Abstract

We demonstrate a novel all-fiber-optic humidity sensor comprised of a WS2 film overlay on a side polished fiber (SPF). This sensor can achieve optical power variation of up to 6 dB in a relative humidity (RH) range of 35%-85%. In particular, this novel humidity fiber sensor has a linear correlation coefficient of 99.39%, sensitivity of 0.1213 dB/%RH, and a humidity resolution of 0.475%RH. Furthermore, this sensor shows good repeatability and reversibility, and fast response to breath stimulus. This WS2 based all-fiber optic humidity sensor is easy to fabricate, is compatible with pre-established fiber optic systems, and holds great potential in photonics applications such as in all-fiber optic humidity sensing networks.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Enhanced optical sensitivity of molybdenum diselenide (MoSe2) coated side polished fiber for humidity sensing

Tenghui Ouyang, Limin Lin, Kai Xia, Mengjiang Jiang, Yuwei Lang, Heyuan Guan, Jianhui Yu, Dongquan Li, Guanglei Chen, Wenguo Zhu, Yongchun Zhong, Jieyuan Tang, Jiangli Dong, Huihui Lu, Yunhan Luo, Jun Zhang, and Zhe Chen
Opt. Express 25(9) 9823-9833 (2017)

Tungsten disulfide wrapped on micro fiber for enhanced humidity sensing

Heyuan Guan, Kai Xia, Chaoying Chen, Yunhan Luo, Jieyuan Tang, Huihui Lu, Jianhui Yu, Jun Zhang, Yongchun Zhong, and Zhe Chen
Opt. Mater. Express 7(5) 1686-1696 (2017)

Molybdenum disulfide nanosheets deposited on polished optical fiber for humidity sensing and human breath monitoring

Dongquan Li, Huihui Lu, Wentao Qiu, Jiangli Dong, Heyuan Guan, Wenguo Zhu, Jianhui Yu, Yunhan Luo, Jun Zhang, and Zhe Chen
Opt. Express 25(23) 28407-28416 (2017)

References

  • View by:
  • |
  • |
  • |

  1. Y. Xue, Y. Zhang, Y. Liu, H. Liu, J. Song, J. Sophia, J. Liu, Z. Xu, Q. Xu, Z. Wang, J. Zheng, Y. Liu, S. Li, and Q. Bao, “Scalable production of a few-layer MoS2/WS2 vertical heterojunction array and its application for photodetectors,” ACS Nano 10(1), 573–580 (2016).
    [Crossref] [PubMed]
  2. V. Q. Bui, T. T. Pham, D. A. Le, C. M. Thi, and H. M. Le, “A first-principles investigation of various gas (CO, H2O, NO, and O2) absorptions on a WS2 monolayer: stability and electronic properties,” J. Phys. Condens. Matter 27(30), 305005 (2015).
    [Crossref] [PubMed]
  3. C. C. Mayorga-Martinez, A. Ambrosi, A. Y. S. Eng, Z. Sofer, and M. Pumera, “Metallic 1T-WS2 for selective impedimetric vapor sensing,” Adv. Funct. Mater. 25(35), 5611–5616 (2015).
    [Crossref]
  4. A. Ambrosi, Z. Sofer, and M. Pumera, “2H → 1T phase transition and hydrogen evolution activity of MoS2, MoSe2, WS2 and WSe2 strongly depends on the MX2 composition,” Chem. Commun. (Camb.) 51(40), 8450–8453 (2015).
    [Crossref] [PubMed]
  5. Q. Chen, J. Chen, C. Gao, M. Zhang, J. Chen, and H. Qiu, “Hemin-functionalized WS2 nanosheets as highly active peroxidase mimetics for label-free colorimetric detection of H2O2 and glucose,” Analyst (Lond.) 140(8), 2857–2863 (2015).
    [Crossref] [PubMed]
  6. M. O’Brien, K. Lee, R. Morrish, N. C. Berner, N. McEvoy, C. A. Wolden, and G. S. Duesberg, “Plasma assisted synthesis of WS2 for gas sensing applications,” Chem. Phys. Lett. 615, 6–10 (2014).
    [Crossref]
  7. N. Huo, S. Yang, Z. Wei, S. S. Li, J. B. Xia, and J. Li, “Photoresponsive and gas sensing field-effect transistors based on multilayer WS2 nanoflakes,” Sci. Rep. 4, 5209 (2014).
    [Crossref] [PubMed]
  8. J. Yu, S. Jin, Q. Wei, Z. Zang, H. Lu, X. He, Y. Luo, J. Tang, J. Zhang, and Z. Chen, “Hybrid optical fiber add-drop filter based on wavelength dependent light coupling between micro/nano fiber ring and side-polished fiber,” Sci. Rep. 5, 7710 (2015).
    [Crossref] [PubMed]
  9. J. H. Xie, F. Y. Wang, Y. Pan, Z. L. Hu, and Y. M. Hu, “Optical fiber acoustic sensing multiplexing system based on TDM/SFDM,” Chin. Opt. Lett. 13(1), 010401 (2015).
    [Crossref]
  10. H. S. S. Ramakrishna Matte, A. Gomathi, A. K. Manna, D. J. Late, R. Datta, S. K. Pati, and C. N. R. Rao, “MoS2 and WS2 analogues of graphene,” Angew. Chem. Int. Ed. Engl. 49(24), 4059–4062 (2010).
    [Crossref] [PubMed]
  11. W. Zhao, Z. Ghorannevis, L. Chu, M. Toh, C. Kloc, P. H. Tan, and G. Eda, “Evolution of electronic structure in atomically thin sheets of WS2 and WSe2.,” ACS Nano 7(1), 791–797 (2013).
    [Crossref] [PubMed]
  12. J. Zhang, G. Z. Liao, S. S. Jin, D. Cao, Q. S. Wei, H. H. Lu, J. H. Yu, X. Cai, S. Z. Tan, Y. Xiao, J. Y. Tang, Y. H. Luo, and Z. Chen, “All-fiber-optic temperature sensor based on reduced graphene oxide,” Laser Phys. Lett. 11(3), 035901 (2014).
    [Crossref]
  13. Y. H. Luo, X. L. Chen, M. Y. Xu, J. Ge, Y. L. Zhang, Y. H. He, J. Y. Tang, J. H. Yu, J. Zhang, Z. Chen, and X. D. Chen, “Spectra modulated surface plasmon resonance sensor based on side polished multi-mode optical fiber,” Spectrosc. Spect. Anal. 34(3), 577–581 (2014).
    [PubMed]
  14. Y. H. Luo, M. Y. Xu, X. L. Chen, J. Y. Tang, F. Wang, Y. L. Zhang, Y. H. He, and Z. Chen, “[Performance of wavelength modulation surface plasmon resonance biosensor],” Spectrosc. Spect. Anal. 34(5), 1178–1181 (2014).
    [PubMed]
  15. Y. Q. Han, Z. Chen, D. Cao, J. H. Yu, H. Z. Li, X. L. He, J. Zhang, Y. H. Luo, H. H. Lu, J. Y. Tang, and H. K. Huang, “Side-polished fiber as a sensor for the determination of nematic liquid crystal orientation,” Sens. Actuators B Chem. 196, 663–669 (2014).
    [Crossref]
  16. H. Lu, Z. Tian, H. Yu, B. Yang, G. Jing, G. Liao, J. Zhang, J. Yu, J. Tang, Y. Luo, and Z. Chen, “Optical fiber with nanostructured cladding of TiO2 nanoparticles self-assembled onto a side polished fiber and its temperature sensing,” Opt. Express 22(26), 32502–32508 (2014).
    [Crossref] [PubMed]
  17. B. Yang, Z. Chen, Y. T. Wang, J. Zhang, G. Z. Liao, Z. W. Tian, J. H. Yu, J. Y. Tang, Y. H. Luo, and H. H. Lu, “Fiber temperature sensor with nanostructured cladding by TiO2 nanoparticles self-assembled onto a side polished optical fiber,” Proc. SPIE 9655, 96553B (2015).
    [Crossref]
  18. Y. H. Luo, Q. S. Wei, Y. Ma, H. H. Lu, J. H. Yu, J. Y. Tang, J. B. Yu, J. B. Fang, J. Zhang, and Z. Chen, “Side-polished-fiber based optical coupler assisted with a fused nano silica film,” Appl. Opt. 54(7), 1598–1605 (2015).
    [Crossref]
  19. P. L. Mao, Y. H. Luo, C. Y. Chen, S. H. Peng, X. J. Feng, J. Y. Tang, J. B. Fang, J. Zhang, H. H. Lu, J. H. Yu, and Z. Chen, “Design and optimization of surface plasmon resonance sensor based on multimode fiber,” Opt. Quantum Electron. 47(6), 1495–1502 (2015).
    [Crossref]
  20. X. K. Zhang, Z. Y. Deng, and H. L. Xu, “Calibrating an optical fiber humidity sensor and applying it in real-time monitoring of relative humidity in fresh concrete,” Chin. Opt. Lett. 11(9), 090604 (2013).
    [Crossref]
  21. P. F. Jiang, Z. Chen, Y. X. Zeng, L. H. Liu, and F. L. Li, “Optical propagation characteristics of side-polished fibers,” Semiconductor Optoelectron. 27(5), 578–581 (2006).
  22. U. Ahuja, A. Dashora, H. Tiwari, D. C. Kothari, and K. Venugopalan, “Electronic and optical properties of MoS2-WS2 multi-layers: first principles study,” Comput. Mater. Sci. 92, 451–456 (2014).
    [Crossref]
  23. A. Kumar and P. K. Ahluwalia, “Tunable dielectric response of transition metals dichalcogenides MX2 (M=Mo, W; X=S, Se, Te): effect of quantum confinement,” Physica B 407(24), 4627–4634 (2012).
    [Crossref]
  24. A. Berkdemir, H. R. Gutierrez, A. R. Botello-Mendez, N. Perea-Lopez, A. L. Elias, C. I. Chia, B. Wang, V. H. Crespi, F. Lopez-Urias, J. C. Charlier, H. Terrones, and M. Terrones, “Identification of individual and few layers of WS2 using Raman Spectroscopy,” Sci. Rep. 3, 1755 (2013).
    [Crossref]
  25. Y. Kim, B. Jung, H. Lee, H. Kim, K. Lee, and H. Park, “Capacitive humidity sensor design based on anodic aluminum oxide,” Sens. Actuators B Chem. 141(2), 441–446 (2009).
    [Crossref]
  26. A. Lokman, S. Nodehi, M. Batumalay, H. Arof, H. Ahmad, and S. W. Harun, “Optical fiber humidity sensor based on a tapered fiber with hydroxyethylcellu lose/polyvinylidenefluoride composite,” Microw. Opt. Technol. Lett. 56(2), 380–382 (2014).
    [Crossref]
  27. R. Aneesh and S. K. Khijwania, “Zinc oxide nanoparticle-doped nanoporous solgel fiber as a humidity sensor with enhanced sensitivity and large linear dynamic range,” Appl. Opt. 52(22), 5493–5499 (2013).
    [Crossref] [PubMed]
  28. A. Lokman, H. Arof, S. W. Harun, Z. Harith, H. A. Rafaie, and R. M. Nor, “Optical fiber relative humidity sensor based on inline Mach-Zehnder interferometer With ZnO Nanowires Coating,” IEEE Sens. J. 16(2), 312–316 (2016).
    [Crossref]
  29. L. Xia, L. C. Li, W. Li, T. Kou, and D. M. Liu, “Novel optical fiber humidity sensor based on a no-core fiber structure,” Sens. Actuators A Phys. 190, 1–5 (2013).
    [Crossref]
  30. J. Mathew, Y. Semenova, and G. Farrell, “Effect of coating thickness on the sensitivity of a humidity sensor based on an Agarose coated photonic crystal fiber interferometer,” Opt. Express 21(5), 6313–6320 (2013).
    [Crossref] [PubMed]
  31. Y. Xiao, J. Zhang, X. Cai, S. Tan, J. Yu, H. Lu, Y. Luo, G. Liao, S. Li, J. Tang, and Z. Chen, “Reduced graphene oxide for fiber-optic humidity sensing,” Opt. Express 22(25), 31555–31567 (2014).
    [Crossref] [PubMed]
  32. C. Bariáin, I. R. Matias, F. J. Arregui, and M. Lopez-Amo, “Optical fiber humidity sensor based on a tapered fiber coated with agarose gel,” Sens. Actuators B Chem. 69(1–2), 127–131 (2000).
    [Crossref]
  33. Z. T. Wei, Z. Q. Song, X. L. Zhang, Y. Yu, and Z. Meng, “Miniature temperature sensor based on optical microfiber,” Chin. Opt. Lett. 11(11), 110602 (2013).
    [Crossref]
  34. C. Zhou, W. Yang, and H. Zhu, “Mechanism of charge transfer and its impacts on Fermi-level pinning for gas molecules adsorbed on monolayer WS2.,” J. Chem. Phys. 142(21), 214704 (2015).
    [Crossref] [PubMed]
  35. O. Leenaerts, B. Partoens, and F. M. Peeters, “Adsorption of H(2)O, NH(3), CO, NO(2), and NO on graphene: A first-principles study,” Phys. Rev. B 77(12), 125416 (2008).
    [Crossref]

