskov, A. C. Strikwerda, K. Iwaszczuk, and P. U. Jepsen, “Experimental three-dimensional beam profiling and modeling of a terahertz beam generated from a two-color air plasma,” New J. Phys. 15, 075012 (2013).
[Crossref]

D. G. Cooke, P. U. Jepsen, J. Y. Lek, Y. M. Lam, F. Sy, and M. M. Dignam, “Picosecond dynamics of internal exciton transitions in cdse nanorods,” Phys. Rev. B 88, 241307 (2013).
[Crossref]

N. Vieweg, B. M. Fischer, M. Reuter, P. Kula, R. Dabrowski, M. A. Celik, G. Frenking, M. Koch, and P. U. Jepsen, “Ultrabroadband terahertz spectroscopy of a liquid crystal,” Opt. Express 20, 28249–28256 (2012).
[Crossref] [PubMed]

D. G. Cooke, F. C. Krebs, and P. U. Jepsen, “Direct observation of sub-100 fs mobile charge generation in a polymer-fullerene film,” Phys. Rev. Lett. 108, 056603 (2012).
[Crossref] [PubMed]

K. Iwaszczuk, D. G. Cooke, M. Fujiwara, H. Hashimoto, and P. U. Jepsen, “Simultaneous reference and differential waveform acquisition in time-resolved terahertz spectroscopy,” Opt. Express 17, 21969–21976 (2009).
[Crossref] [PubMed]

Johnson, K.

N. Karpowicz, J. Dai, X. Lu, Y. Chen, M. Yamaguchi, H. Zhao, X.-C. Zhang, L. Zhang, C. Zhang, M. Price-Gallagher, C. Fletcher, O. Mamer, A. Lesimple, and K. Johnson, “Coherent heterodyne time-domain spectrometry covering the entire ”terahertz gap”,” Appl. Phys. Lett. 92, 011131 (2008).
[Crossref]

Kadlec, C.

C. Kadlec, V. Skoromets, F. Kadlec, H. Němec, J. Hlinka, J. Schubert, G. Panaitov, and P. Kužel, “Temperature and electric field tuning of the ferroelectric soft mode in a strained SrTiO3/DyScO3 heterostructure,” Phys. Rev. B 80, 174116 (2009).
[Crossref]

Kadlec, F.

C. Kadlec, V. Skoromets, F. Kadlec, H. Němec, J. Hlinka, J. Schubert, G. Panaitov, and P. Kužel, “Temperature and electric field tuning of the ferroelectric soft mode in a strained SrTiO3/DyScO3 heterostructure,” Phys. Rev. B 80, 174116 (2009).
[Crossref]

A. Pashkin, M. Kempa, H. Němec, F. Kadlec, and P. Kužel, “Phase-sensitive time-domain terahertz reflection spectroscopy,” Rev. Sci. Instrum. 74, 4711 (2003).
[Crossref]

Kanatzidis, M. G.

D. A. Valverde-Chávez, C. S. Ponseca, C. C. Stoumpos, A. Yartsev, M. G. Kanatzidis, V. Sundström, and D. G. Cooke, “Intrinsic femtosecond charge generation dynamics in single crystal CH3NH3PbI3,” Energy Environ. Sci. 8, 3700–3707 (2015).
[Crossref]

Karpowicz, N.

N. Karpowicz, X. Lu, and X.-C. Zhang, “Terahertz gas photonics,” J. Mod. Opt. 56, 1137–1150 (2009).
[Crossref]

N. Karpowicz, J. Dai, X. Lu, Y. Chen, M. Yamaguchi, H. Zhao, X.-C. Zhang, L. Zhang, C. Zhang, M. Price-Gallagher, C. Fletcher, O. Mamer, A. Lesimple, and K. Johnson, “Coherent heterodyne time-domain spectrometry covering the entire ”terahertz gap”,” Appl. Phys. Lett. 92, 011131 (2008).
[Crossref]

Keiding, S.

Keiding, S. R.

L. Thrane, R. H. Jacobsen, P. Uhd Jepsen, and S. R. Keiding, “THz reflection spectroscopy of liquid water,” Chem. Phys. Lett. 240, 330–333 (1995).
[Crossref]

Kempa, M.

A. Pashkin, M. Kempa, H. Němec, F. Kadlec, and P. Kužel, “Phase-sensitive time-domain terahertz reflection spectroscopy,” Rev. Sci. Instrum. 74, 4711 (2003).
[Crossref]

Kim, K. W.

K. W. Kim, A. Pashkin, H. Schäfer, M. Beyer, M. Porer, T. Wolf, C. Bernhard, J. Demsar, R. Huber, and A. Leitenstorfer, “Ultrafast transient generation of spin-density-wave order in the normal state of BaFe2As2 driven by coherent lattice vibrations,” Nat. Mater. 11, 497–501 (2012).
[Crossref] [PubMed]

A. Pashkin, M. Porer, M. Beyer, K. W. Kim, A. Dubroka, C. Bernhard, X. Yao, Y. Dagan, R. Hackl, A. Erb, J. Demsar, R. Huber, and A. Leitenstorfer, “Femtosecond response of quasiparticles and phonons in superconducting YBa2Cu3O7−δ studied by wideband terahertz spectroscopy,” Phys. Rev. Lett. 105, 067001 (2010).
[Crossref]

Kim, K. Y.

