Abstract

We investigate the transition from the photon-counting to the linear operation mode in a large-dynamic range photon-number-resolving-detector (PNRD). A 24-pixel photon-number-resolving-detector, based on superconducting nanowires in a series configuration, has been fabricated and characterized. The voltage pulses, generated by the pixels, are summed up into a single readout pulse whose height is proportional to the detected photon number. The device can resolve up to twenty-five distinct output levels corresponding to the detection of n = 0-24 photons. Due to its large dynamic range, high sensitivity, high speed and wide wavelength range, this device has potential for linear detection in the few tens of photons range. We show its application in the detection of analog optical signals at frequencies up to few hundred MHz and investigate the limits related to the finite number of pixels and to the pixel's dead time.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Superconducting series nanowire detector counting up to twelve photons

Zili Zhou, Saeedeh Jahanmirinejad, Francesco Mattioli, Döndü Sahin, Giulia Frucci, Alessandro Gaggero, Roberto Leoni, and Andrea Fiore
Opt. Express 22(3) 3475-3489 (2014)

Proposal for a superconducting photon number resolving detector with large dynamic range

Saeedeh Jahanmirinejad and Andrea Fiore
Opt. Express 20(5) 5017-5028 (2012)

High-performance superconducting photon-number-resolving detectors with 86% system efficiency at telecom range

Maria Moshkova, Alexander Divochiy, Pavel Morozov, Yury Vakhtomin, Andrey Antipov, Philipp Zolotov, Vitaly Seleznev, Marat Ahmetov, and Konstantin Smirnov
J. Opt. Soc. Am. B 36(3) B20-B25 (2019)

References

  • View by:
  • |
  • |
  • |

  1. E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409(6816), 46–52 (2001).
    [Crossref] [PubMed]
  2. F. E. Becerra, J. Fan, and A. Migdall, “Photon number resolution enables quantum receiver for realistic coherent optical communications,” Nat. Photonics 9(1), 48–53 (2014).
    [Crossref]
  3. N. Sangouard, C. Simon, J. Minar, H. Zbinden, H. de Riedmatten, and N. Gisin, “Long-distance entanglement distribution with single-photon sources,” Phys. Rev. A 76(5), 050301 (2007).
    [Crossref]
  4. T. Gerrits, B. Calkins, N. Tomlin, A. E. Lita, A. Migdall, R. Mirin, and S. W. Nam, “Extending single-photon optimized superconducting transition edge sensors beyond the single-photon counting regime,” Opt. Express 20(21), 23798–23810 (2012).
    [Crossref] [PubMed]
  5. E. Pomarico, B. Sanguinetti, R. Thew, and H. Zbinden, “Room temperature photon number resolving detector for infared wavelengths,” Opt. Express 18(10), 10750–10759 (2010).
    [Crossref] [PubMed]
  6. E. A. Dauler, A. J. Kerman, B. S. Robinson, J. K. W. Yang, B. Voronov, G. Goltsman, S. A. Hamilton, and K. K. Berggren, “Photon-number-resolution with sub-30-ps timing using multi-element superconducting nanowire single photon detectors,” J. Mod. Opt. 56(2–3), 364–373 (2009).
    [Crossref]
  7. A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Lévy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics 2(5), 302–306 (2008).
    [Crossref]
  8. S. Jahanmirinejad and A. Fiore, “Proposal for a superconducting photon number resolving detector with large dynamic range,” Opt. Express 20(5), 5017–5028 (2012).
    [Crossref] [PubMed]
  9. S. Jahanmirinejad, G. Frucci, F. Mattioli, D. Sahin, A. Gaggero, R. Leoni, and A. Fiore, “Photon-number resolving detector based on a series array of superconducting nanowires,” Appl. Phys. Lett. 101(7), 072602 (2012).
    [Crossref]
  10. Z. Zhou, S. Jahanmirinejad, F. Mattioli, D. Sahin, G. Frucci, A. Gaggero, R. Leoni, and A. Fiore, “Superconducting series nanowire detector counting up to twelve photons,” Opt. Express 22(3), 3475–3489 (2014).
    [Crossref] [PubMed]
  11. G. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705 (2001).
    [Crossref]
  12. F. Marsili, V. Verma, J. Stern, S. Harrington, A. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. Shaw, R. Mirinand, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
    [Crossref]
  13. C. M. Natarajan, M. G. Tanner, and R. H. Hadfield, “Superconducting nanowire single-photon detectors: physics and applications,” Supercond. Sci. Technol. 25(6), 063001 (2012).
    [Crossref]
  14. L. N. Bulaevskii, M. J. Graf, and V. G. Kogan, “Vortex-assisted photon counts and their magnetic field dependence in single-photon superconducting detectors,” Phys. Rev. B 85(1), 014505 (2012).
    [Crossref]
  15. A. Engel, A. Schilling, K. Il’in, and M. Siegel, “Dependence of count rate on magnetic field in superconducting thin-film TaN single-photon detectors,” Phys. Rev. B 86(14), 140506 (2012).
    [Crossref]
  16. J. J. Renema, R. Gaudio, Q. Wang, Z. Zhou, A. Gaggero, F. Mattioli, R. Leoni, D. Sahin, M. J. A. de Dood, A. Fiore, and M. P. van Exter, “Experimental test of theories of the detection mechanism in a nanowire superconducting single photon detector,” Phys. Rev. Lett. 112(11), 117604 (2014).
    [Crossref] [PubMed]
  17. D. Y. Vodolazov, “Current dependence of the red boundary of superconducting single-photon detectors in the modified hot-spot model,” Phys. Rev. B 90(5), 054515 (2014).
    [Crossref]
  18. J. J. Renema, R. J. Rengelink, I. Komen, Q. Wang, R. Gaudio, K. P. M. op ’t Hoog, Z. Zhou, D. Sahin, A. Fiore, P. Kes, J. Aarts, M. P. van Exter, M. J. A. de Dood, and E. F. C. Driessen, “The effect of magnetic field on the intrinsic detection efficiency of superconducting single-photon detectors,” Appl. Phys. Lett. 106(9), 092602 (2015).
    [Crossref]
  19. D. Y. Vodolazov, P. Korneeva, A. V. Semenov, A. A. Korneev, and G. N. Goltsman, “Vortex assisted mechanism of photon counting in superconducting nanowire single photon detector revealed by external magnetic field,” arXiv:1505.04689v1 (2015).
    [Crossref]
  20. A. Engel, J. Lonsky, X. Zhang, and A. Schilling, “Detection mechanism in SNSPD: numerical results of a conceptually simple, yet powerful detection model,” IEEE Trans. Appl. Supercond. 25(3), 2200407 (2015).
    [Crossref]
  21. J. J. Renema, Q. Wang, R. Gaudio, I. Komen, K. op ’t Hoog, D. Sahin, A. Schilling, M. P. van Exter, A. Fiore, A. Engel, and M. J. de Dood, “Position-dependent local detection efficiency in a nanowire superconducting single-photon detector,” Nano Lett. 15(7), 4541–4545 (2015).
    [Crossref] [PubMed]
  22. M. G. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O’Connor, R. J. Warburton, R. H. Hadfield, B. Baek, S. Nam, S. N. Dorenbos, E. Bermúdez Ureña, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, “Enhanced telecom wavelength single-photon detection with NbTiN superconducting nanowires on oxidized silicon,” Appl. Phys. Lett. 96(22), 221109 (2010).
    [Crossref]
  23. K. S. Il’in, M. Lindgren, M. Currie, A. D. Semenov, G. N. Gol’tsman, R. Sobolewski, S. I. Cherednichenko, and E. M. Gershenzon, “Picosecond hot-electron energy relaxation in NbN superconducting photodetectors,” Appl. Phys. Lett. 76(19), 2752 (2000).
  24. F. Mattioli, Z. Zhou, A. Gaggero, R. Gaudio, S. Jahanmirinejad, D. Sahin, F. Marsili, R. Leoni, and A. Fiore, “Photon-number-resolving superconducting nanowire detectors,” Supercond. Sci. Technol. 28(10), 104001 (2015).
    [Crossref]
  25. A. J. Kerman, E. A. Dauler, J. K. W. Yang, K. M. Rosfjord, V. Anant, K. K. Berggren, G. N. Gol’tsman, and B. M. Voronov, “Constriction-limited detection efficiency of superconducting nanowire single-photon detectors,” Appl. Phys. Lett. 90(10), 101110 (2007).
    [Crossref]
  26. F. Mattioli, R. Leoni, A. Gaggero, M. G. Castellano, P. Carelli, F. Marsili, and A. Fiore, “Electrical characterization of superconducting single-photon detectors,” J. Appl. Phys. 101(5), 054302 (2007).
    [Crossref]
  27. B. E. Kardynał, S. S. Hees, A. J. Shields, C. Nicoll, I. Farrer, and D. A. Ritchie, “Photon number resolving detector based on a quantum dot field effect transistor,” Appl. Phys. Lett. 90(18), 181114 (2007).
    [Crossref]

2015 (4)

J. J. Renema, R. J. Rengelink, I. Komen, Q. Wang, R. Gaudio, K. P. M. op ’t Hoog, Z. Zhou, D. Sahin, A. Fiore, P. Kes, J. Aarts, M. P. van Exter, M. J. A. de Dood, and E. F. C. Driessen, “The effect of magnetic field on the intrinsic detection efficiency of superconducting single-photon detectors,” Appl. Phys. Lett. 106(9), 092602 (2015).
[Crossref]

