Abstract

We propose and experimentally demonstrate, for the first time to our knowledge, high temperature fiber sensing using the multimode interference effect within a suspended-core microstructured optical fiber (SCF). Interference fringes were found to red-shift as the temperature increased and vice versa. Temperature sensing up to 1100°C was performed by measuring the wavelength shifts of the fringes after fast Fourier transform (FFT) filtering of the spectra. In addition, phase monitoring at the dominant spatial frequency in the Fourier spectrum was used as an interrogation method to monitor various temperature-change scenarios over a period of 80 hours. Our proposed high temperature fiber sensor is simple, cost-effective, and can operate at temperatures beyond 1000°C.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High temperature fiber sensor with high sensitivity based on core diameter mismatch

Linh Viet Nguyen, Dusun Hwang, Sucbei Moon, Dae Seung Moon, and Youngjoo Chung
Opt. Express 16(15) 11369-11375 (2008)

Temperature sensing up to 1300°C using suspended-core microstructured optical fibers

Stephen C. Warren-Smith, Linh Viet Nguyen, Catherine Lang, Heike Ebendorff-Heidepriem, and Tanya M. Monro
Opt. Express 24(4) 3714-3719 (2016)

High temperature microstructured fiber sensor based on a partial-reflection-enabled intrinsic Fabry–Perot interferometer

Xiaoling Tan, Youfu Geng, Xuejin Li, Rong Gao, and Zhen Yin
Appl. Opt. 52(34) 8195-8198 (2013)

