Abstract

Using stimulated emission tomography, we characterize an entangled photon-pair source in the energy and polarization degrees of freedom, with a precision far exceeding what could be obtained by quantum state tomography. Through this multidimensional tomography we find that energy-polarization correlations are a cause of polarization-entanglement degradation, demonstrating that this technique provides useful information for source engineering and can accelerate the development of quantum information processing systems dependent on many degrees of freedom.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Characterizing an entangled-photon source with classical detectors and measurements

Lee A. Rozema, Chao Wang, Dylan H. Mahler, Alex Hayat, Aephraim M. Steinberg, John E. Sipe, and Marco Liscidini
Optica 2(5) 430-433 (2015)

Compensation-free broadband entangled photon pair sources

Changjia Chen, Eric Y. Zhu, Arash Riazi, Alexey V. Gladyshev, Costantino Corbari, Morten Ibsen, Peter G. Kazansky, and Li Qian
Opt. Express 25(19) 22667-22678 (2017)

Engineering of near-IR photon pairs to be factorable in space-time and entangled in polarization

Kevin Zielnicki, Karina Garay-Palmett, Radhika Dirks, Alfred B. U’Ren, and Paul G. Kwiat
Opt. Express 23(6) 7894-7907 (2015)

References

  • View by:
  • |
  • |
  • |

  1. N. Gisin and R. Thew, “Quantum communication,” Nature Photon. 1, 165–171 (2007).
    [Crossref]
  2. E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
    [Crossref] [PubMed]
  3. T. Nagata, R. Okamoto, J. L. O’brien, K. Sasaki, and S. Takeuchi, “Beating the standard quantum limit with four-entangled photons,” Science 316, 726–729 (2007).
    [Crossref] [PubMed]
  4. D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64, 052312 (2001).
    [Crossref]
  5. J. T. Barreiro, N. K. Langford, N. A. Peters, and P. G. Kwiat, “Generation of hyperentangled photon pairs,” Phys. Rev. Lett. 95, 260501 (2005).
    [Crossref]
  6. M. Beck, “Quantum state tomography with array detectors,” Phys. Rev. Lett. 84, 5748–5751 (2000).
    [Crossref] [PubMed]
  7. P. G. Kwiat, A. M. Steinberg, R. Y. Chiao, P. H. Eberhard, and M. D. Petroff, “High-efficiency single-photon detectors,” Phys. Rev. A 48, R867–R870 (1993).
    [Crossref] [PubMed]
  8. C. Kurtsiefer, M. Oberparleiter, and H. Weinfurter, “High-efficiency entangled photon pair collection in type-ii parametric fluorescence,” Phys. Rev. A 64, 023802 (2001).
    [Crossref]
  9. W. P. Grice, R. Erdmann, I. A. Walmsley, and D. Branning, “Spectral distinguishability in ultrafast parametric down-conversion,” Phys. Rev. A 57, R2289–R2292 (1998).
    [Crossref]
  10. G. Brida, M. Chekhova, M. Genovese, and L. Krivitsky, “Generation of different Bell states within the spontaneous parametric down-conversion phase-matching bandwidth,” Phys. Rev. A 76, 053807 (2007).
    [Crossref]
  11. M. Liscidini and J. E. E. Sipe, “Stimulated emission tomography,” Phys. Rev. Lett. 111, 193602 (2013).
    [Crossref] [PubMed]
  12. A. Einstein, “The quantum theory of radiation,” Phys. Z 18, 121 (1917).
  13. A. Eckstein, G. Boucher, A. Lemaître, P. Filloux, I. Favero, G. Leo, J. E. Sipe, M. Liscidini, and S. Ducci, “High-resolution spectral characterization of two photon states via classical measurements,” Laser Photon. Rev. 8, L76–L80 (2014).
    [Crossref]
  14. B. Fang, O. Cohen, M. Liscidini, J. E. Sipe, and V. O. Lorenz, “Fast and highly resolved capture of the joint spectral density of photon pairs,” Optica 1, 281–284 (2014).
    [Crossref]
  15. L. A. Rozema, C. Wang, D. H. Mahler, A. Hayat, A. M. Steinberg, J. E. Sipe, and M. Liscidini, “Characterizing an entangled-photon source with classical detectors and measurements,” Optica 2, 430 (2015).
    [Crossref]
  16. B. Fang, O. Cohen, and V. O. Lorenz, “Polarization-entangled photon-pair generation in commercial-grade polarization-maintaining fiber,” J. Opt. Soc. Am. B 31, 277–281 (2014).
    [Crossref]
  17. R. Jozsa, “Fidelity for mixed quantum states,” J. Mod. Opt. 41, 199412 (2007).
  18. B. J. Smith, P. Mahou, O. Cohen, J. S. Lundeen, and I. A. Walmsley, “Photon pair generation in birefringent optical fibers,” Opt. Express 17, 23589–602 (2009).
    [Crossref]
  19. B. Fang, O. Cohen, J. B. Moreno, and V. O. Lorenz, “State engineering of photon pairs produced through dual-pump spontaneous four-wave mixing,” Opt. Express 21, 2707–2717 (2013).
    [Crossref] [PubMed]
  20. O. Cohen, J.S. Lundeen, B. J. Smith, G. Puentes, P. Mosley, and I.A. Walmsley, “Tailored Photon-Pair Generation in Optical Fibers,” Phys. Rev. Lett. 102, 123603 (2009).
    [Crossref] [PubMed]
  21. C. Söller, O. Cohen, B.J. Smith, I.A. Walmsley, and C. Silberhorn, “High-performance single-photon generation with commercial-grade optical fiber,” Phys. Rev. A 83, 031806 (2011).
    [Crossref]

