Abstract

We present a model to compute the figures of merit of self-beating Microwave Photonic systems, a novel class of systems that work on a self-homodyne fashion by sharing the same laser source for information bearing and local oscillator tasks. General and simplified expressions are given and, as an example, we have considered their application to the design of a tunable RF MWP BS/UE front end for band selection, based on a Chebyshev Type-II optical filter. The applicability and usefulness of the model are also discussed.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Analytical model and figures of merit for filtered Microwave photonic links

Ivana Gasulla and José Capmany
Opt. Express 19(20) 19758-19774 (2011)

Third-order linearization for self-beating filtered microwave photonic systems using a dual parallel Mach-Zehnder modulator

Daniel Pérez, Ivana Gasulla, José Capmany, Javier S. Fandiño, Pascual Muñoz, and Hossein Alavi
Opt. Express 24(18) 20632-20640 (2016)

Software-defined reconfigurable microwave photonics processor

Daniel Pérez, Ivana Gasulla, and José Capmany
Opt. Express 23(11) 14640-14654 (2015)

References

  • View by:
  • |
  • |
  • |

  1. J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
    [Crossref]
  2. J. Yao, “Microwave photonics,” J. Lightwave Technol. 27(3), 314–335 (2009).
    [Crossref]
  3. J. E. Mitchell, “Integrated wireless backhaul over optical access networks,” J. Lightwave Technol. 32(20), 3373–3382 (2014).
    [Crossref]
  4. D. Pastor, B. Ortega, J. Capmany, P. Y. Fonjallaz, and M. Popov, “Tunable microwave photonic filter for noise and interference suppression in UMTS base stations,” Electron. Lett. 40(16), 997–999 (2004).
    [Crossref]
  5. A. J. Seeds and K. J. Williams, “Technology focus on microwave photonics,” Nat. Photonics 5, 723–736 (2011).
  6. A. L. Ricchiuti, J. Hervas, D. Barrera, S. Sales, and J. Capmany, “Microwave photonics filtering technique for interrogating a very-weak fiber bragg grating cascade sensor,” IEEE Photonics J. 6(6), 1–10 (2014).
    [Crossref]
  7. D. A. I. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photonics Rev. 7(4), 506–538 (2013).
    [Crossref]
  8. J. Capmany, J. Mora, I. Gasulla, J. Sancho, J. Lloret, and S. Sales, “Microwave photonic signal processing,” J. Lightwave Technol. 31(4), 571–586 (2013).
    [Crossref]
  9. C. G. H. Roeloffzen, L. Zhuang, C. Taddei, A. Leinse, R. G. Heideman, P. W. L. van Dijk, R. M. Oldenbeuving, D. A. I. Marpaung, M. Burla, and K. J. Boller, “Silicon nitride microwave photonic circuits,” Opt. Express 21(19), 22937–22961 (2013).
    [Crossref] [PubMed]
  10. I. Gasulla and J. Capmany, “Analytical model and figures of merit for filtered Microwave Photonic Links,” Opt. Express 19(20), 19758–19774 (2011).
    [Crossref] [PubMed]
  11. H. Xie, O. Oliaei, P. Rakers, R. Fernandez, J. Xiang, J. Parkes, J. Riches, R. Verellen, M. Rahman, V. Bhan, and D. B. Schwartz, “Single-Chip Multiband EGPRS and SAW-Less LTE WCDMA CMOS receiver with diversity,” IEEE Trans. Microw. Theory Tech. 60(5), 1390–1396 (2012).
    [Crossref]
  12. C. K. Madsen and J. H. Zhao, Optical Filter Design and Analysis (John Wiley and Sons, Inc., 1999).
  13. M. S. Rasras, Y.-K. Chen, K.-Y. Tu, M. P. Earnshaw, F. Pardo, M. A. Cappuzzo, E. Y. Chen, L. T. Gomez, F. Klemens, B. Keller, C. Bolle, L. Buhl, J. M. Wyrwas, M. C. Wu, R. Peach, S. Meredith, C. Middleton, and R. DeSalvo, “Reconfigurable linear optical FM discriminator,” IEEE Photonics Technol. Lett. 24(20), 1856–1859 (2012).
    [Crossref]
  14. P. Alipour, A. A. Eftekhar, A. H. Atabaki, Q. Li, S. Yegnanarayanan, C. K. Madsen, and A. Adibi, “Fully reconfigurable compact RF photonic filters using high-Q silicon microdisk resonators,” Opt. Express 19(17), 15899–15907 (2011).
    [Crossref] [PubMed]
  15. S. Ibrahim, N. K. Fontaine, S. S. Djordjevic, B. Guan, T. Su, S. Cheung, R. P. Scott, A. T. Pomerene, L. L. Seaford, C. M. Hill, S. Danziger, Z. Ding, K. Okamoto, and S. J. B. Yoo, “Demonstration of a fast-reconfigurable silicon CMOS optical lattice filter,” Opt. Express 19(14), 13245–13256 (2011).
    [Crossref] [PubMed]
  16. J. S. Fandiño, J. D. Doménech, P. Muñoz, and J. Capmany, “Integrated InP frequency discriminator for Phase-modulated microwave photonic links,” Opt. Express 21(3), 3726–3736 (2013).
    [Crossref] [PubMed]
  17. D. Pérez, I. Gasulla, and J. Capmany, “Software-defined reconfigurable microwave photonics processor,” Opt. Express 23(11), 14640–14654 (2015).
    [Crossref] [PubMed]
  18. J. Capmany, I. Gasulla, and D. Pérez, “Microwave photonics: the programmable processor,” Nat. Photonics 10(1), 6–8 (2015).
    [Crossref]
  19. W. Liu, M. Li, R. S. Guzzon, E. J. Norberg, J. S. Parker, M. Lu, L. A. Coldren, and J. Yao, “A fully reconfigurable photonic integrated signal processor,” Nat. Photonics 10(3), 190–195 (2016).
    [Crossref]
  20. C. K. Madsen, “Efficient architectures for exactly realizing optical filters with optimum bandpass designs,” IEEE Photonics Technol. Lett. 10(8), 1136–1138 (1998).
    [Crossref]
  21. P. A. Besse, E. Gini, M. Bachmann, and H. Melchior, “New 2×2 and 1×3 multimode interference couplers with free selection of power splitting ratios,” J. Lightwave Technol. 14(10), 2286–2293 (1996).
    [Crossref]