References

  • View by:
  • |
  • |
  • |

  1. F. T. S. Yu and S. Yin, Fiber Optic Sensors (Dekker, 2002).
  2. F. Taffoni, D. Formica, P. Saccomandi, G. Di Pino, and E. Schena, “Optical fiber-based MR-compatible sensors for medical applications: an overview,” Sensors (Basel) 13(10), 14105–14120 (2013).
    [Crossref] [PubMed]
  3. B. Lee, “Review of the present status of optical fiber sensors,” Opt. Fiber Technol. 9(2), 57–79 (2003).
    [Crossref]
  4. B. Culshaw, “Optical fiber sensor technologies: opportunities and-perhaps-pitfalls,” J. Lightwave Technol. 22(1), 39–50 (2004).
    [Crossref]
  5. A. Ukil, H. Braendle, and P. Krippner, “Distributed temperature sensing: review of technology and applications,” IEEE Sens. J. 12(5), 885–892 (2012).
    [Crossref]
  6. S. J. Mihailov, “Fiber Bragg grating sensors for harsh environments,” Sensors (Basel) 12(2), 1898–1918 (2012).
    [Crossref] [PubMed]
  7. D. Barrera, V. Finazzi, J. Villatoro, S. Sales, and V. Pruneri, “Packaged optical sensors based on regenerated fiber Bragg gratings for high temperature applications,” IEEE Sens. J. 12(1), 107–112 (2012).
    [Crossref]
  8. J. Canning, M. Stevenson, S. Bandyopadhyay, and K. Cook, “Extreme silica optical fibre gratings,” Sensors (Basel Switzerland) 8(10), 6448–6452 (2008).
    [Crossref]
  9. H. Y. Choi, K. S. Park, S. J. Park, U.-C. Paek, B. H. Lee, and E. S. Choi, “Miniature fiber-optic high temperature sensor based on a hybrid structured Fabry-Perot interferometer,” Opt. Lett. 33(21), 2455–2457 (2008).
    [Crossref] [PubMed]
  10. L. V. Nguyen, D. Hwang, S. Moon, D. S. Moon, and Y. Chung, “High temperature fiber sensor with high sensitivity based on core diameter mismatch,” Opt. Express 16(15), 11369–11375 (2008).
    [Crossref] [PubMed]
  11. V. M. Churikov, V. I. Kopp, and A. Z. Genack, “Chiral diffraction gratings in twisted microstructured fibers,” Opt. Lett. 35(3), 342–344 (2010).
    [Crossref] [PubMed]
  12. S. C. Warren-Smith, L. V. Nguyen, C. Lang, H. Ebendorff-Heidepriem, and T. M. Monro, “Temperature sensing up to 1300°C using suspended-core microstructured optical fibers,” Opt. Express 24(4), 3714–3719 (2016).
    [Crossref] [PubMed]
  13. J. Mathew, O. Schneller, D. Polyzos, D. Havermann, R. M. Carter, W. N. MacPherson, D. P. Hand, and R. R. J. Maier, “In-fiber Fabry–Perot cavity sensor for high-temperature application,” J. Lightwave Technol. 33(12), 2419–2425 (2015).
    [Crossref]
  14. Y. Zhu, Z. Huang, F. Shen, and A. Wang, “Sapphire-fiber-based white-light interferometric sensor for high-temperature measurements,” Opt. Lett. 30(7), 711–713 (2005).
    [Crossref] [PubMed]
  15. K. Shiraishi, Y. Aizawa, and S. Kawakami, “Beam expanding fiber using thermal diffusion of the dopant,” J. Lightwave Technol. 8(8), 1151–1161 (1990).
    [Crossref]
  16. M. Kihara, M. Matsumoto, T. Haibara, and S. Tomita, “Characteristics of thermally expanded core fiber,” J. Lightwave Technol. 14(10), 2209–2214 (1996).
    [Crossref]
  17. A. Wang, S. Gollapudi, R. G. May, K. A. Murphy, and R. O. Claus, “Advances in sapphire-fiber-based intrinsic interferometric sensors,” Opt. Lett. 17(21), 1544–1546 (1992).
    [Crossref] [PubMed]
  18. J. Wang, B. Dong, E. Lally, J. Gong, M. Han, and A. Wang, “Multiplexed high temperature sensing with sapphire fiber air gap-based extrinsic Fabry-Perot interferometers,” Opt. Lett. 35(5), 619–621 (2010).
    [Crossref] [PubMed]
  19. T. Habisreuther, T. Elsmann, Z. Pan, A. Graf, R. Willsch, and M. A. Schmidt, “Sapphire fiber Bragg gratings for high temperature and dynamic temperature diagnostics,” Appl. Therm. Eng. 91, 860–865 (2015).
    [Crossref]
  20. Y. Liu and L. Wei, “Low-cost high-sensitivity strain and temperature sensing using graded-index multimode fibers,” Appl. Opt. 46(13), 2516–2519 (2007).
    [Crossref] [PubMed]
  21. E. Li, X. Wang, and C. Zhang, “Fiber-optic temperature sensor based on interference of selective higher-order modes,” Appl. Phys. Lett. 89(9), 091119 (2006).
    [Crossref]
  22. G. Coviello, V. Finazzi, J. Villatoro, and V. Pruneri, “Thermally stabilized PCF-based sensor for temperature measurements up to 1000 ° C,” Opt. Express 17(24), 21551–21559 (2009).
    [Crossref] [PubMed]
  23. J. Villatoro, M. P. Kreuzer, R. Jha, V. P. Minkovich, V. Finazzi, G. Badenes, and V. Pruneri, “Photonic crystal fiber interferometer for chemical vapor detection with high sensitivity,” Opt. Express 17(3), 1447–1453 (2009).
    [Crossref] [PubMed]
  24. J. Villatoro, V. P. Minkovich, V. Pruneri, and G. Badenes, “Simple all-microstructured-optical-fiber interferometer built via fusion splicing,” Opt. Express 15(4), 1491–1496 (2007).
    [Crossref] [PubMed]
  25. A. S. Webb, F. Poletti, D. J. Richardson, and J. K. Sahu, “Suspended-core holey fiber for evanescent-field sensing,” Opt. Eng. 46(1), 010503 (2007).
    [Crossref]
  26. D. Kácik, I. Turek, I. Martinček, J. Canning, N. Issa, and K. Lyytikäinen, “Intermodal interference in a photonic crystal fibre,” Opt. Express 12(15), 3465–3470 (2004).
    [Crossref] [PubMed]
  27. T. M. Monro, S. Warren-Smith, E. P. Schartner, A. François, S. Heng, H. Ebendorff-Heidepriem, and S. Afshar, “Sensing with suspended-core optical fibers,” Opt. Fiber Technol. 16(6), 343–356 (2010).
    [Crossref]
  28. S. C. Warren-Smith, R. Kostecki, L. V. Nguyen, and T. M. Monro, “Fabrication, splicing, Bragg grating writing, and polyelectrolyte functionalization of exposed-core microstructured optical fibers,” Opt. Express 22(24), 29493–29504 (2014).
    [Crossref] [PubMed]
  29. H. Y. Choi, M. J. Kim, and B. H. Lee, “All-fiber Mach-Zehnder type interferometers formed in photonic crystal fiber,” Opt. Express 15(9), 5711–5720 (2007).
    [Crossref] [PubMed]
  30. L. V. Nguyen, K. Hill, S. C. Warren-Smith, and T. M. Monro, “Interferometric-type optical biosensor based on exposed core microstructured optical fiber,” Sens. Actuators B Chem. 221, 320–327 (2015).
    [Crossref]
  31. T. A. Birks, J. C. Knight, and P. St. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22(13), 961–963 (1997).
    [Crossref] [PubMed]

