Abstract

Degenerate two-photon absorption (2PA) of a series of organic fluorophores is measured using femtosecond fluorescence excitation method in the wavelength range, λ2PA = 680–1050 nm, and ~100 MHz pulse repetition rate. The function of relative 2PA spectral shape is obtained with estimated accuracy 5%, and the absolute 2PA cross section is measured at selected wavelengths with the accuracy 8%. Significant improvement of the accuracy is achieved by means of rigorous evaluation of the quadratic dependence of the fluorescence signal on the incident photon flux in the whole wavelength range, by comparing results obtained from two independent experiments, as well as due to meticulous evaluation of critical experimental parameters, including the excitation spatial- and temporal pulse shape, laser power and sample geometry. Application of the reference standards in nonlinear transmittance measurements is discussed.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Two-photon absorption standards in the 550–1600 nm excitation wavelength range

Nikolay S. Makarov, Mikhail Drobizhev, and Aleksander Rebane
Opt. Express 16(6) 4029-4047 (2008)

Two-photon absorption spectra of fluorescent isomorphic DNA base analogs

Alexander Mikhaylov, Sophie de Reguardati, Jüri Pahapill, Patrik R. Callis, Bern Kohler, and Aleksander Rebane
Biomed. Opt. Express 9(2) 447-452 (2018)

References

  • View by:
  • |
  • |
  • |

  1. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd ed. (Springer, 2006).
  2. R. L. Southerland, Handbook of Nonlinear Optics, 2nd ed. (Marcel Dekker, 2003).
  3. M. Göpper-Maier, “Über Elementarakte mit zwei Quantensprüngen,” Ann. Phys. 9(3), 273–294 (1931).
    [Crossref]
  4. J. P. Hermann and J. Ducuing, “Absolute measurement of two-photon cross sections,” Phys. Rev. A 5(6), 2557–2568 (1972).
    [Crossref]
  5. C. Xu and W. W. Webb, “Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm,” J. Opt. Soc. Am. B 13(3), 481–491 (1996).
    [Crossref]
  6. M. A. Albota, C. Xu, and W. W. Webb, “Two-photon fluorescence excitation cross sections of biomolecular probes from 690 to 960 nm,” Appl. Opt. 37(31), 7352–7356 (1998).
    [Crossref] [PubMed]
  7. N. S. Makarov, M. Drobizhev, and A. Rebane, “Two-photon absorption standards in the 550-1600 nm excitation wavelength range,” Opt. Express 16(6), 4029–4047 (2008).
    [Crossref] [PubMed]
  8. G. G. Dubinina, R. S. Price, K. A. Abboud, G. Wicks, P. Wnuk, Y. Stepanenko, M. Drobizhev, A. Rebane, and K. S. Schanze, “Phenylene vinylene platinum(II) acetylides with prodigious two-photon absorption,” J. Am. Chem. Soc. 134(47), 19346–19349 (2012).
    [Crossref] [PubMed]
  9. R. E. Bridges, G. L. Fischer, and R. W. Boyd, “Z-scan measurement technique for non-Gaussian beams and arbitrary sample thicknesses,” Opt. Lett. 20(17), 1821–1824 (1995).
    [Crossref] [PubMed]
  10. M. Drobizhev, A. Karotki, M. Kruk, A. Krivokapic, H. L. Anderson, and A. Rebane, “Photon energy upconversion fluorescence in porphyrins: One-photon hot-band absorption versus two-photon absorption,” Chem. Phys. Lett. 370(5-6), 690–699 (2003).
    [Crossref]
  11. J. Mütze, V. Iyer, J. J. Macklin, J. Colonell, B. Karsh, Z. Petrášek, P. Schwille, L. L. Looger, L. D. Lavis, and T. D. Harris, “Excitation spectra and brightness optimization of two-photon excited probes,” Biophys. J. 102(4), 934–944 (2012).
    [Crossref] [PubMed]
  12. M. G. Velasco, E. S. Allgeyer, P. Yuan, J. Grutzendler, and J. Bewersdorf, “Absolute two-photon excitation spectra of red and far-red fluorescent probes,” Opt. Lett. 40(21), 4915–4918 (2015).
    [Crossref] [PubMed]
  13. L.-C. Cheng, N. G. Horton, K. Wang, S.-J. Chen, and C. Xu, “Measurements of multiphoton action cross sections for multiphoton microscopy,” Biomed. Opt. Express 5(10), 3427–3433 (2014).
    [Crossref] [PubMed]
  14. A. Rebane, G. Wicks, M. Drobizhev, T. Cooper, A. Trummal, and M. Uudsemaa, “Two-photon voltmeter for measuring a molecular electric field,” Angew. Chem. Int. Ed. Engl. 54(26), 7582–7586 (2015).
    [Crossref] [PubMed]
  15. I. L. Arbeloa and P. R. Ojeda, “Molecular forms of rhodamine B,” Chem. Phys. Lett. 79(2), 347–350 (1981).
    [Crossref]
  16. D. A. Hinckley, P. G. Seybold, and D. P. Borris, “Solvatochromism and thermochromism of rhodamine solutions,” Spectrochimica Acta 42A, 741–754 (1986).
  17. S. P. McIlroy, E. Cló, L. Nikolajsen, P. K. Frederiksen, C. B. Nielsen, K. V. Mikkelsen, K. V. Gothelf, and P. R. Ogilby, “Two-photon photosensitized production of singlet oxygen: sensitizers with phenylene-ethynylene-based chromophores,” J. Org. Chem. 70(4), 1134–1146 (2005).
    [Crossref] [PubMed]
  18. L. Rodriguez, H.-Y. Ahn, and K. D. Belfield, “Femtosecond two-photon absorption measurements based on the accumulative photo-thermal effect and the Rayleigh interferometer,” Opt. Express 17(22), 19617–19628 (2009).
    [Crossref] [PubMed]
  19. Y. Bae, J. Song, and Y. Kim, “Photoacoustic study of two‐photon absorption in hexagonal ZnS,” J. Appl. Phys. 53(1), 615–619 (1982).
    [Crossref]
  20. R. Kannan, L.-S. Tan, and R. A. Vaia, “Two-photon responsive chromophores containing electron accepting cores,” US Patent 6,555,682 (2003).
  21. R. Kannan, G. S. He, T.-C. Lin, P. N. Prasad, R. A. Vaia, and L.-S. Tan, “Toward highly active two-photon absorbing liquids. Synthesis and characterization of 1,3,5-triazine-based octupolar molecules,” Chem. Mater. 16(1), 185–194 (2004).
    [Crossref]
  22. B. Xu, Y. Coello, V. V. Lozovoy, and M. Dantus, “Two-photon fluorescence excitation spectroscopy by pulse shaping ultrabroad-bandwidth femtosecond laser pulses,” Appl. Opt. 49(32), 6348–6353 (2010).
    [Crossref] [PubMed]
  23. A. Rebane, M. Drobizhev, N. S. Makarov, G. Wicks, P. Wnuk, Y. Stepanenko, J. E. Haley, D. M. Krein, J. L. Fore, A. R. Burke, J. E. Slagle, D. G. McLean, and T. M. Cooper, “Symmetry breaking in platinum acetylide chromophores studied by femtosecond two-photon absorption spectroscopy,” J. Phys. Chem. A 118(21), 3749–3759 (2014).
    [Crossref]
  24. M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
    [Crossref]
  25. M. Rumi and J. W. Perry, “Two-photon absorption: an overview of measurements and principles,” Adv. Opt. Phot. 2, 451–518 (2010).