2015 (1)

2014 (3)

2013 (2)

2011 (1)

C. Söller, O. Cohen, B.J. Smith, I.A. Walmsley, and C. Silberhorn, “High-performance single-photon generation with commercial-grade optical fiber,” Phys. Rev. A 83, 031806 (2011).
[Crossref]

2009 (2)

B. J. Smith, P. Mahou, O. Cohen, J. S. Lundeen, and I. A. Walmsley, “Photon pair generation in birefringent optical fibers,” Opt. Express 17, 23589–602 (2009).
[Crossref]

O. Cohen, J.S. Lundeen, B. J. Smith, G. Puentes, P. Mosley, and I.A. Walmsley, “Tailored Photon-Pair Generation in Optical Fibers,” Phys. Rev. Lett. 102, 123603 (2009).
[Crossref] [PubMed]

2007 (4)

G. Brida, M. Chekhova, M. Genovese, and L. Krivitsky, “Generation of different Bell states within the spontaneous parametric down-conversion phase-matching bandwidth,” Phys. Rev. A 76, 053807 (2007).
[Crossref]

R. Jozsa, “Fidelity for mixed quantum states,” J. Mod. Opt. 41, 199412 (2007).

N. Gisin and R. Thew, “Quantum communication,” Nature Photon. 1, 165–171 (2007).
[Crossref]

T. Nagata, R. Okamoto, J. L. O’brien, K. Sasaki, and S. Takeuchi, “Beating the standard quantum limit with four-entangled photons,” Science 316, 726–729 (2007).
[Crossref] [PubMed]

2005 (1)

J. T. Barreiro, N. K. Langford, N. A. Peters, and P. G. Kwiat, “Generation of hyperentangled photon pairs,” Phys. Rev. Lett. 95, 260501 (2005).
[Crossref]

2001 (3)

C. Kurtsiefer, M. Oberparleiter, and H. Weinfurter, “High-efficiency entangled photon pair collection in type-ii parametric fluorescence,” Phys. Rev. A 64, 023802 (2001).
[Crossref]

D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64, 052312 (2001).
[Crossref]

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref] [PubMed]

2000 (1)