2016 (1)

2015 (3)

J. Mathew, O. Schneller, D. Polyzos, D. Havermann, R. M. Carter, W. N. MacPherson, D. P. Hand, and R. R. J. Maier, “In-fiber Fabry–Perot cavity sensor for high-temperature application,” J. Lightwave Technol. 33(12), 2419–2425 (2015).
[Crossref]

T. Habisreuther, T. Elsmann, Z. Pan, A. Graf, R. Willsch, and M. A. Schmidt, “Sapphire fiber Bragg gratings for high temperature and dynamic temperature diagnostics,” Appl. Therm. Eng. 91, 860–865 (2015).
[Crossref]

L. V. Nguyen, K. Hill, S. C. Warren-Smith, and T. M. Monro, “Interferometric-type optical biosensor based on exposed core microstructured optical fiber,” Sens. Actuators B Chem. 221, 320–327 (2015).
[Crossref]

2014 (1)

2013 (1)

F. Taffoni, D. Formica, P. Saccomandi, G. Di Pino, and E. Schena, “Optical fiber-based MR-compatible sensors for medical applications: an overview,” Sensors (Basel) 13(10), 14105–14120 (2013).
[Crossref] [PubMed]

2012 (3)

A. Ukil, H. Braendle, and P. Krippner, “Distributed temperature sensing: review of technology and applications,” IEEE Sens. J. 12(5), 885–892 (2012).
[Crossref]

S. J. Mihailov, “Fiber Bragg grating sensors for harsh environments,” Sensors (Basel) 12(2), 1898–1918 (2012).
[Crossref] [PubMed]

D. Barrera, V. Finazzi, J. Villatoro, S. Sales, and V. Pruneri, “Packaged optical sensors based on regenerated fiber Bragg gratings for high temperature applications,” IEEE Sens. J. 12(1), 107–112 (2012).
[Crossref]

2010 (3)

2009 (2)

2008 (3)

2007 (4)

2006 (1)

E. Li, X. Wang, and C. Zhang, “Fiber-optic temperature sensor based on interference of selective higher-order modes,” Appl. Phys. Lett. 89(9), 091119 (2006).
[Crossref]

2005 (1)

2004 (2)

2003 (1)

B. Lee, “Review of the present status of optical fiber sensors,” Opt. Fiber Technol. 9(2), 57–79 (2003).
[Crossref]

1997 (1)

1996 (1)

M. Kihara, M. Matsumoto, T. Haibara, and S. Tomita, “Characteristics of thermally expanded core fiber,” J. Lightwave Technol. 14(10), 2209–2214 (1996).
[Crossref]

1992 (1)

1990 (1)

K. Shiraishi, Y. Aizawa, and S. Kawakami, “Beam expanding fiber using thermal diffusion of the dopant,” J. Lightwave Technol. 8(8), 1151–1161 (1990).
[Crossref]

Afshar, S.

T. M. Monro, S. Warren-Smith, E. P. Schartner, A. François, S. Heng, H. Ebendorff-Heidepriem, and S. Afshar, “Sensing with suspended-core optical fibers,” Opt. Fiber Technol. 16(6), 343–356 (2010).
[Crossref]

Aizawa, Y.

K. Shiraishi, Y. Aizawa, and S. Kawakami, “Beam expanding fiber using thermal diffusion of the dopant,” J. Lightwave Technol. 8(8), 1151–1161 (1990).
[Crossref]

Badenes, G.

Bandyopadhyay, S.

J. Canning, M. Stevenson, S. Bandyopadhyay, and K. Cook, “Extreme silica optical fibre gratings,” Sensors (Basel Switzerland) 8(10), 6448–6452 (2008).
[Crossref]

Barrera, D.

D. Barrera, V. Finazzi, J. Villatoro, S. Sales, and V. Pruneri, “Packaged optical sensors based on regenerated fiber Bragg gratings for high temperature applications,” IEEE Sens. J. 12(1), 107–112 (2012).
[Crossref]

Birks, T. A.