A. Engel, J. Lonsky, X. Zhang, and A. Schilling, “Detection mechanism in SNSPD: numerical results of a conceptually simple, yet powerful detection model,” IEEE Trans. Appl. Supercond. 25(3), 2200407 (2015).
[Crossref]

J. J. Renema, Q. Wang, R. Gaudio, I. Komen, K. op ’t Hoog, D. Sahin, A. Schilling, M. P. van Exter, A. Fiore, A. Engel, and M. J. de Dood, “Position-dependent local detection efficiency in a nanowire superconducting single-photon detector,” Nano Lett. 15(7), 4541–4545 (2015).
[Crossref] [PubMed]

F. Mattioli, Z. Zhou, A. Gaggero, R. Gaudio, S. Jahanmirinejad, D. Sahin, F. Marsili, R. Leoni, and A. Fiore, “Photon-number-resolving superconducting nanowire detectors,” Supercond. Sci. Technol. 28(10), 104001 (2015).
[Crossref]

2014 (4)

J. J. Renema, R. Gaudio, Q. Wang, Z. Zhou, A. Gaggero, F. Mattioli, R. Leoni, D. Sahin, M. J. A. de Dood, A. Fiore, and M. P. van Exter, “Experimental test of theories of the detection mechanism in a nanowire superconducting single photon detector,” Phys. Rev. Lett. 112(11), 117604 (2014).
[Crossref] [PubMed]

D. Y. Vodolazov, “Current dependence of the red boundary of superconducting single-photon detectors in the modified hot-spot model,” Phys. Rev. B 90(5), 054515 (2014).
[Crossref]

F. E. Becerra, J. Fan, and A. Migdall, “Photon number resolution enables quantum receiver for realistic coherent optical communications,” Nat. Photonics 9(1), 48–53 (2014).
[Crossref]

Z. Zhou, S. Jahanmirinejad, F. Mattioli, D. Sahin, G. Frucci, A. Gaggero, R. Leoni, and A. Fiore, “Superconducting series nanowire detector counting up to twelve photons,” Opt. Express 22(3), 3475–3489 (2014).
[Crossref] [PubMed]

2013 (1)

F. Marsili, V. Verma, J. Stern, S. Harrington, A. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. Shaw, R. Mirinand, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

2012 (6)

C. M. Natarajan, M. G. Tanner, and R. H. Hadfield, “Superconducting nanowire single-photon detectors: physics and applications,” Supercond. Sci. Technol. 25(6), 063001 (2012).
[Crossref]

L. N. Bulaevskii, M. J. Graf, and V. G. Kogan, “Vortex-assisted photon counts and their magnetic field dependence in single-photon superconducting detectors,” Phys. Rev. B 85(1), 014505 (2012).
[Crossref]

A. Engel, A. Schilling, K. Il’in, and M. Siegel, “Dependence of count rate on magnetic field in superconducting thin-film TaN single-photon detectors,” Phys. Rev. B 86(14), 140506 (2012).
[Crossref]

S. Jahanmirinejad and A. Fiore, “Proposal for a superconducting photon number resolving detector with large dynamic range,” Opt. Express 20(5), 5017–5028 (2012).
[Crossref] [PubMed]

T. Gerrits, B. Calkins, N. Tomlin, A. E. Lita, A. Migdall, R. Mirin, and S. W. Nam, “Extending single-photon optimized superconducting transition edge sensors beyond the single-photon counting regime,” Opt. Express 20(21), 23798–23810 (2012).
[Crossref] [PubMed]

S. Jahanmirinejad, G. Frucci, F. Mattioli, D. Sahin, A. Gaggero, R. Leoni, and A. Fiore, “Photon-number resolving detector based on a series array of superconducting nanowires,” Appl. Phys. Lett. 101(7), 072602 (2012).
[Crossref]

2010 (2)

E. Pomarico, B. Sanguinetti, R. Thew, and H. Zbinden, “Room temperature photon number resolving detector for infared wavelengths,” Opt. Express 18(10), 10750–10759 (2010).
[Crossref] [PubMed]

M. G. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O’Connor, R. J. Warburton, R. H. Hadfield, B. Baek, S. Nam, S. N. Dorenbos, E. Bermúdez Ureña, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, “Enhanced telecom wavelength single-photon detection with NbTiN superconducting nanowires on oxidized silicon,” Appl. Phys. Lett. 96(22), 221109 (2010).
[Crossref]

2009 (1)

E. A. Dauler, A. J. Kerman, B. S. Robinson, J. K. W. Yang, B. Voronov, G. Goltsman, S. A. Hamilton, and K. K. Berggren, “Photon-number-resolution with sub-30-ps timing using multi-element superconducting nanowire single photon detectors,” J. Mod. Opt. 56(2–3), 364–373 (2009).
[Crossref]

2008 (1)

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Lévy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics 2(5), 302–306 (2008).
[Crossref]

2007 (4)

N. Sangouard, C. Simon, J. Minar, H. Zbinden, H. de Riedmatten, and N. Gisin, “Long-distance entanglement distribution with single-photon sources,” Phys. Rev. A 76(5), 050301 (2007).
[Crossref]

A. J. Kerman, E. A. Dauler, J. K. W. Yang, K. M. Rosfjord, V. Anant, K. K. Berggren, G. N. Gol’tsman, and B. M. Voronov, “Constriction-limited detection efficiency of superconducting nanowire single-photon detectors,” Appl. Phys. Lett. 90(10), 101110 (2007).
[Crossref]

F. Mattioli, R. Leoni, A. Gaggero, M. G. Castellano, P. Carelli, F. Marsili, and A. Fiore, “Electrical characterization of superconducting single-photon detectors,” J. Appl. Phys. 101(5), 054302 (2007).
[Crossref]

B. E. Kardynał, S. S. Hees, A. J. Shields, C. Nicoll, I. Farrer, and D. A. Ritchie, “Photon number resolving detector based on a quantum dot field effect transistor,” Appl. Phys. Lett. 90(18), 181114 (2007).
[Crossref]

2001 (2)

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409(6816), 46–52 (2001).
[Crossref] [PubMed]

G. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705 (2001).
[Crossref]

2000 (1)

K. S. Il’in, M. Lindgren, M. Currie, A. D. Semenov, G. N. Gol’tsman, R. Sobolewski, S. I. Cherednichenko, and E. M. Gershenzon, “Picosecond hot-electron energy relaxation in NbN superconducting photodetectors,” Appl. Phys. Lett. 76(19), 2752 (2000).

Aarts, J.

J. J. Renema, R. J. Rengelink, I. Komen, Q. Wang, R. Gaudio, K. P. M. op ’t Hoog, Z. Zhou, D. Sahin, A. Fiore, P. Kes, J. Aarts, M. P. van Exter, M. J. A. de Dood, and E. F. C. Driessen, “The effect of magnetic field on the intrinsic detection efficiency of superconducting single-photon detectors,” Appl. Phys. Lett. 106(9), 092602 (2015).
[Crossref]

Anant, V.

A. J. Kerman, E. A. Dauler, J. K. W. Yang, K. M. Rosfjord, V. Anant, K. K. Berggren, G. N. Gol’tsman, and B. M. Voronov, “Constriction-limited detection efficiency of superconducting nanowire single-photon detectors,” Appl. Phys. Lett. 90(10), 101110 (2007).
[Crossref]

Baek, B.

F. Marsili, V. Verma, J. Stern, S. Harrington, A. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. Shaw, R. Mirinand, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

M. G. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O’Connor, R. J. Warburton, R. H. Hadfield, B. Baek, S. Nam, S. N. Dorenbos, E. Bermúdez Ureña, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, “Enhanced telecom wavelength single-photon detection with NbTiN superconducting nanowires on oxidized silicon,” Appl. Phys. Lett. 96(22), 221109 (2010).
[Crossref]

Becerra, F. E.

F. E. Becerra, J. Fan, and A. Migdall, “Photon number resolution enables quantum receiver for realistic coherent optical communications,” Nat. Photonics 9(1), 48–53 (2014).
[Crossref]

Benkhaoul, M.

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Lévy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics 2(5), 302–306 (2008).
[Crossref]

Berggren, K. K.

E. A. Dauler, A. J. Kerman, B. S. Robinson, J. K. W. Yang, B. Voronov, G. Goltsman, S. A. Hamilton, and K. K. Berggren, “Photon-number-resolution with sub-30-ps timing using multi-element superconducting nanowire single photon detectors,” J. Mod. Opt. 56(2–3), 364–373 (2009).
[Crossref]

A. J. Kerman, E. A. Dauler, J. K. W. Yang, K. M. Rosfjord, V. Anant, K. K. Berggren, G. N. Gol’tsman, and B. M. Voronov, “Constriction-limited detection efficiency of superconducting nanowire single-photon detectors,” Appl. Phys. Lett. 90(10), 101110 (2007).
[Crossref]

Bermúdez Ureña, E.

M. G. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O’Connor, R. J. Warburton, R. H. Hadfield, B. Baek, S. Nam, S. N. Dorenbos, E. Bermúdez Ureña, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, “Enhanced telecom wavelength single-photon detection with NbTiN superconducting nanowires on oxidized silicon,” Appl. Phys. Lett. 96(22), 221109 (2010).
[Crossref]

Bitauld, D.

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Lévy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics 2(5), 302–306 (2008).
[Crossref]

Bulaevskii, L. N.

L. N. Bulaevskii, M. J. Graf, and V. G. Kogan, “Vortex-assisted photon counts and their magnetic field dependence in single-photon superconducting detectors,” Phys. Rev. B 85(1), 014505 (2012).
[Crossref]

Calkins, B.