M. Beck, “Quantum state tomography with array detectors,” Phys. Rev. Lett. 84, 5748–5751 (2000).
[Crossref] [PubMed]

1998 (1)

W. P. Grice, R. Erdmann, I. A. Walmsley, and D. Branning, “Spectral distinguishability in ultrafast parametric down-conversion,” Phys. Rev. A 57, R2289–R2292 (1998).
[Crossref]

1993 (1)

P. G. Kwiat, A. M. Steinberg, R. Y. Chiao, P. H. Eberhard, and M. D. Petroff, “High-efficiency single-photon detectors,” Phys. Rev. A 48, R867–R870 (1993).
[Crossref] [PubMed]

1917 (1)

A. Einstein, “The quantum theory of radiation,” Phys. Z 18, 121 (1917).

Barreiro, J. T.

J. T. Barreiro, N. K. Langford, N. A. Peters, and P. G. Kwiat, “Generation of hyperentangled photon pairs,” Phys. Rev. Lett. 95, 260501 (2005).
[Crossref]

Beck, M.

M. Beck, “Quantum state tomography with array detectors,” Phys. Rev. Lett. 84, 5748–5751 (2000).
[Crossref] [PubMed]

Boucher, G.

A. Eckstein, G. Boucher, A. Lemaître, P. Filloux, I. Favero, G. Leo, J. E. Sipe, M. Liscidini, and S. Ducci, “High-resolution spectral characterization of two photon states via classical measurements,” Laser Photon. Rev. 8, L76–L80 (2014).
[Crossref]

Branning, D.

W. P. Grice, R. Erdmann, I. A. Walmsley, and D. Branning, “Spectral distinguishability in ultrafast parametric down-conversion,” Phys. Rev. A 57, R2289–R2292 (1998).
[Crossref]

Brida, G.

G. Brida, M. Chekhova, M. Genovese, and L. Krivitsky, “Generation of different Bell states within the spontaneous parametric down-conversion phase-matching bandwidth,” Phys. Rev. A 76, 053807 (2007).
[Crossref]

Chekhova, M.

G. Brida, M. Chekhova, M. Genovese, and L. Krivitsky, “Generation of different Bell states within the spontaneous parametric down-conversion phase-matching bandwidth,” Phys. Rev. A 76, 053807 (2007).
[Crossref]

Chiao, R. Y.

P. G. Kwiat, A. M. Steinberg, R. Y. Chiao, P. H. Eberhard, and M. D. Petroff, “High-efficiency single-photon detectors,” Phys. Rev. A 48, R867–R870 (1993).
[Crossref] [PubMed]

Cohen, O.

Ducci, S.

A. Eckstein, G. Boucher, A. Lemaître, P. Filloux, I. Favero, G. Leo, J. E. Sipe, M. Liscidini, and S. Ducci, “High-resolution spectral characterization of two photon states via classical measurements,” Laser Photon. Rev. 8, L76–L80 (2014).
[Crossref]

Eberhard, P. H.

P. G. Kwiat, A. M. Steinberg, R. Y. Chiao, P. H. Eberhard, and M. D. Petroff, “High-efficiency single-photon detectors,” Phys. Rev. A 48, R867–R870 (1993).
[Crossref] [PubMed]

Eckstein, A.

A. Eckstein, G. Boucher, A. Lemaître, P. Filloux, I. Favero, G. Leo, J. E. Sipe, M. Liscidini, and S. Ducci, “High-resolution spectral characterization of two photon states via classical measurements,” Laser Photon. Rev. 8, L76–L80 (2014).
[Crossref]

Einstein, A.

A. Einstein, “The quantum theory of radiation,” Phys. Z 18, 121 (1917).

Erdmann, R.

W. P. Grice, R. Erdmann, I. A. Walmsley, and D. Branning, “Spectral distinguishability in ultrafast parametric down-conversion,” Phys. Rev. A 57, R2289–R2292 (1998).
[Crossref]

Fang, B.

Favero, I.

