Abstract

We have demonstrated a new approach for developing very large mode area silica-based microstructured Ytterbium (Yb)-doped fibers. The microstructured region acting as pump cladding around the core is composed by periodically arranged low-index Fluorine-doped silica inclusions with an extremely low filling ratio of 0.088. To the best of our knowledge, we achieved the most accurate controlling on cladding index by 1 × 10−5 via our passively doped cladding (PDC) method. Two fibers with 127μm and 50μm core diameter respectively were fabricated from the same final preform designed by this approach. It is verified that our 50μm core diameter fiber can maintain robust single mode behavior at 1064nm wavelength. The advantage of an all-solid structure along with a much simpler fabrication process makes our approach very suitable for realizing very large mode area fibers for high power fiber laser application.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ytterbium-doped large-mode-area all-solid photonic bandgap fiber lasers

Guancheng Gu, Fanting Kong, Thomas Hawkins, Joshua Parsons, Maxwell Jones, Christopher Dunn, Monica T. Kalichevsky-Dong, Kunimasa Saitoh, and Liang Dong
Opt. Express 22(11) 13962-13968 (2014)

Extending single mode performance of all-solid large-mode-area single trench fiber

D. Jain, Y. Jung, M. Nunez-Velazquez, and J. K. Sahu
Opt. Express 22(25) 31078-31091 (2014)

References

  • View by:
  • |
  • |
  • |

  1. C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fibre lasers,” Nat. Photonics 7(11), 861–867 (2013).
    [Crossref]
  2. J. Limpert, O. Schmidt, J. Rothhardt, F. Röser, T. Schreiber, A. Tünnermann, S. Ermeneux, P. Yvernault, and F. Salin, “Extended single-mode photonic crystal fiber lasers,” Opt. Express 14(7), 2715–2720 (2006).
    [Crossref] [PubMed]
  3. J. W. Dawson, M. J. Messerly, R. J. Beach, M. Y. Shverdin, E. A. Stappaerts, A. K. Sridharan, P. H. Pax, J. E. Heebner, C. W. Siders, and C. P. J. Barty, “Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power,” Opt. Express 16(17), 13240–13266 (2008).
    [Crossref] [PubMed]
  4. F. Stutzki, F. Jansen, T. Eidam, A. Steinmetz, C. Jauregui, J. Limpert, and A. Tünnermann, “High average power large-pitch fiber amplifier with robust single-mode operation,” Opt. Lett. 36(5), 689–691 (2011).
    [Crossref] [PubMed]
  5. A. V. Smith and J. J. Smith, “Mode instability in high power fiber amplifiers,” Opt. Express 19(11), 10180–10192 (2011).
    [Crossref] [PubMed]
  6. J. Limpert, F. Stutzki, F. Jansen, H. J. Otto, T. Eidam, C. Jauregui, and A. Tunnermann, “Yb-doped large-pitch fibers: effective single-mode operation based on higher-order mode delocalization,” Light Sci. Appl. 8(4), 1–5 (2012).
    [Crossref]
  7. C. Liu, A. Arbor, G. Chang, N. Litchinitser, and D. Guertin, “Chirally coupled core fibers at 1550-nm and 1064-nm for effectively singlemode core size scaling,” in CLEO (IEEE, Baltimore), pp. 1–2(2007).
  8. M. Laurila, M. M. Jørgensen, K. R. Hansen, T. T. Alkeskjold, J. Broeng, and J. Lægsgaard, “Distributed mode filtering rod fiber amplifier delivering 292W with improved mode stability,” Opt. Express 20(5), 5742–5753 (2012).
    [Crossref] [PubMed]
  9. L. Fu, H. A. McKay, and L. Dong, “Extremely large mode area optical fibers formed by thermal stress,” Opt. Express 17(14), 11782–11793 (2009).
    [Crossref] [PubMed]