Braendle, H.

A. Ukil, H. Braendle, and P. Krippner, “Distributed temperature sensing: review of technology and applications,” IEEE Sens. J. 12(5), 885–892 (2012).
[Crossref]

Canning, J.

J. Canning, M. Stevenson, S. Bandyopadhyay, and K. Cook, “Extreme silica optical fibre gratings,” Sensors (Basel Switzerland) 8(10), 6448–6452 (2008).
[Crossref]

D. Kácik, I. Turek, I. Martinček, J. Canning, N. Issa, and K. Lyytikäinen, “Intermodal interference in a photonic crystal fibre,” Opt. Express 12(15), 3465–3470 (2004).
[Crossref] [PubMed]

Carter, R. M.

Choi, E. S.

Choi, H. Y.

Chung, Y.

Churikov, V. M.

Claus, R. O.

Cook, K.

J. Canning, M. Stevenson, S. Bandyopadhyay, and K. Cook, “Extreme silica optical fibre gratings,” Sensors (Basel Switzerland) 8(10), 6448–6452 (2008).
[Crossref]

Coviello, G.

Culshaw, B.

Di Pino, G.

F. Taffoni, D. Formica, P. Saccomandi, G. Di Pino, and E. Schena, “Optical fiber-based MR-compatible sensors for medical applications: an overview,” Sensors (Basel) 13(10), 14105–14120 (2013).
[Crossref] [PubMed]

Dong, B.

Ebendorff-Heidepriem, H.

S. C. Warren-Smith, L. V. Nguyen, C. Lang, H. Ebendorff-Heidepriem, and T. M. Monro, “Temperature sensing up to 1300°C using suspended-core microstructured optical fibers,” Opt. Express 24(4), 3714–3719 (2016).
[Crossref] [PubMed]

T. M. Monro, S. Warren-Smith, E. P. Schartner, A. François, S. Heng, H. Ebendorff-Heidepriem, and S. Afshar, “Sensing with suspended-core optical fibers,” Opt. Fiber Technol. 16(6), 343–356 (2010).
[Crossref]

Elsmann, T.

T. Habisreuther, T. Elsmann, Z. Pan, A. Graf, R. Willsch, and M. A. Schmidt, “Sapphire fiber Bragg gratings for high temperature and dynamic temperature diagnostics,” Appl. Therm. Eng. 91, 860–865 (2015).
[Crossref]

Finazzi, V.

Formica, D.

F. Taffoni, D. Formica, P. Saccomandi, G. Di Pino, and E. Schena, “Optical fiber-based MR-compatible sensors for medical applications: an overview,” Sensors (Basel) 13(10), 14105–14120 (2013).
[Crossref] [PubMed]

François, A.

T. M. Monro, S. Warren-Smith, E. P. Schartner, A. François, S. Heng, H. Ebendorff-Heidepriem, and S. Afshar, “Sensing with suspended-core optical fibers,” Opt. Fiber Technol. 16(6), 343–356 (2010).
[Crossref]

Genack, A. Z.

Gollapudi, S.

Gong, J.

Graf, A.

T. Habisreuther, T. Elsmann, Z. Pan, A. Graf, R. Willsch, and M. A. Schmidt, “Sapphire fiber Bragg gratings for high temperature and dynamic temperature diagnostics,” Appl. Therm. Eng. 91, 860–865 (2015).
[Crossref]

Habisreuther, T.

T. Habisreuther, T. Elsmann, Z. Pan, A. Graf, R. Willsch, and M. A. Schmidt, “Sapphire fiber Bragg gratings for high temperature and dynamic temperature diagnostics,” Appl. Therm. Eng. 91, 860–865 (2015).
[Crossref]

Haibara, T.

M. Kihara, M. Matsumoto, T. Haibara, and S. Tomita, “Characteristics of thermally expanded core fiber,” J. Lightwave Technol. 14(10), 2209–2214 (1996).
[Crossref]

Han, M.

Hand, D. P.

Havermann, D.

Heng, S.

T. M. Monro, S. Warren-Smith, E. P. Schartner, A. François, S. Heng, H. Ebendorff-Heidepriem, and S. Afshar, “Sensing with suspended-core optical fibers,” Opt. Fiber Technol. 16(6), 343–356 (2010).
[Crossref]

Hill, K.