A. Eckstein, G. Boucher, A. Lemaître, P. Filloux, I. Favero, G. Leo, J. E. Sipe, M. Liscidini, and S. Ducci, “High-resolution spectral characterization of two photon states via classical measurements,” Laser Photon. Rev. 8, L76–L80 (2014).
[Crossref]

Filloux, P.

A. Eckstein, G. Boucher, A. Lemaître, P. Filloux, I. Favero, G. Leo, J. E. Sipe, M. Liscidini, and S. Ducci, “High-resolution spectral characterization of two photon states via classical measurements,” Laser Photon. Rev. 8, L76–L80 (2014).
[Crossref]

Genovese, M.

G. Brida, M. Chekhova, M. Genovese, and L. Krivitsky, “Generation of different Bell states within the spontaneous parametric down-conversion phase-matching bandwidth,” Phys. Rev. A 76, 053807 (2007).
[Crossref]

Gisin, N.

N. Gisin and R. Thew, “Quantum communication,” Nature Photon. 1, 165–171 (2007).
[Crossref]

Grice, W. P.

W. P. Grice, R. Erdmann, I. A. Walmsley, and D. Branning, “Spectral distinguishability in ultrafast parametric down-conversion,” Phys. Rev. A 57, R2289–R2292 (1998).
[Crossref]

Hayat, A.

James, D. F. V.

D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64, 052312 (2001).
[Crossref]

Jozsa, R.

R. Jozsa, “Fidelity for mixed quantum states,” J. Mod. Opt. 41, 199412 (2007).

Knill, E.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref] [PubMed]

Krivitsky, L.

G. Brida, M. Chekhova, M. Genovese, and L. Krivitsky, “Generation of different Bell states within the spontaneous parametric down-conversion phase-matching bandwidth,” Phys. Rev. A 76, 053807 (2007).
[Crossref]

Kurtsiefer, C.

C. Kurtsiefer, M. Oberparleiter, and H. Weinfurter, “High-efficiency entangled photon pair collection in type-ii parametric fluorescence,” Phys. Rev. A 64, 023802 (2001).
[Crossref]

Kwiat, P. G.

J. T. Barreiro, N. K. Langford, N. A. Peters, and P. G. Kwiat, “Generation of hyperentangled photon pairs,” Phys. Rev. Lett. 95, 260501 (2005).
[Crossref]

D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64, 052312 (2001).
[Crossref]

P. G. Kwiat, A. M. Steinberg, R. Y. Chiao, P. H. Eberhard, and M. D. Petroff, “High-efficiency single-photon detectors,” Phys. Rev. A 48, R867–R870 (1993).
[Crossref] [PubMed]

Laflamme, R.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref] [PubMed]

Langford, N. K.

J. T. Barreiro, N. K. Langford, N. A. Peters, and P. G. Kwiat, “Generation of hyperentangled photon pairs,” Phys. Rev. Lett. 95, 260501 (2005).
[Crossref]

Lemaître, A.

A. Eckstein, G. Boucher, A. Lemaître, P. Filloux, I. Favero, G. Leo, J. E. Sipe, M. Liscidini, and S. Ducci, “High-resolution spectral characterization of two photon states via classical measurements,” Laser Photon. Rev. 8, L76–L80 (2014).
[Crossref]

Leo, G.

A. Eckstein, G. Boucher, A. Lemaître, P. Filloux, I. Favero, G. Leo, J. E. Sipe, M. Liscidini, and S. Ducci, “High-resolution spectral characterization of two photon states via classical measurements,” Laser Photon. Rev. 8, L76–L80 (2014).
[Crossref]

Liscidini, M.