  10. F. Jansen, F. Stutzki, H. J. Otto, T. Eidam, A. Liem, C. Jauregui, J. Limpert, and A. Tünnermann, “Thermally induced waveguide changes in active fibers,” Opt. Express 20(4), 3997–4008 (2012).
    [Crossref] [PubMed]
  11. Z. S. Eznaveh, E. Antonio-Lopez, G. Lopez-Galmiche, J. Anderson, A. Schülzgen, and R. Amezcua-Correa, “Asymmetric Very Large Mode Area Fiber with Enhanced Higher Order Mode Delocalization,” Workshop on Specialty Optical Fibers and Their application, Hongkong, WT4A.4(2015).
    [Crossref]
  12. P. Roy, R. Dauliat, A. Benoît, D. Darwich, J. Kobelke, K. Schuster, S. Grimm, F. Salin, and R. Jamier, “Ultra large mode area fibers with aperiodic cladding structure for high power single mode lasers,” Workshop on Specialty Optical Fibers and Their Applications, Hongkong, WT2A.1(2015).
  13. G. Gu, F. Kong, T. W. Hawkins, M. Jones, and L. Dong, “Extending mode areas of single-mode all-solid photonic bandgap fibers,” Opt. Express 23(7), 9147–9156 (2015).
    [Crossref] [PubMed]
  14. W. Li, D. Chen, Z. Qinling, and L. Hu, “Large-mode-area single-mode-output Neodymium-doped silicate glass all-solid photonic crystal fiber,” Sci. Rep. 5(12547), 12547 (2015).
    [Crossref] [PubMed]
  15. L. Wang, D. He, S. Feng, C. Yu, L. Hu, and D. Chen, “Ytterbium-doped phosphate glass single mode photonic crystal fiber with all solid structure,” Opt. Mater. Express 5(4), 742–747 (2015).
    [Crossref]
  16. L. Dong, T. Wu, H. McKay, L. Fu, J. Li, and H. G. Winful, “All-Glass Large-Core Leakage Channel Fibers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 47–53 (2009).
    [Crossref]
  17. G. Gu, F. Kong, T. W. Hawkins, P. Foy, K. Wei, B. Samson, and L. Dong, “Impact of fiber outer boundaries on leaky mode losses in leakage channel fibers,” Opt. Express 21(20), 24039–24048 (2013).
    [Crossref] [PubMed]
  18. L. Dong, H. A. McKay, L. Fu, M. Ohta, A. Marcinkevicius, S. Suzuki, and M. E. Fermann, “Ytterbium-doped all glass leakage channel fibers with highly fluorine-doped silica pump cladding,” Opt. Express 17(11), 8962–8969 (2009).
    [Crossref] [PubMed]
  19. F. Kong, G. Gu, T. W. Hawkins, J. Parsons, M. Jones, C. Dunn, M. T. Kalichevsky-Dong, K. Wei, B. Samson, and L. Dong, “Flat-top mode from a 50 µm-core Yb-doped leakage channel fiber,” Opt. Express 21(26), 32371–32376 (2013).
    [Crossref] [PubMed]
  20. L. Dong, H. A. McKay, and L. Fu, “All-glass endless single-mode photonic crystal fibers,” Opt. Lett. 33(21), 2440–2442 (2008).
    [Crossref] [PubMed]
  21. S. Wielandy, “Implications of higher-order mode content in large mode area fibers with good beam quality,” Opt. Express 15(23), 15402–15409 (2007).
    [Crossref] [PubMed]
  22. M. H. Muendel, “Optical fiber structure for efficient use of pump power,” United States Patent 5,533,163, (1996).
  23. P. Yan, G. Zhang, H. Wei, D. Ouyang, S. Huang, J. Zhao, K. Chen, J. Luo, and S. Ruan, “Double Cladding Seven-Core Photonic Crystal Fibers With Different GVD Properties and Fundamental Supermode Output,” J. Lightwave Technol. 31(23), 3658–3662 (2013).
    [Crossref]
  24. H. F. Wei, H. W. Chen, S. P. Chen, P. G. Yan, T. Liu, L. Guo, Y. Lei, Z. L. Chen, J. Li, X. B. Zhang, G. L. Zhang, J. Hou, W. J. Tong, J. Luo, J. Y. Li, and K. K. Chen, “A Compact Seven-core Photonic Crystal Fiber Supercontinuum Source with 42.3W Output Power,” Laser Phys. Lett. 10(4), 045101 (2013).
    [Crossref]

2015 (3)

2013 (5)

2012 (3)

2011 (2)

2009 (3)

2008 (2)

2007 (1)

2006 (1)

Alkeskjold, T. T.

Barty, C. P. J.

Beach, R. J.

Broeng, J.

Chen, D.