Carelli, P.

F. Mattioli, R. Leoni, A. Gaggero, M. G. Castellano, P. Carelli, F. Marsili, and A. Fiore, “Electrical characterization of superconducting single-photon detectors,” J. Appl. Phys. 101(5), 054302 (2007).
[Crossref]

Castellano, M. G.

F. Mattioli, R. Leoni, A. Gaggero, M. G. Castellano, P. Carelli, F. Marsili, and A. Fiore, “Electrical characterization of superconducting single-photon detectors,” J. Appl. Phys. 101(5), 054302 (2007).
[Crossref]

Cherednichenko, S. I.

K. S. Il’in, M. Lindgren, M. Currie, A. D. Semenov, G. N. Gol’tsman, R. Sobolewski, S. I. Cherednichenko, and E. M. Gershenzon, “Picosecond hot-electron energy relaxation in NbN superconducting photodetectors,” Appl. Phys. Lett. 76(19), 2752 (2000).

Chulkova, G.

G. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705 (2001).
[Crossref]

Currie, M.

K. S. Il’in, M. Lindgren, M. Currie, A. D. Semenov, G. N. Gol’tsman, R. Sobolewski, S. I. Cherednichenko, and E. M. Gershenzon, “Picosecond hot-electron energy relaxation in NbN superconducting photodetectors,” Appl. Phys. Lett. 76(19), 2752 (2000).

Dauler, E. A.

E. A. Dauler, A. J. Kerman, B. S. Robinson, J. K. W. Yang, B. Voronov, G. Goltsman, S. A. Hamilton, and K. K. Berggren, “Photon-number-resolution with sub-30-ps timing using multi-element superconducting nanowire single photon detectors,” J. Mod. Opt. 56(2–3), 364–373 (2009).
[Crossref]

A. J. Kerman, E. A. Dauler, J. K. W. Yang, K. M. Rosfjord, V. Anant, K. K. Berggren, G. N. Gol’tsman, and B. M. Voronov, “Constriction-limited detection efficiency of superconducting nanowire single-photon detectors,” Appl. Phys. Lett. 90(10), 101110 (2007).
[Crossref]

de Dood, M. J.

J. J. Renema, Q. Wang, R. Gaudio, I. Komen, K. op ’t Hoog, D. Sahin, A. Schilling, M. P. van Exter, A. Fiore, A. Engel, and M. J. de Dood, “Position-dependent local detection efficiency in a nanowire superconducting single-photon detector,” Nano Lett. 15(7), 4541–4545 (2015).
[Crossref] [PubMed]

de Dood, M. J. A.

J. J. Renema, R. J. Rengelink, I. Komen, Q. Wang, R. Gaudio, K. P. M. op ’t Hoog, Z. Zhou, D. Sahin, A. Fiore, P. Kes, J. Aarts, M. P. van Exter, M. J. A. de Dood, and E. F. C. Driessen, “The effect of magnetic field on the intrinsic detection efficiency of superconducting single-photon detectors,” Appl. Phys. Lett. 106(9), 092602 (2015).
[Crossref]

J. J. Renema, R. Gaudio, Q. Wang, Z. Zhou, A. Gaggero, F. Mattioli, R. Leoni, D. Sahin, M. J. A. de Dood, A. Fiore, and M. P. van Exter, “Experimental test of theories of the detection mechanism in a nanowire superconducting single photon detector,” Phys. Rev. Lett. 112(11), 117604 (2014).
[Crossref] [PubMed]

de Riedmatten, H.

N. Sangouard, C. Simon, J. Minar, H. Zbinden, H. de Riedmatten, and N. Gisin, “Long-distance entanglement distribution with single-photon sources,” Phys. Rev. A 76(5), 050301 (2007).
[Crossref]

Divochiy, A.

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Lévy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics 2(5), 302–306 (2008).
[Crossref]

Dorenbos, S. N.

M. G. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O’Connor, R. J. Warburton, R. H. Hadfield, B. Baek, S. Nam, S. N. Dorenbos, E. Bermúdez Ureña, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, “Enhanced telecom wavelength single-photon detection with NbTiN superconducting nanowires on oxidized silicon,” Appl. Phys. Lett. 96(22), 221109 (2010).
[Crossref]

Driessen, E. F. C.

J. J. Renema, R. J. Rengelink, I. Komen, Q. Wang, R. Gaudio, K. P. M. op ’t Hoog, Z. Zhou, D. Sahin, A. Fiore, P. Kes, J. Aarts, M. P. van Exter, M. J. A. de Dood, and E. F. C. Driessen, “The effect of magnetic field on the intrinsic detection efficiency of superconducting single-photon detectors,” Appl. Phys. Lett. 106(9), 092602 (2015).
[Crossref]

Dzardanov, A.

G. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705 (2001).
[Crossref]

Engel, A.

A. Engel, J. Lonsky, X. Zhang, and A. Schilling, “Detection mechanism in SNSPD: numerical results of a conceptually simple, yet powerful detection model,” IEEE Trans. Appl. Supercond. 25(3), 2200407 (2015).
[Crossref]

J. J. Renema, Q. Wang, R. Gaudio, I. Komen, K. op ’t Hoog, D. Sahin, A. Schilling, M. P. van Exter, A. Fiore, A. Engel, and M. J. de Dood, “Position-dependent local detection efficiency in a nanowire superconducting single-photon detector,” Nano Lett. 15(7), 4541–4545 (2015).
[Crossref] [PubMed]

A. Engel, A. Schilling, K. Il’in, and M. Siegel, “Dependence of count rate on magnetic field in superconducting thin-film TaN single-photon detectors,” Phys. Rev. B 86(14), 140506 (2012).
[Crossref]

Fan, J.

F. E. Becerra, J. Fan, and A. Migdall, “Photon number resolution enables quantum receiver for realistic coherent optical communications,” Nat. Photonics 9(1), 48–53 (2014).
[Crossref]

Farrer, I.

B. E. Kardynał, S. S. Hees, A. J. Shields, C. Nicoll, I. Farrer, and D. A. Ritchie, “Photon number resolving detector based on a quantum dot field effect transistor,” Appl. Phys. Lett. 90(18), 181114 (2007).
[Crossref]

Fiore, A.

J. J. Renema, Q. Wang, R. Gaudio, I. Komen, K. op ’t Hoog, D. Sahin, A. Schilling, M. P. van Exter, A. Fiore, A. Engel, and M. J. de Dood, “Position-dependent local detection efficiency in a nanowire superconducting single-photon detector,” Nano Lett. 15(7), 4541–4545 (2015).
[Crossref] [PubMed]

J. J. Renema, R. J. Rengelink, I. Komen, Q. Wang, R. Gaudio, K. P. M. op ’t Hoog, Z. Zhou, D. Sahin, A. Fiore, P. Kes, J. Aarts, M. P. van Exter, M. J. A. de Dood, and E. F. C. Driessen, “The effect of magnetic field on the intrinsic detection efficiency of superconducting single-photon detectors,” Appl. Phys. Lett. 106(9), 092602 (2015).
[Crossref]

F. Mattioli, Z. Zhou, A. Gaggero, R. Gaudio, S. Jahanmirinejad, D. Sahin, F. Marsili, R. Leoni, and A. Fiore, “Photon-number-resolving superconducting nanowire detectors,” Supercond. Sci. Technol. 28(10), 104001 (2015).
[Crossref]

J. J. Renema, R. Gaudio, Q. Wang, Z. Zhou, A. Gaggero, F. Mattioli, R. Leoni, D. Sahin, M. J. A. de Dood, A. Fiore, and M. P. van Exter, “Experimental test of theories of the detection mechanism in a nanowire superconducting single photon detector,” Phys. Rev. Lett. 112(11), 117604 (2014).
[Crossref] [PubMed]

Z. Zhou, S. Jahanmirinejad, F. Mattioli, D. Sahin, G. Frucci, A. Gaggero, R. Leoni, and A. Fiore, “Superconducting series nanowire detector counting up to twelve photons,” Opt. Express 22(3), 3475–3489 (2014).
[Crossref] [PubMed]

S. Jahanmirinejad and A. Fiore, “Proposal for a superconducting photon number resolving detector with large dynamic range,” Opt. Express 20(5), 5017–5028 (2012).
[Crossref] [PubMed]

S. Jahanmirinejad, G. Frucci, F. Mattioli, D. Sahin, A. Gaggero, R. Leoni, and A. Fiore, “Photon-number resolving detector based on a series array of superconducting nanowires,” Appl. Phys. Lett. 101(7), 072602 (2012).
[Crossref]

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Lévy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics 2(5), 302–306 (2008).
[Crossref]

F. Mattioli, R. Leoni, A. Gaggero, M. G. Castellano, P. Carelli, F. Marsili, and A. Fiore, “Electrical characterization of superconducting single-photon detectors,” J. Appl. Phys. 101(5), 054302 (2007).
[Crossref]

Frucci, G.

Z. Zhou, S. Jahanmirinejad, F. Mattioli, D. Sahin, G. Frucci, A. Gaggero, R. Leoni, and A. Fiore, “Superconducting series nanowire detector counting up to twelve photons,” Opt. Express 22(3), 3475–3489 (2014).
[Crossref] [PubMed]

S. Jahanmirinejad, G. Frucci, F. Mattioli, D. Sahin, A. Gaggero, R. Leoni, and A. Fiore, “Photon-number resolving detector based on a series array of superconducting nanowires,” Appl. Phys. Lett. 101(7), 072602 (2012).
[Crossref]

Gaggero, A.