L. A. Rozema, C. Wang, D. H. Mahler, A. Hayat, A. M. Steinberg, J. E. Sipe, and M. Liscidini, “Characterizing an entangled-photon source with classical detectors and measurements,” Optica 2, 430 (2015).
[Crossref]

A. Eckstein, G. Boucher, A. Lemaître, P. Filloux, I. Favero, G. Leo, J. E. Sipe, M. Liscidini, and S. Ducci, “High-resolution spectral characterization of two photon states via classical measurements,” Laser Photon. Rev. 8, L76–L80 (2014).
[Crossref]

B. Fang, O. Cohen, M. Liscidini, J. E. Sipe, and V. O. Lorenz, “Fast and highly resolved capture of the joint spectral density of photon pairs,” Optica 1, 281–284 (2014).
[Crossref]

M. Liscidini and J. E. E. Sipe, “Stimulated emission tomography,” Phys. Rev. Lett. 111, 193602 (2013).
[Crossref] [PubMed]

Lorenz, V. O.

Lundeen, J. S.

Lundeen, J.S.

O. Cohen, J.S. Lundeen, B. J. Smith, G. Puentes, P. Mosley, and I.A. Walmsley, “Tailored Photon-Pair Generation in Optical Fibers,” Phys. Rev. Lett. 102, 123603 (2009).
[Crossref] [PubMed]

Mahler, D. H.

Mahou, P.

Milburn, G. J.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref] [PubMed]

Moreno, J. B.

Mosley, P.

O. Cohen, J.S. Lundeen, B. J. Smith, G. Puentes, P. Mosley, and I.A. Walmsley, “Tailored Photon-Pair Generation in Optical Fibers,” Phys. Rev. Lett. 102, 123603 (2009).
[Crossref] [PubMed]

Munro, W. J.

D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64, 052312 (2001).
[Crossref]

Nagata, T.

T. Nagata, R. Okamoto, J. L. O’brien, K. Sasaki, and S. Takeuchi, “Beating the standard quantum limit with four-entangled photons,” Science 316, 726–729 (2007).
[Crossref] [PubMed]

O’brien, J. L.

T. Nagata, R. Okamoto, J. L. O’brien, K. Sasaki, and S. Takeuchi, “Beating the standard quantum limit with four-entangled photons,” Science 316, 726–729 (2007).
[Crossref] [PubMed]

Oberparleiter, M.

C. Kurtsiefer, M. Oberparleiter, and H. Weinfurter, “High-efficiency entangled photon pair collection in type-ii parametric fluorescence,” Phys. Rev. A 64, 023802 (2001).
[Crossref]

Okamoto, R.

T. Nagata, R. Okamoto, J. L. O’brien, K. Sasaki, and S. Takeuchi, “Beating the standard quantum limit with four-entangled photons,” Science 316, 726–729 (2007).
[Crossref] [PubMed]

Peters, N. A.

J. T. Barreiro, N. K. Langford, N. A. Peters, and P. G. Kwiat, “Generation of hyperentangled photon pairs,” Phys. Rev. Lett. 95, 260501 (2005).
[Crossref]

Petroff, M. D.

P. G. Kwiat, A. M. Steinberg, R. Y. Chiao, P. H. Eberhard, and M. D. Petroff, “High-efficiency single-photon detectors,” Phys. Rev. A 48, R867–R870 (1993).
[Crossref] [PubMed]

Puentes, G.

O. Cohen, J.S. Lundeen, B. J. Smith, G. Puentes, P. Mosley, and I.A. Walmsley, “Tailored Photon-Pair Generation in Optical Fibers,” Phys. Rev. Lett. 102, 123603 (2009).
[Crossref] [PubMed]

Rozema, L. A.

Sasaki, K.

T. Nagata, R. Okamoto, J. L. O’brien, K. Sasaki, and S. Takeuchi, “Beating the standard quantum limit with four-entangled photons,” Science 316, 726–729 (2007).
[Crossref] [PubMed]

Silberhorn, C.

C. Söller, O. Cohen, B.J. Smith, I.A. Walmsley, and C. Silberhorn, “High-performance single-photon generation with commercial-grade optical fiber,” Phys. Rev. A 83, 031806 (2011).
[Crossref]

Sipe, J. E.

Sipe, J. E. E.