L. V. Nguyen, K. Hill, S. C. Warren-Smith, and T. M. Monro, “Interferometric-type optical biosensor based on exposed core microstructured optical fiber,” Sens. Actuators B Chem. 221, 320–327 (2015).
[Crossref]

Huang, Z.

Hwang, D.

Issa, N.

Jha, R.

Kácik, D.

Kawakami, S.

K. Shiraishi, Y. Aizawa, and S. Kawakami, “Beam expanding fiber using thermal diffusion of the dopant,” J. Lightwave Technol. 8(8), 1151–1161 (1990).
[Crossref]

Kihara, M.

M. Kihara, M. Matsumoto, T. Haibara, and S. Tomita, “Characteristics of thermally expanded core fiber,” J. Lightwave Technol. 14(10), 2209–2214 (1996).
[Crossref]

Kim, M. J.

Knight, J. C.

Kopp, V. I.

Kostecki, R.

Kreuzer, M. P.

Krippner, P.

A. Ukil, H. Braendle, and P. Krippner, “Distributed temperature sensing: review of technology and applications,” IEEE Sens. J. 12(5), 885–892 (2012).
[Crossref]

Lally, E.

Lang, C.

Lee, B.

B. Lee, “Review of the present status of optical fiber sensors,” Opt. Fiber Technol. 9(2), 57–79 (2003).
[Crossref]

Lee, B. H.

Li, E.

E. Li, X. Wang, and C. Zhang, “Fiber-optic temperature sensor based on interference of selective higher-order modes,” Appl. Phys. Lett. 89(9), 091119 (2006).
[Crossref]

Liu, Y.

Lyytikäinen, K.

MacPherson, W. N.

Maier, R. R. J.

Martincek, I.

Mathew, J.

Matsumoto, M.

M. Kihara, M. Matsumoto, T. Haibara, and S. Tomita, “Characteristics of thermally expanded core fiber,” J. Lightwave Technol. 14(10), 2209–2214 (1996).
[Crossref]

May, R. G.

Mihailov, S. J.

S. J. Mihailov, “Fiber Bragg grating sensors for harsh environments,” Sensors (Basel) 12(2), 1898–1918 (2012).
[Crossref] [PubMed]

Minkovich, V. P.

Monro, T. M.

S. C. Warren-Smith, L. V. Nguyen, C. Lang, H. Ebendorff-Heidepriem, and T. M. Monro, “Temperature sensing up to 1300°C using suspended-core microstructured optical fibers,” Opt. Express 24(4), 3714–3719 (2016).
[Crossref] [PubMed]

L. V. Nguyen, K. Hill, S. C. Warren-Smith, and T. M. Monro, “Interferometric-type optical biosensor based on exposed core microstructured optical fiber,” Sens. Actuators B Chem. 221, 320–327 (2015).
[Crossref]

S. C. Warren-Smith, R. Kostecki, L. V. Nguyen, and T. M. Monro, “Fabrication, splicing, Bragg grating writing, and polyelectrolyte functionalization of exposed-core microstructured optical fibers,” Opt. Express 22(24), 29493–29504 (2014).
[Crossref] [PubMed]

T. M. Monro, S. Warren-Smith, E. P. Schartner, A. François, S. Heng, H. Ebendorff-Heidepriem, and S. Afshar, “Sensing with suspended-core optical fibers,” Opt. Fiber Technol. 16(6), 343–356 (2010).
[Crossref]

Moon, D. S.

Moon, S.

Murphy, K. A.

Nguyen, L. V.

Paek, U.-C.

Pan, Z.

T. Habisreuther, T. Elsmann, Z. Pan, A. Graf, R. Willsch, and M. A. Schmidt, “Sapphire fiber Bragg gratings for high temperature and dynamic temperature diagnostics,” Appl. Therm. Eng. 91, 860–865 (2015).
[Crossref]

Park, K. S.

Park, S. J.

Poletti, F.

A. S. Webb, F. Poletti, D. J. Richardson, and J. K. Sahu, “Suspended-core holey fiber for evanescent-field sensing,” Opt. Eng. 46(1), 010503 (2007).
[Crossref]

Polyzos, D.

Pruneri, V.

Richardson, D. J.

A. S. Webb, F. Poletti, D. J. Richardson, and J. K. Sahu, “Suspended-core holey fiber for evanescent-field sensing,” Opt. Eng. 46(1), 010503 (2007).
[Crossref]

Russell, P. St. J.

Saccomandi, P.