2016 (1)

W. Liu, M. Li, R. S. Guzzon, E. J. Norberg, J. S. Parker, M. Lu, L. A. Coldren, and J. Yao, “A fully reconfigurable photonic integrated signal processor,” Nat. Photonics 10(3), 190–195 (2016).
[Crossref]

2015 (2)

J. Capmany, I. Gasulla, and D. Pérez, “Microwave photonics: the programmable processor,” Nat. Photonics 10(1), 6–8 (2015).
[Crossref]

D. Pérez, I. Gasulla, and J. Capmany, “Software-defined reconfigurable microwave photonics processor,” Opt. Express 23(11), 14640–14654 (2015).
[Crossref] [PubMed]

2014 (2)

J. E. Mitchell, “Integrated wireless backhaul over optical access networks,” J. Lightwave Technol. 32(20), 3373–3382 (2014).
[Crossref]

A. L. Ricchiuti, J. Hervas, D. Barrera, S. Sales, and J. Capmany, “Microwave photonics filtering technique for interrogating a very-weak fiber bragg grating cascade sensor,” IEEE Photonics J. 6(6), 1–10 (2014).
[Crossref]

2013 (4)

2012 (2)

H. Xie, O. Oliaei, P. Rakers, R. Fernandez, J. Xiang, J. Parkes, J. Riches, R. Verellen, M. Rahman, V. Bhan, and D. B. Schwartz, “Single-Chip Multiband EGPRS and SAW-Less LTE WCDMA CMOS receiver with diversity,” IEEE Trans. Microw. Theory Tech. 60(5), 1390–1396 (2012).
[Crossref]

M. S. Rasras, Y.-K. Chen, K.-Y. Tu, M. P. Earnshaw, F. Pardo, M. A. Cappuzzo, E. Y. Chen, L. T. Gomez, F. Klemens, B. Keller, C. Bolle, L. Buhl, J. M. Wyrwas, M. C. Wu, R. Peach, S. Meredith, C. Middleton, and R. DeSalvo, “Reconfigurable linear optical FM discriminator,” IEEE Photonics Technol. Lett. 24(20), 1856–1859 (2012).
[Crossref]

2011 (4)

2009 (1)

2007 (1)

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

2004 (1)

D. Pastor, B. Ortega, J. Capmany, P. Y. Fonjallaz, and M. Popov, “Tunable microwave photonic filter for noise and interference suppression in UMTS base stations,” Electron. Lett. 40(16), 997–999 (2004).
[Crossref]

1998 (1)

C. K. Madsen, “Efficient architectures for exactly realizing optical filters with optimum bandpass designs,” IEEE Photonics Technol. Lett. 10(8), 1136–1138 (1998).
[Crossref]

1996 (1)

P. A. Besse, E. Gini, M. Bachmann, and H. Melchior, “New 2×2 and 1×3 multimode interference couplers with free selection of power splitting ratios,” J. Lightwave Technol. 14(10), 2286–2293 (1996).
[Crossref]

Adibi, A.

Alipour, P.

Atabaki, A. H.

Bachmann, M.

P. A. Besse, E. Gini, M. Bachmann, and H. Melchior, “New 2×2 and 1×3 multimode interference couplers with free selection of power splitting ratios,” J. Lightwave Technol. 14(10), 2286–2293 (1996).
[Crossref]

Barrera, D.

A. L. Ricchiuti, J. Hervas, D. Barrera, S. Sales, and J. Capmany, “Microwave photonics filtering technique for interrogating a very-weak fiber bragg grating cascade sensor,” IEEE Photonics J. 6(6), 1–10 (2014).
[Crossref]

Besse, P. A.

P. A. Besse, E. Gini, M. Bachmann, and H. Melchior, “New 2×2 and 1×3 multimode interference couplers with free selection of power splitting ratios,” J. Lightwave Technol. 14(10), 2286–2293 (1996).
[Crossref]

Bhan, V.

H. Xie, O. Oliaei, P. Rakers, R. Fernandez, J. Xiang, J. Parkes, J. Riches, R. Verellen, M. Rahman, V. Bhan, and D. B. Schwartz, “Single-Chip Multiband EGPRS and SAW-Less LTE WCDMA CMOS receiver with diversity,” IEEE Trans. Microw. Theory Tech. 60(5), 1390–1396 (2012).
[Crossref]

Bolle, C.

M. S. Rasras, Y.-K. Chen, K.-Y. Tu, M. P. Earnshaw, F. Pardo, M. A. Cappuzzo, E. Y. Chen, L. T. Gomez, F. Klemens, B. Keller, C. Bolle, L. Buhl, J. M. Wyrwas, M. C. Wu, R. Peach, S. Meredith, C. Middleton, and R. DeSalvo, “Reconfigurable linear optical FM discriminator,” IEEE Photonics Technol. Lett. 24(20), 1856–1859 (2012).
[Crossref]

Boller, K. J.

Buhl, L.

M. S. Rasras, Y.-K. Chen, K.-Y. Tu, M. P. Earnshaw, F. Pardo, M. A. Cappuzzo, E. Y. Chen, L. T. Gomez, F. Klemens, B. Keller, C. Bolle, L. Buhl, J. M. Wyrwas, M. C. Wu, R. Peach, S. Meredith, C. Middleton, and R. DeSalvo, “Reconfigurable linear optical FM discriminator,” IEEE Photonics Technol. Lett. 24(20), 1856–1859 (2012).
[Crossref]

Burla, M.

Capmany, J.