L. Wang, D. He, S. Feng, C. Yu, L. Hu, and D. Chen, “Ytterbium-doped phosphate glass single mode photonic crystal fiber with all solid structure,” Opt. Mater. Express 5(4), 742–747 (2015).
[Crossref]

W. Li, D. Chen, Z. Qinling, and L. Hu, “Large-mode-area single-mode-output Neodymium-doped silicate glass all-solid photonic crystal fiber,” Sci. Rep. 5(12547), 12547 (2015).
[Crossref] [PubMed]

Chen, H. W.

H. F. Wei, H. W. Chen, S. P. Chen, P. G. Yan, T. Liu, L. Guo, Y. Lei, Z. L. Chen, J. Li, X. B. Zhang, G. L. Zhang, J. Hou, W. J. Tong, J. Luo, J. Y. Li, and K. K. Chen, “A Compact Seven-core Photonic Crystal Fiber Supercontinuum Source with 42.3W Output Power,” Laser Phys. Lett. 10(4), 045101 (2013).
[Crossref]

Chen, K.

Chen, K. K.

H. F. Wei, H. W. Chen, S. P. Chen, P. G. Yan, T. Liu, L. Guo, Y. Lei, Z. L. Chen, J. Li, X. B. Zhang, G. L. Zhang, J. Hou, W. J. Tong, J. Luo, J. Y. Li, and K. K. Chen, “A Compact Seven-core Photonic Crystal Fiber Supercontinuum Source with 42.3W Output Power,” Laser Phys. Lett. 10(4), 045101 (2013).
[Crossref]

Chen, S. P.

H. F. Wei, H. W. Chen, S. P. Chen, P. G. Yan, T. Liu, L. Guo, Y. Lei, Z. L. Chen, J. Li, X. B. Zhang, G. L. Zhang, J. Hou, W. J. Tong, J. Luo, J. Y. Li, and K. K. Chen, “A Compact Seven-core Photonic Crystal Fiber Supercontinuum Source with 42.3W Output Power,” Laser Phys. Lett. 10(4), 045101 (2013).
[Crossref]

Chen, Z. L.

H. F. Wei, H. W. Chen, S. P. Chen, P. G. Yan, T. Liu, L. Guo, Y. Lei, Z. L. Chen, J. Li, X. B. Zhang, G. L. Zhang, J. Hou, W. J. Tong, J. Luo, J. Y. Li, and K. K. Chen, “A Compact Seven-core Photonic Crystal Fiber Supercontinuum Source with 42.3W Output Power,” Laser Phys. Lett. 10(4), 045101 (2013).
[Crossref]

Dawson, J. W.

Dong, L.

Dunn, C.

Eidam, T.

Ermeneux, S.

Feng, S.

Fermann, M. E.

Foy, P.

Fu, L.

Gu, G.

Guo, L.

H. F. Wei, H. W. Chen, S. P. Chen, P. G. Yan, T. Liu, L. Guo, Y. Lei, Z. L. Chen, J. Li, X. B. Zhang, G. L. Zhang, J. Hou, W. J. Tong, J. Luo, J. Y. Li, and K. K. Chen, “A Compact Seven-core Photonic Crystal Fiber Supercontinuum Source with 42.3W Output Power,” Laser Phys. Lett. 10(4), 045101 (2013).
[Crossref]

Hansen, K. R.

Hawkins, T. W.

He, D.

Heebner, J. E.

Hou, J.

H. F. Wei, H. W. Chen, S. P. Chen, P. G. Yan, T. Liu, L. Guo, Y. Lei, Z. L. Chen, J. Li, X. B. Zhang, G. L. Zhang, J. Hou, W. J. Tong, J. Luo, J. Y. Li, and K. K. Chen, “A Compact Seven-core Photonic Crystal Fiber Supercontinuum Source with 42.3W Output Power,” Laser Phys. Lett. 10(4), 045101 (2013).
[Crossref]

Hu, L.

W. Li, D. Chen, Z. Qinling, and L. Hu, “Large-mode-area single-mode-output Neodymium-doped silicate glass all-solid photonic crystal fiber,” Sci. Rep. 5(12547), 12547 (2015).
[Crossref] [PubMed]

L. Wang, D. He, S. Feng, C. Yu, L. Hu, and D. Chen, “Ytterbium-doped phosphate glass single mode photonic crystal fiber with all solid structure,” Opt. Mater. Express 5(4), 742–747 (2015).
[Crossref]

Huang, S.

Jansen, F.