F. Taffoni, D. Formica, P. Saccomandi, G. Di Pino, and E. Schena, “Optical fiber-based MR-compatible sensors for medical applications: an overview,” Sensors (Basel) 13(10), 14105–14120 (2013).
[Crossref] [PubMed]

Sahu, J. K.

A. S. Webb, F. Poletti, D. J. Richardson, and J. K. Sahu, “Suspended-core holey fiber for evanescent-field sensing,” Opt. Eng. 46(1), 010503 (2007).
[Crossref]

Sales, S.

D. Barrera, V. Finazzi, J. Villatoro, S. Sales, and V. Pruneri, “Packaged optical sensors based on regenerated fiber Bragg gratings for high temperature applications,” IEEE Sens. J. 12(1), 107–112 (2012).
[Crossref]

Schartner, E. P.

T. M. Monro, S. Warren-Smith, E. P. Schartner, A. François, S. Heng, H. Ebendorff-Heidepriem, and S. Afshar, “Sensing with suspended-core optical fibers,” Opt. Fiber Technol. 16(6), 343–356 (2010).
[Crossref]

Schena, E.

F. Taffoni, D. Formica, P. Saccomandi, G. Di Pino, and E. Schena, “Optical fiber-based MR-compatible sensors for medical applications: an overview,” Sensors (Basel) 13(10), 14105–14120 (2013).
[Crossref] [PubMed]

Schmidt, M. A.

T. Habisreuther, T. Elsmann, Z. Pan, A. Graf, R. Willsch, and M. A. Schmidt, “Sapphire fiber Bragg gratings for high temperature and dynamic temperature diagnostics,” Appl. Therm. Eng. 91, 860–865 (2015).
[Crossref]

Schneller, O.

Shen, F.

Shiraishi, K.

K. Shiraishi, Y. Aizawa, and S. Kawakami, “Beam expanding fiber using thermal diffusion of the dopant,” J. Lightwave Technol. 8(8), 1151–1161 (1990).
[Crossref]

Stevenson, M.

J. Canning, M. Stevenson, S. Bandyopadhyay, and K. Cook, “Extreme silica optical fibre gratings,” Sensors (Basel Switzerland) 8(10), 6448–6452 (2008).
[Crossref]

Taffoni, F.

F. Taffoni, D. Formica, P. Saccomandi, G. Di Pino, and E. Schena, “Optical fiber-based MR-compatible sensors for medical applications: an overview,” Sensors (Basel) 13(10), 14105–14120 (2013).
[Crossref] [PubMed]

Tomita, S.

M. Kihara, M. Matsumoto, T. Haibara, and S. Tomita, “Characteristics of thermally expanded core fiber,” J. Lightwave Technol. 14(10), 2209–2214 (1996).
[Crossref]

Turek, I.

Ukil, A.

A. Ukil, H. Braendle, and P. Krippner, “Distributed temperature sensing: review of technology and applications,” IEEE Sens. J. 12(5), 885–892 (2012).
[Crossref]

Villatoro, J.

Wang, A.

Wang, J.

Wang, X.

E. Li, X. Wang, and C. Zhang, “Fiber-optic temperature sensor based on interference of selective higher-order modes,” Appl. Phys. Lett. 89(9), 091119 (2006).
[Crossref]

Warren-Smith, S.

T. M. Monro, S. Warren-Smith, E. P. Schartner, A. François, S. Heng, H. Ebendorff-Heidepriem, and S. Afshar, “Sensing with suspended-core optical fibers,” Opt. Fiber Technol. 16(6), 343–356 (2010).
[Crossref]

Warren-Smith, S. C.

Webb, A. S.

A. S. Webb, F. Poletti, D. J. Richardson, and J. K. Sahu, “Suspended-core holey fiber for evanescent-field sensing,” Opt. Eng. 46(1), 010503 (2007).
[Crossref]

Wei, L.

Willsch, R.

T. Habisreuther, T. Elsmann, Z. Pan, A. Graf, R. Willsch, and M. A. Schmidt, “Sapphire fiber Bragg gratings for high temperature and dynamic temperature diagnostics,” Appl. Therm. Eng. 91, 860–865 (2015).
[Crossref]

Zhang, C.