2015 (2)

A. Rebane, G. Wicks, M. Drobizhev, T. Cooper, A. Trummal, and M. Uudsemaa, “Two-photon voltmeter for measuring a molecular electric field,” Angew. Chem. Int. Ed. Engl. 54(26), 7582–7586 (2015).
[Crossref] [PubMed]

M. G. Velasco, E. S. Allgeyer, P. Yuan, J. Grutzendler, and J. Bewersdorf, “Absolute two-photon excitation spectra of red and far-red fluorescent probes,” Opt. Lett. 40(21), 4915–4918 (2015).
[Crossref] [PubMed]

2014 (2)

L.-C. Cheng, N. G. Horton, K. Wang, S.-J. Chen, and C. Xu, “Measurements of multiphoton action cross sections for multiphoton microscopy,” Biomed. Opt. Express 5(10), 3427–3433 (2014).
[Crossref] [PubMed]

A. Rebane, M. Drobizhev, N. S. Makarov, G. Wicks, P. Wnuk, Y. Stepanenko, J. E. Haley, D. M. Krein, J. L. Fore, A. R. Burke, J. E. Slagle, D. G. McLean, and T. M. Cooper, “Symmetry breaking in platinum acetylide chromophores studied by femtosecond two-photon absorption spectroscopy,” J. Phys. Chem. A 118(21), 3749–3759 (2014).
[Crossref]

2012 (2)

J. Mütze, V. Iyer, J. J. Macklin, J. Colonell, B. Karsh, Z. Petrášek, P. Schwille, L. L. Looger, L. D. Lavis, and T. D. Harris, “Excitation spectra and brightness optimization of two-photon excited probes,” Biophys. J. 102(4), 934–944 (2012).
[Crossref] [PubMed]

G. G. Dubinina, R. S. Price, K. A. Abboud, G. Wicks, P. Wnuk, Y. Stepanenko, M. Drobizhev, A. Rebane, and K. S. Schanze, “Phenylene vinylene platinum(II) acetylides with prodigious two-photon absorption,” J. Am. Chem. Soc. 134(47), 19346–19349 (2012).
[Crossref] [PubMed]

2010 (2)

2009 (1)

2008 (1)

2005 (1)

S. P. McIlroy, E. Cló, L. Nikolajsen, P. K. Frederiksen, C. B. Nielsen, K. V. Mikkelsen, K. V. Gothelf, and P. R. Ogilby, “Two-photon photosensitized production of singlet oxygen: sensitizers with phenylene-ethynylene-based chromophores,” J. Org. Chem. 70(4), 1134–1146 (2005).
[Crossref] [PubMed]

2004 (1)

R. Kannan, G. S. He, T.-C. Lin, P. N. Prasad, R. A. Vaia, and L.-S. Tan, “Toward highly active two-photon absorbing liquids. Synthesis and characterization of 1,3,5-triazine-based octupolar molecules,” Chem. Mater. 16(1), 185–194 (2004).
[Crossref]

2003 (1)

M. Drobizhev, A. Karotki, M. Kruk, A. Krivokapic, H. L. Anderson, and A. Rebane, “Photon energy upconversion fluorescence in porphyrins: One-photon hot-band absorption versus two-photon absorption,” Chem. Phys. Lett. 370(5-6), 690–699 (2003).
[Crossref]

1998 (1)

1996 (1)

1995 (1)

1990 (1)

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

1986 (1)

D. A. Hinckley, P. G. Seybold, and D. P. Borris, “Solvatochromism and thermochromism of rhodamine solutions,” Spectrochimica Acta 42A, 741–754 (1986).

1982 (1)

Y. Bae, J. Song, and Y. Kim, “Photoacoustic study of two‐photon absorption in hexagonal ZnS,” J. Appl. Phys. 53(1), 615–619 (1982).
[Crossref]

1981 (1)

I. L. Arbeloa and P. R. Ojeda, “Molecular forms of rhodamine B,” Chem. Phys. Lett. 79(2), 347–350 (1981).
[Crossref]

1972 (1)

J. P. Hermann and J. Ducuing, “Absolute measurement of two-photon cross sections,” Phys. Rev. A 5(6), 2557–2568 (1972).
[Crossref]

1931 (1)

M. Göpper-Maier, “Über Elementarakte mit zwei Quantensprüngen,” Ann. Phys. 9(3), 273–294 (1931).
[Crossref]

Abboud, K. A.