F. Mattioli, Z. Zhou, A. Gaggero, R. Gaudio, S. Jahanmirinejad, D. Sahin, F. Marsili, R. Leoni, and A. Fiore, “Photon-number-resolving superconducting nanowire detectors,” Supercond. Sci. Technol. 28(10), 104001 (2015).
[Crossref]

J. J. Renema, R. Gaudio, Q. Wang, Z. Zhou, A. Gaggero, F. Mattioli, R. Leoni, D. Sahin, M. J. A. de Dood, A. Fiore, and M. P. van Exter, “Experimental test of theories of the detection mechanism in a nanowire superconducting single photon detector,” Phys. Rev. Lett. 112(11), 117604 (2014).
[Crossref] [PubMed]

Z. Zhou, S. Jahanmirinejad, F. Mattioli, D. Sahin, G. Frucci, A. Gaggero, R. Leoni, and A. Fiore, “Superconducting series nanowire detector counting up to twelve photons,” Opt. Express 22(3), 3475–3489 (2014).
[Crossref] [PubMed]

S. Jahanmirinejad, G. Frucci, F. Mattioli, D. Sahin, A. Gaggero, R. Leoni, and A. Fiore, “Photon-number resolving detector based on a series array of superconducting nanowires,” Appl. Phys. Lett. 101(7), 072602 (2012).
[Crossref]

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Lévy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics 2(5), 302–306 (2008).
[Crossref]

F. Mattioli, R. Leoni, A. Gaggero, M. G. Castellano, P. Carelli, F. Marsili, and A. Fiore, “Electrical characterization of superconducting single-photon detectors,” J. Appl. Phys. 101(5), 054302 (2007).
[Crossref]

Gaudio, R.

F. Mattioli, Z. Zhou, A. Gaggero, R. Gaudio, S. Jahanmirinejad, D. Sahin, F. Marsili, R. Leoni, and A. Fiore, “Photon-number-resolving superconducting nanowire detectors,” Supercond. Sci. Technol. 28(10), 104001 (2015).
[Crossref]

J. J. Renema, R. J. Rengelink, I. Komen, Q. Wang, R. Gaudio, K. P. M. op ’t Hoog, Z. Zhou, D. Sahin, A. Fiore, P. Kes, J. Aarts, M. P. van Exter, M. J. A. de Dood, and E. F. C. Driessen, “The effect of magnetic field on the intrinsic detection efficiency of superconducting single-photon detectors,” Appl. Phys. Lett. 106(9), 092602 (2015).
[Crossref]

J. J. Renema, Q. Wang, R. Gaudio, I. Komen, K. op ’t Hoog, D. Sahin, A. Schilling, M. P. van Exter, A. Fiore, A. Engel, and M. J. de Dood, “Position-dependent local detection efficiency in a nanowire superconducting single-photon detector,” Nano Lett. 15(7), 4541–4545 (2015).
[Crossref] [PubMed]

J. J. Renema, R. Gaudio, Q. Wang, Z. Zhou, A. Gaggero, F. Mattioli, R. Leoni, D. Sahin, M. J. A. de Dood, A. Fiore, and M. P. van Exter, “Experimental test of theories of the detection mechanism in a nanowire superconducting single photon detector,” Phys. Rev. Lett. 112(11), 117604 (2014).
[Crossref] [PubMed]

Gerrits, T.

F. Marsili, V. Verma, J. Stern, S. Harrington, A. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. Shaw, R. Mirinand, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

T. Gerrits, B. Calkins, N. Tomlin, A. E. Lita, A. Migdall, R. Mirin, and S. W. Nam, “Extending single-photon optimized superconducting transition edge sensors beyond the single-photon counting regime,” Opt. Express 20(21), 23798–23810 (2012).
[Crossref] [PubMed]

Gershenzon, E. M.

K. S. Il’in, M. Lindgren, M. Currie, A. D. Semenov, G. N. Gol’tsman, R. Sobolewski, S. I. Cherednichenko, and E. M. Gershenzon, “Picosecond hot-electron energy relaxation in NbN superconducting photodetectors,” Appl. Phys. Lett. 76(19), 2752 (2000).

Gisin, N.

N. Sangouard, C. Simon, J. Minar, H. Zbinden, H. de Riedmatten, and N. Gisin, “Long-distance entanglement distribution with single-photon sources,” Phys. Rev. A 76(5), 050301 (2007).
[Crossref]

Gol’tsman, G.

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Lévy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics 2(5), 302–306 (2008).
[Crossref]

G. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705 (2001).
[Crossref]

Gol’tsman, G. N.

A. J. Kerman, E. A. Dauler, J. K. W. Yang, K. M. Rosfjord, V. Anant, K. K. Berggren, G. N. Gol’tsman, and B. M. Voronov, “Constriction-limited detection efficiency of superconducting nanowire single-photon detectors,” Appl. Phys. Lett. 90(10), 101110 (2007).
[Crossref]

K. S. Il’in, M. Lindgren, M. Currie, A. D. Semenov, G. N. Gol’tsman, R. Sobolewski, S. I. Cherednichenko, and E. M. Gershenzon, “Picosecond hot-electron energy relaxation in NbN superconducting photodetectors,” Appl. Phys. Lett. 76(19), 2752 (2000).

Goltsman, G.

E. A. Dauler, A. J. Kerman, B. S. Robinson, J. K. W. Yang, B. Voronov, G. Goltsman, S. A. Hamilton, and K. K. Berggren, “Photon-number-resolution with sub-30-ps timing using multi-element superconducting nanowire single photon detectors,” J. Mod. Opt. 56(2–3), 364–373 (2009).
[Crossref]

Graf, M. J.

L. N. Bulaevskii, M. J. Graf, and V. G. Kogan, “Vortex-assisted photon counts and their magnetic field dependence in single-photon superconducting detectors,” Phys. Rev. B 85(1), 014505 (2012).
[Crossref]

Hadfield, R. H.

C. M. Natarajan, M. G. Tanner, and R. H. Hadfield, “Superconducting nanowire single-photon detectors: physics and applications,” Supercond. Sci. Technol. 25(6), 063001 (2012).
[Crossref]

M. G. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O’Connor, R. J. Warburton, R. H. Hadfield, B. Baek, S. Nam, S. N. Dorenbos, E. Bermúdez Ureña, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, “Enhanced telecom wavelength single-photon detection with NbTiN superconducting nanowires on oxidized silicon,” Appl. Phys. Lett. 96(22), 221109 (2010).
[Crossref]

Hamilton, S. A.

E. A. Dauler, A. J. Kerman, B. S. Robinson, J. K. W. Yang, B. Voronov, G. Goltsman, S. A. Hamilton, and K. K. Berggren, “Photon-number-resolution with sub-30-ps timing using multi-element superconducting nanowire single photon detectors,” J. Mod. Opt. 56(2–3), 364–373 (2009).
[Crossref]

Harrington, S.

F. Marsili, V. Verma, J. Stern, S. Harrington, A. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. Shaw, R. Mirinand, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

Hees, S. S.

B. E. Kardynał, S. S. Hees, A. J. Shields, C. Nicoll, I. Farrer, and D. A. Ritchie, “Photon number resolving detector based on a quantum dot field effect transistor,” Appl. Phys. Lett. 90(18), 181114 (2007).
[Crossref]

Il’in, K.

A. Engel, A. Schilling, K. Il’in, and M. Siegel, “Dependence of count rate on magnetic field in superconducting thin-film TaN single-photon detectors,” Phys. Rev. B 86(14), 140506 (2012).
[Crossref]

Il’in, K. S.

K. S. Il’in, M. Lindgren, M. Currie, A. D. Semenov, G. N. Gol’tsman, R. Sobolewski, S. I. Cherednichenko, and E. M. Gershenzon, “Picosecond hot-electron energy relaxation in NbN superconducting photodetectors,” Appl. Phys. Lett. 76(19), 2752 (2000).

Jahanmirinejad, S.

F. Mattioli, Z. Zhou, A. Gaggero, R. Gaudio, S. Jahanmirinejad, D. Sahin, F. Marsili, R. Leoni, and A. Fiore, “Photon-number-resolving superconducting nanowire detectors,” Supercond. Sci. Technol. 28(10), 104001 (2015).
[Crossref]

Z. Zhou, S. Jahanmirinejad, F. Mattioli, D. Sahin, G. Frucci, A. Gaggero, R. Leoni, and A. Fiore, “Superconducting series nanowire detector counting up to twelve photons,” Opt. Express 22(3), 3475–3489 (2014).
[Crossref] [PubMed]

S. Jahanmirinejad and A. Fiore, “Proposal for a superconducting photon number resolving detector with large dynamic range,” Opt. Express 20(5), 5017–5028 (2012).
[Crossref] [PubMed]

S. Jahanmirinejad, G. Frucci, F. Mattioli, D. Sahin, A. Gaggero, R. Leoni, and A. Fiore, “Photon-number resolving detector based on a series array of superconducting nanowires,” Appl. Phys. Lett. 101(7), 072602 (2012).
[Crossref]

Kardynal, B. E.

B. E. Kardynał, S. S. Hees, A. J. Shields, C. Nicoll, I. Farrer, and D. A. Ritchie, “Photon number resolving detector based on a quantum dot field effect transistor,” Appl. Phys. Lett. 90(18), 181114 (2007).
[Crossref]

Kaurova, N.