E. Li, X. Wang, and C. Zhang, “Fiber-optic temperature sensor based on interference of selective higher-order modes,” Appl. Phys. Lett. 89(9), 091119 (2006).
[Crossref]

Zhu, Y.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

E. Li, X. Wang, and C. Zhang, “Fiber-optic temperature sensor based on interference of selective higher-order modes,” Appl. Phys. Lett. 89(9), 091119 (2006).
[Crossref]

Appl. Therm. Eng. (1)

T. Habisreuther, T. Elsmann, Z. Pan, A. Graf, R. Willsch, and M. A. Schmidt, “Sapphire fiber Bragg gratings for high temperature and dynamic temperature diagnostics,” Appl. Therm. Eng. 91, 860–865 (2015).
[Crossref]

IEEE Sens. J. (2)

A. Ukil, H. Braendle, and P. Krippner, “Distributed temperature sensing: review of technology and applications,” IEEE Sens. J. 12(5), 885–892 (2012).
[Crossref]

D. Barrera, V. Finazzi, J. Villatoro, S. Sales, and V. Pruneri, “Packaged optical sensors based on regenerated fiber Bragg gratings for high temperature applications,” IEEE Sens. J. 12(1), 107–112 (2012).
[Crossref]

J. Lightwave Technol. (4)

K. Shiraishi, Y. Aizawa, and S. Kawakami, “Beam expanding fiber using thermal diffusion of the dopant,” J. Lightwave Technol. 8(8), 1151–1161 (1990).
[Crossref]

M. Kihara, M. Matsumoto, T. Haibara, and S. Tomita, “Characteristics of thermally expanded core fiber,” J. Lightwave Technol. 14(10), 2209–2214 (1996).
[Crossref]

B. Culshaw, “Optical fiber sensor technologies: opportunities and-perhaps-pitfalls,” J. Lightwave Technol. 22(1), 39–50 (2004).
[Crossref]

J. Mathew, O. Schneller, D. Polyzos, D. Havermann, R. M. Carter, W. N. MacPherson, D. P. Hand, and R. R. J. Maier, “In-fiber Fabry–Perot cavity sensor for high-temperature application,” J. Lightwave Technol. 33(12), 2419–2425 (2015).
[Crossref]

Opt. Eng. (1)

A. S. Webb, F. Poletti, D. J. Richardson, and J. K. Sahu, “Suspended-core holey fiber for evanescent-field sensing,” Opt. Eng. 46(1), 010503 (2007).
[Crossref]

Opt. Express (8)

S. C. Warren-Smith, L. V. Nguyen, C. Lang, H. Ebendorff-Heidepriem, and T. M. Monro, “Temperature sensing up to 1300°C using suspended-core microstructured optical fibers,” Opt. Express 24(4), 3714–3719 (2016).
[Crossref] [PubMed]

D. Kácik, I. Turek, I. Martinček, J. Canning, N. Issa, and K. Lyytikäinen, “Intermodal interference in a photonic crystal fibre,” Opt. Express 12(15), 3465–3470 (2004).
[Crossref] [PubMed]

J. Villatoro, V. P. Minkovich, V. Pruneri, and G. Badenes, “Simple all-microstructured-optical-fiber interferometer built via fusion splicing,” Opt. Express 15(4), 1491–1496 (2007).
[Crossref] [PubMed]

S. C. Warren-Smith, R. Kostecki, L. V. Nguyen, and T. M. Monro, “Fabrication, splicing, Bragg grating writing, and polyelectrolyte functionalization of exposed-core microstructured optical fibers,” Opt. Express 22(24), 29493–29504 (2014).
[Crossref] [PubMed]

H. Y. Choi, M. J. Kim, and B. H. Lee, “All-fiber Mach-Zehnder type interferometers formed in photonic crystal fiber,” Opt. Express 15(9), 5711–5720 (2007).
[Crossref] [PubMed]

L. V. Nguyen, D. Hwang, S. Moon, D. S. Moon, and Y. Chung, “High temperature fiber sensor with high sensitivity based on core diameter mismatch,” Opt. Express 16(15), 11369–11375 (2008).
[Crossref] [PubMed]

J. Villatoro, M. P. Kreuzer, R. Jha, V. P. Minkovich, V. Finazzi, G. Badenes, and V. Pruneri, “Photonic crystal fiber interferometer for chemical vapor detection with high sensitivity,” Opt. Express 17(3), 1447–1453 (2009).
[Crossref] [PubMed]

G. Coviello, V. Finazzi, J. Villatoro, and V. Pruneri, “Thermally stabilized PCF-based sensor for temperature measurements up to 1000 ° C,” Opt. Express 17(24), 21551–21559 (2009).
[Crossref] [PubMed]