G. G. Dubinina, R. S. Price, K. A. Abboud, G. Wicks, P. Wnuk, Y. Stepanenko, M. Drobizhev, A. Rebane, and K. S. Schanze, “Phenylene vinylene platinum(II) acetylides with prodigious two-photon absorption,” J. Am. Chem. Soc. 134(47), 19346–19349 (2012).
[Crossref] [PubMed]

Ahn, H.-Y.

Albota, M. A.

Allgeyer, E. S.

Anderson, H. L.

M. Drobizhev, A. Karotki, M. Kruk, A. Krivokapic, H. L. Anderson, and A. Rebane, “Photon energy upconversion fluorescence in porphyrins: One-photon hot-band absorption versus two-photon absorption,” Chem. Phys. Lett. 370(5-6), 690–699 (2003).
[Crossref]

Arbeloa, I. L.

I. L. Arbeloa and P. R. Ojeda, “Molecular forms of rhodamine B,” Chem. Phys. Lett. 79(2), 347–350 (1981).
[Crossref]

Bae, Y.

Y. Bae, J. Song, and Y. Kim, “Photoacoustic study of two‐photon absorption in hexagonal ZnS,” J. Appl. Phys. 53(1), 615–619 (1982).
[Crossref]

Belfield, K. D.

Bewersdorf, J.

Borris, D. P.

D. A. Hinckley, P. G. Seybold, and D. P. Borris, “Solvatochromism and thermochromism of rhodamine solutions,” Spectrochimica Acta 42A, 741–754 (1986).

Boyd, R. W.

Bridges, R. E.

Burke, A. R.

A. Rebane, M. Drobizhev, N. S. Makarov, G. Wicks, P. Wnuk, Y. Stepanenko, J. E. Haley, D. M. Krein, J. L. Fore, A. R. Burke, J. E. Slagle, D. G. McLean, and T. M. Cooper, “Symmetry breaking in platinum acetylide chromophores studied by femtosecond two-photon absorption spectroscopy,” J. Phys. Chem. A 118(21), 3749–3759 (2014).
[Crossref]

Chen, S.-J.

Cheng, L.-C.

Cló, E.

S. P. McIlroy, E. Cló, L. Nikolajsen, P. K. Frederiksen, C. B. Nielsen, K. V. Mikkelsen, K. V. Gothelf, and P. R. Ogilby, “Two-photon photosensitized production of singlet oxygen: sensitizers with phenylene-ethynylene-based chromophores,” J. Org. Chem. 70(4), 1134–1146 (2005).
[Crossref] [PubMed]

Coello, Y.

Colonell, J.

J. Mütze, V. Iyer, J. J. Macklin, J. Colonell, B. Karsh, Z. Petrášek, P. Schwille, L. L. Looger, L. D. Lavis, and T. D. Harris, “Excitation spectra and brightness optimization of two-photon excited probes,” Biophys. J. 102(4), 934–944 (2012).
[Crossref] [PubMed]

Cooper, T.

A. Rebane, G. Wicks, M. Drobizhev, T. Cooper, A. Trummal, and M. Uudsemaa, “Two-photon voltmeter for measuring a molecular electric field,” Angew. Chem. Int. Ed. Engl. 54(26), 7582–7586 (2015).
[Crossref] [PubMed]

Cooper, T. M.

A. Rebane, M. Drobizhev, N. S. Makarov, G. Wicks, P. Wnuk, Y. Stepanenko, J. E. Haley, D. M. Krein, J. L. Fore, A. R. Burke, J. E. Slagle, D. G. McLean, and T. M. Cooper, “Symmetry breaking in platinum acetylide chromophores studied by femtosecond two-photon absorption spectroscopy,” J. Phys. Chem. A 118(21), 3749–3759 (2014).
[Crossref]

Dantus, M.

Drobizhev, M.

A. Rebane, G. Wicks, M. Drobizhev, T. Cooper, A. Trummal, and M. Uudsemaa, “Two-photon voltmeter for measuring a molecular electric field,” Angew. Chem. Int. Ed. Engl. 54(26), 7582–7586 (2015).
[Crossref] [PubMed]

A. Rebane, M. Drobizhev, N. S. Makarov, G. Wicks, P. Wnuk, Y. Stepanenko, J. E. Haley, D. M. Krein, J. L. Fore, A. R. Burke, J. E. Slagle, D. G. McLean, and T. M. Cooper, “Symmetry breaking in platinum acetylide chromophores studied by femtosecond two-photon absorption spectroscopy,” J. Phys. Chem. A 118(21), 3749–3759 (2014).
[Crossref]

G. G. Dubinina, R. S. Price, K. A. Abboud, G. Wicks, P. Wnuk, Y. Stepanenko, M. Drobizhev, A. Rebane, and K. S. Schanze, “Phenylene vinylene platinum(II) acetylides with prodigious two-photon absorption,” J. Am. Chem. Soc. 134(47), 19346–19349 (2012).
[Crossref] [PubMed]

N. S. Makarov, M. Drobizhev, and A. Rebane, “Two-photon absorption standards in the 550-1600 nm excitation wavelength range,” Opt. Express 16(6), 4029–4047 (2008).
[Crossref] [PubMed]

M. Drobizhev, A. Karotki, M. Kruk, A. Krivokapic, H. L. Anderson, and A. Rebane, “Photon energy upconversion fluorescence in porphyrins: One-photon hot-band absorption versus two-photon absorption,” Chem. Phys. Lett. 370(5-6), 690–699 (2003).
[Crossref]

Dubinina, G. G.

G. G. Dubinina, R. S. Price, K. A. Abboud, G. Wicks, P. Wnuk, Y. Stepanenko, M. Drobizhev, A. Rebane, and K. S. Schanze, “Phenylene vinylene platinum(II) acetylides with prodigious two-photon absorption,” J. Am. Chem. Soc. 134(47), 19346–19349 (2012).
[Crossref] [PubMed]

Ducuing, J.