M. Liscidini and J. E. E. Sipe, “Stimulated emission tomography,” Phys. Rev. Lett. 111, 193602 (2013).
[Crossref] [PubMed]

Smith, B. J.

O. Cohen, J.S. Lundeen, B. J. Smith, G. Puentes, P. Mosley, and I.A. Walmsley, “Tailored Photon-Pair Generation in Optical Fibers,” Phys. Rev. Lett. 102, 123603 (2009).
[Crossref] [PubMed]

B. J. Smith, P. Mahou, O. Cohen, J. S. Lundeen, and I. A. Walmsley, “Photon pair generation in birefringent optical fibers,” Opt. Express 17, 23589–602 (2009).
[Crossref]

Smith, B.J.

C. Söller, O. Cohen, B.J. Smith, I.A. Walmsley, and C. Silberhorn, “High-performance single-photon generation with commercial-grade optical fiber,” Phys. Rev. A 83, 031806 (2011).
[Crossref]

Söller, C.

C. Söller, O. Cohen, B.J. Smith, I.A. Walmsley, and C. Silberhorn, “High-performance single-photon generation with commercial-grade optical fiber,” Phys. Rev. A 83, 031806 (2011).
[Crossref]

Steinberg, A. M.

L. A. Rozema, C. Wang, D. H. Mahler, A. Hayat, A. M. Steinberg, J. E. Sipe, and M. Liscidini, “Characterizing an entangled-photon source with classical detectors and measurements,” Optica 2, 430 (2015).
[Crossref]

P. G. Kwiat, A. M. Steinberg, R. Y. Chiao, P. H. Eberhard, and M. D. Petroff, “High-efficiency single-photon detectors,” Phys. Rev. A 48, R867–R870 (1993).
[Crossref] [PubMed]

Takeuchi, S.

T. Nagata, R. Okamoto, J. L. O’brien, K. Sasaki, and S. Takeuchi, “Beating the standard quantum limit with four-entangled photons,” Science 316, 726–729 (2007).
[Crossref] [PubMed]

Thew, R.

N. Gisin and R. Thew, “Quantum communication,” Nature Photon. 1, 165–171 (2007).
[Crossref]

Walmsley, I. A.

B. J. Smith, P. Mahou, O. Cohen, J. S. Lundeen, and I. A. Walmsley, “Photon pair generation in birefringent optical fibers,” Opt. Express 17, 23589–602 (2009).
[Crossref]

W. P. Grice, R. Erdmann, I. A. Walmsley, and D. Branning, “Spectral distinguishability in ultrafast parametric down-conversion,” Phys. Rev. A 57, R2289–R2292 (1998).
[Crossref]

Walmsley, I.A.

C. Söller, O. Cohen, B.J. Smith, I.A. Walmsley, and C. Silberhorn, “High-performance single-photon generation with commercial-grade optical fiber,” Phys. Rev. A 83, 031806 (2011).
[Crossref]

O. Cohen, J.S. Lundeen, B. J. Smith, G. Puentes, P. Mosley, and I.A. Walmsley, “Tailored Photon-Pair Generation in Optical Fibers,” Phys. Rev. Lett. 102, 123603 (2009).
[Crossref] [PubMed]

Wang, C.

Weinfurter, H.

C. Kurtsiefer, M. Oberparleiter, and H. Weinfurter, “High-efficiency entangled photon pair collection in type-ii parametric fluorescence,” Phys. Rev. A 64, 023802 (2001).
[Crossref]

White, A. G.