Opt. Fiber Technol. (2)

T. M. Monro, S. Warren-Smith, E. P. Schartner, A. François, S. Heng, H. Ebendorff-Heidepriem, and S. Afshar, “Sensing with suspended-core optical fibers,” Opt. Fiber Technol. 16(6), 343–356 (2010).
[Crossref]

B. Lee, “Review of the present status of optical fiber sensors,” Opt. Fiber Technol. 9(2), 57–79 (2003).
[Crossref]

Opt. Lett. (6)

Sens. Actuators B Chem. (1)

L. V. Nguyen, K. Hill, S. C. Warren-Smith, and T. M. Monro, “Interferometric-type optical biosensor based on exposed core microstructured optical fiber,” Sens. Actuators B Chem. 221, 320–327 (2015).
[Crossref]

Sensors (Basel Switzerland) (1)

J. Canning, M. Stevenson, S. Bandyopadhyay, and K. Cook, “Extreme silica optical fibre gratings,” Sensors (Basel Switzerland) 8(10), 6448–6452 (2008).
[Crossref]

Sensors (Basel) (2)

S. J. Mihailov, “Fiber Bragg grating sensors for harsh environments,” Sensors (Basel) 12(2), 1898–1918 (2012).
[Crossref] [PubMed]

F. Taffoni, D. Formica, P. Saccomandi, G. Di Pino, and E. Schena, “Optical fiber-based MR-compatible sensors for medical applications: an overview,” Sensors (Basel) 13(10), 14105–14120 (2013).
[Crossref] [PubMed]

Other (1)

F. T. S. Yu and S. Yin, Fiber Optic Sensors (Dekker, 2002).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic diagram of the multimode interference that occurs in multimode SCFs. The fundamental mode of the lead-in/out SMF excites several modes in the SCF which, after propagating through the SCF and reflected at the distal end, couples again into the fundamental mode of the lead-in/out SMF with a certain phase delay between each other. These phase delays result in an interference pattern in the reflection spectrum.

Fig. 2
Fig. 2

Experimental setup for temperature sensing using the proposed sensor. Inset shows the cross section of the SCF used in this work

Fig. 3
Fig. 3

Reflected spectra, associated FFTs and FFT-filtered spectra of spliced SMF-SCF with different lengths (a) 35 cm, (b) 28 cm, (c) 20 cm, and (d) 2.4 cm. All spectra were measured at room temperature

Fig. 4
Fig. 4

FSRs of the dominant interference (corresponding to the strongest peak in the spatial frequency spectrum) vs SCF lengths and its a/x fitting.

Fig. 5
Fig. 5

(a) Raw reflection spectra at different temperatures. (b) FFT filtered spectra as temperature increased/decreased over a range of 1080°C (from 20°C to 1100°C). (c) Linear fit of the wavelength shifts.

Fig. 6
Fig. 6

(a) Complete time series of the phase change at the spatial frequency of 0.088 nm−1 during which temperature was varied in several ways. The zoomed-in of boxes within (a) are: (b) temperature increased from room temperature to 400°C (green); (c) temperature dwelling overnight at 400°C (red) and the phase noise during that time; (d) temperature increased stepwise (100°C step) from 400°C to 1100°C then left at 1100°C for 5 hours (blue); (e) turned off the furnace and let temperature fall off freely to 132°C overnight (wine); (f) temperature continuously increased from 132°C to 1100°C (magenta); and (g) temperature decreased stepwise (100°C step) from 1100°C to 400°C.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

I= { i=1 n I i e 2i β i L SCF } 2 = i=1 n I i + ij=1 n I i I j cos[ 4π λ ( n i eff n j eff ) L SCF ].
I= I 1 + I 2 +2 I 1 I 2 cos[ 4π λ ( n 1 eff n 2 eff ) L SCF ].
ϕ= 4π λ ( n 1 eff n 2 eff ) L SCF .
δϕ= ϕ T δT= 4π λ [ ( n 1 eff T n 2 eff T ) L SCF + L SCF T ( n 1 eff n 2 eff ) ]δT.
δλ= λ 0 2 4π( n 1 eff n 2 eff ) L SCF δϕ= λ 0 2 4πΔ n eff L SCF δϕ= FSR 2π δϕ.
FSR= λ 0 2 2Δ n eff L SCF .

Metrics