K. Y. Kim, A. J. Taylor, J. H. Glownia, and G. Rodriguez, “Coherent control of terahertz supercontinuum generation in ultrafast lasergas interactions,” Nat. Photonics 2, 605–609 (2008).
[Crossref]

K. Y. Kim, J. H. Glownia, A. J. Taylor, and G. Rodriguez, “Terahertz emission from ultrafast ionizing air in symmetry-broken laser fields,” Opt. Express 15, 4577–4584 (2007).
[Crossref] [PubMed]

Klarskov, P.

P. Klarskov, A. C. Strikwerda, K. Iwaszczuk, and P. U. Jepsen, “Experimental three-dimensional beam profiling and modeling of a terahertz beam generated from a two-color air plasma,” New J. Phys. 15, 075012 (2013).
[Crossref]

Koch, M.

Krebs, F. C.

D. G. Cooke, F. C. Krebs, and P. U. Jepsen, “Direct observation of sub-100 fs mobile charge generation in a polymer-fullerene film,” Phys. Rev. Lett. 108, 056603 (2012).
[Crossref] [PubMed]

Kula, P.

Kužel, P.

P. Kužel and H. Němec, “Terahertz conductivity in nanoscaled systems: effective medium theory aspects,” J. Phys. D. Appl. Phys. 47, 374005 (2014).
[Crossref]

C. Kadlec, V. Skoromets, F. Kadlec, H. Němec, J. Hlinka, J. Schubert, G. Panaitov, and P. Kužel, “Temperature and electric field tuning of the ferroelectric soft mode in a strained SrTiO3/DyScO3 heterostructure,” Phys. Rev. B 80, 174116 (2009).
[Crossref]

A. Pashkin, M. Kempa, H. Němec, F. Kadlec, and P. Kužel, “Phase-sensitive time-domain terahertz reflection spectroscopy,” Rev. Sci. Instrum. 74, 4711 (2003).
[Crossref]

Lam, Y. M.

D. G. Cooke, P. U. Jepsen, J. Y. Lek, Y. M. Lam, F. Sy, and M. M. Dignam, “Picosecond dynamics of internal exciton transitions in cdse nanorods,” Phys. Rev. B 88, 241307 (2013).
[Crossref]

Leitenstorfer, A.

K. W. Kim, A. Pashkin, H. Schäfer, M. Beyer, M. Porer, T. Wolf, C. Bernhard, J. Demsar, R. Huber, and A. Leitenstorfer, “Ultrafast transient generation of spin-density-wave order in the normal state of BaFe2As2 driven by coherent lattice vibrations,” Nat. Mater. 11, 497–501 (2012).
[Crossref] [PubMed]

A. Pashkin, M. Porer, M. Beyer, K. W. Kim, A. Dubroka, C. Bernhard, X. Yao, Y. Dagan, R. Hackl, A. Erb, J. Demsar, R. Huber, and A. Leitenstorfer, “Femtosecond response of quasiparticles and phonons in superconducting YBa2Cu3O7−δ studied by wideband terahertz spectroscopy,” Phys. Rev. Lett. 105, 067001 (2010).
[Crossref]

Lek, J. Y.

D. G. Cooke, P. U. Jepsen, J. Y. Lek, Y. M. Lam, F. Sy, and M. M. Dignam, “Picosecond dynamics of internal exciton transitions in cdse nanorods,” Phys. Rev. B 88, 241307 (2013).
[Crossref]

Lesimple, A.

N. Karpowicz, J. Dai, X. Lu, Y. Chen, M. Yamaguchi, H. Zhao, X.-C. Zhang, L. Zhang, C. Zhang, M. Price-Gallagher, C. Fletcher, O. Mamer, A. Lesimple, and K. Johnson, “Coherent heterodyne time-domain spectrometry covering the entire ”terahertz gap”,” Appl. Phys. Lett. 92, 011131 (2008).
[Crossref]

Liu, J.

J. Liu and X. C. Zhang, “Birefringence and absorption coefficients of alpha barium borate in terahertz range,” J. Appl. Phys. 106, 023107 (2009).
[Crossref]

Lu, X.

X. Lu and X.-C. Zhang, “Investigation of ultra-broadband terahertz time-domain spectroscopy with terahertz wave gas photonics,” Front. Optoelectron. 7, 121–155 (2014).
[Crossref]

N. Karpowicz, X. Lu, and X.-C. Zhang, “Terahertz gas photonics,” J. Mod. Opt. 56, 1137–1150 (2009).
[Crossref]

N. Karpowicz, J. Dai, X. Lu, Y. Chen, M. Yamaguchi, H. Zhao, X.-C. Zhang, L. Zhang, C. Zhang, M. Price-Gallagher, C. Fletcher, O. Mamer, A. Lesimple, and K. Johnson, “Coherent heterodyne time-domain spectrometry covering the entire ”terahertz gap”,” Appl. Phys. Lett. 92, 011131 (2008).
[Crossref]

Mamer, O.

N. Karpowicz, J. Dai, X. Lu, Y. Chen, M. Yamaguchi, H. Zhao, X.-C. Zhang, L. Zhang, C. Zhang, M. Price-Gallagher, C. Fletcher, O. Mamer, A. Lesimple, and K. Johnson, “Coherent heterodyne time-domain spectrometry covering the entire ”terahertz gap”,” Appl. Phys. Lett. 92, 011131 (2008).
[Crossref]

Meldrum, A.

D. G. Cooke, A. Meldrum, and P. Uhd Jepsen, “Ultrabroadband terahertz conductivity of Si nanocrystal films,” Appl. Phys. Lett. 101, 211107 (2012).
[Crossref]

Mics, Z.