D. Pérez, I. Gasulla, and J. Capmany, “Software-defined reconfigurable microwave photonics processor,” Opt. Express 23(11), 14640–14654 (2015).
[Crossref] [PubMed]

J. Capmany, I. Gasulla, and D. Pérez, “Microwave photonics: the programmable processor,” Nat. Photonics 10(1), 6–8 (2015).
[Crossref]

A. L. Ricchiuti, J. Hervas, D. Barrera, S. Sales, and J. Capmany, “Microwave photonics filtering technique for interrogating a very-weak fiber bragg grating cascade sensor,” IEEE Photonics J. 6(6), 1–10 (2014).
[Crossref]

D. A. I. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photonics Rev. 7(4), 506–538 (2013).
[Crossref]

J. Capmany, J. Mora, I. Gasulla, J. Sancho, J. Lloret, and S. Sales, “Microwave photonic signal processing,” J. Lightwave Technol. 31(4), 571–586 (2013).
[Crossref]

J. S. Fandiño, J. D. Doménech, P. Muñoz, and J. Capmany, “Integrated InP frequency discriminator for Phase-modulated microwave photonic links,” Opt. Express 21(3), 3726–3736 (2013).
[Crossref] [PubMed]

I. Gasulla and J. Capmany, “Analytical model and figures of merit for filtered Microwave Photonic Links,” Opt. Express 19(20), 19758–19774 (2011).
[Crossref] [PubMed]

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

D. Pastor, B. Ortega, J. Capmany, P. Y. Fonjallaz, and M. Popov, “Tunable microwave photonic filter for noise and interference suppression in UMTS base stations,” Electron. Lett. 40(16), 997–999 (2004).
[Crossref]

Cappuzzo, M. A.

M. S. Rasras, Y.-K. Chen, K.-Y. Tu, M. P. Earnshaw, F. Pardo, M. A. Cappuzzo, E. Y. Chen, L. T. Gomez, F. Klemens, B. Keller, C. Bolle, L. Buhl, J. M. Wyrwas, M. C. Wu, R. Peach, S. Meredith, C. Middleton, and R. DeSalvo, “Reconfigurable linear optical FM discriminator,” IEEE Photonics Technol. Lett. 24(20), 1856–1859 (2012).
[Crossref]

Chen, E. Y.

M. S. Rasras, Y.-K. Chen, K.-Y. Tu, M. P. Earnshaw, F. Pardo, M. A. Cappuzzo, E. Y. Chen, L. T. Gomez, F. Klemens, B. Keller, C. Bolle, L. Buhl, J. M. Wyrwas, M. C. Wu, R. Peach, S. Meredith, C. Middleton, and R. DeSalvo, “Reconfigurable linear optical FM discriminator,” IEEE Photonics Technol. Lett. 24(20), 1856–1859 (2012).
[Crossref]

Chen, Y.-K.

M. S. Rasras, Y.-K. Chen, K.-Y. Tu, M. P. Earnshaw, F. Pardo, M. A. Cappuzzo, E. Y. Chen, L. T. Gomez, F. Klemens, B. Keller, C. Bolle, L. Buhl, J. M. Wyrwas, M. C. Wu, R. Peach, S. Meredith, C. Middleton, and R. DeSalvo, “Reconfigurable linear optical FM discriminator,” IEEE Photonics Technol. Lett. 24(20), 1856–1859 (2012).
[Crossref]

Cheung, S.

Coldren, L. A.

W. Liu, M. Li, R. S. Guzzon, E. J. Norberg, J. S. Parker, M. Lu, L. A. Coldren, and J. Yao, “A fully reconfigurable photonic integrated signal processor,” Nat. Photonics 10(3), 190–195 (2016).
[Crossref]

Danziger, S.

DeSalvo, R.

M. S. Rasras, Y.-K. Chen, K.-Y. Tu, M. P. Earnshaw, F. Pardo, M. A. Cappuzzo, E. Y. Chen, L. T. Gomez, F. Klemens, B. Keller, C. Bolle, L. Buhl, J. M. Wyrwas, M. C. Wu, R. Peach, S. Meredith, C. Middleton, and R. DeSalvo, “Reconfigurable linear optical FM discriminator,” IEEE Photonics Technol. Lett. 24(20), 1856–1859 (2012).
[Crossref]

Ding, Z.

Djordjevic, S. S.

Doménech, J. D.

Earnshaw, M. P.

M. S. Rasras, Y.-K. Chen, K.-Y. Tu, M. P. Earnshaw, F. Pardo, M. A. Cappuzzo, E. Y. Chen, L. T. Gomez, F. Klemens, B. Keller, C. Bolle, L. Buhl, J. M. Wyrwas, M. C. Wu, R. Peach, S. Meredith, C. Middleton, and R. DeSalvo, “Reconfigurable linear optical FM discriminator,” IEEE Photonics Technol. Lett. 24(20), 1856–1859 (2012).
[Crossref]

Eftekhar, A. A.

Fandiño, J. S.

Fernandez, R.

H. Xie, O. Oliaei, P. Rakers, R. Fernandez, J. Xiang, J. Parkes, J. Riches, R. Verellen, M. Rahman, V. Bhan, and D. B. Schwartz, “Single-Chip Multiband EGPRS and SAW-Less LTE WCDMA CMOS receiver with diversity,” IEEE Trans. Microw. Theory Tech. 60(5), 1390–1396 (2012).
[Crossref]

Fonjallaz, P. Y.

D. Pastor, B. Ortega, J. Capmany, P. Y. Fonjallaz, and M. Popov, “Tunable microwave photonic filter for noise and interference suppression in UMTS base stations,” Electron. Lett. 40(16), 997–999 (2004).
[Crossref]

Fontaine, N. K.

Gasulla, I.

Gini, E.

P. A. Besse, E. Gini, M. Bachmann, and H. Melchior, “New 2×2 and 1×3 multimode interference couplers with free selection of power splitting ratios,” J. Lightwave Technol. 14(10), 2286–2293 (1996).
[Crossref]

Gomez, L. T.

M. S. Rasras, Y.-K. Chen, K.-Y. Tu, M. P. Earnshaw, F. Pardo, M. A. Cappuzzo, E. Y. Chen, L. T. Gomez, F. Klemens, B. Keller, C. Bolle, L. Buhl, J. M. Wyrwas, M. C. Wu, R. Peach, S. Meredith, C. Middleton, and R. DeSalvo, “Reconfigurable linear optical FM discriminator,” IEEE Photonics Technol. Lett. 24(20), 1856–1859 (2012).
[Crossref]

Guan, B.