Jauregui, C.

C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fibre lasers,” Nat. Photonics 7(11), 861–867 (2013).
[Crossref]

J. Limpert, F. Stutzki, F. Jansen, H. J. Otto, T. Eidam, C. Jauregui, and A. Tunnermann, “Yb-doped large-pitch fibers: effective single-mode operation based on higher-order mode delocalization,” Light Sci. Appl. 8(4), 1–5 (2012).
[Crossref]

F. Jansen, F. Stutzki, H. J. Otto, T. Eidam, A. Liem, C. Jauregui, J. Limpert, and A. Tünnermann, “Thermally induced waveguide changes in active fibers,” Opt. Express 20(4), 3997–4008 (2012).
[Crossref] [PubMed]

F. Stutzki, F. Jansen, T. Eidam, A. Steinmetz, C. Jauregui, J. Limpert, and A. Tünnermann, “High average power large-pitch fiber amplifier with robust single-mode operation,” Opt. Lett. 36(5), 689–691 (2011).
[Crossref] [PubMed]

Jones, M.

Jørgensen, M. M.

Kalichevsky-Dong, M. T.

Kong, F.

Lægsgaard, J.

Laurila, M.

Lei, Y.

H. F. Wei, H. W. Chen, S. P. Chen, P. G. Yan, T. Liu, L. Guo, Y. Lei, Z. L. Chen, J. Li, X. B. Zhang, G. L. Zhang, J. Hou, W. J. Tong, J. Luo, J. Y. Li, and K. K. Chen, “A Compact Seven-core Photonic Crystal Fiber Supercontinuum Source with 42.3W Output Power,” Laser Phys. Lett. 10(4), 045101 (2013).
[Crossref]

Li, J.

H. F. Wei, H. W. Chen, S. P. Chen, P. G. Yan, T. Liu, L. Guo, Y. Lei, Z. L. Chen, J. Li, X. B. Zhang, G. L. Zhang, J. Hou, W. J. Tong, J. Luo, J. Y. Li, and K. K. Chen, “A Compact Seven-core Photonic Crystal Fiber Supercontinuum Source with 42.3W Output Power,” Laser Phys. Lett. 10(4), 045101 (2013).
[Crossref]

L. Dong, T. Wu, H. McKay, L. Fu, J. Li, and H. G. Winful, “All-Glass Large-Core Leakage Channel Fibers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 47–53 (2009).
[Crossref]

Li, J. Y.

H. F. Wei, H. W. Chen, S. P. Chen, P. G. Yan, T. Liu, L. Guo, Y. Lei, Z. L. Chen, J. Li, X. B. Zhang, G. L. Zhang, J. Hou, W. J. Tong, J. Luo, J. Y. Li, and K. K. Chen, “A Compact Seven-core Photonic Crystal Fiber Supercontinuum Source with 42.3W Output Power,” Laser Phys. Lett. 10(4), 045101 (2013).
[Crossref]

Li, W.

W. Li, D. Chen, Z. Qinling, and L. Hu, “Large-mode-area single-mode-output Neodymium-doped silicate glass all-solid photonic crystal fiber,” Sci. Rep. 5(12547), 12547 (2015).
[Crossref] [PubMed]

Liem, A.

Limpert, J.

Liu, T.

H. F. Wei, H. W. Chen, S. P. Chen, P. G. Yan, T. Liu, L. Guo, Y. Lei, Z. L. Chen, J. Li, X. B. Zhang, G. L. Zhang, J. Hou, W. J. Tong, J. Luo, J. Y. Li, and K. K. Chen, “A Compact Seven-core Photonic Crystal Fiber Supercontinuum Source with 42.3W Output Power,” Laser Phys. Lett. 10(4), 045101 (2013).
[Crossref]

Luo, J.

H. F. Wei, H. W. Chen, S. P. Chen, P. G. Yan, T. Liu, L. Guo, Y. Lei, Z. L. Chen, J. Li, X. B. Zhang, G. L. Zhang, J. Hou, W. J. Tong, J. Luo, J. Y. Li, and K. K. Chen, “A Compact Seven-core Photonic Crystal Fiber Supercontinuum Source with 42.3W Output Power,” Laser Phys. Lett. 10(4), 045101 (2013).
[Crossref]

P. Yan, G. Zhang, H. Wei, D. Ouyang, S. Huang, J. Zhao, K. Chen, J. Luo, and S. Ruan, “Double Cladding Seven-Core Photonic Crystal Fibers With Different GVD Properties and Fundamental Supermode Output,” J. Lightwave Technol. 31(23), 3658–3662 (2013).
[Crossref]

Marcinkevicius, A.