F. D’Angelo, Z. Mics, M. Bonn, and D. Turchinovich, “Ultra-broadband thz time-domain spectroscopy of common polymers using thz air photonics,” Opt. Express 22, 12475–12485 (2014).
[Crossref]

Z. Mics, A. D’Angio, S. A. Jensen, M. Bonn, and D. Turchinovich, “Density-dependent electron scattering in photoexcited GaAs in strongly diffusive regime,” Appl. Phys. Lett. 102, 231120 (2013).
[Crossref]

Morikawa, O.

S. Nashima, O. Morikawa, K. Takata, and M. Hangyo, “Measurement of optical properties of highly doped silicon by terahertz time domain reflection spectroscopy,” Appl. Phys. Lett. 79, 3923–3925 (2001).
[Crossref]

Nashima, S.

S. Nashima, O. Morikawa, K. Takata, and M. Hangyo, “Measurement of optical properties of highly doped silicon by terahertz time domain reflection spectroscopy,” Appl. Phys. Lett. 79, 3923–3925 (2001).
[Crossref]

Nemec, H.

P. Kužel and H. Němec, “Terahertz conductivity in nanoscaled systems: effective medium theory aspects,” J. Phys. D. Appl. Phys. 47, 374005 (2014).
[Crossref]

C. Kadlec, V. Skoromets, F. Kadlec, H. Němec, J. Hlinka, J. Schubert, G. Panaitov, and P. Kužel, “Temperature and electric field tuning of the ferroelectric soft mode in a strained SrTiO3/DyScO3 heterostructure,” Phys. Rev. B 80, 174116 (2009).
[Crossref]

A. Pashkin, M. Kempa, H. Němec, F. Kadlec, and P. Kužel, “Phase-sensitive time-domain terahertz reflection spectroscopy,” Rev. Sci. Instrum. 74, 4711 (2003).
[Crossref]

Panaitov, G.

C. Kadlec, V. Skoromets, F. Kadlec, H. Němec, J. Hlinka, J. Schubert, G. Panaitov, and P. Kužel, “Temperature and electric field tuning of the ferroelectric soft mode in a strained SrTiO3/DyScO3 heterostructure,” Phys. Rev. B 80, 174116 (2009).
[Crossref]

Pashkin, A.

K. W. Kim, A. Pashkin, H. Schäfer, M. Beyer, M. Porer, T. Wolf, C. Bernhard, J. Demsar, R. Huber, and A. Leitenstorfer, “Ultrafast transient generation of spin-density-wave order in the normal state of BaFe2As2 driven by coherent lattice vibrations,” Nat. Mater. 11, 497–501 (2012).
[Crossref] [PubMed]

A. Pashkin, M. Porer, M. Beyer, K. W. Kim, A. Dubroka, C. Bernhard, X. Yao, Y. Dagan, R. Hackl, A. Erb, J. Demsar, R. Huber, and A. Leitenstorfer, “Femtosecond response of quasiparticles and phonons in superconducting YBa2Cu3O7−δ studied by wideband terahertz spectroscopy,” Phys. Rev. Lett. 105, 067001 (2010).
[Crossref]

A. Pashkin, M. Kempa, H. Němec, F. Kadlec, and P. Kužel, “Phase-sensitive time-domain terahertz reflection spectroscopy,” Rev. Sci. Instrum. 74, 4711 (2003).
[Crossref]

Ponseca, C. S.

D. A. Valverde-Chávez, C. S. Ponseca, C. C. Stoumpos, A. Yartsev, M. G. Kanatzidis, V. Sundström, and D. G. Cooke, “Intrinsic femtosecond charge generation dynamics in single crystal CH3NH3PbI3,” Energy Environ. Sci. 8, 3700–3707 (2015).
[Crossref]

Porer, M.

K. W. Kim, A. Pashkin, H. Schäfer, M. Beyer, M. Porer, T. Wolf, C. Bernhard, J. Demsar, R. Huber, and A. Leitenstorfer, “Ultrafast transient generation of spin-density-wave order in the normal state of BaFe2As2 driven by coherent lattice vibrations,” Nat. Mater. 11, 497–501 (2012).
[Crossref] [PubMed]

A. Pashkin, M. Porer, M. Beyer, K. W. Kim, A. Dubroka, C. Bernhard, X. Yao, Y. Dagan, R. Hackl, A. Erb, J. Demsar, R. Huber, and A. Leitenstorfer, “Femtosecond response of quasiparticles and phonons in superconducting YBa2Cu3O7−δ studied by wideband terahertz spectroscopy,” Phys. Rev. Lett. 105, 067001 (2010).
[Crossref]

Price-Gallagher, M.

N. Karpowicz, J. Dai, X. Lu, Y. Chen, M. Yamaguchi, H. Zhao, X.-C. Zhang, L. Zhang, C. Zhang, M. Price-Gallagher, C. Fletcher, O. Mamer, A. Lesimple, and K. Johnson, “Coherent heterodyne time-domain spectrometry covering the entire ”terahertz gap”,” Appl. Phys. Lett. 92, 011131 (2008).
[Crossref]

Reuter, M.

Rodriguez, G.

K. Y. Kim, A. J. Taylor, J. H. Glownia, and G. Rodriguez, “Coherent control of terahertz supercontinuum generation in ultrafast lasergas interactions,” Nat. Photonics 2, 605–609 (2008).
[Crossref]

K. Y. Kim, J. H. Glownia, A. J. Taylor, and G. Rodriguez, “Terahertz emission from ultrafast ionizing air in symmetry-broken laser fields,” Opt. Express 15, 4577–4584 (2007).
[Crossref] [PubMed]

Schäfer, H.