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Lévy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics 2(5), 302–306 (2008).
[Crossref]

Kerman, A. J.

E. A. Dauler, A. J. Kerman, B. S. Robinson, J. K. W. Yang, B. Voronov, G. Goltsman, S. A. Hamilton, and K. K. Berggren, “Photon-number-resolution with sub-30-ps timing using multi-element superconducting nanowire single photon detectors,” J. Mod. Opt. 56(2–3), 364–373 (2009).
[Crossref]

A. J. Kerman, E. A. Dauler, J. K. W. Yang, K. M. Rosfjord, V. Anant, K. K. Berggren, G. N. Gol’tsman, and B. M. Voronov, “Constriction-limited detection efficiency of superconducting nanowire single-photon detectors,” Appl. Phys. Lett. 90(10), 101110 (2007).
[Crossref]

Kes, P.

J. J. Renema, R. J. Rengelink, I. Komen, Q. Wang, R. Gaudio, K. P. M. op ’t Hoog, Z. Zhou, D. Sahin, A. Fiore, P. Kes, J. Aarts, M. P. van Exter, M. J. A. de Dood, and E. F. C. Driessen, “The effect of magnetic field on the intrinsic detection efficiency of superconducting single-photon detectors,” Appl. Phys. Lett. 106(9), 092602 (2015).
[Crossref]

Klapwijk, T. M.

M. G. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O’Connor, R. J. Warburton, R. H. Hadfield, B. Baek, S. Nam, S. N. Dorenbos, E. Bermúdez Ureña, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, “Enhanced telecom wavelength single-photon detection with NbTiN superconducting nanowires on oxidized silicon,” Appl. Phys. Lett. 96(22), 221109 (2010).
[Crossref]

Knill, E.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409(6816), 46–52 (2001).
[Crossref] [PubMed]

Kogan, V. G.

L. N. Bulaevskii, M. J. Graf, and V. G. Kogan, “Vortex-assisted photon counts and their magnetic field dependence in single-photon superconducting detectors,” Phys. Rev. B 85(1), 014505 (2012).
[Crossref]

Komen, I.

J. J. Renema, Q. Wang, R. Gaudio, I. Komen, K. op ’t Hoog, D. Sahin, A. Schilling, M. P. van Exter, A. Fiore, A. Engel, and M. J. de Dood, “Position-dependent local detection efficiency in a nanowire superconducting single-photon detector,” Nano Lett. 15(7), 4541–4545 (2015).
[Crossref] [PubMed]

J. J. Renema, R. J. Rengelink, I. Komen, Q. Wang, R. Gaudio, K. P. M. op ’t Hoog, Z. Zhou, D. Sahin, A. Fiore, P. Kes, J. Aarts, M. P. van Exter, M. J. A. de Dood, and E. F. C. Driessen, “The effect of magnetic field on the intrinsic detection efficiency of superconducting single-photon detectors,” Appl. Phys. Lett. 106(9), 092602 (2015).
[Crossref]

Korneev, A.

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Lévy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics 2(5), 302–306 (2008).
[Crossref]

Laflamme, R.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409(6816), 46–52 (2001).
[Crossref] [PubMed]

Lagoudakis, K. G.

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Lévy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics 2(5), 302–306 (2008).
[Crossref]

Leoni, R.

F. Mattioli, Z. Zhou, A. Gaggero, R. Gaudio, S. Jahanmirinejad, D. Sahin, F. Marsili, R. Leoni, and A. Fiore, “Photon-number-resolving superconducting nanowire detectors,” Supercond. Sci. Technol. 28(10), 104001 (2015).
[Crossref]

J. J. Renema, R. Gaudio, Q. Wang, Z. Zhou, A. Gaggero, F. Mattioli, R. Leoni, D. Sahin, M. J. A. de Dood, A. Fiore, and M. P. van Exter, “Experimental test of theories of the detection mechanism in a nanowire superconducting single photon detector,” Phys. Rev. Lett. 112(11), 117604 (2014).
[Crossref] [PubMed]

Z. Zhou, S. Jahanmirinejad, F. Mattioli, D. Sahin, G. Frucci, A. Gaggero, R. Leoni, and A. Fiore, “Superconducting series nanowire detector counting up to twelve photons,” Opt. Express 22(3), 3475–3489 (2014).
[Crossref] [PubMed]

S. Jahanmirinejad, G. Frucci, F. Mattioli, D. Sahin, A. Gaggero, R. Leoni, and A. Fiore, “Photon-number resolving detector based on a series array of superconducting nanowires,” Appl. Phys. Lett. 101(7), 072602 (2012).
[Crossref]

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Lévy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics 2(5), 302–306 (2008).
[Crossref]

F. Mattioli, R. Leoni, A. Gaggero, M. G. Castellano, P. Carelli, F. Marsili, and A. Fiore, “Electrical characterization of superconducting single-photon detectors,” J. Appl. Phys. 101(5), 054302 (2007).
[Crossref]

Lévy, F.

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Lévy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics 2(5), 302–306 (2008).
[Crossref]

Lindgren, M.

K. S. Il’in, M. Lindgren, M. Currie, A. D. Semenov, G. N. Gol’tsman, R. Sobolewski, S. I. Cherednichenko, and E. M. Gershenzon, “Picosecond hot-electron energy relaxation in NbN superconducting photodetectors,” Appl. Phys. Lett. 76(19), 2752 (2000).

Lipatov, A.

G. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705 (2001).
[Crossref]

Lita, A.

F. Marsili, V. Verma, J. Stern, S. Harrington, A. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. Shaw, R. Mirinand, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

Lita, A. E.

Lonsky, J.

A. Engel, J. Lonsky, X. Zhang, and A. Schilling, “Detection mechanism in SNSPD: numerical results of a conceptually simple, yet powerful detection model,” IEEE Trans. Appl. Supercond. 25(3), 2200407 (2015).
[Crossref]

Marsili, F.

F. Mattioli, Z. Zhou, A. Gaggero, R. Gaudio, S. Jahanmirinejad, D. Sahin, F. Marsili, R. Leoni, and A. Fiore, “Photon-number-resolving superconducting nanowire detectors,” Supercond. Sci. Technol. 28(10), 104001 (2015).
[Crossref]

F. Marsili, V. Verma, J. Stern, S. Harrington, A. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. Shaw, R. Mirinand, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Lévy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics 2(5), 302–306 (2008).
[Crossref]

F. Mattioli, R. Leoni, A. Gaggero, M. G. Castellano, P. Carelli, F. Marsili, and A. Fiore, “Electrical characterization of superconducting single-photon detectors,” J. Appl. Phys. 101(5), 054302 (2007).
[Crossref]

Mattioli, F.

F. Mattioli, Z. Zhou, A. Gaggero, R. Gaudio, S. Jahanmirinejad, D. Sahin, F. Marsili, R. Leoni, and A. Fiore, “Photon-number-resolving superconducting nanowire detectors,” Supercond. Sci. Technol. 28(10), 104001 (2015).
[Crossref]

J. J. Renema, R. Gaudio, Q. Wang, Z. Zhou, A. Gaggero, F. Mattioli, R. Leoni, D. Sahin, M. J. A. de Dood, A. Fiore, and M. P. van Exter, “Experimental test of theories of the detection mechanism in a nanowire superconducting single photon detector,” Phys. Rev. Lett. 112(11), 117604 (2014).
[Crossref] [PubMed]

Z. Zhou, S. Jahanmirinejad, F. Mattioli, D. Sahin, G. Frucci, A. Gaggero, R. Leoni, and A. Fiore, “Superconducting series nanowire detector counting up to twelve photons,” Opt. Express 22(3), 3475–3489 (2014).
[Crossref] [PubMed]

S. Jahanmirinejad, G. Frucci, F. Mattioli, D. Sahin, A. Gaggero, R. Leoni, and A. Fiore, “Photon-number resolving detector based on a series array of superconducting nanowires,” Appl. Phys. Lett. 101(7), 072602 (2012).
[Crossref]

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Lévy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics 2(5), 302–306 (2008).
[Crossref]

F. Mattioli, R. Leoni, A. Gaggero, M. G. Castellano, P. Carelli, F. Marsili, and A. Fiore, “Electrical characterization of superconducting single-photon detectors,” J. Appl. Phys. 101(5), 054302 (2007).
[Crossref]

Migdall, A.

Milburn, G. J.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409(6816), 46–52 (2001).
[Crossref] [PubMed]

Minaeva, O.

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Lévy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics 2(5), 302–306 (2008).
[Crossref]

Minar, J.

N. Sangouard, C. Simon, J. Minar, H. Zbinden, H. de Riedmatten, and N. Gisin, “Long-distance entanglement distribution with single-photon sources,” Phys. Rev. A 76(5), 050301 (2007).
[Crossref]

Mirin, R.

Mirinand, R.

F. Marsili, V. Verma, J. Stern, S. Harrington, A. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. Shaw, R. Mirinand, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

Nam, S.

M. G. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O’Connor, R. J. Warburton, R. H. Hadfield, B. Baek, S. Nam, S. N. Dorenbos, E. Bermúdez Ureña, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, “Enhanced telecom wavelength single-photon detection with NbTiN superconducting nanowires on oxidized silicon,” Appl. Phys. Lett. 96(22), 221109 (2010).
[Crossref]

Nam, S. W.