2016 (2)

Y. Xue, Y. Zhang, Y. Liu, H. Liu, J. Song, J. Sophia, J. Liu, Z. Xu, Q. Xu, Z. Wang, J. Zheng, Y. Liu, S. Li, and Q. Bao, “Scalable production of a few-layer MoS2/WS2 vertical heterojunction array and its application for photodetectors,” ACS Nano 10(1), 573–580 (2016).
[Crossref] [PubMed]

A. Lokman, H. Arof, S. W. Harun, Z. Harith, H. A. Rafaie, and R. M. Nor, “Optical fiber relative humidity sensor based on inline Mach-Zehnder interferometer With ZnO Nanowires Coating,” IEEE Sens. J. 16(2), 312–316 (2016).
[Crossref]

2015 (10)

C. Zhou, W. Yang, and H. Zhu, “Mechanism of charge transfer and its impacts on Fermi-level pinning for gas molecules adsorbed on monolayer WS2.,” J. Chem. Phys. 142(21), 214704 (2015).
[Crossref] [PubMed]

J. H. Xie, F. Y. Wang, Y. Pan, Z. L. Hu, and Y. M. Hu, “Optical fiber acoustic sensing multiplexing system based on TDM/SFDM,” Chin. Opt. Lett. 13(1), 010401 (2015).
[Crossref]

Y. H. Luo, Q. S. Wei, Y. Ma, H. H. Lu, J. H. Yu, J. Y. Tang, J. B. Yu, J. B. Fang, J. Zhang, and Z. Chen, “Side-polished-fiber based optical coupler assisted with a fused nano silica film,” Appl. Opt. 54(7), 1598–1605 (2015).
[Crossref]

V. Q. Bui, T. T. Pham, D. A. Le, C. M. Thi, and H. M. Le, “A first-principles investigation of various gas (CO, H2O, NO, and O2) absorptions on a WS2 monolayer: stability and electronic properties,” J. Phys. Condens. Matter 27(30), 305005 (2015).
[Crossref] [PubMed]

C. C. Mayorga-Martinez, A. Ambrosi, A. Y. S. Eng, Z. Sofer, and M. Pumera, “Metallic 1T-WS2 for selective impedimetric vapor sensing,” Adv. Funct. Mater. 25(35), 5611–5616 (2015).
[Crossref]

A. Ambrosi, Z. Sofer, and M. Pumera, “2H → 1T phase transition and hydrogen evolution activity of MoS2, MoSe2, WS2 and WSe2 strongly depends on the MX2 composition,” Chem. Commun. (Camb.) 51(40), 8450–8453 (2015).
[Crossref] [PubMed]

Q. Chen, J. Chen, C. Gao, M. Zhang, J. Chen, and H. Qiu, “Hemin-functionalized WS2 nanosheets as highly active peroxidase mimetics for label-free colorimetric detection of H2O2 and glucose,” Analyst (Lond.) 140(8), 2857–2863 (2015).
[Crossref] [PubMed]