McKay, H.

L. Dong, T. Wu, H. McKay, L. Fu, J. Li, and H. G. Winful, “All-Glass Large-Core Leakage Channel Fibers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 47–53 (2009).
[Crossref]

McKay, H. A.

Messerly, M. J.

Ohta, M.

Otto, H. J.

J. Limpert, F. Stutzki, F. Jansen, H. J. Otto, T. Eidam, C. Jauregui, and A. Tunnermann, “Yb-doped large-pitch fibers: effective single-mode operation based on higher-order mode delocalization,” Light Sci. Appl. 8(4), 1–5 (2012).
[Crossref]

F. Jansen, F. Stutzki, H. J. Otto, T. Eidam, A. Liem, C. Jauregui, J. Limpert, and A. Tünnermann, “Thermally induced waveguide changes in active fibers,” Opt. Express 20(4), 3997–4008 (2012).
[Crossref] [PubMed]

Ouyang, D.

Parsons, J.

Pax, P. H.

Qinling, Z.

W. Li, D. Chen, Z. Qinling, and L. Hu, “Large-mode-area single-mode-output Neodymium-doped silicate glass all-solid photonic crystal fiber,” Sci. Rep. 5(12547), 12547 (2015).
[Crossref] [PubMed]

Röser, F.

Rothhardt, J.

Ruan, S.

Salin, F.

Samson, B.

Schmidt, O.

Schreiber, T.

Shverdin, M. Y.

Siders, C. W.

Smith, A. V.

Smith, J. J.

Sridharan, A. K.

Stappaerts, E. A.

Steinmetz, A.

Stutzki, F.

Suzuki, S.

Tong, W. J.

H. F. Wei, H. W. Chen, S. P. Chen, P. G. Yan, T. Liu, L. Guo, Y. Lei, Z. L. Chen, J. Li, X. B. Zhang, G. L. Zhang, J. Hou, W. J. Tong, J. Luo, J. Y. Li, and K. K. Chen, “A Compact Seven-core Photonic Crystal Fiber Supercontinuum Source with 42.3W Output Power,” Laser Phys. Lett. 10(4), 045101 (2013).
[Crossref]

Tunnermann, A.

J. Limpert, F. Stutzki, F. Jansen, H. J. Otto, T. Eidam, C. Jauregui, and A. Tunnermann, “Yb-doped large-pitch fibers: effective single-mode operation based on higher-order mode delocalization,” Light Sci. Appl. 8(4), 1–5 (2012).
[Crossref]

Tünnermann, A.

Wang, L.

Wei, H.

Wei, H. F.

H. F. Wei, H. W. Chen, S. P. Chen, P. G. Yan, T. Liu, L. Guo, Y. Lei, Z. L. Chen, J. Li, X. B. Zhang, G. L. Zhang, J. Hou, W. J. Tong, J. Luo, J. Y. Li, and K. K. Chen, “A Compact Seven-core Photonic Crystal Fiber Supercontinuum Source with 42.3W Output Power,” Laser Phys. Lett. 10(4), 045101 (2013).
[Crossref]

Wei, K.

Wielandy, S.

Winful, H. G.

L. Dong, T. Wu, H. McKay, L. Fu, J. Li, and H. G. Winful, “All-Glass Large-Core Leakage Channel Fibers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 47–53 (2009).
[Crossref]

Wu, T.

L. Dong, T. Wu, H. McKay, L. Fu, J. Li, and H. G. Winful, “All-Glass Large-Core Leakage Channel Fibers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 47–53 (2009).
[Crossref]

Yan, P.

Yan, P. G.

H. F. Wei, H. W. Chen, S. P. Chen, P. G. Yan, T. Liu, L. Guo, Y. Lei, Z. L. Chen, J. Li, X. B. Zhang, G. L. Zhang, J. Hou, W. J. Tong, J. Luo, J. Y. Li, and K. K. Chen, “A Compact Seven-core Photonic Crystal Fiber Supercontinuum Source with 42.3W Output Power,” Laser Phys. Lett. 10(4), 045101 (2013).
[Crossref]

Yu, C.