Guzzon, R. S.

W. Liu, M. Li, R. S. Guzzon, E. J. Norberg, J. S. Parker, M. Lu, L. A. Coldren, and J. Yao, “A fully reconfigurable photonic integrated signal processor,” Nat. Photonics 10(3), 190–195 (2016).
[Crossref]

Heideman, R.

D. A. I. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photonics Rev. 7(4), 506–538 (2013).
[Crossref]

Heideman, R. G.

Hervas, J.

A. L. Ricchiuti, J. Hervas, D. Barrera, S. Sales, and J. Capmany, “Microwave photonics filtering technique for interrogating a very-weak fiber bragg grating cascade sensor,” IEEE Photonics J. 6(6), 1–10 (2014).
[Crossref]

Hill, C. M.

Ibrahim, S.

Keller, B.

M. S. Rasras, Y.-K. Chen, K.-Y. Tu, M. P. Earnshaw, F. Pardo, M. A. Cappuzzo, E. Y. Chen, L. T. Gomez, F. Klemens, B. Keller, C. Bolle, L. Buhl, J. M. Wyrwas, M. C. Wu, R. Peach, S. Meredith, C. Middleton, and R. DeSalvo, “Reconfigurable linear optical FM discriminator,” IEEE Photonics Technol. Lett. 24(20), 1856–1859 (2012).
[Crossref]

Klemens, F.

M. S. Rasras, Y.-K. Chen, K.-Y. Tu, M. P. Earnshaw, F. Pardo, M. A. Cappuzzo, E. Y. Chen, L. T. Gomez, F. Klemens, B. Keller, C. Bolle, L. Buhl, J. M. Wyrwas, M. C. Wu, R. Peach, S. Meredith, C. Middleton, and R. DeSalvo, “Reconfigurable linear optical FM discriminator,” IEEE Photonics Technol. Lett. 24(20), 1856–1859 (2012).
[Crossref]

Leinse, A.

Li, M.

W. Liu, M. Li, R. S. Guzzon, E. J. Norberg, J. S. Parker, M. Lu, L. A. Coldren, and J. Yao, “A fully reconfigurable photonic integrated signal processor,” Nat. Photonics 10(3), 190–195 (2016).
[Crossref]

Li, Q.

Liu, W.

W. Liu, M. Li, R. S. Guzzon, E. J. Norberg, J. S. Parker, M. Lu, L. A. Coldren, and J. Yao, “A fully reconfigurable photonic integrated signal processor,” Nat. Photonics 10(3), 190–195 (2016).
[Crossref]

Lloret, J.

Lu, M.

W. Liu, M. Li, R. S. Guzzon, E. J. Norberg, J. S. Parker, M. Lu, L. A. Coldren, and J. Yao, “A fully reconfigurable photonic integrated signal processor,” Nat. Photonics 10(3), 190–195 (2016).
[Crossref]

Madsen, C. K.

Marpaung, D. A. I.

Melchior, H.

P. A. Besse, E. Gini, M. Bachmann, and H. Melchior, “New 2×2 and 1×3 multimode interference couplers with free selection of power splitting ratios,” J. Lightwave Technol. 14(10), 2286–2293 (1996).
[Crossref]

Meredith, S.

M. S. Rasras, Y.-K. Chen, K.-Y. Tu, M. P. Earnshaw, F. Pardo, M. A. Cappuzzo, E. Y. Chen, L. T. Gomez, F. Klemens, B. Keller, C. Bolle, L. Buhl, J. M. Wyrwas, M. C. Wu, R. Peach, S. Meredith, C. Middleton, and R. DeSalvo, “Reconfigurable linear optical FM discriminator,” IEEE Photonics Technol. Lett. 24(20), 1856–1859 (2012).
[Crossref]

Middleton, C.

M. S. Rasras, Y.-K. Chen, K.-Y. Tu, M. P. Earnshaw, F. Pardo, M. A. Cappuzzo, E. Y. Chen, L. T. Gomez, F. Klemens, B. Keller, C. Bolle, L. Buhl, J. M. Wyrwas, M. C. Wu, R. Peach, S. Meredith, C. Middleton, and R. DeSalvo, “Reconfigurable linear optical FM discriminator,” IEEE Photonics Technol. Lett. 24(20), 1856–1859 (2012).
[Crossref]

Mitchell, J. E.

Mora, J.

Muñoz, P.

Norberg, E. J.

W. Liu, M. Li, R. S. Guzzon, E. J. Norberg, J. S. Parker, M. Lu, L. A. Coldren, and J. Yao, “A fully reconfigurable photonic integrated signal processor,” Nat. Photonics 10(3), 190–195 (2016).
[Crossref]

Novak, D.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Okamoto, K.

Oldenbeuving, R. M.

Oliaei, O.

H. Xie, O. Oliaei, P. Rakers, R. Fernandez, J. Xiang, J. Parkes, J. Riches, R. Verellen, M. Rahman, V. Bhan, and D. B. Schwartz, “Single-Chip Multiband EGPRS and SAW-Less LTE WCDMA CMOS receiver with diversity,” IEEE Trans. Microw. Theory Tech. 60(5), 1390–1396 (2012).
[Crossref]

Ortega, B.

D. Pastor, B. Ortega, J. Capmany, P. Y. Fonjallaz, and M. Popov, “Tunable microwave photonic filter for noise and interference suppression in UMTS base stations,” Electron. Lett. 40(16), 997–999 (2004).
[Crossref]

Pardo, F.

M. S. Rasras, Y.-K. Chen, K.-Y. Tu, M. P. Earnshaw, F. Pardo, M. A. Cappuzzo, E. Y. Chen, L. T. Gomez, F. Klemens, B. Keller, C. Bolle, L. Buhl, J. M. Wyrwas, M. C. Wu, R. Peach, S. Meredith, C. Middleton, and R. DeSalvo, “Reconfigurable linear optical FM discriminator,” IEEE Photonics Technol. Lett. 24(20), 1856–1859 (2012).
[Crossref]

Parker, J. S.