J. Yu, S. Jin, Q. Wei, Z. Zang, H. Lu, X. He, Y. Luo, J. Tang, J. Zhang, and Z. Chen, “Hybrid optical fiber add-drop filter based on wavelength dependent light coupling between micro/nano fiber ring and side-polished fiber,” Sci. Rep. 5, 7710 (2015).
[Crossref] [PubMed]

B. Yang, Z. Chen, Y. T. Wang, J. Zhang, G. Z. Liao, Z. W. Tian, J. H. Yu, J. Y. Tang, Y. H. Luo, and H. H. Lu, “Fiber temperature sensor with nanostructured cladding by TiO2 nanoparticles self-assembled onto a side polished optical fiber,” Proc. SPIE 9655, 96553B (2015).
[Crossref]

P. L. Mao, Y. H. Luo, C. Y. Chen, S. H. Peng, X. J. Feng, J. Y. Tang, J. B. Fang, J. Zhang, H. H. Lu, J. H. Yu, and Z. Chen, “Design and optimization of surface plasmon resonance sensor based on multimode fiber,” Opt. Quantum Electron. 47(6), 1495–1502 (2015).
[Crossref]

2014 (10)

U. Ahuja, A. Dashora, H. Tiwari, D. C. Kothari, and K. Venugopalan, “Electronic and optical properties of MoS2-WS2 multi-layers: first principles study,” Comput. Mater. Sci. 92, 451–456 (2014).
[Crossref]

M. O’Brien, K. Lee, R. Morrish, N. C. Berner, N. McEvoy, C. A. Wolden, and G. S. Duesberg, “Plasma assisted synthesis of WS2 for gas sensing applications,” Chem. Phys. Lett. 615, 6–10 (2014).
[Crossref]

N. Huo, S. Yang, Z. Wei, S. S. Li, J. B. Xia, and J. Li, “Photoresponsive and gas sensing field-effect transistors based on multilayer WS2 nanoflakes,” Sci. Rep. 4, 5209 (2014).
[Crossref] [PubMed]

J. Zhang, G. Z. Liao, S. S. Jin, D. Cao, Q. S. Wei, H. H. Lu, J. H. Yu, X. Cai, S. Z. Tan, Y. Xiao, J. Y. Tang, Y. H. Luo, and Z. Chen, “All-fiber-optic temperature sensor based on reduced graphene oxide,” Laser Phys. Lett. 11(3), 035901 (2014).
[Crossref]

Y. H. Luo, X. L. Chen, M. Y. Xu, J. Ge, Y. L. Zhang, Y. H. He, J. Y. Tang, J. H. Yu, J. Zhang, Z. Chen, and X. D. Chen, “Spectra modulated surface plasmon resonance sensor based on side polished multi-mode optical fiber,” Spectrosc. Spect. Anal. 34(3), 577–581 (2014).
[PubMed]

Y. H. Luo, M. Y. Xu, X. L. Chen, J. Y. Tang, F. Wang, Y. L. Zhang, Y. H. He, and Z. Chen, “[Performance of wavelength modulation surface plasmon resonance biosensor],” Spectrosc. Spect. Anal. 34(5), 1178–1181 (2014).
[PubMed]

Y. Q. Han, Z. Chen, D. Cao, J. H. Yu, H. Z. Li, X. L. He, J. Zhang, Y. H. Luo, H. H. Lu, J. Y. Tang, and H. K. Huang, “Side-polished fiber as a sensor for the determination of nematic liquid crystal orientation,” Sens. Actuators B Chem. 196, 663–669 (2014).
[Crossref]

Y. Xiao, J. Zhang, X. Cai, S. Tan, J. Yu, H. Lu, Y. Luo, G. Liao, S. Li, J. Tang, and Z. Chen, “Reduced graphene oxide for fiber-optic humidity sensing,” Opt. Express 22(25), 31555–31567 (2014).
[Crossref] [PubMed]

H. Lu, Z. Tian, H. Yu, B. Yang, G. Jing, G. Liao, J. Zhang, J. Yu, J. Tang, Y. Luo, and Z. Chen, “Optical fiber with nanostructured cladding of TiO2 nanoparticles self-assembled onto a side polished fiber and its temperature sensing,” Opt. Express 22(26), 32502–32508 (2014).
[Crossref] [PubMed]

A. Lokman, S. Nodehi, M. Batumalay, H. Arof, H. Ahmad, and S. W. Harun, “Optical fiber humidity sensor based on a tapered fiber with hydroxyethylcellu lose/polyvinylidenefluoride composite,” Microw. Opt. Technol. Lett. 56(2), 380–382 (2014).
[Crossref]

2013 (7)

W. Zhao, Z. Ghorannevis, L. Chu, M. Toh, C. Kloc, P. H. Tan, and G. Eda, “Evolution of electronic structure in atomically thin sheets of WS2 and WSe2.,” ACS Nano 7(1), 791–797 (2013).
[Crossref] [PubMed]

L. Xia, L. C. Li, W. Li, T. Kou, and D. M. Liu, “Novel optical fiber humidity sensor based on a no-core fiber structure,” Sens. Actuators A Phys. 190, 1–5 (2013).
[Crossref]

J. Mathew, Y. Semenova, and G. Farrell, “Effect of coating thickness on the sensitivity of a humidity sensor based on an Agarose coated photonic crystal fiber interferometer,” Opt. Express 21(5), 6313–6320 (2013).
[Crossref] [PubMed]

R. Aneesh and S. K. Khijwania, “Zinc oxide nanoparticle-doped nanoporous solgel fiber as a humidity sensor with enhanced sensitivity and large linear dynamic range,” Appl. Opt. 52(22), 5493–5499 (2013).
[Crossref] [PubMed]

X. K. Zhang, Z. Y. Deng, and H. L. Xu, “Calibrating an optical fiber humidity sensor and applying it in real-time monitoring of relative humidity in fresh concrete,” Chin. Opt. Lett. 11(9), 090604 (2013).
[Crossref]

Z. T. Wei, Z. Q. Song, X. L. Zhang, Y. Yu, and Z. Meng, “Miniature temperature sensor based on optical microfiber,” Chin. Opt. Lett. 11(11), 110602 (2013).
[Crossref]

A. Berkdemir, H. R. Gutierrez, A. R. Botello-Mendez, N. Perea-Lopez, A. L. Elias, C. I. Chia, B. Wang, V. H. Crespi, F. Lopez-Urias, J. C. Charlier, H. Terrones, and M. Terrones, “Identification of individual and few layers of WS2 using Raman Spectroscopy,” Sci. Rep. 3, 1755 (2013).
[Crossref]

2012 (1)

A. Kumar and P. K. Ahluwalia, “Tunable dielectric response of transition metals dichalcogenides MX2 (M=Mo, W; X=S, Se, Te): effect of quantum confinement,” Physica B 407(24), 4627–4634 (2012).
[Crossref]

2010 (1)

H. S. S. Ramakrishna Matte, A. Gomathi, A. K. Manna, D. J. Late, R. Datta, S. K. Pati, and C. N. R. Rao, “MoS2 and WS2 analogues of graphene,” Angew. Chem. Int. Ed. Engl. 49(24), 4059–4062 (2010).
[Crossref] [PubMed]

2009 (1)

Y. Kim, B. Jung, H. Lee, H. Kim, K. Lee, and H. Park, “Capacitive humidity sensor design based on anodic aluminum oxide,” Sens. Actuators B Chem. 141(2), 441–446 (2009).
[Crossref]

2008 (1)

O. Leenaerts, B. Partoens, and F. M. Peeters, “Adsorption of H(2)O, NH(3), CO, NO(2), and NO on graphene: A first-principles study,” Phys. Rev. B 77(12), 125416 (2008).
[Crossref]

2006 (1)

P. F. Jiang, Z. Chen, Y. X. Zeng, L. H. Liu, and F. L. Li, “Optical propagation characteristics of side-polished fibers,” Semiconductor Optoelectron. 27(5), 578–581 (2006).