K. W. Kim, A. Pashkin, H. Schäfer, M. Beyer, M. Porer, T. Wolf, C. Bernhard, J. Demsar, R. Huber, and A. Leitenstorfer, “Ultrafast transient generation of spin-density-wave order in the normal state of BaFe2As2 driven by coherent lattice vibrations,” Nat. Mater. 11, 497–501 (2012).
[Crossref] [PubMed]

Schlie, L. A.

S. C. Howells and L. A. Schlie, “Transient terahertz reflection spectroscopy of undoped InSb from 0.1 to 1.1 THz,” Appl. Phys. Lett. 69, 550 (1996).
[Crossref]

Schmuttenmaer, C.

M. Beard, G. Turner, and C. Schmuttenmaer, “Transient photoconductivity in GaAs as measured by time-resolved terahertz spectroscopy,” Phys. Rev. B 62, 15764–15777 (2000).
[Crossref]

Schubert, J.

C. Kadlec, V. Skoromets, F. Kadlec, H. Němec, J. Hlinka, J. Schubert, G. Panaitov, and P. Kužel, “Temperature and electric field tuning of the ferroelectric soft mode in a strained SrTiO3/DyScO3 heterostructure,” Phys. Rev. B 80, 174116 (2009).
[Crossref]

Sell, D. D.

H. C. Casey, D. D. Sell, and K. W. Wecht, “Concentration dependence of the absorption coefficient for n- and p-type GaAs between 1.3 and 1.6 eV,” J. Appl. Phys. 46, 250–257 (1975).
[Crossref]

Shan, J.

R. Ulbricht, E. Hendry, J. Shan, T. F. Heinz, and M. Bonn, “Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy,” Rev. Mod. Phys. 83, 543 (2011).
[Crossref]

Skoromets, V.

C. Kadlec, V. Skoromets, F. Kadlec, H. Němec, J. Hlinka, J. Schubert, G. Panaitov, and P. Kužel, “Temperature and electric field tuning of the ferroelectric soft mode in a strained SrTiO3/DyScO3 heterostructure,” Phys. Rev. B 80, 174116 (2009).
[Crossref]

Stoumpos, C. C.

D. A. Valverde-Chávez, C. S. Ponseca, C. C. Stoumpos, A. Yartsev, M. G. Kanatzidis, V. Sundström, and D. G. Cooke, “Intrinsic femtosecond charge generation dynamics in single crystal CH3NH3PbI3,” Energy Environ. Sci. 8, 3700–3707 (2015).
[Crossref]

Strikwerda, A. C.

P. Klarskov, A. C. Strikwerda, K. Iwaszczuk, and P. U. Jepsen, “Experimental three-dimensional beam profiling and modeling of a terahertz beam generated from a two-color air plasma,” New J. Phys. 15, 075012 (2013).
[Crossref]

Sundström, V.

D. A. Valverde-Chávez, C. S. Ponseca, C. C. Stoumpos, A. Yartsev, M. G. Kanatzidis, V. Sundström, and D. G. Cooke, “Intrinsic femtosecond charge generation dynamics in single crystal CH3NH3PbI3,” Energy Environ. Sci. 8, 3700–3707 (2015).
[Crossref]

Sy, F.

D. G. Cooke, P. U. Jepsen, J. Y. Lek, Y. M. Lam, F. Sy, and M. M. Dignam, “Picosecond dynamics of internal exciton transitions in cdse nanorods,” Phys. Rev. B 88, 241307 (2013).
[Crossref]

Takata, K.

S. Nashima, O. Morikawa, K. Takata, and M. Hangyo, “Measurement of optical properties of highly doped silicon by terahertz time domain reflection spectroscopy,” Appl. Phys. Lett. 79, 3923–3925 (2001).
[Crossref]

Taylor, A. J.

K. Y. Kim, A. J. Taylor, J. H. Glownia, and G. Rodriguez, “Coherent control of terahertz supercontinuum generation in ultrafast lasergas interactions,” Nat. Photonics 2, 605–609 (2008).
[Crossref]

K. Y. Kim, J. H. Glownia, A. J. Taylor, and G. Rodriguez, “Terahertz emission from ultrafast ionizing air in symmetry-broken laser fields,” Opt. Express 15, 4577–4584 (2007).
[Crossref] [PubMed]

Thrane, L.

L. Thrane, R. H. Jacobsen, P. Uhd Jepsen, and S. R. Keiding, “THz reflection spectroscopy of liquid water,” Chem. Phys. Lett. 240, 330–333 (1995).
[Crossref]

Turchinovich, D.

F. D’Angelo, Z. Mics, M. Bonn, and D. Turchinovich, “Ultra-broadband thz time-domain spectroscopy of common polymers using thz air photonics,” Opt. Express 22, 12475–12485 (2014).
[Crossref]

Z. Mics, A. D’Angio, S. A. Jensen, M. Bonn, and D. Turchinovich, “Density-dependent electron scattering in photoexcited GaAs in strongly diffusive regime,” Appl. Phys. Lett. 102, 231120 (2013).
[Crossref]

Turner, G.

M. Beard, G. Turner, and C. Schmuttenmaer, “Transient photoconductivity in GaAs as measured by time-resolved terahertz spectroscopy,” Phys. Rev. B 62, 15764–15777 (2000).
[Crossref]

Uhd Jepsen, P.