D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64, 052312 (2001).
[Crossref]

J. Mod. Opt. (1)

R. Jozsa, “Fidelity for mixed quantum states,” J. Mod. Opt. 41, 199412 (2007).

J. Opt. Soc. Am. B (1)

Laser Photon. Rev. (1)

A. Eckstein, G. Boucher, A. Lemaître, P. Filloux, I. Favero, G. Leo, J. E. Sipe, M. Liscidini, and S. Ducci, “High-resolution spectral characterization of two photon states via classical measurements,” Laser Photon. Rev. 8, L76–L80 (2014).
[Crossref]

Nature (1)

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref] [PubMed]

Nature Photon. (1)

N. Gisin and R. Thew, “Quantum communication,” Nature Photon. 1, 165–171 (2007).
[Crossref]

Opt. Express (2)

Optica (2)

Phys. Rev. A (6)

D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64, 052312 (2001).
[Crossref]

P. G. Kwiat, A. M. Steinberg, R. Y. Chiao, P. H. Eberhard, and M. D. Petroff, “High-efficiency single-photon detectors,” Phys. Rev. A 48, R867–R870 (1993).
[Crossref] [PubMed]

C. Kurtsiefer, M. Oberparleiter, and H. Weinfurter, “High-efficiency entangled photon pair collection in type-ii parametric fluorescence,” Phys. Rev. A 64, 023802 (2001).
[Crossref]

W. P. Grice, R. Erdmann, I. A. Walmsley, and D. Branning, “Spectral distinguishability in ultrafast parametric down-conversion,” Phys. Rev. A 57, R2289–R2292 (1998).
[Crossref]

G. Brida, M. Chekhova, M. Genovese, and L. Krivitsky, “Generation of different Bell states within the spontaneous parametric down-conversion phase-matching bandwidth,” Phys. Rev. A 76, 053807 (2007).
[Crossref]

C. Söller, O. Cohen, B.J. Smith, I.A. Walmsley, and C. Silberhorn, “High-performance single-photon generation with commercial-grade optical fiber,” Phys. Rev. A 83, 031806 (2011).
[Crossref]

Phys. Rev. Lett. (4)

M. Liscidini and J. E. E. Sipe, “Stimulated emission tomography,” Phys. Rev. Lett. 111, 193602 (2013).
[Crossref] [PubMed]

J. T. Barreiro, N. K. Langford, N. A. Peters, and P. G. Kwiat, “Generation of hyperentangled photon pairs,” Phys. Rev. Lett. 95, 260501 (2005).
[Crossref]

M. Beck, “Quantum state tomography with array detectors,” Phys. Rev. Lett. 84, 5748–5751 (2000).
[Crossref] [PubMed]

O. Cohen, J.S. Lundeen, B. J. Smith, G. Puentes, P. Mosley, and I.A. Walmsley, “Tailored Photon-Pair Generation in Optical Fibers,” Phys. Rev. Lett. 102, 123603 (2009).
[Crossref] [PubMed]

Phys. Z (1)

A. Einstein, “The quantum theory of radiation,” Phys. Z 18, 121 (1917).

Science (1)

T. Nagata, R. Okamoto, J. L. O’brien, K. Sasaki, and S. Takeuchi, “Beating the standard quantum limit with four-entangled photons,” Science 316, 726–729 (2007).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the experimental setup for stimulated emission tomography of the polarization-entangled photon pairs generated in optical fiber. H, half-wave plate; Q, quarter-wave plate; P, polarizer; BP, bandpass filter; L, lens; PBS, polarizing beam splitter; PMF, polarization maintaining fibre; SMF, single mode fibre; BS, beamsplitter; ND, neutral density filter.

Fig. 2
Fig. 2

(a) Joint spectral intensity of the generated photon pairs, measured by SET. Dashed line indicates the area we average over to obtain the polarization density matrix shown in (b). Real (left) and imaginary (right) parts of (b) the spectrally averaged polarization density matrix reconstructed by SET, and (c) the polarization density matrix reconstructed by quantum state tomography.

Fig. 3
Fig. 3

(a), Real (left) and imaginary (right) parts of the energy-resolved density matrix obtained using SET. (b) One of the 16 elements of the density matrix, magnified to display more detailed structure.

Fig. 4
Fig. 4

(a) Fidelity F for each pair of photon energies for a target state | Ψ = ( | H s H i + | V s V i ) / 2 over a wide spectral range. (b,c) Close-ups.

Metrics