2000 (1)

C. Bariáin, I. R. Matias, F. J. Arregui, and M. Lopez-Amo, “Optical fiber humidity sensor based on a tapered fiber coated with agarose gel,” Sens. Actuators B Chem. 69(1–2), 127–131 (2000).
[Crossref]

Ahluwalia, P. K.

A. Kumar and P. K. Ahluwalia, “Tunable dielectric response of transition metals dichalcogenides MX2 (M=Mo, W; X=S, Se, Te): effect of quantum confinement,” Physica B 407(24), 4627–4634 (2012).
[Crossref]

Ahmad, H.

A. Lokman, S. Nodehi, M. Batumalay, H. Arof, H. Ahmad, and S. W. Harun, “Optical fiber humidity sensor based on a tapered fiber with hydroxyethylcellu lose/polyvinylidenefluoride composite,” Microw. Opt. Technol. Lett. 56(2), 380–382 (2014).
[Crossref]

Ahuja, U.

U. Ahuja, A. Dashora, H. Tiwari, D. C. Kothari, and K. Venugopalan, “Electronic and optical properties of MoS2-WS2 multi-layers: first principles study,” Comput. Mater. Sci. 92, 451–456 (2014).
[Crossref]

Ambrosi, A.

C. C. Mayorga-Martinez, A. Ambrosi, A. Y. S. Eng, Z. Sofer, and M. Pumera, “Metallic 1T-WS2 for selective impedimetric vapor sensing,” Adv. Funct. Mater. 25(35), 5611–5616 (2015).
[Crossref]

A. Ambrosi, Z. Sofer, and M. Pumera, “2H → 1T phase transition and hydrogen evolution activity of MoS2, MoSe2, WS2 and WSe2 strongly depends on the MX2 composition,” Chem. Commun. (Camb.) 51(40), 8450–8453 (2015).
[Crossref] [PubMed]

Aneesh, R.

Arof, H.

A. Lokman, H. Arof, S. W. Harun, Z. Harith, H. A. Rafaie, and R. M. Nor, “Optical fiber relative humidity sensor based on inline Mach-Zehnder interferometer With ZnO Nanowires Coating,” IEEE Sens. J. 16(2), 312–316 (2016).
[Crossref]

A. Lokman, S. Nodehi, M. Batumalay, H. Arof, H. Ahmad, and S. W. Harun, “Optical fiber humidity sensor based on a tapered fiber with hydroxyethylcellu lose/polyvinylidenefluoride composite,” Microw. Opt. Technol. Lett. 56(2), 380–382 (2014).
[Crossref]

Arregui, F. J.

C. Bariáin, I. R. Matias, F. J. Arregui, and M. Lopez-Amo, “Optical fiber humidity sensor based on a tapered fiber coated with agarose gel,” Sens. Actuators B Chem. 69(1–2), 127–131 (2000).
[Crossref]

Bao, Q.

Y. Xue, Y. Zhang, Y. Liu, H. Liu, J. Song, J. Sophia, J. Liu, Z. Xu, Q. Xu, Z. Wang, J. Zheng, Y. Liu, S. Li, and Q. Bao, “Scalable production of a few-layer MoS2/WS2 vertical heterojunction array and its application for photodetectors,” ACS Nano 10(1), 573–580 (2016).
[Crossref] [PubMed]

Bariáin, C.

C. Bariáin, I. R. Matias, F. J. Arregui, and M. Lopez-Amo, “Optical fiber humidity sensor based on a tapered fiber coated with agarose gel,” Sens. Actuators B Chem. 69(1–2), 127–131 (2000).
[Crossref]

Batumalay, M.

A. Lokman, S. Nodehi, M. Batumalay, H. Arof, H. Ahmad, and S. W. Harun, “Optical fiber humidity sensor based on a tapered fiber with hydroxyethylcellu lose/polyvinylidenefluoride composite,” Microw. Opt. Technol. Lett. 56(2), 380–382 (2014).
[Crossref]

Berkdemir, A.

A. Berkdemir, H. R. Gutierrez, A. R. Botello-Mendez, N. Perea-Lopez, A. L. Elias, C. I. Chia, B. Wang, V. H. Crespi, F. Lopez-Urias, J. C. Charlier, H. Terrones, and M. Terrones, “Identification of individual and few layers of WS2 using Raman Spectroscopy,” Sci. Rep. 3, 1755 (2013).
[Crossref]

Berner, N. C.

M. O’Brien, K. Lee, R. Morrish, N. C. Berner, N. McEvoy, C. A. Wolden, and G. S. Duesberg, “Plasma assisted synthesis of WS2 for gas sensing applications,” Chem. Phys. Lett. 615, 6–10 (2014).
[Crossref]

Botello-Mendez, A. R.

A. Berkdemir, H. R. Gutierrez, A. R. Botello-Mendez, N. Perea-Lopez, A. L. Elias, C. I. Chia, B. Wang, V. H. Crespi, F. Lopez-Urias, J. C. Charlier, H. Terrones, and M. Terrones, “Identification of individual and few layers of WS2 using Raman Spectroscopy,” Sci. Rep. 3, 1755 (2013).
[Crossref]

Bui, V. Q.

V. Q. Bui, T. T. Pham, D. A. Le, C. M. Thi, and H. M. Le, “A first-principles investigation of various gas (CO, H2O, NO, and O2) absorptions on a WS2 monolayer: stability and electronic properties,” J. Phys. Condens. Matter 27(30), 305005 (2015).
[Crossref] [PubMed]

Cai, X.

J. Zhang, G. Z. Liao, S. S. Jin, D. Cao, Q. S. Wei, H. H. Lu, J. H. Yu, X. Cai, S. Z. Tan, Y. Xiao, J. Y. Tang, Y. H. Luo, and Z. Chen, “All-fiber-optic temperature sensor based on reduced graphene oxide,” Laser Phys. Lett. 11(3), 035901 (2014).
[Crossref]

Y. Xiao, J. Zhang, X. Cai, S. Tan, J. Yu, H. Lu, Y. Luo, G. Liao, S. Li, J. Tang, and Z. Chen, “Reduced graphene oxide for fiber-optic humidity sensing,” Opt. Express 22(25), 31555–31567 (2014).
[Crossref] [PubMed]

Cao, D.

J. Zhang, G. Z. Liao, S. S. Jin, D. Cao, Q. S. Wei, H. H. Lu, J. H. Yu, X. Cai, S. Z. Tan, Y. Xiao, J. Y. Tang, Y. H. Luo, and Z. Chen, “All-fiber-optic temperature sensor based on reduced graphene oxide,” Laser Phys. Lett. 11(3), 035901 (2014).
[Crossref]

Y. Q. Han, Z. Chen, D. Cao, J. H. Yu, H. Z. Li, X. L. He, J. Zhang, Y. H. Luo, H. H. Lu, J. Y. Tang, and H. K. Huang, “Side-polished fiber as a sensor for the determination of nematic liquid crystal orientation,” Sens. Actuators B Chem. 196, 663–669 (2014).
[Crossref]

Charlier, J. C.

A. Berkdemir, H. R. Gutierrez, A. R. Botello-Mendez, N. Perea-Lopez, A. L. Elias, C. I. Chia, B. Wang, V. H. Crespi, F. Lopez-Urias, J. C. Charlier, H. Terrones, and M. Terrones, “Identification of individual and few layers of WS2 using Raman Spectroscopy,” Sci. Rep. 3, 1755 (2013).
[Crossref]

Chen, C. Y.

P. L. Mao, Y. H. Luo, C. Y. Chen, S. H. Peng, X. J. Feng, J. Y. Tang, J. B. Fang, J. Zhang, H. H. Lu, J. H. Yu, and Z. Chen, “Design and optimization of surface plasmon resonance sensor based on multimode fiber,” Opt. Quantum Electron. 47(6), 1495–1502 (2015).
[Crossref]

Chen, J.

Q. Chen, J. Chen, C. Gao, M. Zhang, J. Chen, and H. Qiu, “Hemin-functionalized WS2 nanosheets as highly active peroxidase mimetics for label-free colorimetric detection of H2O2 and glucose,” Analyst (Lond.) 140(8), 2857–2863 (2015).
[Crossref] [PubMed]

Q. Chen, J. Chen, C. Gao, M. Zhang, J. Chen, and H. Qiu, “Hemin-functionalized WS2 nanosheets as highly active peroxidase mimetics for label-free colorimetric detection of H2O2 and glucose,” Analyst (Lond.) 140(8), 2857–2863 (2015).
[Crossref] [PubMed]

Chen, Q.