W. Liu, M. Li, R. S. Guzzon, E. J. Norberg, J. S. Parker, M. Lu, L. A. Coldren, and J. Yao, “A fully reconfigurable photonic integrated signal processor,” Nat. Photonics 10(3), 190–195 (2016).
[Crossref]

Parkes, J.

H. Xie, O. Oliaei, P. Rakers, R. Fernandez, J. Xiang, J. Parkes, J. Riches, R. Verellen, M. Rahman, V. Bhan, and D. B. Schwartz, “Single-Chip Multiband EGPRS and SAW-Less LTE WCDMA CMOS receiver with diversity,” IEEE Trans. Microw. Theory Tech. 60(5), 1390–1396 (2012).
[Crossref]

Pastor, D.

D. Pastor, B. Ortega, J. Capmany, P. Y. Fonjallaz, and M. Popov, “Tunable microwave photonic filter for noise and interference suppression in UMTS base stations,” Electron. Lett. 40(16), 997–999 (2004).
[Crossref]

Peach, R.

M. S. Rasras, Y.-K. Chen, K.-Y. Tu, M. P. Earnshaw, F. Pardo, M. A. Cappuzzo, E. Y. Chen, L. T. Gomez, F. Klemens, B. Keller, C. Bolle, L. Buhl, J. M. Wyrwas, M. C. Wu, R. Peach, S. Meredith, C. Middleton, and R. DeSalvo, “Reconfigurable linear optical FM discriminator,” IEEE Photonics Technol. Lett. 24(20), 1856–1859 (2012).
[Crossref]

Pérez, D.

J. Capmany, I. Gasulla, and D. Pérez, “Microwave photonics: the programmable processor,” Nat. Photonics 10(1), 6–8 (2015).
[Crossref]

D. Pérez, I. Gasulla, and J. Capmany, “Software-defined reconfigurable microwave photonics processor,” Opt. Express 23(11), 14640–14654 (2015).
[Crossref] [PubMed]

Pomerene, A. T.

Popov, M.

D. Pastor, B. Ortega, J. Capmany, P. Y. Fonjallaz, and M. Popov, “Tunable microwave photonic filter for noise and interference suppression in UMTS base stations,” Electron. Lett. 40(16), 997–999 (2004).
[Crossref]

Rahman, M.

H. Xie, O. Oliaei, P. Rakers, R. Fernandez, J. Xiang, J. Parkes, J. Riches, R. Verellen, M. Rahman, V. Bhan, and D. B. Schwartz, “Single-Chip Multiband EGPRS and SAW-Less LTE WCDMA CMOS receiver with diversity,” IEEE Trans. Microw. Theory Tech. 60(5), 1390–1396 (2012).
[Crossref]

Rakers, P.

H. Xie, O. Oliaei, P. Rakers, R. Fernandez, J. Xiang, J. Parkes, J. Riches, R. Verellen, M. Rahman, V. Bhan, and D. B. Schwartz, “Single-Chip Multiband EGPRS and SAW-Less LTE WCDMA CMOS receiver with diversity,” IEEE Trans. Microw. Theory Tech. 60(5), 1390–1396 (2012).
[Crossref]

Rasras, M. S.

M. S. Rasras, Y.-K. Chen, K.-Y. Tu, M. P. Earnshaw, F. Pardo, M. A. Cappuzzo, E. Y. Chen, L. T. Gomez, F. Klemens, B. Keller, C. Bolle, L. Buhl, J. M. Wyrwas, M. C. Wu, R. Peach, S. Meredith, C. Middleton, and R. DeSalvo, “Reconfigurable linear optical FM discriminator,” IEEE Photonics Technol. Lett. 24(20), 1856–1859 (2012).
[Crossref]

Ricchiuti, A. L.

A. L. Ricchiuti, J. Hervas, D. Barrera, S. Sales, and J. Capmany, “Microwave photonics filtering technique for interrogating a very-weak fiber bragg grating cascade sensor,” IEEE Photonics J. 6(6), 1–10 (2014).
[Crossref]

Riches, J.

H. Xie, O. Oliaei, P. Rakers, R. Fernandez, J. Xiang, J. Parkes, J. Riches, R. Verellen, M. Rahman, V. Bhan, and D. B. Schwartz, “Single-Chip Multiband EGPRS and SAW-Less LTE WCDMA CMOS receiver with diversity,” IEEE Trans. Microw. Theory Tech. 60(5), 1390–1396 (2012).
[Crossref]

Roeloffzen, C.

D. A. I. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photonics Rev. 7(4), 506–538 (2013).
[Crossref]

Roeloffzen, C. G. H.

Sales, S.

A. L. Ricchiuti, J. Hervas, D. Barrera, S. Sales, and J. Capmany, “Microwave photonics filtering technique for interrogating a very-weak fiber bragg grating cascade sensor,” IEEE Photonics J. 6(6), 1–10 (2014).
[Crossref]

D. A. I. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photonics Rev. 7(4), 506–538 (2013).
[Crossref]

J. Capmany, J. Mora, I. Gasulla, J. Sancho, J. Lloret, and S. Sales, “Microwave photonic signal processing,” J. Lightwave Technol. 31(4), 571–586 (2013).
[Crossref]

Sancho, J.

Schwartz, D. B.

H. Xie, O. Oliaei, P. Rakers, R. Fernandez, J. Xiang, J. Parkes, J. Riches, R. Verellen, M. Rahman, V. Bhan, and D. B. Schwartz, “Single-Chip Multiband EGPRS and SAW-Less LTE WCDMA CMOS receiver with diversity,” IEEE Trans. Microw. Theory Tech. 60(5), 1390–1396 (2012).
[Crossref]

Scott, R. P.

Seaford, L. L.

Seeds, A. J.

A. J. Seeds and K. J. Williams, “Technology focus on microwave photonics,” Nat. Photonics 5, 723–736 (2011).

Su, T.

Taddei, C.