Yvernault, P.

Zhang, G.

Zhang, G. L.

H. F. Wei, H. W. Chen, S. P. Chen, P. G. Yan, T. Liu, L. Guo, Y. Lei, Z. L. Chen, J. Li, X. B. Zhang, G. L. Zhang, J. Hou, W. J. Tong, J. Luo, J. Y. Li, and K. K. Chen, “A Compact Seven-core Photonic Crystal Fiber Supercontinuum Source with 42.3W Output Power,” Laser Phys. Lett. 10(4), 045101 (2013).
[Crossref]

Zhang, X. B.

H. F. Wei, H. W. Chen, S. P. Chen, P. G. Yan, T. Liu, L. Guo, Y. Lei, Z. L. Chen, J. Li, X. B. Zhang, G. L. Zhang, J. Hou, W. J. Tong, J. Luo, J. Y. Li, and K. K. Chen, “A Compact Seven-core Photonic Crystal Fiber Supercontinuum Source with 42.3W Output Power,” Laser Phys. Lett. 10(4), 045101 (2013).
[Crossref]

Zhao, J.

IEEE J. Sel. Top. Quantum Electron. (1)

L. Dong, T. Wu, H. McKay, L. Fu, J. Li, and H. G. Winful, “All-Glass Large-Core Leakage Channel Fibers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 47–53 (2009).
[Crossref]

J. Lightwave Technol. (1)

Laser Phys. Lett. (1)

H. F. Wei, H. W. Chen, S. P. Chen, P. G. Yan, T. Liu, L. Guo, Y. Lei, Z. L. Chen, J. Li, X. B. Zhang, G. L. Zhang, J. Hou, W. J. Tong, J. Luo, J. Y. Li, and K. K. Chen, “A Compact Seven-core Photonic Crystal Fiber Supercontinuum Source with 42.3W Output Power,” Laser Phys. Lett. 10(4), 045101 (2013).
[Crossref]

Light Sci. Appl. (1)

J. Limpert, F. Stutzki, F. Jansen, H. J. Otto, T. Eidam, C. Jauregui, and A. Tunnermann, “Yb-doped large-pitch fibers: effective single-mode operation based on higher-order mode delocalization,” Light Sci. Appl. 8(4), 1–5 (2012).
[Crossref]

Nat. Photonics (1)

C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fibre lasers,” Nat. Photonics 7(11), 861–867 (2013).
[Crossref]

Opt. Express (11)

J. Limpert, O. Schmidt, J. Rothhardt, F. Röser, T. Schreiber, A. Tünnermann, S. Ermeneux, P. Yvernault, and F. Salin, “Extended single-mode photonic crystal fiber lasers,” Opt. Express 14(7), 2715–2720 (2006).
[Crossref] [PubMed]

J. W. Dawson, M. J. Messerly, R. J. Beach, M. Y. Shverdin, E. A. Stappaerts, A. K. Sridharan, P. H. Pax, J. E. Heebner, C. W. Siders, and C. P. J. Barty, “Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power,” Opt. Express 16(17), 13240–13266 (2008).
[Crossref] [PubMed]

M. Laurila, M. M. Jørgensen, K. R. Hansen, T. T. Alkeskjold, J. Broeng, and J. Lægsgaard, “Distributed mode filtering rod fiber amplifier delivering 292W with improved mode stability,” Opt. Express 20(5), 5742–5753 (2012).
[Crossref] [PubMed]

L. Fu, H. A. McKay, and L. Dong, “Extremely large mode area optical fibers formed by thermal stress,” Opt. Express 17(14), 11782–11793 (2009).
[Crossref] [PubMed]

F. Jansen, F. Stutzki, H. J. Otto, T. Eidam, A. Liem, C. Jauregui, J. Limpert, and A. Tünnermann, “Thermally induced waveguide changes in active fibers,” Opt. Express 20(4), 3997–4008 (2012).
[Crossref] [PubMed]

G. Gu, F. Kong, T. W. Hawkins, M. Jones, and L. Dong, “Extending mode areas of single-mode all-solid photonic bandgap fibers,” Opt. Express 23(7), 9147–9156 (2015).
[Crossref] [PubMed]

G. Gu, F. Kong, T. W. Hawkins, P. Foy, K. Wei, B. Samson, and L. Dong, “Impact of fiber outer boundaries on leaky mode losses in leakage channel fibers,” Opt. Express 21(20), 24039–24048 (2013).
[Crossref] [PubMed]