Q. Chen, J. Chen, C. Gao, M. Zhang, J. Chen, and H. Qiu, “Hemin-functionalized WS2 nanosheets as highly active peroxidase mimetics for label-free colorimetric detection of H2O2 and glucose,” Analyst (Lond.) 140(8), 2857–2863 (2015).
[Crossref] [PubMed]

Chen, X. D.

Y. H. Luo, X. L. Chen, M. Y. Xu, J. Ge, Y. L. Zhang, Y. H. He, J. Y. Tang, J. H. Yu, J. Zhang, Z. Chen, and X. D. Chen, “Spectra modulated surface plasmon resonance sensor based on side polished multi-mode optical fiber,” Spectrosc. Spect. Anal. 34(3), 577–581 (2014).
[PubMed]

Chen, X. L.

Y. H. Luo, M. Y. Xu, X. L. Chen, J. Y. Tang, F. Wang, Y. L. Zhang, Y. H. He, and Z. Chen, “[Performance of wavelength modulation surface plasmon resonance biosensor],” Spectrosc. Spect. Anal. 34(5), 1178–1181 (2014).
[PubMed]

Y. H. Luo, X. L. Chen, M. Y. Xu, J. Ge, Y. L. Zhang, Y. H. He, J. Y. Tang, J. H. Yu, J. Zhang, Z. Chen, and X. D. Chen, “Spectra modulated surface plasmon resonance sensor based on side polished multi-mode optical fiber,” Spectrosc. Spect. Anal. 34(3), 577–581 (2014).
[PubMed]

Chen, Z.

J. Yu, S. Jin, Q. Wei, Z. Zang, H. Lu, X. He, Y. Luo, J. Tang, J. Zhang, and Z. Chen, “Hybrid optical fiber add-drop filter based on wavelength dependent light coupling between micro/nano fiber ring and side-polished fiber,” Sci. Rep. 5, 7710 (2015).
[Crossref] [PubMed]

B. Yang, Z. Chen, Y. T. Wang, J. Zhang, G. Z. Liao, Z. W. Tian, J. H. Yu, J. Y. Tang, Y. H. Luo, and H. H. Lu, “Fiber temperature sensor with nanostructured cladding by TiO2 nanoparticles self-assembled onto a side polished optical fiber,” Proc. SPIE 9655, 96553B (2015).
[Crossref]

P. L. Mao, Y. H. Luo, C. Y. Chen, S. H. Peng, X. J. Feng, J. Y. Tang, J. B. Fang, J. Zhang, H. H. Lu, J. H. Yu, and Z. Chen, “Design and optimization of surface plasmon resonance sensor based on multimode fiber,” Opt. Quantum Electron. 47(6), 1495–1502 (2015).
[Crossref]

Y. H. Luo, Q. S. Wei, Y. Ma, H. H. Lu, J. H. Yu, J. Y. Tang, J. B. Yu, J. B. Fang, J. Zhang, and Z. Chen, “Side-polished-fiber based optical coupler assisted with a fused nano silica film,” Appl. Opt. 54(7), 1598–1605 (2015).
[Crossref]

H. Lu, Z. Tian, H. Yu, B. Yang, G. Jing, G. Liao, J. Zhang, J. Yu, J. Tang, Y. Luo, and Z. Chen, “Optical fiber with nanostructured cladding of TiO2 nanoparticles self-assembled onto a side polished fiber and its temperature sensing,” Opt. Express 22(26), 32502–32508 (2014).
[Crossref] [PubMed]

Y. Xiao, J. Zhang, X. Cai, S. Tan, J. Yu, H. Lu, Y. Luo, G. Liao, S. Li, J. Tang, and Z. Chen, “Reduced graphene oxide for fiber-optic humidity sensing,” Opt. Express 22(25), 31555–31567 (2014).
[Crossref] [PubMed]

J. Zhang, G. Z. Liao, S. S. Jin, D. Cao, Q. S. Wei, H. H. Lu, J. H. Yu, X. Cai, S. Z. Tan, Y. Xiao, J. Y. Tang, Y. H. Luo, and Z. Chen, “All-fiber-optic temperature sensor based on reduced graphene oxide,” Laser Phys. Lett. 11(3), 035901 (2014).
[Crossref]

Y. H. Luo, X. L. Chen, M. Y. Xu, J. Ge, Y. L. Zhang, Y. H. He, J. Y. Tang, J. H. Yu, J. Zhang, Z. Chen, and X. D. Chen, “Spectra modulated surface plasmon resonance sensor based on side polished multi-mode optical fiber,” Spectrosc. Spect. Anal. 34(3), 577–581 (2014).
[PubMed]

Y. H. Luo, M. Y. Xu, X. L. Chen, J. Y. Tang, F. Wang, Y. L. Zhang, Y. H. He, and Z. Chen, “[Performance of wavelength modulation surface plasmon resonance biosensor],” Spectrosc. Spect. Anal. 34(5), 1178–1181 (2014).
[PubMed]

Y. Q. Han, Z. Chen, D. Cao, J. H. Yu, H. Z. Li, X. L. He, J. Zhang, Y. H. Luo, H. H. Lu, J. Y. Tang, and H. K. Huang, “Side-polished fiber as a sensor for the determination of nematic liquid crystal orientation,” Sens. Actuators B Chem. 196, 663–669 (2014).
[Crossref]

P. F. Jiang, Z. Chen, Y. X. Zeng, L. H. Liu, and F. L. Li, “Optical propagation characteristics of side-polished fibers,” Semiconductor Optoelectron. 27(5), 578–581 (2006).

Chia, C. I.

A. Berkdemir, H. R. Gutierrez, A. R. Botello-Mendez, N. Perea-Lopez, A. L. Elias, C. I. Chia, B. Wang, V. H. Crespi, F. Lopez-Urias, J. C. Charlier, H. Terrones, and M. Terrones, “Identification of individual and few layers of WS2 using Raman Spectroscopy,” Sci. Rep. 3, 1755 (2013).
[Crossref]

Chu, L.

W. Zhao, Z. Ghorannevis, L. Chu, M. Toh, C. Kloc, P. H. Tan, and G. Eda, “Evolution of electronic structure in atomically thin sheets of WS2 and WSe2.,” ACS Nano 7(1), 791–797 (2013).
[Crossref] [PubMed]

Crespi, V. H.

A. Berkdemir, H. R. Gutierrez, A. R. Botello-Mendez, N. Perea-Lopez, A. L. Elias, C. I. Chia, B. Wang, V. H. Crespi, F. Lopez-Urias, J. C. Charlier, H. Terrones, and M. Terrones, “Identification of individual and few layers of WS2 using Raman Spectroscopy,” Sci. Rep. 3, 1755 (2013).
[Crossref]

Dashora, A.

U. Ahuja, A. Dashora, H. Tiwari, D. C. Kothari, and K. Venugopalan, “Electronic and optical properties of MoS2-WS2 multi-layers: first principles study,” Comput. Mater. Sci. 92, 451–456 (2014).
[Crossref]

Datta, R.

H. S. S. Ramakrishna Matte, A. Gomathi, A. K. Manna, D. J. Late, R. Datta, S. K. Pati, and C. N. R. Rao, “MoS2 and WS2 analogues of graphene,” Angew. Chem. Int. Ed. Engl. 49(24), 4059–4062 (2010).
[Crossref] [PubMed]

Deng, Z. Y.

Duesberg, G. S.

M. O’Brien, K. Lee, R. Morrish, N. C. Berner, N. McEvoy, C. A. Wolden, and G. S. Duesberg, “Plasma assisted synthesis of WS2 for gas sensing applications,” Chem. Phys. Lett. 615, 6–10 (2014).
[Crossref]

Eda, G.