Tu, K.-Y.

M. S. Rasras, Y.-K. Chen, K.-Y. Tu, M. P. Earnshaw, F. Pardo, M. A. Cappuzzo, E. Y. Chen, L. T. Gomez, F. Klemens, B. Keller, C. Bolle, L. Buhl, J. M. Wyrwas, M. C. Wu, R. Peach, S. Meredith, C. Middleton, and R. DeSalvo, “Reconfigurable linear optical FM discriminator,” IEEE Photonics Technol. Lett. 24(20), 1856–1859 (2012).
[Crossref]

van Dijk, P. W. L.

Verellen, R.

H. Xie, O. Oliaei, P. Rakers, R. Fernandez, J. Xiang, J. Parkes, J. Riches, R. Verellen, M. Rahman, V. Bhan, and D. B. Schwartz, “Single-Chip Multiband EGPRS and SAW-Less LTE WCDMA CMOS receiver with diversity,” IEEE Trans. Microw. Theory Tech. 60(5), 1390–1396 (2012).
[Crossref]

Williams, K. J.

A. J. Seeds and K. J. Williams, “Technology focus on microwave photonics,” Nat. Photonics 5, 723–736 (2011).

Wu, M. C.

M. S. Rasras, Y.-K. Chen, K.-Y. Tu, M. P. Earnshaw, F. Pardo, M. A. Cappuzzo, E. Y. Chen, L. T. Gomez, F. Klemens, B. Keller, C. Bolle, L. Buhl, J. M. Wyrwas, M. C. Wu, R. Peach, S. Meredith, C. Middleton, and R. DeSalvo, “Reconfigurable linear optical FM discriminator,” IEEE Photonics Technol. Lett. 24(20), 1856–1859 (2012).
[Crossref]

Wyrwas, J. M.

M. S. Rasras, Y.-K. Chen, K.-Y. Tu, M. P. Earnshaw, F. Pardo, M. A. Cappuzzo, E. Y. Chen, L. T. Gomez, F. Klemens, B. Keller, C. Bolle, L. Buhl, J. M. Wyrwas, M. C. Wu, R. Peach, S. Meredith, C. Middleton, and R. DeSalvo, “Reconfigurable linear optical FM discriminator,” IEEE Photonics Technol. Lett. 24(20), 1856–1859 (2012).
[Crossref]

Xiang, J.

H. Xie, O. Oliaei, P. Rakers, R. Fernandez, J. Xiang, J. Parkes, J. Riches, R. Verellen, M. Rahman, V. Bhan, and D. B. Schwartz, “Single-Chip Multiband EGPRS and SAW-Less LTE WCDMA CMOS receiver with diversity,” IEEE Trans. Microw. Theory Tech. 60(5), 1390–1396 (2012).
[Crossref]

Xie, H.

H. Xie, O. Oliaei, P. Rakers, R. Fernandez, J. Xiang, J. Parkes, J. Riches, R. Verellen, M. Rahman, V. Bhan, and D. B. Schwartz, “Single-Chip Multiband EGPRS and SAW-Less LTE WCDMA CMOS receiver with diversity,” IEEE Trans. Microw. Theory Tech. 60(5), 1390–1396 (2012).
[Crossref]

Yao, J.

W. Liu, M. Li, R. S. Guzzon, E. J. Norberg, J. S. Parker, M. Lu, L. A. Coldren, and J. Yao, “A fully reconfigurable photonic integrated signal processor,” Nat. Photonics 10(3), 190–195 (2016).
[Crossref]

J. Yao, “Microwave photonics,” J. Lightwave Technol. 27(3), 314–335 (2009).
[Crossref]

Yegnanarayanan, S.

Yoo, S. J. B.

Zhuang, L.

Electron. Lett. (1)

D. Pastor, B. Ortega, J. Capmany, P. Y. Fonjallaz, and M. Popov, “Tunable microwave photonic filter for noise and interference suppression in UMTS base stations,” Electron. Lett. 40(16), 997–999 (2004).
[Crossref]

IEEE Photonics J. (1)

A. L. Ricchiuti, J. Hervas, D. Barrera, S. Sales, and J. Capmany, “Microwave photonics filtering technique for interrogating a very-weak fiber bragg grating cascade sensor,” IEEE Photonics J. 6(6), 1–10 (2014).
[Crossref]

IEEE Photonics Technol. Lett. (2)

M. S. Rasras, Y.-K. Chen, K.-Y. Tu, M. P. Earnshaw, F. Pardo, M. A. Cappuzzo, E. Y. Chen, L. T. Gomez, F. Klemens, B. Keller, C. Bolle, L. Buhl, J. M. Wyrwas, M. C. Wu, R. Peach, S. Meredith, C. Middleton, and R. DeSalvo, “Reconfigurable linear optical FM discriminator,” IEEE Photonics Technol. Lett. 24(20), 1856–1859 (2012).
[Crossref]

C. K. Madsen, “Efficient architectures for exactly realizing optical filters with optimum bandpass designs,” IEEE Photonics Technol. Lett. 10(8), 1136–1138 (1998).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

H. Xie, O. Oliaei, P. Rakers, R. Fernandez, J. Xiang, J. Parkes, J. Riches, R. Verellen, M. Rahman, V. Bhan, and D. B. Schwartz, “Single-Chip Multiband EGPRS and SAW-Less LTE WCDMA CMOS receiver with diversity,” IEEE Trans. Microw. Theory Tech. 60(5), 1390–1396 (2012).
[Crossref]

J. Lightwave Technol. (4)

Laser Photonics Rev. (1)

D. A. I. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photonics Rev. 7(4), 506–538 (2013).
[Crossref]

Nat. Photonics (4)

A. J. Seeds and K. J. Williams, “Technology focus on microwave photonics,” Nat. Photonics 5, 723–736 (2011).

J. Capmany, I. Gasulla, and D. Pérez, “Microwave photonics: the programmable processor,” Nat. Photonics 10(1), 6–8 (2015).
[Crossref]