J. P. Hermann and J. Ducuing, “Absolute measurement of two-photon cross sections,” Phys. Rev. A 5(6), 2557–2568 (1972).
[Crossref]

Fischer, G. L.

Fore, J. L.

A. Rebane, M. Drobizhev, N. S. Makarov, G. Wicks, P. Wnuk, Y. Stepanenko, J. E. Haley, D. M. Krein, J. L. Fore, A. R. Burke, J. E. Slagle, D. G. McLean, and T. M. Cooper, “Symmetry breaking in platinum acetylide chromophores studied by femtosecond two-photon absorption spectroscopy,” J. Phys. Chem. A 118(21), 3749–3759 (2014).
[Crossref]

Frederiksen, P. K.

S. P. McIlroy, E. Cló, L. Nikolajsen, P. K. Frederiksen, C. B. Nielsen, K. V. Mikkelsen, K. V. Gothelf, and P. R. Ogilby, “Two-photon photosensitized production of singlet oxygen: sensitizers with phenylene-ethynylene-based chromophores,” J. Org. Chem. 70(4), 1134–1146 (2005).
[Crossref] [PubMed]

Göpper-Maier, M.

M. Göpper-Maier, “Über Elementarakte mit zwei Quantensprüngen,” Ann. Phys. 9(3), 273–294 (1931).
[Crossref]

Gothelf, K. V.

S. P. McIlroy, E. Cló, L. Nikolajsen, P. K. Frederiksen, C. B. Nielsen, K. V. Mikkelsen, K. V. Gothelf, and P. R. Ogilby, “Two-photon photosensitized production of singlet oxygen: sensitizers with phenylene-ethynylene-based chromophores,” J. Org. Chem. 70(4), 1134–1146 (2005).
[Crossref] [PubMed]

Grutzendler, J.

Hagan, D. J.

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Haley, J. E.

A. Rebane, M. Drobizhev, N. S. Makarov, G. Wicks, P. Wnuk, Y. Stepanenko, J. E. Haley, D. M. Krein, J. L. Fore, A. R. Burke, J. E. Slagle, D. G. McLean, and T. M. Cooper, “Symmetry breaking in platinum acetylide chromophores studied by femtosecond two-photon absorption spectroscopy,” J. Phys. Chem. A 118(21), 3749–3759 (2014).
[Crossref]

Harris, T. D.

J. Mütze, V. Iyer, J. J. Macklin, J. Colonell, B. Karsh, Z. Petrášek, P. Schwille, L. L. Looger, L. D. Lavis, and T. D. Harris, “Excitation spectra and brightness optimization of two-photon excited probes,” Biophys. J. 102(4), 934–944 (2012).
[Crossref] [PubMed]

He, G. S.

R. Kannan, G. S. He, T.-C. Lin, P. N. Prasad, R. A. Vaia, and L.-S. Tan, “Toward highly active two-photon absorbing liquids. Synthesis and characterization of 1,3,5-triazine-based octupolar molecules,” Chem. Mater. 16(1), 185–194 (2004).
[Crossref]

Hermann, J. P.

J. P. Hermann and J. Ducuing, “Absolute measurement of two-photon cross sections,” Phys. Rev. A 5(6), 2557–2568 (1972).
[Crossref]

Hinckley, D. A.

D. A. Hinckley, P. G. Seybold, and D. P. Borris, “Solvatochromism and thermochromism of rhodamine solutions,” Spectrochimica Acta 42A, 741–754 (1986).

Horton, N. G.

Iyer, V.

J. Mütze, V. Iyer, J. J. Macklin, J. Colonell, B. Karsh, Z. Petrášek, P. Schwille, L. L. Looger, L. D. Lavis, and T. D. Harris, “Excitation spectra and brightness optimization of two-photon excited probes,” Biophys. J. 102(4), 934–944 (2012).
[Crossref] [PubMed]

Kannan, R.

R. Kannan, G. S. He, T.-C. Lin, P. N. Prasad, R. A. Vaia, and L.-S. Tan, “Toward highly active two-photon absorbing liquids. Synthesis and characterization of 1,3,5-triazine-based octupolar molecules,” Chem. Mater. 16(1), 185–194 (2004).
[Crossref]

Karotki, A.

M. Drobizhev, A. Karotki, M. Kruk, A. Krivokapic, H. L. Anderson, and A. Rebane, “Photon energy upconversion fluorescence in porphyrins: One-photon hot-band absorption versus two-photon absorption,” Chem. Phys. Lett. 370(5-6), 690–699 (2003).
[Crossref]

Karsh, B.

J. Mütze, V. Iyer, J. J. Macklin, J. Colonell, B. Karsh, Z. Petrášek, P. Schwille, L. L. Looger, L. D. Lavis, and T. D. Harris, “Excitation spectra and brightness optimization of two-photon excited probes,” Biophys. J. 102(4), 934–944 (2012).
[Crossref] [PubMed]

Kim, Y.

Y. Bae, J. Song, and Y. Kim, “Photoacoustic study of two‐photon absorption in hexagonal ZnS,” J. Appl. Phys. 53(1), 615–619 (1982).
[Crossref]

Krein, D. M.

A. Rebane, M. Drobizhev, N. S. Makarov, G. Wicks, P. Wnuk, Y. Stepanenko, J. E. Haley, D. M. Krein, J. L. Fore, A. R. Burke, J. E. Slagle, D. G. McLean, and T. M. Cooper, “Symmetry breaking in platinum acetylide chromophores studied by femtosecond two-photon absorption spectroscopy,” J. Phys. Chem. A 118(21), 3749–3759 (2014).
[Crossref]

Krivokapic, A.

M. Drobizhev, A. Karotki, M. Kruk, A. Krivokapic, H. L. Anderson, and A. Rebane, “Photon energy upconversion fluorescence in porphyrins: One-photon hot-band absorption versus two-photon absorption,” Chem. Phys. Lett. 370(5-6), 690–699 (2003).
[Crossref]

Kruk, M.