W. Zhao, Z. Ghorannevis, L. Chu, M. Toh, C. Kloc, P. H. Tan, and G. Eda, “Evolution of electronic structure in atomically thin sheets of WS2 and WSe2.,” ACS Nano 7(1), 791–797 (2013).
[Crossref] [PubMed]

Elias, A. L.

A. Berkdemir, H. R. Gutierrez, A. R. Botello-Mendez, N. Perea-Lopez, A. L. Elias, C. I. Chia, B. Wang, V. H. Crespi, F. Lopez-Urias, J. C. Charlier, H. Terrones, and M. Terrones, “Identification of individual and few layers of WS2 using Raman Spectroscopy,” Sci. Rep. 3, 1755 (2013).
[Crossref]

Eng, A. Y. S.

C. C. Mayorga-Martinez, A. Ambrosi, A. Y. S. Eng, Z. Sofer, and M. Pumera, “Metallic 1T-WS2 for selective impedimetric vapor sensing,” Adv. Funct. Mater. 25(35), 5611–5616 (2015).
[Crossref]

Fang, J. B.

P. L. Mao, Y. H. Luo, C. Y. Chen, S. H. Peng, X. J. Feng, J. Y. Tang, J. B. Fang, J. Zhang, H. H. Lu, J. H. Yu, and Z. Chen, “Design and optimization of surface plasmon resonance sensor based on multimode fiber,” Opt. Quantum Electron. 47(6), 1495–1502 (2015).
[Crossref]

Y. H. Luo, Q. S. Wei, Y. Ma, H. H. Lu, J. H. Yu, J. Y. Tang, J. B. Yu, J. B. Fang, J. Zhang, and Z. Chen, “Side-polished-fiber based optical coupler assisted with a fused nano silica film,” Appl. Opt. 54(7), 1598–1605 (2015).
[Crossref]

Farrell, G.

Feng, X. J.

P. L. Mao, Y. H. Luo, C. Y. Chen, S. H. Peng, X. J. Feng, J. Y. Tang, J. B. Fang, J. Zhang, H. H. Lu, J. H. Yu, and Z. Chen, “Design and optimization of surface plasmon resonance sensor based on multimode fiber,” Opt. Quantum Electron. 47(6), 1495–1502 (2015).
[Crossref]

Gao, C.

Q. Chen, J. Chen, C. Gao, M. Zhang, J. Chen, and H. Qiu, “Hemin-functionalized WS2 nanosheets as highly active peroxidase mimetics for label-free colorimetric detection of H2O2 and glucose,” Analyst (Lond.) 140(8), 2857–2863 (2015).
[Crossref] [PubMed]

Ge, J.

Y. H. Luo, X. L. Chen, M. Y. Xu, J. Ge, Y. L. Zhang, Y. H. He, J. Y. Tang, J. H. Yu, J. Zhang, Z. Chen, and X. D. Chen, “Spectra modulated surface plasmon resonance sensor based on side polished multi-mode optical fiber,” Spectrosc. Spect. Anal. 34(3), 577–581 (2014).
[PubMed]

Ghorannevis, Z.

W. Zhao, Z. Ghorannevis, L. Chu, M. Toh, C. Kloc, P. H. Tan, and G. Eda, “Evolution of electronic structure in atomically thin sheets of WS2 and WSe2.,” ACS Nano 7(1), 791–797 (2013).
[Crossref] [PubMed]

Gomathi, A.

H. S. S. Ramakrishna Matte, A. Gomathi, A. K. Manna, D. J. Late, R. Datta, S. K. Pati, and C. N. R. Rao, “MoS2 and WS2 analogues of graphene,” Angew. Chem. Int. Ed. Engl. 49(24), 4059–4062 (2010).
[Crossref] [PubMed]

Gutierrez, H. R.

A. Berkdemir, H. R. Gutierrez, A. R. Botello-Mendez, N. Perea-Lopez, A. L. Elias, C. I. Chia, B. Wang, V. H. Crespi, F. Lopez-Urias, J. C. Charlier, H. Terrones, and M. Terrones, “Identification of individual and few layers of WS2 using Raman Spectroscopy,” Sci. Rep. 3, 1755 (2013).
[Crossref]

Han, Y. Q.

Y. Q. Han, Z. Chen, D. Cao, J. H. Yu, H. Z. Li, X. L. He, J. Zhang, Y. H. Luo, H. H. Lu, J. Y. Tang, and H. K. Huang, “Side-polished fiber as a sensor for the determination of nematic liquid crystal orientation,” Sens. Actuators B Chem. 196, 663–669 (2014).
[Crossref]

Harith, Z.

A. Lokman, H. Arof, S. W. Harun, Z. Harith, H. A. Rafaie, and R. M. Nor, “Optical fiber relative humidity sensor based on inline Mach-Zehnder interferometer With ZnO Nanowires Coating,” IEEE Sens. J. 16(2), 312–316 (2016).
[Crossref]

Harun, S. W.

A. Lokman, H. Arof, S. W. Harun, Z. Harith, H. A. Rafaie, and R. M. Nor, “Optical fiber relative humidity sensor based on inline Mach-Zehnder interferometer With ZnO Nanowires Coating,” IEEE Sens. J. 16(2), 312–316 (2016).
[Crossref]

A. Lokman, S. Nodehi, M. Batumalay, H. Arof, H. Ahmad, and S. W. Harun, “Optical fiber humidity sensor based on a tapered fiber with hydroxyethylcellu lose/polyvinylidenefluoride composite,” Microw. Opt. Technol. Lett. 56(2), 380–382 (2014).
[Crossref]

He, X.

J. Yu, S. Jin, Q. Wei, Z. Zang, H. Lu, X. He, Y. Luo, J. Tang, J. Zhang, and Z. Chen, “Hybrid optical fiber add-drop filter based on wavelength dependent light coupling between micro/nano fiber ring and side-polished fiber,” Sci. Rep. 5, 7710 (2015).
[Crossref] [PubMed]

He, X. L.

Y. Q. Han, Z. Chen, D. Cao, J. H. Yu, H. Z. Li, X. L. He, J. Zhang, Y. H. Luo, H. H. Lu, J. Y. Tang, and H. K. Huang, “Side-polished fiber as a sensor for the determination of nematic liquid crystal orientation,” Sens. Actuators B Chem. 196, 663–669 (2014).
[Crossref]

He, Y. H.

Y. H. Luo, M. Y. Xu, X. L. Chen, J. Y. Tang, F. Wang, Y. L. Zhang, Y. H. He, and Z. Chen, “[Performance of wavelength modulation surface plasmon resonance biosensor],” Spectrosc. Spect. Anal. 34(5), 1178–1181 (2014).
[PubMed]

Y. H. Luo, X. L. Chen, M. Y. Xu, J. Ge, Y. L. Zhang, Y. H. He, J. Y. Tang, J. H. Yu, J. Zhang, Z. Chen, and X. D. Chen, “Spectra modulated surface plasmon resonance sensor based on side polished multi-mode optical fiber,” Spectrosc. Spect. Anal. 34(3), 577–581 (2014).
[PubMed]

Hu, Y. M.

Hu, Z. L.

Huang, H. K.

Y. Q. Han, Z. Chen, D. Cao, J. H. Yu, H. Z. Li, X. L. He, J. Zhang, Y. H. Luo, H. H. Lu, J. Y. Tang, and H. K. Huang, “Side-polished fiber as a sensor for the determination of nematic liquid crystal orientation,” Sens. Actuators B Chem. 196, 663–669 (2014).
[Crossref]

Huo, N.

N. Huo, S. Yang, Z. Wei, S. S. Li, J. B. Xia, and J. Li, “Photoresponsive and gas sensing field-effect transistors based on multilayer WS2 nanoflakes,” Sci. Rep. 4, 5209 (2014).
[Crossref] [PubMed]

Jiang, P. F.

P. F. Jiang, Z. Chen, Y. X. Zeng, L. H. Liu, and F. L. Li, “Optical propagation characteristics of side-polished fibers,” Semiconductor Optoelectron. 27(5), 578–581 (2006).

Jin, S.