D. G. Cooke, A. Meldrum, and P. Uhd Jepsen, “Ultrabroadband terahertz conductivity of Si nanocrystal films,” Appl. Phys. Lett. 101, 211107 (2012).
[Crossref]

L. Thrane, R. H. Jacobsen, P. Uhd Jepsen, and S. R. Keiding, “THz reflection spectroscopy of liquid water,” Chem. Phys. Lett. 240, 330–333 (1995).
[Crossref]

Ulbricht, R.

R. Ulbricht, E. Hendry, J. Shan, T. F. Heinz, and M. Bonn, “Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy,” Rev. Mod. Phys. 83, 543 (2011).
[Crossref]

Valverde-Chávez, D. A.

D. A. Valverde-Chávez, C. S. Ponseca, C. C. Stoumpos, A. Yartsev, M. G. Kanatzidis, V. Sundström, and D. G. Cooke, “Intrinsic femtosecond charge generation dynamics in single crystal CH3NH3PbI3,” Energy Environ. Sci. 8, 3700–3707 (2015).
[Crossref]

Vieweg, N.

Wecht, K. W.

H. C. Casey, D. D. Sell, and K. W. Wecht, “Concentration dependence of the absorption coefficient for n- and p-type GaAs between 1.3 and 1.6 eV,” J. Appl. Phys. 46, 250–257 (1975).
[Crossref]

Wolf, T.

K. W. Kim, A. Pashkin, H. Schäfer, M. Beyer, M. Porer, T. Wolf, C. Bernhard, J. Demsar, R. Huber, and A. Leitenstorfer, “Ultrafast transient generation of spin-density-wave order in the normal state of BaFe2As2 driven by coherent lattice vibrations,” Nat. Mater. 11, 497–501 (2012).
[Crossref] [PubMed]

Wu, Q.

Q. Wu and X. Zhang, “Ultrafast electro-optic field sensors,” Appl. Phys. Lett. 68, 1995–1997 (1996).

Yamaguchi, M.

N. Karpowicz, J. Dai, X. Lu, Y. Chen, M. Yamaguchi, H. Zhao, X.-C. Zhang, L. Zhang, C. Zhang, M. Price-Gallagher, C. Fletcher, O. Mamer, A. Lesimple, and K. Johnson, “Coherent heterodyne time-domain spectrometry covering the entire ”terahertz gap”,” Appl. Phys. Lett. 92, 011131 (2008).
[Crossref]

Yao, X.

A. Pashkin, M. Porer, M. Beyer, K. W. Kim, A. Dubroka, C. Bernhard, X. Yao, Y. Dagan, R. Hackl, A. Erb, J. Demsar, R. Huber, and A. Leitenstorfer, “Femtosecond response of quasiparticles and phonons in superconducting YBa2Cu3O7−δ studied by wideband terahertz spectroscopy,” Phys. Rev. Lett. 105, 067001 (2010).
[Crossref]

Yartsev, A.

D. A. Valverde-Chávez, C. S. Ponseca, C. C. Stoumpos, A. Yartsev, M. G. Kanatzidis, V. Sundström, and D. G. Cooke, “Intrinsic femtosecond charge generation dynamics in single crystal CH3NH3PbI3,” Energy Environ. Sci. 8, 3700–3707 (2015).
[Crossref]

Yu, P. Y.

P. Y. Yu and M. Cardona, “Fundamentals of Semiconductors - Physics and Materials Properties,” (Springer, 2005).
[Crossref]

Zhang, C.

H. Zhong, C. Zhang, L. Zhang, Y. Zhao, and X.-C. Zhang, “A phase feature extraction technique for terahertz reflection spectroscopy,” Appl. Phys. Lett. 92, 221106 (2008).
[Crossref]

N. Karpowicz, J. Dai, X. Lu, Y. Chen, M. Yamaguchi, H. Zhao, X.-C. Zhang, L. Zhang, C. Zhang, M. Price-Gallagher, C. Fletcher, O. Mamer, A. Lesimple, and K. Johnson, “Coherent heterodyne time-domain spectrometry covering the entire ”terahertz gap”,” Appl. Phys. Lett. 92, 011131 (2008).
[Crossref]

Zhang, L.

N. Karpowicz, J. Dai, X. Lu, Y. Chen, M. Yamaguchi, H. Zhao, X.-C. Zhang, L. Zhang, C. Zhang, M. Price-Gallagher, C. Fletcher, O. Mamer, A. Lesimple, and K. Johnson, “Coherent heterodyne time-domain spectrometry covering the entire ”terahertz gap”,” Appl. Phys. Lett. 92, 011131 (2008).
[Crossref]

H. Zhong, C. Zhang, L. Zhang, Y. Zhao, and X.-C. Zhang, “A phase feature extraction technique for terahertz reflection spectroscopy,” Appl. Phys. Lett. 92, 221106 (2008).
[Crossref]

Zhang, X.

Q. Wu and X. Zhang, “Ultrafast electro-optic field sensors,” Appl. Phys. Lett. 68, 1995–1997 (1996).

Zhang, X. C.

J. Liu and X. C. Zhang, “Birefringence and absorption coefficients of alpha barium borate in terahertz range,” J. Appl. Phys. 106, 023107 (2009).
[Crossref]

Zhang, X.-C.