F. Marsili, V. Verma, J. Stern, S. Harrington, A. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. Shaw, R. Mirinand, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

T. Gerrits, B. Calkins, N. Tomlin, A. E. Lita, A. Migdall, R. Mirin, and S. W. Nam, “Extending single-photon optimized superconducting transition edge sensors beyond the single-photon counting regime,” Opt. Express 20(21), 23798–23810 (2012).
[Crossref] [PubMed]

Natarajan, C. M.

C. M. Natarajan, M. G. Tanner, and R. H. Hadfield, “Superconducting nanowire single-photon detectors: physics and applications,” Supercond. Sci. Technol. 25(6), 063001 (2012).
[Crossref]

M. G. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O’Connor, R. J. Warburton, R. H. Hadfield, B. Baek, S. Nam, S. N. Dorenbos, E. Bermúdez Ureña, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, “Enhanced telecom wavelength single-photon detection with NbTiN superconducting nanowires on oxidized silicon,” Appl. Phys. Lett. 96(22), 221109 (2010).
[Crossref]

Nicoll, C.

B. E. Kardynał, S. S. Hees, A. J. Shields, C. Nicoll, I. Farrer, and D. A. Ritchie, “Photon number resolving detector based on a quantum dot field effect transistor,” Appl. Phys. Lett. 90(18), 181114 (2007).
[Crossref]

O’Connor, J. A.

M. G. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O’Connor, R. J. Warburton, R. H. Hadfield, B. Baek, S. Nam, S. N. Dorenbos, E. Bermúdez Ureña, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, “Enhanced telecom wavelength single-photon detection with NbTiN superconducting nanowires on oxidized silicon,” Appl. Phys. Lett. 96(22), 221109 (2010).
[Crossref]

Okunev, O.

G. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705 (2001).
[Crossref]

op ’t Hoog, K.

J. J. Renema, Q. Wang, R. Gaudio, I. Komen, K. op ’t Hoog, D. Sahin, A. Schilling, M. P. van Exter, A. Fiore, A. Engel, and M. J. de Dood, “Position-dependent local detection efficiency in a nanowire superconducting single-photon detector,” Nano Lett. 15(7), 4541–4545 (2015).
[Crossref] [PubMed]

op ’t Hoog, K. P. M.

J. J. Renema, R. J. Rengelink, I. Komen, Q. Wang, R. Gaudio, K. P. M. op ’t Hoog, Z. Zhou, D. Sahin, A. Fiore, P. Kes, J. Aarts, M. P. van Exter, M. J. A. de Dood, and E. F. C. Driessen, “The effect of magnetic field on the intrinsic detection efficiency of superconducting single-photon detectors,” Appl. Phys. Lett. 106(9), 092602 (2015).
[Crossref]

Pomarico, E.

Pottapenjara, V. K.

M. G. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O’Connor, R. J. Warburton, R. H. Hadfield, B. Baek, S. Nam, S. N. Dorenbos, E. Bermúdez Ureña, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, “Enhanced telecom wavelength single-photon detection with NbTiN superconducting nanowires on oxidized silicon,” Appl. Phys. Lett. 96(22), 221109 (2010).
[Crossref]

Renema, J. J.

J. J. Renema, R. J. Rengelink, I. Komen, Q. Wang, R. Gaudio, K. P. M. op ’t Hoog, Z. Zhou, D. Sahin, A. Fiore, P. Kes, J. Aarts, M. P. van Exter, M. J. A. de Dood, and E. F. C. Driessen, “The effect of magnetic field on the intrinsic detection efficiency of superconducting single-photon detectors,” Appl. Phys. Lett. 106(9), 092602 (2015).
[Crossref]

J. J. Renema, Q. Wang, R. Gaudio, I. Komen, K. op ’t Hoog, D. Sahin, A. Schilling, M. P. van Exter, A. Fiore, A. Engel, and M. J. de Dood, “Position-dependent local detection efficiency in a nanowire superconducting single-photon detector,” Nano Lett. 15(7), 4541–4545 (2015).
[Crossref] [PubMed]

J. J. Renema, R. Gaudio, Q. Wang, Z. Zhou, A. Gaggero, F. Mattioli, R. Leoni, D. Sahin, M. J. A. de Dood, A. Fiore, and M. P. van Exter, “Experimental test of theories of the detection mechanism in a nanowire superconducting single photon detector,” Phys. Rev. Lett. 112(11), 117604 (2014).
[Crossref] [PubMed]

Rengelink, R. J.

J. J. Renema, R. J. Rengelink, I. Komen, Q. Wang, R. Gaudio, K. P. M. op ’t Hoog, Z. Zhou, D. Sahin, A. Fiore, P. Kes, J. Aarts, M. P. van Exter, M. J. A. de Dood, and E. F. C. Driessen, “The effect of magnetic field on the intrinsic detection efficiency of superconducting single-photon detectors,” Appl. Phys. Lett. 106(9), 092602 (2015).
[Crossref]

Ritchie, D. A.

B. E. Kardynał, S. S. Hees, A. J. Shields, C. Nicoll, I. Farrer, and D. A. Ritchie, “Photon number resolving detector based on a quantum dot field effect transistor,” Appl. Phys. Lett. 90(18), 181114 (2007).
[Crossref]

Robinson, B. S.

E. A. Dauler, A. J. Kerman, B. S. Robinson, J. K. W. Yang, B. Voronov, G. Goltsman, S. A. Hamilton, and K. K. Berggren, “Photon-number-resolution with sub-30-ps timing using multi-element superconducting nanowire single photon detectors,” J. Mod. Opt. 56(2–3), 364–373 (2009).
[Crossref]

Rosfjord, K. M.

A. J. Kerman, E. A. Dauler, J. K. W. Yang, K. M. Rosfjord, V. Anant, K. K. Berggren, G. N. Gol’tsman, and B. M. Voronov, “Constriction-limited detection efficiency of superconducting nanowire single-photon detectors,” Appl. Phys. Lett. 90(10), 101110 (2007).
[Crossref]

Sahin, D.

J. J. Renema, Q. Wang, R. Gaudio, I. Komen, K. op ’t Hoog, D. Sahin, A. Schilling, M. P. van Exter, A. Fiore, A. Engel, and M. J. de Dood, “Position-dependent local detection efficiency in a nanowire superconducting single-photon detector,” Nano Lett. 15(7), 4541–4545 (2015).
[Crossref] [PubMed]

J. J. Renema, R. J. Rengelink, I. Komen, Q. Wang, R. Gaudio, K. P. M. op ’t Hoog, Z. Zhou, D. Sahin, A. Fiore, P. Kes, J. Aarts, M. P. van Exter, M. J. A. de Dood, and E. F. C. Driessen, “The effect of magnetic field on the intrinsic detection efficiency of superconducting single-photon detectors,” Appl. Phys. Lett. 106(9), 092602 (2015).
[Crossref]

F. Mattioli, Z. Zhou, A. Gaggero, R. Gaudio, S. Jahanmirinejad, D. Sahin, F. Marsili, R. Leoni, and A. Fiore, “Photon-number-resolving superconducting nanowire detectors,” Supercond. Sci. Technol. 28(10), 104001 (2015).
[Crossref]

J. J. Renema, R. Gaudio, Q. Wang, Z. Zhou, A. Gaggero, F. Mattioli, R. Leoni, D. Sahin, M. J. A. de Dood, A. Fiore, and M. P. van Exter, “Experimental test of theories of the detection mechanism in a nanowire superconducting single photon detector,” Phys. Rev. Lett. 112(11), 117604 (2014).
[Crossref] [PubMed]

Z. Zhou, S. Jahanmirinejad, F. Mattioli, D. Sahin, G. Frucci, A. Gaggero, R. Leoni, and A. Fiore, “Superconducting series nanowire detector counting up to twelve photons,” Opt. Express 22(3), 3475–3489 (2014).
[Crossref] [PubMed]

S. Jahanmirinejad, G. Frucci, F. Mattioli, D. Sahin, A. Gaggero, R. Leoni, and A. Fiore, “Photon-number resolving detector based on a series array of superconducting nanowires,” Appl. Phys. Lett. 101(7), 072602 (2012).
[Crossref]

Sangouard, N.

N. Sangouard, C. Simon, J. Minar, H. Zbinden, H. de Riedmatten, and N. Gisin, “Long-distance entanglement distribution with single-photon sources,” Phys. Rev. A 76(5), 050301 (2007).
[Crossref]

Sanguinetti, B.

Schilling, A.

A. Engel, J. Lonsky, X. Zhang, and A. Schilling, “Detection mechanism in SNSPD: numerical results of a conceptually simple, yet powerful detection model,” IEEE Trans. Appl. Supercond. 25(3), 2200407 (2015).
[Crossref]

J. J. Renema, Q. Wang, R. Gaudio, I. Komen, K. op ’t Hoog, D. Sahin, A. Schilling, M. P. van Exter, A. Fiore, A. Engel, and M. J. de Dood, “Position-dependent local detection efficiency in a nanowire superconducting single-photon detector,” Nano Lett. 15(7), 4541–4545 (2015).
[Crossref] [PubMed]

A. Engel, A. Schilling, K. Il’in, and M. Siegel, “Dependence of count rate on magnetic field in superconducting thin-film TaN single-photon detectors,” Phys. Rev. B 86(14), 140506 (2012).
[Crossref]

Seleznev, V.

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Lévy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics 2(5), 302–306 (2008).
[Crossref]

Semenov, A.

G. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705 (2001).
[Crossref]

Semenov, A. D.

K. S. Il’in, M. Lindgren, M. Currie, A. D. Semenov, G. N. Gol’tsman, R. Sobolewski, S. I. Cherednichenko, and E. M. Gershenzon, “Picosecond hot-electron energy relaxation in NbN superconducting photodetectors,” Appl. Phys. Lett. 76(19), 2752 (2000).