W. Liu, M. Li, R. S. Guzzon, E. J. Norberg, J. S. Parker, M. Lu, L. A. Coldren, and J. Yao, “A fully reconfigurable photonic integrated signal processor,” Nat. Photonics 10(3), 190–195 (2016).
[Crossref]

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Opt. Express (6)

Other (1)

C. K. Madsen and J. H. Zhao, Optical Filter Design and Analysis (John Wiley and Sons, Inc., 1999).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Layout of a general self-beating filtered MWP system.
Fig. 2
Fig. 2 Diagram of a typical BS/UE radio interface. The RF front end is enclosed with a discontinuous line.
Fig. 3
Fig. 3 Schematic diagram of a microwave photonic duplexer.
Fig. 4
Fig. 4 (Upper) Schematic diagram of a ring-loaded Mach-Zehnder Interferometer considered as an example. (Lower) Chebyshef Type-II filter implemented by the ring-loaded MZI (filter details in text).
Fig. 5
Fig. 5 RF frequency response of the RF-Front end obtained by self-beating and single detection.
Fig. 6
Fig. 6 Contour plots vs the value of K1 and K2 for the RF Gain (upper left), Noise Figure (upper right), SFDR2 (lower left) and SFDR3 (lower right) for the tunable RF-front end obtained by self-beating and single detection. System parameters are given in the text with αL = 3 dB and αU = 6 dB.
Fig. 7
Fig. 7 RF Gain (upper left), Noise Figure (upper right), Second-order Spurious free dynamic range (lower left) and Third-order Spurious free dynamic range (lower right) vs the value of the couplers K1 = K2 = K, taking αU as a parameter for the tunable RF-front end obtained by self-beating and single detection. System parameters are given in the text.
Fig. 8
Fig. 8 RF frequency response of the RF-Front end obtained by self-beating and optimum balanced detection (K2 = 0.5).
Fig. 9
Fig. 9 Contour plots vs the value of K1 and K2 for the RF Gain (upper left), Noise Figure (upper right), SFDR2 (lower left) and SFDR3 (lower right) for the tunable RF-front end obtained by self-beating and balanced detection. System parameters are given in the text with αL = 3 dB and αU = 6 dB.
Fig. 10
Fig. 10 RF Gain (upper left), Noise Figure (upper right), SFDR2 (lower left) and SFDR3 (lower right) vs the value of the input coupler K1 and taking αU as a parameter for the tunable RF-front end obtained by self-beating and balanced detection (K2 = 0.5).

Equations (26)

Equations on this page are rendered with MathJax. Learn more.