F. Buccheri and X.-C. Zhang, “Terahertz emission from laser-induced microplasma in ambient air,” Optica 2, 366–369 (2015).
[Crossref]

X. Lu and X.-C. Zhang, “Investigation of ultra-broadband terahertz time-domain spectroscopy with terahertz wave gas photonics,” Front. Optoelectron. 7, 121–155 (2014).
[Crossref]

I.-C. Ho, X. Guo, and X.-C. Zhang, “Design and performance of reflective terahertz air-biased-coherent-detection for time-domain spectroscopy,” Opt. Express 18, 2872–2883 (2010).
[Crossref] [PubMed]

N. Karpowicz, X. Lu, and X.-C. Zhang, “Terahertz gas photonics,” J. Mod. Opt. 56, 1137–1150 (2009).
[Crossref]

H. Zhong, C. Zhang, L. Zhang, Y. Zhao, and X.-C. Zhang, “A phase feature extraction technique for terahertz reflection spectroscopy,” Appl. Phys. Lett. 92, 221106 (2008).
[Crossref]

N. Karpowicz, J. Dai, X. Lu, Y. Chen, M. Yamaguchi, H. Zhao, X.-C. Zhang, L. Zhang, C. Zhang, M. Price-Gallagher, C. Fletcher, O. Mamer, A. Lesimple, and K. Johnson, “Coherent heterodyne time-domain spectrometry covering the entire ”terahertz gap”,” Appl. Phys. Lett. 92, 011131 (2008).
[Crossref]

Zhao, H.

N. Karpowicz, J. Dai, X. Lu, Y. Chen, M. Yamaguchi, H. Zhao, X.-C. Zhang, L. Zhang, C. Zhang, M. Price-Gallagher, C. Fletcher, O. Mamer, A. Lesimple, and K. Johnson, “Coherent heterodyne time-domain spectrometry covering the entire ”terahertz gap”,” Appl. Phys. Lett. 92, 011131 (2008).
[Crossref]

Zhao, Y.

H. Zhong, C. Zhang, L. Zhang, Y. Zhao, and X.-C. Zhang, “A phase feature extraction technique for terahertz reflection spectroscopy,” Appl. Phys. Lett. 92, 221106 (2008).
[Crossref]

Zhong, H.

H. Zhong, C. Zhang, L. Zhang, Y. Zhao, and X.-C. Zhang, “A phase feature extraction technique for terahertz reflection spectroscopy,” Appl. Phys. Lett. 92, 221106 (2008).
[Crossref]

Appl. Phys. Lett. (9)

N. Karpowicz, J. Dai, X. Lu, Y. Chen, M. Yamaguchi, H. Zhao, X.-C. Zhang, L. Zhang, C. Zhang, M. Price-Gallagher, C. Fletcher, O. Mamer, A. Lesimple, and K. Johnson, “Coherent heterodyne time-domain spectrometry covering the entire ”terahertz gap”,” Appl. Phys. Lett. 92, 011131 (2008).
[Crossref]

D. G. Cooke, A. Meldrum, and P. Uhd Jepsen, “Ultrabroadband terahertz conductivity of Si nanocrystal films,” Appl. Phys. Lett. 101, 211107 (2012).
[Crossref]

T. I. Jeon and D. Grischkowsky, “Observation of a Cole-Davidson type complex conductivity in the limit of very low carrier densities in doped silicon,” Appl. Phys. Lett. 72, 2259–2261 (1998).
[Crossref]

S. C. Howells and L. A. Schlie, “Transient terahertz reflection spectroscopy of undoped InSb from 0.1 to 1.1 THz,” Appl. Phys. Lett. 69, 550 (1996).
[Crossref]

T.-I. Jeon and D. Grischkowsky, “Characterization of optically dense, doped semiconductors by reflection THz time domain spectroscopy,” Appl. Phys. Lett. 72, 3032 (1998).
[Crossref]

H. Zhong, C. Zhang, L. Zhang, Y. Zhao, and X.-C. Zhang, “A phase feature extraction technique for terahertz reflection spectroscopy,” Appl. Phys. Lett. 92, 221106 (2008).
[Crossref]

S. Nashima, O. Morikawa, K. Takata, and M. Hangyo, “Measurement of optical properties of highly doped silicon by terahertz time domain reflection spectroscopy,” Appl. Phys. Lett. 79, 3923–3925 (2001).
[Crossref]

Z. Mics, A. D’Angio, S. A. Jensen, M. Bonn, and D. Turchinovich, “Density-dependent electron scattering in photoexcited GaAs in strongly diffusive regime,” Appl. Phys. Lett. 102, 231120 (2013).
[Crossref]

Q. Wu and X. Zhang, “Ultrafast electro-optic field sensors,” Appl. Phys. Lett. 68, 1995–1997 (1996).

Chem. Phys. Lett. (1)

L. Thrane, R. H. Jacobsen, P. Uhd Jepsen, and S. R. Keiding, “THz reflection spectroscopy of liquid water,” Chem. Phys. Lett. 240, 330–333 (1995).
[Crossref]

Energy Environ. Sci. (1)

D. A. Valverde-Chávez, C. S. Ponseca, C. C. Stoumpos, A. Yartsev, M. G. Kanatzidis, V. Sundström, and D. G. Cooke, “Intrinsic femtosecond charge generation dynamics in single crystal CH3NH3PbI3,” Energy Environ. Sci. 8, 3700–3707 (2015).
[Crossref]

Front. Optoelectron. (1)

X. Lu and X.-C. Zhang, “Investigation of ultra-broadband terahertz time-domain spectroscopy with terahertz wave gas photonics,” Front. Optoelectron. 7, 121–155 (2014).
[Crossref]

J. Appl. Phys. (3)

H. C. Casey, D. D. Sell, and K. W. Wecht, “Concentration dependence of the absorption coefficient for n- and p-type GaAs between 1.3 and 1.6 eV,” J. Appl. Phys. 46, 250–257 (1975).
[Crossref]