L. Dong, H. A. McKay, L. Fu, M. Ohta, A. Marcinkevicius, S. Suzuki, and M. E. Fermann, “Ytterbium-doped all glass leakage channel fibers with highly fluorine-doped silica pump cladding,” Opt. Express 17(11), 8962–8969 (2009).
[Crossref] [PubMed]

F. Kong, G. Gu, T. W. Hawkins, J. Parsons, M. Jones, C. Dunn, M. T. Kalichevsky-Dong, K. Wei, B. Samson, and L. Dong, “Flat-top mode from a 50 µm-core Yb-doped leakage channel fiber,” Opt. Express 21(26), 32371–32376 (2013).
[Crossref] [PubMed]

A. V. Smith and J. J. Smith, “Mode instability in high power fiber amplifiers,” Opt. Express 19(11), 10180–10192 (2011).
[Crossref] [PubMed]

S. Wielandy, “Implications of higher-order mode content in large mode area fibers with good beam quality,” Opt. Express 15(23), 15402–15409 (2007).
[Crossref] [PubMed]

Opt. Lett. (2)

Opt. Mater. Express (1)

Sci. Rep. (1)

W. Li, D. Chen, Z. Qinling, and L. Hu, “Large-mode-area single-mode-output Neodymium-doped silicate glass all-solid photonic crystal fiber,” Sci. Rep. 5(12547), 12547 (2015).
[Crossref] [PubMed]

Other (4)

C. Liu, A. Arbor, G. Chang, N. Litchinitser, and D. Guertin, “Chirally coupled core fibers at 1550-nm and 1064-nm for effectively singlemode core size scaling,” in CLEO (IEEE, Baltimore), pp. 1–2(2007).

Z. S. Eznaveh, E. Antonio-Lopez, G. Lopez-Galmiche, J. Anderson, A. Schülzgen, and R. Amezcua-Correa, “Asymmetric Very Large Mode Area Fiber with Enhanced Higher Order Mode Delocalization,” Workshop on Specialty Optical Fibers and Their application, Hongkong, WT4A.4(2015).
[Crossref]

P. Roy, R. Dauliat, A. Benoît, D. Darwich, J. Kobelke, K. Schuster, S. Grimm, F. Salin, and R. Jamier, “Ultra large mode area fibers with aperiodic cladding structure for high power single mode lasers,” Workshop on Specialty Optical Fibers and Their Applications, Hongkong, WT2A.1(2015).

M. H. Muendel, “Optical fiber structure for efficient use of pump power,” United States Patent 5,533,163, (1996).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Schematic refractive index profile of the designed fiber. (b) a general view on the preform cross-section of the proposed all-solid VLMA fiber; the index profile along x direction has been given above. (c) index profile of one of the fabricated F-doped preform used in final fibers in this work, which is corresponding to a part of the fundamental unit. (d) relation of cladding index and filling ratio of F-doped silica: accurate adjusting of the effective index of cladding. Air cladding situation is also calculated for comparison. Insert is partly enlarged.
Fig. 2
Fig. 2 Microscope images of the two fabricated fibers: (a) 127/1038 and (b) 50/400. Part of coating layer is shown in image (b) because of large size of the fiber. Simulated intensity distribution of the fundamental mode (c) and LP11 (d) in the core of the 400μm fiber. (note: seven units forming the fiber core are set just for the convenience of modeling, while the parameters of the fiber core are given by a single active doped rod in our model and fabricated fibers; the squares marked in (c)and (d) are also used for the convenience of calculation)
Fig. 3
Fig. 3 Near field mode profile of 400μm cladding fiber at 1064nm under misaligning the launching condition. (a) X direction and (b) Y direction. (c) Beam quality measurement of the 400μm cladding fiber at 1064nm.
Fig. 4
Fig. 4 Experimental setup (a) used for measuring laser efficiency and pump absorption, (b) the measured output laser power as a function of the absorbed pumping power of 400μm cladding fiber.
Fig. 5
Fig. 5 (a) Near field mode profile and (b) its intensity distribution along x direction of 400μm cladding fiber, (c) near field mode profile and (d) its intensity distribution along x direction of 1038μm cladding fiber.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

α clad = α core a 2 b 2

Metrics