M. Drobizhev, A. Karotki, M. Kruk, A. Krivokapic, H. L. Anderson, and A. Rebane, “Photon energy upconversion fluorescence in porphyrins: One-photon hot-band absorption versus two-photon absorption,” Chem. Phys. Lett. 370(5-6), 690–699 (2003).
[Crossref]

Lavis, L. D.

J. Mütze, V. Iyer, J. J. Macklin, J. Colonell, B. Karsh, Z. Petrášek, P. Schwille, L. L. Looger, L. D. Lavis, and T. D. Harris, “Excitation spectra and brightness optimization of two-photon excited probes,” Biophys. J. 102(4), 934–944 (2012).
[Crossref] [PubMed]

Lin, T.-C.

R. Kannan, G. S. He, T.-C. Lin, P. N. Prasad, R. A. Vaia, and L.-S. Tan, “Toward highly active two-photon absorbing liquids. Synthesis and characterization of 1,3,5-triazine-based octupolar molecules,” Chem. Mater. 16(1), 185–194 (2004).
[Crossref]

Looger, L. L.

J. Mütze, V. Iyer, J. J. Macklin, J. Colonell, B. Karsh, Z. Petrášek, P. Schwille, L. L. Looger, L. D. Lavis, and T. D. Harris, “Excitation spectra and brightness optimization of two-photon excited probes,” Biophys. J. 102(4), 934–944 (2012).
[Crossref] [PubMed]

Lozovoy, V. V.

Macklin, J. J.

J. Mütze, V. Iyer, J. J. Macklin, J. Colonell, B. Karsh, Z. Petrášek, P. Schwille, L. L. Looger, L. D. Lavis, and T. D. Harris, “Excitation spectra and brightness optimization of two-photon excited probes,” Biophys. J. 102(4), 934–944 (2012).
[Crossref] [PubMed]

Makarov, N. S.

A. Rebane, M. Drobizhev, N. S. Makarov, G. Wicks, P. Wnuk, Y. Stepanenko, J. E. Haley, D. M. Krein, J. L. Fore, A. R. Burke, J. E. Slagle, D. G. McLean, and T. M. Cooper, “Symmetry breaking in platinum acetylide chromophores studied by femtosecond two-photon absorption spectroscopy,” J. Phys. Chem. A 118(21), 3749–3759 (2014).
[Crossref]

N. S. Makarov, M. Drobizhev, and A. Rebane, “Two-photon absorption standards in the 550-1600 nm excitation wavelength range,” Opt. Express 16(6), 4029–4047 (2008).
[Crossref] [PubMed]

McIlroy, S. P.

S. P. McIlroy, E. Cló, L. Nikolajsen, P. K. Frederiksen, C. B. Nielsen, K. V. Mikkelsen, K. V. Gothelf, and P. R. Ogilby, “Two-photon photosensitized production of singlet oxygen: sensitizers with phenylene-ethynylene-based chromophores,” J. Org. Chem. 70(4), 1134–1146 (2005).
[Crossref] [PubMed]

McLean, D. G.

A. Rebane, M. Drobizhev, N. S. Makarov, G. Wicks, P. Wnuk, Y. Stepanenko, J. E. Haley, D. M. Krein, J. L. Fore, A. R. Burke, J. E. Slagle, D. G. McLean, and T. M. Cooper, “Symmetry breaking in platinum acetylide chromophores studied by femtosecond two-photon absorption spectroscopy,” J. Phys. Chem. A 118(21), 3749–3759 (2014).
[Crossref]

Mikkelsen, K. V.

S. P. McIlroy, E. Cló, L. Nikolajsen, P. K. Frederiksen, C. B. Nielsen, K. V. Mikkelsen, K. V. Gothelf, and P. R. Ogilby, “Two-photon photosensitized production of singlet oxygen: sensitizers with phenylene-ethynylene-based chromophores,” J. Org. Chem. 70(4), 1134–1146 (2005).
[Crossref] [PubMed]

Mütze, J.

J. Mütze, V. Iyer, J. J. Macklin, J. Colonell, B. Karsh, Z. Petrášek, P. Schwille, L. L. Looger, L. D. Lavis, and T. D. Harris, “Excitation spectra and brightness optimization of two-photon excited probes,” Biophys. J. 102(4), 934–944 (2012).
[Crossref] [PubMed]

Nielsen, C. B.

S. P. McIlroy, E. Cló, L. Nikolajsen, P. K. Frederiksen, C. B. Nielsen, K. V. Mikkelsen, K. V. Gothelf, and P. R. Ogilby, “Two-photon photosensitized production of singlet oxygen: sensitizers with phenylene-ethynylene-based chromophores,” J. Org. Chem. 70(4), 1134–1146 (2005).
[Crossref] [PubMed]

Nikolajsen, L.

S. P. McIlroy, E. Cló, L. Nikolajsen, P. K. Frederiksen, C. B. Nielsen, K. V. Mikkelsen, K. V. Gothelf, and P. R. Ogilby, “Two-photon photosensitized production of singlet oxygen: sensitizers with phenylene-ethynylene-based chromophores,” J. Org. Chem. 70(4), 1134–1146 (2005).
[Crossref] [PubMed]

Ogilby, P. R.

S. P. McIlroy, E. Cló, L. Nikolajsen, P. K. Frederiksen, C. B. Nielsen, K. V. Mikkelsen, K. V. Gothelf, and P. R. Ogilby, “Two-photon photosensitized production of singlet oxygen: sensitizers with phenylene-ethynylene-based chromophores,” J. Org. Chem. 70(4), 1134–1146 (2005).
[Crossref] [PubMed]

Ojeda, P. R.

I. L. Arbeloa and P. R. Ojeda, “Molecular forms of rhodamine B,” Chem. Phys. Lett. 79(2), 347–350 (1981).
[Crossref]

Perry, J. W.

M. Rumi and J. W. Perry, “Two-photon absorption: an overview of measurements and principles,” Adv. Opt. Phot. 2, 451–518 (2010).

Petrášek, Z.