J. Liu and X. C. Zhang, “Birefringence and absorption coefficients of alpha barium borate in terahertz range,” J. Appl. Phys. 106, 023107 (2009).
[Crossref]

J. Blakemore, “Semiconducting and other major properties of gallium arsenide,” J. Appl. Phys. 53, R123–R181 (1982).
[Crossref]

J. Mod. Opt. (1)

N. Karpowicz, X. Lu, and X.-C. Zhang, “Terahertz gas photonics,” J. Mod. Opt. 56, 1137–1150 (2009).
[Crossref]

J. Opt. Soc. Am. B (2)

J. Phys. D. Appl. Phys. (1)

P. Kužel and H. Němec, “Terahertz conductivity in nanoscaled systems: effective medium theory aspects,” J. Phys. D. Appl. Phys. 47, 374005 (2014).
[Crossref]

Laser Photonics Rev. (1)

P. Jepsen, D. Cooke, and M. Koch, “Terahertz spectroscopy and imaging – modern techniques and applications,” Laser Photonics Rev. 5, 124–166 (2011).
[Crossref]

Nat. Mater. (1)

K. W. Kim, A. Pashkin, H. Schäfer, M. Beyer, M. Porer, T. Wolf, C. Bernhard, J. Demsar, R. Huber, and A. Leitenstorfer, “Ultrafast transient generation of spin-density-wave order in the normal state of BaFe2As2 driven by coherent lattice vibrations,” Nat. Mater. 11, 497–501 (2012).
[Crossref] [PubMed]

Nat. Photonics (1)

K. Y. Kim, A. J. Taylor, J. H. Glownia, and G. Rodriguez, “Coherent control of terahertz supercontinuum generation in ultrafast lasergas interactions,” Nat. Photonics 2, 605–609 (2008).
[Crossref]

New J. Phys. (1)

P. Klarskov, A. C. Strikwerda, K. Iwaszczuk, and P. U. Jepsen, “Experimental three-dimensional beam profiling and modeling of a terahertz beam generated from a two-color air plasma,” New J. Phys. 15, 075012 (2013).
[Crossref]

Opt. Express (5)

Opt. Lett. (1)

Optica (1)

Phys. Rev. B (3)

M. Beard, G. Turner, and C. Schmuttenmaer, “Transient photoconductivity in GaAs as measured by time-resolved terahertz spectroscopy,” Phys. Rev. B 62, 15764–15777 (2000).
[Crossref]

C. Kadlec, V. Skoromets, F. Kadlec, H. Němec, J. Hlinka, J. Schubert, G. Panaitov, and P. Kužel, “Temperature and electric field tuning of the ferroelectric soft mode in a strained SrTiO3/DyScO3 heterostructure,” Phys. Rev. B 80, 174116 (2009).
[Crossref]

D. G. Cooke, P. U. Jepsen, J. Y. Lek, Y. M. Lam, F. Sy, and M. M. Dignam, “Picosecond dynamics of internal exciton transitions in cdse nanorods,” Phys. Rev. B 88, 241307 (2013).
[Crossref]

Phys. Rev. Lett. (2)

D. G. Cooke, F. C. Krebs, and P. U. Jepsen, “Direct observation of sub-100 fs mobile charge generation in a polymer-fullerene film,” Phys. Rev. Lett. 108, 056603 (2012).
[Crossref] [PubMed]

A. Pashkin, M. Porer, M. Beyer, K. W. Kim, A. Dubroka, C. Bernhard, X. Yao, Y. Dagan, R. Hackl, A. Erb, J. Demsar, R. Huber, and A. Leitenstorfer, “Femtosecond response of quasiparticles and phonons in superconducting YBa2Cu3O7−δ studied by wideband terahertz spectroscopy,” Phys. Rev. Lett. 105, 067001 (2010).
[Crossref]

Prog. Opt. (1)

R. Jacobsson, “V light reflection from films of continuously varying refractive index,” Prog. Opt. 5, 250–255 (1966).

Rev. Mod. Phys. (1)

R. Ulbricht, E. Hendry, J. Shan, T. F. Heinz, and M. Bonn, “Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy,” Rev. Mod. Phys. 83, 543 (2011).
[Crossref]

Rev. Sci. Instrum. (1)

A. Pashkin, M. Kempa, H. Němec, F. Kadlec, and P. Kužel, “Phase-sensitive time-domain terahertz reflection spectroscopy,” Rev. Sci. Instrum. 74, 4711 (2003).
[Crossref]

Other (1)

P. Y. Yu and M. Cardona, “Fundamentals of Semiconductors - Physics and Materials Properties,” (Springer, 2005).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Illustration of the influence of the phase error on the conductivity retrieved from transient reflectance. Black lines: model conductivity used to calculate transient reflectance spectra. Red lines: conductivity retrieved from the transient reflectance containing an artificial phase shift corresponding to ±1µm change in the optical path length between the THz reflected from the excited and unexcited sample. The minor micron-sized drift in the optical path can easily lead to wrong assignment of the conductivity mechanisms: the originally dispersion-free conductivity appears as a Drude response when a positive phase shift is artificially introduced, or it exhibits a signature of localization (negative imaginary part) when a negative phase shift is artificially introduced.

Fig. 2
Fig. 2

a) Experimental setup for ultra-broadband self-referenced THz reflection spectroscopy based on THz air-photonics. b) THz pulse reflected from a 0.33 mm-thick GaAs wafer and normalized to the maximum. c) Corresponding amplitude and phase spectra. The arrows highlight spectral features originated respectively by the TO and LO phonon modes in the GaAs [33] sample and by the two-phonon absorption in the high resistivity silicon beam splitter [34]. The shaded area indicates the spectral region corresponding to the noise floor of the signal.