J. Yu, S. Jin, Q. Wei, Z. Zang, H. Lu, X. He, Y. Luo, J. Tang, J. Zhang, and Z. Chen, “Hybrid optical fiber add-drop filter based on wavelength dependent light coupling between micro/nano fiber ring and side-polished fiber,” Sci. Rep. 5, 7710 (2015).
[Crossref] [PubMed]

Jin, S. S.

J. Zhang, G. Z. Liao, S. S. Jin, D. Cao, Q. S. Wei, H. H. Lu, J. H. Yu, X. Cai, S. Z. Tan, Y. Xiao, J. Y. Tang, Y. H. Luo, and Z. Chen, “All-fiber-optic temperature sensor based on reduced graphene oxide,” Laser Phys. Lett. 11(3), 035901 (2014).
[Crossref]

Jing, G.

Jung, B.

Y. Kim, B. Jung, H. Lee, H. Kim, K. Lee, and H. Park, “Capacitive humidity sensor design based on anodic aluminum oxide,” Sens. Actuators B Chem. 141(2), 441–446 (2009).
[Crossref]

Khijwania, S. K.

Kim, H.

Y. Kim, B. Jung, H. Lee, H. Kim, K. Lee, and H. Park, “Capacitive humidity sensor design based on anodic aluminum oxide,” Sens. Actuators B Chem. 141(2), 441–446 (2009).
[Crossref]

Kim, Y.

Y. Kim, B. Jung, H. Lee, H. Kim, K. Lee, and H. Park, “Capacitive humidity sensor design based on anodic aluminum oxide,” Sens. Actuators B Chem. 141(2), 441–446 (2009).
[Crossref]

Kloc, C.

W. Zhao, Z. Ghorannevis, L. Chu, M. Toh, C. Kloc, P. H. Tan, and G. Eda, “Evolution of electronic structure in atomically thin sheets of WS2 and WSe2.,” ACS Nano 7(1), 791–797 (2013).
[Crossref] [PubMed]

Kothari, D. C.

U. Ahuja, A. Dashora, H. Tiwari, D. C. Kothari, and K. Venugopalan, “Electronic and optical properties of MoS2-WS2 multi-layers: first principles study,” Comput. Mater. Sci. 92, 451–456 (2014).
[Crossref]

Kou, T.

L. Xia, L. C. Li, W. Li, T. Kou, and D. M. Liu, “Novel optical fiber humidity sensor based on a no-core fiber structure,” Sens. Actuators A Phys. 190, 1–5 (2013).
[Crossref]

Kumar, A.

A. Kumar and P. K. Ahluwalia, “Tunable dielectric response of transition metals dichalcogenides MX2 (M=Mo, W; X=S, Se, Te): effect of quantum confinement,” Physica B 407(24), 4627–4634 (2012).
[Crossref]

Late, D. J.

H. S. S. Ramakrishna Matte, A. Gomathi, A. K. Manna, D. J. Late, R. Datta, S. K. Pati, and C. N. R. Rao, “MoS2 and WS2 analogues of graphene,” Angew. Chem. Int. Ed. Engl. 49(24), 4059–4062 (2010).
[Crossref] [PubMed]

Le, D. A.

V. Q. Bui, T. T. Pham, D. A. Le, C. M. Thi, and H. M. Le, “A first-principles investigation of various gas (CO, H2O, NO, and O2) absorptions on a WS2 monolayer: stability and electronic properties,” J. Phys. Condens. Matter 27(30), 305005 (2015).
[Crossref] [PubMed]

Le, H. M.

V. Q. Bui, T. T. Pham, D. A. Le, C. M. Thi, and H. M. Le, “A first-principles investigation of various gas (CO, H2O, NO, and O2) absorptions on a WS2 monolayer: stability and electronic properties,” J. Phys. Condens. Matter 27(30), 305005 (2015).
[Crossref] [PubMed]

Lee, H.

Y. Kim, B. Jung, H. Lee, H. Kim, K. Lee, and H. Park, “Capacitive humidity sensor design based on anodic aluminum oxide,” Sens. Actuators B Chem. 141(2), 441–446 (2009).
[Crossref]

Lee, K.

M. O’Brien, K. Lee, R. Morrish, N. C. Berner, N. McEvoy, C. A. Wolden, and G. S. Duesberg, “Plasma assisted synthesis of WS2 for gas sensing applications,” Chem. Phys. Lett. 615, 6–10 (2014).
[Crossref]

Y. Kim, B. Jung, H. Lee, H. Kim, K. Lee, and H. Park, “Capacitive humidity sensor design based on anodic aluminum oxide,” Sens. Actuators B Chem. 141(2), 441–446 (2009).
[Crossref]

Leenaerts, O.

O. Leenaerts, B. Partoens, and F. M. Peeters, “Adsorption of H(2)O, NH(3), CO, NO(2), and NO on graphene: A first-principles study,” Phys. Rev. B 77(12), 125416 (2008).
[Crossref]

Li, F. L.

P. F. Jiang, Z. Chen, Y. X. Zeng, L. H. Liu, and F. L. Li, “Optical propagation characteristics of side-polished fibers,” Semiconductor Optoelectron. 27(5), 578–581 (2006).

Li, H. Z.

Y. Q. Han, Z. Chen, D. Cao, J. H. Yu, H. Z. Li, X. L. He, J. Zhang, Y. H. Luo, H. H. Lu, J. Y. Tang, and H. K. Huang, “Side-polished fiber as a sensor for the determination of nematic liquid crystal orientation,” Sens. Actuators B Chem. 196, 663–669 (2014).
[Crossref]

Li, J.

N. Huo, S. Yang, Z. Wei, S. S. Li, J. B. Xia, and J. Li, “Photoresponsive and gas sensing field-effect transistors based on multilayer WS2 nanoflakes,” Sci. Rep. 4, 5209 (2014).
[Crossref] [PubMed]

Li, L. C.

L. Xia, L. C. Li, W. Li, T. Kou, and D. M. Liu, “Novel optical fiber humidity sensor based on a no-core fiber structure,” Sens. Actuators A Phys. 190, 1–5 (2013).
[Crossref]

Li, S.

Y. Xue, Y. Zhang, Y. Liu, H. Liu, J. Song, J. Sophia, J. Liu, Z. Xu, Q. Xu, Z. Wang, J. Zheng, Y. Liu, S. Li, and Q. Bao, “Scalable production of a few-layer MoS2/WS2 vertical heterojunction array and its application for photodetectors,” ACS Nano 10(1), 573–580 (2016).
[Crossref] [PubMed]

Y. Xiao, J. Zhang, X. Cai, S. Tan, J. Yu, H. Lu, Y. Luo, G. Liao, S. Li, J. Tang, and Z. Chen, “Reduced graphene oxide for fiber-optic humidity sensing,” Opt. Express 22(25), 31555–31567 (2014).
[Crossref] [PubMed]

Li, S. S.

N. Huo, S. Yang, Z. Wei, S. S. Li, J. B. Xia, and J. Li, “Photoresponsive and gas sensing field-effect transistors based on multilayer WS2 nanoflakes,” Sci. Rep. 4, 5209 (2014).
[Crossref] [PubMed]

Li, W.

L. Xia, L. C. Li, W. Li, T. Kou, and D. M. Liu, “Novel optical fiber humidity sensor based on a no-core fiber structure,” Sens. Actuators A Phys. 190, 1–5 (2013).
[Crossref]

Liao, G.

Liao, G. Z.

B. Yang, Z. Chen, Y. T. Wang, J. Zhang, G. Z. Liao, Z. W. Tian, J. H. Yu, J. Y. Tang, Y. H. Luo, and H. H. Lu, “Fiber temperature sensor with nanostructured cladding by TiO2 nanoparticles self-assembled onto a side polished optical fiber,” Proc. SPIE 9655, 96553B (2015).
[Crossref]

J. Zhang, G. Z. Liao, S. S. Jin, D. Cao, Q. S. Wei, H. H. Lu, J. H. Yu, X. Cai, S. Z. Tan, Y. Xiao, J. Y. Tang, Y. H. Luo, and Z. Chen, “All-fiber-optic temperature sensor based on reduced graphene oxide,” Laser Phys. Lett. 11(3), 035901 (2014).
[Crossref]

Liu, D. M.