J. Mütze, V. Iyer, J. J. Macklin, J. Colonell, B. Karsh, Z. Petrášek, P. Schwille, L. L. Looger, L. D. Lavis, and T. D. Harris, “Excitation spectra and brightness optimization of two-photon excited probes,” Biophys. J. 102(4), 934–944 (2012).
[Crossref] [PubMed]

Prasad, P. N.

R. Kannan, G. S. He, T.-C. Lin, P. N. Prasad, R. A. Vaia, and L.-S. Tan, “Toward highly active two-photon absorbing liquids. Synthesis and characterization of 1,3,5-triazine-based octupolar molecules,” Chem. Mater. 16(1), 185–194 (2004).
[Crossref]

Price, R. S.

G. G. Dubinina, R. S. Price, K. A. Abboud, G. Wicks, P. Wnuk, Y. Stepanenko, M. Drobizhev, A. Rebane, and K. S. Schanze, “Phenylene vinylene platinum(II) acetylides with prodigious two-photon absorption,” J. Am. Chem. Soc. 134(47), 19346–19349 (2012).
[Crossref] [PubMed]

Rebane, A.

A. Rebane, G. Wicks, M. Drobizhev, T. Cooper, A. Trummal, and M. Uudsemaa, “Two-photon voltmeter for measuring a molecular electric field,” Angew. Chem. Int. Ed. Engl. 54(26), 7582–7586 (2015).
[Crossref] [PubMed]

A. Rebane, M. Drobizhev, N. S. Makarov, G. Wicks, P. Wnuk, Y. Stepanenko, J. E. Haley, D. M. Krein, J. L. Fore, A. R. Burke, J. E. Slagle, D. G. McLean, and T. M. Cooper, “Symmetry breaking in platinum acetylide chromophores studied by femtosecond two-photon absorption spectroscopy,” J. Phys. Chem. A 118(21), 3749–3759 (2014).
[Crossref]

G. G. Dubinina, R. S. Price, K. A. Abboud, G. Wicks, P. Wnuk, Y. Stepanenko, M. Drobizhev, A. Rebane, and K. S. Schanze, “Phenylene vinylene platinum(II) acetylides with prodigious two-photon absorption,” J. Am. Chem. Soc. 134(47), 19346–19349 (2012).
[Crossref] [PubMed]

N. S. Makarov, M. Drobizhev, and A. Rebane, “Two-photon absorption standards in the 550-1600 nm excitation wavelength range,” Opt. Express 16(6), 4029–4047 (2008).
[Crossref] [PubMed]

M. Drobizhev, A. Karotki, M. Kruk, A. Krivokapic, H. L. Anderson, and A. Rebane, “Photon energy upconversion fluorescence in porphyrins: One-photon hot-band absorption versus two-photon absorption,” Chem. Phys. Lett. 370(5-6), 690–699 (2003).
[Crossref]

Rodriguez, L.

Rumi, M.

M. Rumi and J. W. Perry, “Two-photon absorption: an overview of measurements and principles,” Adv. Opt. Phot. 2, 451–518 (2010).

Said, A. A.

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Schanze, K. S.

G. G. Dubinina, R. S. Price, K. A. Abboud, G. Wicks, P. Wnuk, Y. Stepanenko, M. Drobizhev, A. Rebane, and K. S. Schanze, “Phenylene vinylene platinum(II) acetylides with prodigious two-photon absorption,” J. Am. Chem. Soc. 134(47), 19346–19349 (2012).
[Crossref] [PubMed]

Schwille, P.

J. Mütze, V. Iyer, J. J. Macklin, J. Colonell, B. Karsh, Z. Petrášek, P. Schwille, L. L. Looger, L. D. Lavis, and T. D. Harris, “Excitation spectra and brightness optimization of two-photon excited probes,” Biophys. J. 102(4), 934–944 (2012).
[Crossref] [PubMed]

Seybold, P. G.

D. A. Hinckley, P. G. Seybold, and D. P. Borris, “Solvatochromism and thermochromism of rhodamine solutions,” Spectrochimica Acta 42A, 741–754 (1986).

Sheik-Bahae, M.

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Slagle, J. E.

A. Rebane, M. Drobizhev, N. S. Makarov, G. Wicks, P. Wnuk, Y. Stepanenko, J. E. Haley, D. M. Krein, J. L. Fore, A. R. Burke, J. E. Slagle, D. G. McLean, and T. M. Cooper, “Symmetry breaking in platinum acetylide chromophores studied by femtosecond two-photon absorption spectroscopy,” J. Phys. Chem. A 118(21), 3749–3759 (2014).
[Crossref]

Song, J.

Y. Bae, J. Song, and Y. Kim, “Photoacoustic study of two‐photon absorption in hexagonal ZnS,” J. Appl. Phys. 53(1), 615–619 (1982).
[Crossref]

Stepanenko, Y.

A. Rebane, M. Drobizhev, N. S. Makarov, G. Wicks, P. Wnuk, Y. Stepanenko, J. E. Haley, D. M. Krein, J. L. Fore, A. R. Burke, J. E. Slagle, D. G. McLean, and T. M. Cooper, “Symmetry breaking in platinum acetylide chromophores studied by femtosecond two-photon absorption spectroscopy,” J. Phys. Chem. A 118(21), 3749–3759 (2014).
[Crossref]

G. G. Dubinina, R. S. Price, K. A. Abboud, G. Wicks, P. Wnuk, Y. Stepanenko, M. Drobizhev, A. Rebane, and K. S. Schanze, “Phenylene vinylene platinum(II) acetylides with prodigious two-photon absorption,” J. Am. Chem. Soc. 134(47), 19346–19349 (2012).
[Crossref] [PubMed]

Tan, L.-S.

R. Kannan, G. S. He, T.-C. Lin, P. N. Prasad, R. A. Vaia, and L.-S. Tan, “Toward highly active two-photon absorbing liquids. Synthesis and characterization of 1,3,5-triazine-based octupolar molecules,” Chem. Mater. 16(1), 185–194 (2004).
[Crossref]

Trummal, A.