Fig. 3
Fig. 3

Self-referenced acquisition scheme for ABCD detection. a) THz and pump pulses impinging on the sample. b) From the top to the bottom: High-voltage electric bias; THz pulse reflected from the excited (red) and unexcited (black) sample; incident gating pulses (red); second harmonic pulses (blue) in the ABCD detection. Couples of twin-signals (dashed/solid lines of the same color) are circled in red and green for the THz pulse reflected from the excited and unexcited sample respectively. c) Signals detected in the lock-in amplifier when the reference frequencies are respectively f/6 and f/2. Twin-signals (dashed/solid lines of the same color) are 180° out of phase and their vector sum is linearly proportional to the THz field (Eq. (2)).

Fig. 4
Fig. 4

Self-referenced acquisition of a 1D-pump scan at the peak of the THz field for a GaAs wafer excited at 800 nm with a pump fluence of 0.35 mJ cm−2. Lines in black and red are the simultaneously acquired signals Sf/6 and Sf/2 respectively. Lines in blue and magenta are respectively the reconstructed reference and differential THz waveforms obtained by using Eqs. (3) and (4).

Fig. 5
Fig. 5

Real (solid, a) and imaginary (dashed, b) parts of the photoconductivity of a GaAs wafer retrieved within various approximations. Blue curves: input Drude-like conductivity used to calculate the transient reflectivity. Red and green curves are erroneous conductivities calculated respectively using TFA (Eq. (10)) and SEA (Eq. (11)). The conductivity retrieved using Eq. (9) exactly matches the blue curve in the plot. Inset: zoom of the real and imaginary parts of the calculated photoconductivities.

Fig. 6
Fig. 6

Error in the transient conductivity due to a frequency uncertainty δν of 0.05 THz corresponding to a 10 ps time window.

Fig. 7
Fig. 7

Real (a) and imaginary (b) parts of the transient conductivity calculated by using TFA (red), SEA (green), and by taking into account the exponential excitation profile (blue). Black curves: Drude fit of the reliable conductivity data. The parameters of the Drude fit are: N = 6(1) × 1016 cm3 for the carrier density and τ = 0.09(1)ps for the scattering time. The transient reflectivity was measured 3.5ps after photo-excitation and for an average excitation energy of 3 µJ cm2 per pulse. The error bars have been estimated as the standard error of the mean over 61 individual acquisitions.

Fig. 8
Fig. 8

Scheme of fields and interactions in a photoexcited sample during transient transmittance ∆Et and transient reflectance ∆Er measurements. In equilibrium, the incident THz field Einc and the transmitted Et and reflected Er fields fulfill standard Fresnel equations.

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

I 0 , e ± | χ ( 3 ) I ω ( E 0 , e ± E b i a s ) | 2 ,
E 0 , e ( I 0 , e + I 0 , e ) .
S f / 6 = k [ ( I e + I e ) 0.5 ( I 0 + I 0 ) 0.5 ( I 0 + I 0 ) ] ( E e E 0 ) .
S f / 2 = k [ 2 ( I 0 + I 0 ) + ( I e + I e ) ] ( 2 E 0 + E e ) .
Δ r r 0 E e E 0 E 0 ,
Δ r r 0 2 F 0 n 0 2 1 0 L Δ σ ( z ) exp [ 2 i ω n 0 z c ] d z ,
Δ t t 0 Δ Σ 0 L Δ σ ( z ) d z .
Δ σ ( z ) = Δ σ s exp [ α z ] .
Δ r r 0 = 2 Z 0 n 0 2 1 Δ σ s α 1 1 2 i ω n 0 α c ,
Δ r r 0 2 Z 0 n 0 2 1 Δ Σ ,
Δ r r 0 = 2 Z 0 n 0 2 1 Δ σ s α exp [ 2 i ω n 0 α c ] 1 2 i ω n 0 α c .
δ ( Δ σ ) = ( Δ σ ) ( Δ r / r 0 ) ( Δ r / r 0 ) ν δ ν ( Δ r / r 0 ) .
d 2 Δ E ( z ) d z 2 + k 2 Δ E = i k 0 Z 0 Δ j ( z )
Δ E ( z ) = δ exp ( i k z ) + γ exp ( i k z ) + G ( z )
G ( z ) = Z 0 2 n 0 [ exp ( i k z ) 0 z Δ j exp ( i k z ) d z exp ( i k z ) 0 z Δ j exp ( i k z ) d z ] .
Δ H ( z ) = i c ω Z 0 d Δ E d z
Δ E ( 0 ) = Δ E r , Δ H ( 0 ) = Δ H r , Δ E ( L ) = Δ E t , Δ H ( L ) = Δ H t .
Δ E r = Z 0 t 1 2 a 2 2 n 1 [ 0 L exp ( 2 i k z ) Δ σ ( z ) d z + + 2 r 2 exp ( 2 i k L ) 0 L Δ σ ( z ) d z + + ( r 2 exp ( 2 i k L ) ) 2 0 L exp ( 2 i k z ) Δ σ ( z ) d z ] ,
a = [ 1 r 1 r 2 exp ( 2 i k L ) ] 1 ,
Δ r r 0 Δ E r E r = 2 Z 0 n 1 n 0 2 n 1 2 0 L exp ( 2 i k z ) Δ σ ( z ) d z .

Metrics