Shaw, M.

F. Marsili, V. Verma, J. Stern, S. Harrington, A. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. Shaw, R. Mirinand, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

Shields, A. J.

B. E. Kardynał, S. S. Hees, A. J. Shields, C. Nicoll, I. Farrer, and D. A. Ritchie, “Photon number resolving detector based on a quantum dot field effect transistor,” Appl. Phys. Lett. 90(18), 181114 (2007).
[Crossref]

Siegel, M.

A. Engel, A. Schilling, K. Il’in, and M. Siegel, “Dependence of count rate on magnetic field in superconducting thin-film TaN single-photon detectors,” Phys. Rev. B 86(14), 140506 (2012).
[Crossref]

Simon, C.

N. Sangouard, C. Simon, J. Minar, H. Zbinden, H. de Riedmatten, and N. Gisin, “Long-distance entanglement distribution with single-photon sources,” Phys. Rev. A 76(5), 050301 (2007).
[Crossref]

Smirnov, K.

G. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705 (2001).
[Crossref]

Sobolewski, R.

G. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705 (2001).
[Crossref]

K. S. Il’in, M. Lindgren, M. Currie, A. D. Semenov, G. N. Gol’tsman, R. Sobolewski, S. I. Cherednichenko, and E. M. Gershenzon, “Picosecond hot-electron energy relaxation in NbN superconducting photodetectors,” Appl. Phys. Lett. 76(19), 2752 (2000).

Stern, J.

F. Marsili, V. Verma, J. Stern, S. Harrington, A. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. Shaw, R. Mirinand, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

Tanner, M. G.

C. M. Natarajan, M. G. Tanner, and R. H. Hadfield, “Superconducting nanowire single-photon detectors: physics and applications,” Supercond. Sci. Technol. 25(6), 063001 (2012).
[Crossref]

M. G. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O’Connor, R. J. Warburton, R. H. Hadfield, B. Baek, S. Nam, S. N. Dorenbos, E. Bermúdez Ureña, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, “Enhanced telecom wavelength single-photon detection with NbTiN superconducting nanowires on oxidized silicon,” Appl. Phys. Lett. 96(22), 221109 (2010).
[Crossref]

Thew, R.

Tomlin, N.

van Exter, M. P.

J. J. Renema, Q. Wang, R. Gaudio, I. Komen, K. op ’t Hoog, D. Sahin, A. Schilling, M. P. van Exter, A. Fiore, A. Engel, and M. J. de Dood, “Position-dependent local detection efficiency in a nanowire superconducting single-photon detector,” Nano Lett. 15(7), 4541–4545 (2015).
[Crossref] [PubMed]

J. J. Renema, R. J. Rengelink, I. Komen, Q. Wang, R. Gaudio, K. P. M. op ’t Hoog, Z. Zhou, D. Sahin, A. Fiore, P. Kes, J. Aarts, M. P. van Exter, M. J. A. de Dood, and E. F. C. Driessen, “The effect of magnetic field on the intrinsic detection efficiency of superconducting single-photon detectors,” Appl. Phys. Lett. 106(9), 092602 (2015).
[Crossref]

J. J. Renema, R. Gaudio, Q. Wang, Z. Zhou, A. Gaggero, F. Mattioli, R. Leoni, D. Sahin, M. J. A. de Dood, A. Fiore, and M. P. van Exter, “Experimental test of theories of the detection mechanism in a nanowire superconducting single photon detector,” Phys. Rev. Lett. 112(11), 117604 (2014).
[Crossref] [PubMed]

Vayshenker, I.

F. Marsili, V. Verma, J. Stern, S. Harrington, A. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. Shaw, R. Mirinand, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

Verma, V.

F. Marsili, V. Verma, J. Stern, S. Harrington, A. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. Shaw, R. Mirinand, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

Vodolazov, D. Y.

D. Y. Vodolazov, “Current dependence of the red boundary of superconducting single-photon detectors in the modified hot-spot model,” Phys. Rev. B 90(5), 054515 (2014).
[Crossref]

Voronov, B.

E. A. Dauler, A. J. Kerman, B. S. Robinson, J. K. W. Yang, B. Voronov, G. Goltsman, S. A. Hamilton, and K. K. Berggren, “Photon-number-resolution with sub-30-ps timing using multi-element superconducting nanowire single photon detectors,” J. Mod. Opt. 56(2–3), 364–373 (2009).
[Crossref]

G. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705 (2001).
[Crossref]

Voronov, B. M.

A. J. Kerman, E. A. Dauler, J. K. W. Yang, K. M. Rosfjord, V. Anant, K. K. Berggren, G. N. Gol’tsman, and B. M. Voronov, “Constriction-limited detection efficiency of superconducting nanowire single-photon detectors,” Appl. Phys. Lett. 90(10), 101110 (2007).
[Crossref]

Wang, Q.

J. J. Renema, Q. Wang, R. Gaudio, I. Komen, K. op ’t Hoog, D. Sahin, A. Schilling, M. P. van Exter, A. Fiore, A. Engel, and M. J. de Dood, “Position-dependent local detection efficiency in a nanowire superconducting single-photon detector,” Nano Lett. 15(7), 4541–4545 (2015).
[Crossref] [PubMed]

J. J. Renema, R. J. Rengelink, I. Komen, Q. Wang, R. Gaudio, K. P. M. op ’t Hoog, Z. Zhou, D. Sahin, A. Fiore, P. Kes, J. Aarts, M. P. van Exter, M. J. A. de Dood, and E. F. C. Driessen, “The effect of magnetic field on the intrinsic detection efficiency of superconducting single-photon detectors,” Appl. Phys. Lett. 106(9), 092602 (2015).
[Crossref]

J. J. Renema, R. Gaudio, Q. Wang, Z. Zhou, A. Gaggero, F. Mattioli, R. Leoni, D. Sahin, M. J. A. de Dood, A. Fiore, and M. P. van Exter, “Experimental test of theories of the detection mechanism in a nanowire superconducting single photon detector,” Phys. Rev. Lett. 112(11), 117604 (2014).
[Crossref] [PubMed]

Warburton, R. J.

M. G. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O’Connor, R. J. Warburton, R. H. Hadfield, B. Baek, S. Nam, S. N. Dorenbos, E. Bermúdez Ureña, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, “Enhanced telecom wavelength single-photon detection with NbTiN superconducting nanowires on oxidized silicon,” Appl. Phys. Lett. 96(22), 221109 (2010).
[Crossref]

Williams, C.

G. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705 (2001).
[Crossref]

Yang, J. K. W.

E. A. Dauler, A. J. Kerman, B. S. Robinson, J. K. W. Yang, B. Voronov, G. Goltsman, S. A. Hamilton, and K. K. Berggren, “Photon-number-resolution with sub-30-ps timing using multi-element superconducting nanowire single photon detectors,” J. Mod. Opt. 56(2–3), 364–373 (2009).
[Crossref]

A. J. Kerman, E. A. Dauler, J. K. W. Yang, K. M. Rosfjord, V. Anant, K. K. Berggren, G. N. Gol’tsman, and B. M. Voronov, “Constriction-limited detection efficiency of superconducting nanowire single-photon detectors,” Appl. Phys. Lett. 90(10), 101110 (2007).
[Crossref]

Zbinden, H.

E. Pomarico, B. Sanguinetti, R. Thew, and H. Zbinden, “Room temperature photon number resolving detector for infared wavelengths,” Opt. Express 18(10), 10750–10759 (2010).
[Crossref] [PubMed]

N. Sangouard, C. Simon, J. Minar, H. Zbinden, H. de Riedmatten, and N. Gisin, “Long-distance entanglement distribution with single-photon sources,” Phys. Rev. A 76(5), 050301 (2007).
[Crossref]

Zhang, X.

A. Engel, J. Lonsky, X. Zhang, and A. Schilling, “Detection mechanism in SNSPD: numerical results of a conceptually simple, yet powerful detection model,” IEEE Trans. Appl. Supercond. 25(3), 2200407 (2015).
[Crossref]

Zhou, Z.

J. J. Renema, R. J. Rengelink, I. Komen, Q. Wang, R. Gaudio, K. P. M. op ’t Hoog, Z. Zhou, D. Sahin, A. Fiore, P. Kes, J. Aarts, M. P. van Exter, M. J. A. de Dood, and E. F. C. Driessen, “The effect of magnetic field on the intrinsic detection efficiency of superconducting single-photon detectors,” Appl. Phys. Lett. 106(9), 092602 (2015).
[Crossref]

F. Mattioli, Z. Zhou, A. Gaggero, R. Gaudio, S. Jahanmirinejad, D. Sahin, F. Marsili, R. Leoni, and A. Fiore, “Photon-number-resolving superconducting nanowire detectors,” Supercond. Sci. Technol. 28(10), 104001 (2015).
[Crossref]

J. J. Renema, R. Gaudio, Q. Wang, Z. Zhou, A. Gaggero, F. Mattioli, R. Leoni, D. Sahin, M. J. A. de Dood, A. Fiore, and M. P. van Exter, “Experimental test of theories of the detection mechanism in a nanowire superconducting single photon detector,” Phys. Rev. Lett. 112(11), 117604 (2014).
[Crossref] [PubMed]

Z. Zhou, S. Jahanmirinejad, F. Mattioli, D. Sahin, G. Frucci, A. Gaggero, R. Leoni, and A. Fiore, “Superconducting series nanowire detector counting up to twelve photons,” Opt. Express 22(3), 3475–3489 (2014).
[Crossref] [PubMed]

Zijlstra, T.