A. Rebane, G. Wicks, M. Drobizhev, T. Cooper, A. Trummal, and M. Uudsemaa, “Two-photon voltmeter for measuring a molecular electric field,” Angew. Chem. Int. Ed. Engl. 54(26), 7582–7586 (2015).
[Crossref] [PubMed]

Uudsemaa, M.

A. Rebane, G. Wicks, M. Drobizhev, T. Cooper, A. Trummal, and M. Uudsemaa, “Two-photon voltmeter for measuring a molecular electric field,” Angew. Chem. Int. Ed. Engl. 54(26), 7582–7586 (2015).
[Crossref] [PubMed]

Vaia, R. A.

R. Kannan, G. S. He, T.-C. Lin, P. N. Prasad, R. A. Vaia, and L.-S. Tan, “Toward highly active two-photon absorbing liquids. Synthesis and characterization of 1,3,5-triazine-based octupolar molecules,” Chem. Mater. 16(1), 185–194 (2004).
[Crossref]

Van Stryland, E. W.

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Velasco, M. G.

Wang, K.

Webb, W. W.

Wei, T.-H.

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Wicks, G.

A. Rebane, G. Wicks, M. Drobizhev, T. Cooper, A. Trummal, and M. Uudsemaa, “Two-photon voltmeter for measuring a molecular electric field,” Angew. Chem. Int. Ed. Engl. 54(26), 7582–7586 (2015).
[Crossref] [PubMed]

A. Rebane, M. Drobizhev, N. S. Makarov, G. Wicks, P. Wnuk, Y. Stepanenko, J. E. Haley, D. M. Krein, J. L. Fore, A. R. Burke, J. E. Slagle, D. G. McLean, and T. M. Cooper, “Symmetry breaking in platinum acetylide chromophores studied by femtosecond two-photon absorption spectroscopy,” J. Phys. Chem. A 118(21), 3749–3759 (2014).
[Crossref]

G. G. Dubinina, R. S. Price, K. A. Abboud, G. Wicks, P. Wnuk, Y. Stepanenko, M. Drobizhev, A. Rebane, and K. S. Schanze, “Phenylene vinylene platinum(II) acetylides with prodigious two-photon absorption,” J. Am. Chem. Soc. 134(47), 19346–19349 (2012).
[Crossref] [PubMed]

Wnuk, P.

A. Rebane, M. Drobizhev, N. S. Makarov, G. Wicks, P. Wnuk, Y. Stepanenko, J. E. Haley, D. M. Krein, J. L. Fore, A. R. Burke, J. E. Slagle, D. G. McLean, and T. M. Cooper, “Symmetry breaking in platinum acetylide chromophores studied by femtosecond two-photon absorption spectroscopy,” J. Phys. Chem. A 118(21), 3749–3759 (2014).
[Crossref]

G. G. Dubinina, R. S. Price, K. A. Abboud, G. Wicks, P. Wnuk, Y. Stepanenko, M. Drobizhev, A. Rebane, and K. S. Schanze, “Phenylene vinylene platinum(II) acetylides with prodigious two-photon absorption,” J. Am. Chem. Soc. 134(47), 19346–19349 (2012).
[Crossref] [PubMed]

Xu, B.

Xu, C.

Yuan, P.

Adv. Opt. Phot. (1)

M. Rumi and J. W. Perry, “Two-photon absorption: an overview of measurements and principles,” Adv. Opt. Phot. 2, 451–518 (2010).

Angew. Chem. Int. Ed. Engl. (1)

A. Rebane, G. Wicks, M. Drobizhev, T. Cooper, A. Trummal, and M. Uudsemaa, “Two-photon voltmeter for measuring a molecular electric field,” Angew. Chem. Int. Ed. Engl. 54(26), 7582–7586 (2015).
[Crossref] [PubMed]

Ann. Phys. (1)

M. Göpper-Maier, “Über Elementarakte mit zwei Quantensprüngen,” Ann. Phys. 9(3), 273–294 (1931).
[Crossref]

Appl. Opt. (2)

Biomed. Opt. Express (1)

Biophys. J. (1)

J. Mütze, V. Iyer, J. J. Macklin, J. Colonell, B. Karsh, Z. Petrášek, P. Schwille, L. L. Looger, L. D. Lavis, and T. D. Harris, “Excitation spectra and brightness optimization of two-photon excited probes,” Biophys. J. 102(4), 934–944 (2012).
[Crossref] [PubMed]

Chem. Mater. (1)

R. Kannan, G. S. He, T.-C. Lin, P. N. Prasad, R. A. Vaia, and L.-S. Tan, “Toward highly active two-photon absorbing liquids. Synthesis and characterization of 1,3,5-triazine-based octupolar molecules,” Chem. Mater. 16(1), 185–194 (2004).
[Crossref]

Chem. Phys. Lett. (2)

M. Drobizhev, A. Karotki, M. Kruk, A. Krivokapic, H. L. Anderson, and A. Rebane, “Photon energy upconversion fluorescence in porphyrins: One-photon hot-band absorption versus two-photon absorption,” Chem. Phys. Lett. 370(5-6), 690–699 (2003).
[Crossref]

I. L. Arbeloa and P. R. Ojeda, “Molecular forms of rhodamine B,” Chem. Phys. Lett. 79(2), 347–350 (1981).
[Crossref]

IEEE J. Quantum Electron. (1)

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

J. Am. Chem. Soc. (1)

G. G. Dubinina, R. S. Price, K. A. Abboud, G. Wicks, P. Wnuk, Y. Stepanenko, M. Drobizhev, A. Rebane, and K. S. Schanze, “Phenylene vinylene platinum(II) acetylides with prodigious two-photon absorption,” J. Am. Chem. Soc. 134(47), 19346–19349 (2012).
[Crossref] [PubMed]