G RF ( Ω 1 )= P RF out ( Ω 1 ) P RF in ( Ω 1 ) = [ I dc πsin( ϕ DC ) 2 V π D X ] 2 | jD A Ω 1 I +C A Ω 1 I,B | 2 Z in Z out ,
NF= RI N Total I dc,Total Z out G RF ( Ω 1 ) k B T ,
RI N Total =RI N thermal,input +RI N thermal,output +RI N shot +RI N laser = = k B T [ πsin( ϕ DC ) 2 V π ] 2 | jD A Ω 1 I +C A Ω 1 I,B | 2 Z in + 2 k B T ( D I dc X ) 2 Z out [ (1) p D | H( ω o ) | 2 ( 1cos ϕ DC )+Y+4Csin( ϕ DC 2 )cosφIm{ H( ω o ) } ] 2 + + 2e ( D I dc X )[ (1) p D | H( ω o ) | 2 ( 1cos ϕ DC )+Y+4Csin( ϕ DC 2 )cosφIm{ H( ω o ) } ] + +RI N laser
OI P 2 =2 ( I dc sin 2 ( ϕ DC ) D X ) 2 Z out | jD A Ω 1 I +C A Ω 1 I,B | 4 | jD A Ω 1 Ω 2 I +C A Ω 1 Ω 2 I,B | 2 ,
OI P 3 =2 ( I dc sin( ϕ DC ) D X ) 2 Z out | jD A Ω 1 I +C A Ω 1 I,B | 3 | jD A 2 Ω 1 Ω 2 I C A 2 Ω 1 Ω 2 I,B | ,
SFD R 2 = [ OI P 2 N Total output ] 1 2 , SFD R 3 = [ OI P 3 N Total output ] 2 3 ,
G RF ( Ω 1 )= [ I dc πsin( ϕ DC ) 2 V π CD X | A Ω 1 I,B | ] 2 Z in Z out ,
N Total output = 2 p k B T+2e I dc Z out DY X + [ I dc πsin( ϕ DC ) 2 V π CD X | A Ω 1 I,B | ] 2 Z in Z out k B T,
OI P 2 =2 ( I dc sin 2 ( ϕ DC ) CD X ) 2 Z out | A Ω 1 I,B | 4 | A Ω 1 Ω 2 I,B | 2 ,
OI P 3 =2 ( I dc sin( ϕ DC ) CD X ) 2 Z out | A Ω 1 I,B | 3 | A 2 Ω 1 Ω 2 I,B | .
i RF,out ( t )=( 2 K 2 1 ) | E out ( t ) | 2 ( 2 K 2 1 ) α L K 1 P o +2 K 1 K 2 ( 1 K 2 ) α L P o e j ω o t E out ( t ). e d + +2 K 1 K 2 ( 1 K 2 ) α L P o e j ω o t E out * ( t ). e d = i dd ( t )+ i b ( t ),
E out | MZM ( t )=j α MZM E in ( t )sin[ ϕ dc +( ϕ rf /2 )sinΩt ], E out | MZM ( ω )=2π α MZM n= B n J n ( ϕ rf /2 ) E in ( ωnΩ ), B n = ( 1 ) n j | n |+1 sin( ϕ dc /2 +| n |π/2 ),
i b ( t )={ e u . e d =cosφ }= =2 P o K 1 K 2 ( 1 K 2 )( 1 K 1 ) α L α U n= k= J | n | ( ϕ RF 2 ) J | k | ( ϕ RF 2 )[ B n,k H( ω o +n Ω 1 +k Ω 2 )+ ( 1 ) | n |+| k | B n,k * H * ( ω o n Ω 1 k Ω 2 ) ] e j( n Ω 1 +k Ω 2 )t cosφ.
I ( Ω 1 )= I dd ( Ω 1 )+ I b ( Ω 1 )= = I dc α U ( 1 K 1 ) ( ϕ RF 4 )sin( ϕ DC )[ 2 K 1 K 2 ( 1 K 2 ) α L A Ω 1 I,B j( 2 K 2 1 ) α U ( 1 K 1 ) A Ω 1 I ],
A Ω 1 I,B = [ H( ω o + Ω 1 ) H * ( ω o Ω 1 ) ] sin( ϕ dc /2 ) cosφ
I ( Ω 1 Ω 2 )= I dd ( Ω 1 Ω 2 )+ I d ( Ω 1 Ω 2 )= = I dc ( 1 K 1 ) α U ( ϕ RF 4 ) 2 [ ( 1 K 1 ) α U ( 2 K 2 1 ) A Ω 1 Ω 2 I +j2 K 1 K 2 ( 1 K 2 ) α L A Ω 1 Ω 2 I,B ] I ( 2 Ω 1 Ω 2 )= I dd ( 2 Ω 1 Ω 2 )+ I b ( 2 Ω 1 Ω 2 )= = I dc ( 1 K 1 ) α U ( ϕ RF 4 ) 3 sin( ϕ dc )[ j( 2 K 2 1 ) ( 1 K 1 ) α U A 2 Ω 1 Ω 2 I +2 K 1 K 2 ( 1 K 2 ) α L A 2 Ω 1 Ω 2 I,B ],
A Ω 1 Ω 2 I,B =2[ H( ω o + Ω 1 Ω 2 ) H * ( ω o Ω 1 + Ω 2 ) ]sin( ϕ dc /2 )cosφ, A 2 Ω 1 Ω 2 I,B = [ H( ω o +2 Ω 1 Ω 2 ) H * ( ω o 2 Ω 1 + Ω 2 ) ] 2sin( ϕ dc /2 ) cosφ,
P RF ( Ω 1 )=2 | I ( Ω 1 ) | 2 Z out = =2 I dc 2 Z out α U ( 1 K 1 ) ( ϕ RF 4 ) 2 sin 2 ( ϕ DC ) | 2 K 1 K 2 ( 1 K 2 ) α L A Ω 1 I,B j( 2 K 2 1 ) α U ( 1 K 1 ) A Ω 1 I | 2 .
G RF ( Ω 1 )= P RF out ( Ω 1 ) P RF in ( Ω 1 ) = [ I dc πsin( ϕ DC ) 2 V π D X ] 2 | jD A Ω 1 I +C A Ω 1 I,B | 2 Z in Z out ,
I dc,total = D I dc X [ (1) p D | H( ω o ) | 2 ( 1cos ϕ DC )+Y+4Csin( ϕ DC 2 )cosφIm{ H( ω o ) } ],
RI N Thermal input = N Thermal input output I dc,Total 2 Z out = k B T [ πsin( ϕ DC ) 2 V π ] 2 | jD A Ω 1 I +C A Ω 1 I,B | 2 Z in [ (1) p D | H( ω o ) | 2 ( 1cos ϕ DC )+Y+4Csin( ϕ DC 2 )cosφIm{ H( ω o ) } ] 2 ,
RI N Thermal output = N Thermal input output I dc,Total 2 Z out = 2 k B T ( D I dc X ) 2 Z out [ (1) p D | H( ω o ) | 2 ( 1cos ϕ DC )+Y+4Csin( ϕ DC 2 )cosφIm{ H( ω o ) } ] 2 ,
RI N Shot = N shot output I dc,Total 2 Z out = 2e ( D I dc X )[ (1) p D | H( ω o ) | 2 ( 1cos ϕ DC )+Y+4Csin( ϕ DC 2 )cosφIm{ H( ω o ) } ] ,
RI N Total = k B T [ πsin( ϕ DC ) 2 V π ] 2 | jD A Ω 1 I +C A Ω 1 I,B | 2 Z in [ (1) p D | H( ω o ) | 2 ( 1cos ϕ DC )+Y+4Csin( ϕ DC 2 )cosφIm{ H( ω o ) } ] 2 + + 2 k B T ( D I dc X ) 2 Z out [ (1) p D | H( ω o ) | 2 ( 1cos ϕ DC )+Y+4Csin( ϕ DC 2 )cosφIm{ H( ω o ) } ] 2 + + 2e ( D I dc X )[ (1) p D | H( ω o ) | 2 ( 1cos ϕ DC )+Y+4Csin( ϕ DC 2 )cosφIm{ H( ω o ) } ] + +RI N laser .
P RF ( Ω 1 Ω 2 )=2 | I ( Ω 1 Ω 2 ) | 2 Z out = =2 I dc 2 Z out ( 1 K 1 ) α U ( ϕ RF 4 ) 4 | ( 1 K 1 ) α U ( 2 K 2 1 ) A Ω 1 Ω 2 I +j2 K 1 K 2 ( 1 K 2 ) α L A Ω 1 Ω 2 I,B | 2 P RF ( 2 Ω 1 Ω 2 )=2 | I (2 Ω 1 Ω 2 ) | 2 Z out = =2 I dc 2 Z out ( 1 K 1 ) α U ( ϕ RF 4 ) 6 sin 2 ( ϕ dc ) | j( 2 K 2 1 ) ( 1 K 1 ) α U A 2 Ω 1 Ω 2 I +2 K 1 K 2 ( 1 K 2 ) α L A 2 Ω 1 Ω 2 I,B | 2 .
OI P 2 =2 ( I dc sin 2 ( ϕ DC ) D X ) 2 Z out | jD A Ω 1 I +C A Ω 1 I,B | 4 | jD A Ω 1 Ω 2 I +C A Ω 1 Ω 2 I,B | 2 , OI P 3 =2 ( I dc sin( ϕ DC ) D X ) 2 Z out | jD A Ω 1 I +C A Ω 1 I,B | 3 | jD A 2 Ω 1 Ω 2 I C A 2 Ω 1 Ω 2 I,B | .

Metrics