M. G. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O’Connor, R. J. Warburton, R. H. Hadfield, B. Baek, S. Nam, S. N. Dorenbos, E. Bermúdez Ureña, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, “Enhanced telecom wavelength single-photon detection with NbTiN superconducting nanowires on oxidized silicon,” Appl. Phys. Lett. 96(22), 221109 (2010).
[Crossref]

Zwiller, V.

M. G. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O’Connor, R. J. Warburton, R. H. Hadfield, B. Baek, S. Nam, S. N. Dorenbos, E. Bermúdez Ureña, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, “Enhanced telecom wavelength single-photon detection with NbTiN superconducting nanowires on oxidized silicon,” Appl. Phys. Lett. 96(22), 221109 (2010).
[Crossref]

Appl. Phys. Lett. (7)

G. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705 (2001).
[Crossref]

J. J. Renema, R. J. Rengelink, I. Komen, Q. Wang, R. Gaudio, K. P. M. op ’t Hoog, Z. Zhou, D. Sahin, A. Fiore, P. Kes, J. Aarts, M. P. van Exter, M. J. A. de Dood, and E. F. C. Driessen, “The effect of magnetic field on the intrinsic detection efficiency of superconducting single-photon detectors,” Appl. Phys. Lett. 106(9), 092602 (2015).
[Crossref]

M. G. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O’Connor, R. J. Warburton, R. H. Hadfield, B. Baek, S. Nam, S. N. Dorenbos, E. Bermúdez Ureña, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, “Enhanced telecom wavelength single-photon detection with NbTiN superconducting nanowires on oxidized silicon,” Appl. Phys. Lett. 96(22), 221109 (2010).
[Crossref]

K. S. Il’in, M. Lindgren, M. Currie, A. D. Semenov, G. N. Gol’tsman, R. Sobolewski, S. I. Cherednichenko, and E. M. Gershenzon, “Picosecond hot-electron energy relaxation in NbN superconducting photodetectors,” Appl. Phys. Lett. 76(19), 2752 (2000).

A. J. Kerman, E. A. Dauler, J. K. W. Yang, K. M. Rosfjord, V. Anant, K. K. Berggren, G. N. Gol’tsman, and B. M. Voronov, “Constriction-limited detection efficiency of superconducting nanowire single-photon detectors,” Appl. Phys. Lett. 90(10), 101110 (2007).
[Crossref]

B. E. Kardynał, S. S. Hees, A. J. Shields, C. Nicoll, I. Farrer, and D. A. Ritchie, “Photon number resolving detector based on a quantum dot field effect transistor,” Appl. Phys. Lett. 90(18), 181114 (2007).
[Crossref]

S. Jahanmirinejad, G. Frucci, F. Mattioli, D. Sahin, A. Gaggero, R. Leoni, and A. Fiore, “Photon-number resolving detector based on a series array of superconducting nanowires,” Appl. Phys. Lett. 101(7), 072602 (2012).
[Crossref]

IEEE Trans. Appl. Supercond. (1)

A. Engel, J. Lonsky, X. Zhang, and A. Schilling, “Detection mechanism in SNSPD: numerical results of a conceptually simple, yet powerful detection model,” IEEE Trans. Appl. Supercond. 25(3), 2200407 (2015).
[Crossref]

J. Appl. Phys. (1)

F. Mattioli, R. Leoni, A. Gaggero, M. G. Castellano, P. Carelli, F. Marsili, and A. Fiore, “Electrical characterization of superconducting single-photon detectors,” J. Appl. Phys. 101(5), 054302 (2007).
[Crossref]

J. Mod. Opt. (1)

E. A. Dauler, A. J. Kerman, B. S. Robinson, J. K. W. Yang, B. Voronov, G. Goltsman, S. A. Hamilton, and K. K. Berggren, “Photon-number-resolution with sub-30-ps timing using multi-element superconducting nanowire single photon detectors,” J. Mod. Opt. 56(2–3), 364–373 (2009).
[Crossref]

Nano Lett. (1)

J. J. Renema, Q. Wang, R. Gaudio, I. Komen, K. op ’t Hoog, D. Sahin, A. Schilling, M. P. van Exter, A. Fiore, A. Engel, and M. J. de Dood, “Position-dependent local detection efficiency in a nanowire superconducting single-photon detector,” Nano Lett. 15(7), 4541–4545 (2015).
[Crossref] [PubMed]

Nat. Photonics (3)

F. Marsili, V. Verma, J. Stern, S. Harrington, A. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. Shaw, R. Mirinand, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

F. E. Becerra, J. Fan, and A. Migdall, “Photon number resolution enables quantum receiver for realistic coherent optical communications,” Nat. Photonics 9(1), 48–53 (2014).
[Crossref]

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Lévy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics 2(5), 302–306 (2008).
[Crossref]

Nature (1)

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409(6816), 46–52 (2001).
[Crossref] [PubMed]

Opt. Express (4)

Phys. Rev. A (1)

N. Sangouard, C. Simon, J. Minar, H. Zbinden, H. de Riedmatten, and N. Gisin, “Long-distance entanglement distribution with single-photon sources,” Phys. Rev. A 76(5), 050301 (2007).
[Crossref]

Phys. Rev. B (3)

L. N. Bulaevskii, M. J. Graf, and V. G. Kogan, “Vortex-assisted photon counts and their magnetic field dependence in single-photon superconducting detectors,” Phys. Rev. B 85(1), 014505 (2012).
[Crossref]

A. Engel, A. Schilling, K. Il’in, and M. Siegel, “Dependence of count rate on magnetic field in superconducting thin-film TaN single-photon detectors,” Phys. Rev. B 86(14), 140506 (2012).
[Crossref]

D. Y. Vodolazov, “Current dependence of the red boundary of superconducting single-photon detectors in the modified hot-spot model,” Phys. Rev. B 90(5), 054515 (2014).
[Crossref]

Phys. Rev. Lett. (1)

J. J. Renema, R. Gaudio, Q. Wang, Z. Zhou, A. Gaggero, F. Mattioli, R. Leoni, D. Sahin, M. J. A. de Dood, A. Fiore, and M. P. van Exter, “Experimental test of theories of the detection mechanism in a nanowire superconducting single photon detector,” Phys. Rev. Lett. 112(11), 117604 (2014).
[Crossref] [PubMed]

Supercond. Sci. Technol. (2)

C. M. Natarajan, M. G. Tanner, and R. H. Hadfield, “Superconducting nanowire single-photon detectors: physics and applications,” Supercond. Sci. Technol. 25(6), 063001 (2012).
[Crossref]

F. Mattioli, Z. Zhou, A. Gaggero, R. Gaudio, S. Jahanmirinejad, D. Sahin, F. Marsili, R. Leoni, and A. Fiore, “Photon-number-resolving superconducting nanowire detectors,” Supercond. Sci. Technol. 28(10), 104001 (2015).
[Crossref]

Other (1)

D. Y. Vodolazov, P. Korneeva, A. V. Semenov, A. A. Korneev, and G. N. Goltsman, “Vortex assisted mechanism of photon counting in superconducting nanowire single photon detector revealed by external magnetic field,” arXiv:1505.04689v1 (2015).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 a) Electrical equivalent circuit of a series photon number resolving detector and its bias circuit. Each superconducting nanowire section is connected in parallel with a resistance Rp fabricated on chip. The meander section (orange box) is schematized as a superconducting switch in parallel with its normal resistance and in series with the kinetic inductance Lk. When a photon is absorbed (red lower section in the scheme) the bias current Ib is diverted into the parallel resistance. b) Scanning electron microscopy image of a 24-pixel-PNRD fabricated on Silicon oxide on Si. Each pixel in the optical active area of the detector has been colored for clarity. The nanowire width is 100 nm with a filling factor of 40%. Au–Pd parallel resistors are in blue in the image.
Fig. 2
Fig. 2 IV curve of the 24 pixel- PNRD fabricated on a SiO2/Si substrate. The superconducting to normal transition takes place at about 20.5 μA. The ohmic branch is due to the on chip parallel resistances (dash-dot line is the linear fit used to infer the value of each of them).
Fig. 3
Fig. 3 a) Histograms of the output signals obtained at device current bias IB = 19.0 μA at different light powers in the range 0-15 nW. The light power value refers to the power impinging on the detector area. Twenty-five distinct output levels corresponding to the detections of 0-24 photons are visible. b) and c) histograms at fixed light powers (3.26 nW and 364 pW in b) and c), respectively).
Fig. 4
Fig. 4 a) Experimental output signal coming from the detector illuminated with a sinusoidal light modulation: the average power from the fiber is 414 nW and the modulation frequency is 15 MHz. b) calculated output under a sine-wave power in the same conditions (average over 50 realizations). c) Experimental output data under a square wave light modulation at 100 MHz. The power from the fiber is 3.45 μW, 334 nW and 32 nW for the blue, red and black curve respectively. d) Calculated output under a square-wave power modulation with average power corresponding to the experimental condition for the three cases, averaged over 200 realizations. In the simulation, Vout = 1 corresponds to the peak of the pulse produced by one photon.
Fig. 5
Fig. 5 Experimental (a and c) and simulated (b and d) output signal at 250 MHz (average power from fiber 5.4 μW) (a and b) and 700 MHz (average power from fiber 5.4 μW) (c and d). 200 realizations were used in the simulations.

Metrics