J. Appl. Phys. (1)

Y. Bae, J. Song, and Y. Kim, “Photoacoustic study of two‐photon absorption in hexagonal ZnS,” J. Appl. Phys. 53(1), 615–619 (1982).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Org. Chem. (1)

S. P. McIlroy, E. Cló, L. Nikolajsen, P. K. Frederiksen, C. B. Nielsen, K. V. Mikkelsen, K. V. Gothelf, and P. R. Ogilby, “Two-photon photosensitized production of singlet oxygen: sensitizers with phenylene-ethynylene-based chromophores,” J. Org. Chem. 70(4), 1134–1146 (2005).
[Crossref] [PubMed]

J. Phys. Chem. A (1)

A. Rebane, M. Drobizhev, N. S. Makarov, G. Wicks, P. Wnuk, Y. Stepanenko, J. E. Haley, D. M. Krein, J. L. Fore, A. R. Burke, J. E. Slagle, D. G. McLean, and T. M. Cooper, “Symmetry breaking in platinum acetylide chromophores studied by femtosecond two-photon absorption spectroscopy,” J. Phys. Chem. A 118(21), 3749–3759 (2014).
[Crossref]

Opt. Express (2)

Opt. Lett. (2)

Phys. Rev. A (1)

J. P. Hermann and J. Ducuing, “Absolute measurement of two-photon cross sections,” Phys. Rev. A 5(6), 2557–2568 (1972).
[Crossref]

Spectrochimica Acta (1)

D. A. Hinckley, P. G. Seybold, and D. P. Borris, “Solvatochromism and thermochromism of rhodamine solutions,” Spectrochimica Acta 42A, 741–754 (1986).

Other (3)

J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd ed. (Springer, 2006).

R. L. Southerland, Handbook of Nonlinear Optics, 2nd ed. (Marcel Dekker, 2003).

R. Kannan, L.-S. Tan, and R. A. Vaia, “Two-photon responsive chromophores containing electron accepting cores,” US Patent 6,555,682 (2003).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Schematics of experimental set-ups; (a) Measurement of relative 2PA spectra; (b) Measurement of absolute 2PA cross section. SF – spatial filter; L1, L2, L3, L4 – focusing lenses; MO – microscope objective; ND – neutral density filter wheel; SPF – short-pass glass filter; LPF – long-pass glass filter; GP – glass plate; PM – photomultiplier; DAQ – data acquisition, A/D converters; Pol - Glan-Taylor polarizer; PD – photodetector.
Fig. 2
Fig. 2 Corrected fluorescence spectra of (1) BDPAS in methylene chloride; (2) Prodan in toluene; (3) Prodan in DMSO; (4) C153 in toluene; (5) C153 in DMSO; (6) AF455 in toluene; (7) AF455 in THF; (8) Fluorescein in H2O pH11 buffer; (9) Rh 6G in Methanol.
Fig. 3
Fig. 3 2PA spectra of (1) BDPAS in methylene chloride; (2) Prodan in toluene; (3) Prodan in DMSO; (4) C153 in toluene; (5) C153 in DMSO; (6) AF455 in toluene; (7) AF455 in THF; (8) Fluorescein in H2O pH11 buffer; (9) Rh 6G in methanol.
Fig. 4
Fig. 4 . Comparison between independent 2PEF measurement techniques in two reference samples: C153 in DMSO (left) and Fluorescein in aqueous, pH11 (right). Upper panel: Experimentally determined power law coefficient as a function of laser wavelength measured using the scanning laser setup (empty symbols) and manually-tuned laser setup (filled symbols). Lower panel: 2PA shape functions measured by the scanning laser setup (empty symbols) and manually tuned laser setup (filled symbols). The maximum value of the shape functions is normalized to unity. The manually-tuned data is averaged over 9 measurements in C153 and 3 measurements in Fluorescein.

Tables (2)

Tables Icon

Table 1 1-photon and 2-photon photophysical properties of the systems studied. The σ2PA and Δσ2PA values are obtained by averaging over all measurements performed.

Tables Icon

Table 2 2-photon cross sections (GM) of the dyes at selected wavelengths (nm). The maximum relative error of the numbers shown here is given in Table 1. Please note that the values in Table 1 are obtained directly from measuring the absolute cross section at few select wavelengths, and as shown in Fig. 3, whereas the values shown here are the best fit by scaling the experimentally measured shape function according to the absolute cross section data.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

Δ I 2PA = σ 2PA N c Δz I 2PA 2 ,
n ˙ 2PA = 1 2 σ 2PA I 2PA 2 ,
F 2PA ( λ 2PA )=Δ t 2PA [ g N c 1 2 σ 2PA ( λ 2PA )Δz I 2PA 2 (t,x,y; λ 2PA )dxdydt ][ λ min λ max η( λ em )ϕ( λ em )d λ em ],
0 φ( λ )d λ =Q,
I 2PA (t,x,y; λ 2PA )= P 2PA ( λ 2PA ) t ave S ave f time (t) f area (x,y) f corr ( λ 2PA ),
σ 2PA rel ( λ 2PA )= c norm F 2PA ( λ 2PA ) P 2PA 2 ( λ 2PA ) f corr 2 ( λ 2PA ) .
F 1PA =Δ t 1PA [ (1 10 OD ) I 1PA (x,y)dxdy ][ λ min λ max η( λ em )ϕ( λ em )d λ em ],
σ 2PA ( λ 2PA )= F 2PA ( λ ex ) F 1PA ( λ 1PA ) Δ t 1PA Δ t 2PA 2(1 10 OD ) I 1PA (x,y)dxdy g N c Δz [ P 2PA ( λ 2PA ) f corr ( λ 2PA ) t time S area ] 2 f time 2 (t) f area 2 (x,y)dxdydt .
κ 2PA = σ 2PA N c d,
σ 2PA ( λ 2PA )= σ 2PA ref ( λ 2PA ) B NLT ( λ 2PA ) B NLT ref ( λ 2PA ) N c ref d ref N c d ,
f lin =1 B NLT I 2PA (t,x,y; λ 2PA )dxdydt.

Metrics