L. Xia, L. C. Li, W. Li, T. Kou, and D. M. Liu, “Novel optical fiber humidity sensor based on a no-core fiber structure,” Sens. Actuators A Phys. 190, 1–5 (2013).
[Crossref]

Liu, H.

Y. Xue, Y. Zhang, Y. Liu, H. Liu, J. Song, J. Sophia, J. Liu, Z. Xu, Q. Xu, Z. Wang, J. Zheng, Y. Liu, S. Li, and Q. Bao, “Scalable production of a few-layer MoS2/WS2 vertical heterojunction array and its application for photodetectors,” ACS Nano 10(1), 573–580 (2016).
[Crossref] [PubMed]

Liu, J.

Y. Xue, Y. Zhang, Y. Liu, H. Liu, J. Song, J. Sophia, J. Liu, Z. Xu, Q. Xu, Z. Wang, J. Zheng, Y. Liu, S. Li, and Q. Bao, “Scalable production of a few-layer MoS2/WS2 vertical heterojunction array and its application for photodetectors,” ACS Nano 10(1), 573–580 (2016).
[Crossref] [PubMed]

Liu, L. H.

P. F. Jiang, Z. Chen, Y. X. Zeng, L. H. Liu, and F. L. Li, “Optical propagation characteristics of side-polished fibers,” Semiconductor Optoelectron. 27(5), 578–581 (2006).

Liu, Y.

Y. Xue, Y. Zhang, Y. Liu, H. Liu, J. Song, J. Sophia, J. Liu, Z. Xu, Q. Xu, Z. Wang, J. Zheng, Y. Liu, S. Li, and Q. Bao, “Scalable production of a few-layer MoS2/WS2 vertical heterojunction array and its application for photodetectors,” ACS Nano 10(1), 573–580 (2016).
[Crossref] [PubMed]

Y. Xue, Y. Zhang, Y. Liu, H. Liu, J. Song, J. Sophia, J. Liu, Z. Xu, Q. Xu, Z. Wang, J. Zheng, Y. Liu, S. Li, and Q. Bao, “Scalable production of a few-layer MoS2/WS2 vertical heterojunction array and its application for photodetectors,” ACS Nano 10(1), 573–580 (2016).
[Crossref] [PubMed]

Lokman, A.

A. Lokman, H. Arof, S. W. Harun, Z. Harith, H. A. Rafaie, and R. M. Nor, “Optical fiber relative humidity sensor based on inline Mach-Zehnder interferometer With ZnO Nanowires Coating,” IEEE Sens. J. 16(2), 312–316 (2016).
[Crossref]

A. Lokman, S. Nodehi, M. Batumalay, H. Arof, H. Ahmad, and S. W. Harun, “Optical fiber humidity sensor based on a tapered fiber with hydroxyethylcellu lose/polyvinylidenefluoride composite,” Microw. Opt. Technol. Lett. 56(2), 380–382 (2014).
[Crossref]

Lopez-Amo, M.

C. Bariáin, I. R. Matias, F. J. Arregui, and M. Lopez-Amo, “Optical fiber humidity sensor based on a tapered fiber coated with agarose gel,” Sens. Actuators B Chem. 69(1–2), 127–131 (2000).
[Crossref]

Lopez-Urias, F.

A. Berkdemir, H. R. Gutierrez, A. R. Botello-Mendez, N. Perea-Lopez, A. L. Elias, C. I. Chia, B. Wang, V. H. Crespi, F. Lopez-Urias, J. C. Charlier, H. Terrones, and M. Terrones, “Identification of individual and few layers of WS2 using Raman Spectroscopy,” Sci. Rep. 3, 1755 (2013).
[Crossref]

Lu, H.

Lu, H. H.

P. L. Mao, Y. H. Luo, C. Y. Chen, S. H. Peng, X. J. Feng, J. Y. Tang, J. B. Fang, J. Zhang, H. H. Lu, J. H. Yu, and Z. Chen, “Design and optimization of surface plasmon resonance sensor based on multimode fiber,” Opt. Quantum Electron. 47(6), 1495–1502 (2015).
[Crossref]

B. Yang, Z. Chen, Y. T. Wang, J. Zhang, G. Z. Liao, Z. W. Tian, J. H. Yu, J. Y. Tang, Y. H. Luo, and H. H. Lu, “Fiber temperature sensor with nanostructured cladding by TiO2 nanoparticles self-assembled onto a side polished optical fiber,” Proc. SPIE 9655, 96553B (2015).
[Crossref]

Y. H. Luo, Q. S. Wei, Y. Ma, H. H. Lu, J. H. Yu, J. Y. Tang, J. B. Yu, J. B. Fang, J. Zhang, and Z. Chen, “Side-polished-fiber based optical coupler assisted with a fused nano silica film,” Appl. Opt. 54(7), 1598–1605 (2015).
[Crossref]

Y. Q. Han, Z. Chen, D. Cao, J. H. Yu, H. Z. Li, X. L. He, J. Zhang, Y. H. Luo, H. H. Lu, J. Y. Tang, and H. K. Huang, “Side-polished fiber as a sensor for the determination of nematic liquid crystal orientation,” Sens. Actuators B Chem. 196, 663–669 (2014).
[Crossref]

J. Zhang, G. Z. Liao, S. S. Jin, D. Cao, Q. S. Wei, H. H. Lu, J. H. Yu, X. Cai, S. Z. Tan, Y. Xiao, J. Y. Tang, Y. H. Luo, and Z. Chen, “All-fiber-optic temperature sensor based on reduced graphene oxide,” Laser Phys. Lett. 11(3), 035901 (2014).
[Crossref]

Luo, Y.

Luo, Y. H.

B. Yang, Z. Chen, Y. T. Wang, J. Zhang, G. Z. Liao, Z. W. Tian, J. H. Yu, J. Y. Tang, Y. H. Luo, and H. H. Lu, “Fiber temperature sensor with nanostructured cladding by TiO2 nanoparticles self-assembled onto a side polished optical fiber,” Proc. SPIE 9655, 96553B (2015).
[Crossref]

P. L. Mao, Y. H. Luo, C. Y. Chen, S. H. Peng, X. J. Feng, J. Y. Tang, J. B. Fang, J. Zhang, H. H. Lu, J. H. Yu, and Z. Chen, “Design and optimization of surface plasmon resonance sensor based on multimode fiber,” Opt. Quantum Electron. 47(6), 1495–1502 (2015).
[Crossref]

Y. H. Luo, Q. S. Wei, Y. Ma, H. H. Lu, J. H. Yu, J. Y. Tang, J. B. Yu, J. B. Fang, J. Zhang, and Z. Chen, “Side-polished-fiber based optical coupler assisted with a fused nano silica film,” Appl. Opt. 54(7), 1598–1605 (2015).
[Crossref]

Y. H. Luo, X. L. Chen, M. Y. Xu, J. Ge, Y. L. Zhang, Y. H. He, J. Y. Tang, J. H. Yu, J. Zhang, Z. Chen, and X. D. Chen, “Spectra modulated surface plasmon resonance sensor based on side polished multi-mode optical fiber,” Spectrosc. Spect. Anal. 34(3), 577–581 (2014).
[PubMed]

Y. Q. Han, Z. Chen, D. Cao, J. H. Yu, H. Z. Li, X. L. He, J. Zhang, Y. H. Luo, H. H. Lu, J. Y. Tang, and H. K. Huang, “Side-polished fiber as a sensor for the determination of nematic liquid crystal orientation,” Sens. Actuators B Chem. 196, 663–669 (2014).
[Crossref]

Y. H. Luo, M. Y. Xu, X. L. Chen, J. Y. Tang, F. Wang, Y. L. Zhang, Y. H. He, and Z. Chen, “[Performance of wavelength modulation surface plasmon resonance biosensor],” Spectrosc. Spect. Anal. 34(5), 1178–1181 (2014).
[PubMed]

J. Zhang, G. Z. Liao, S. S. Jin, D. Cao, Q. S. Wei, H. H. Lu, J. H. Yu, X. Cai, S. Z. Tan, Y. Xiao, J. Y. Tang, Y. H. Luo, and Z. Chen, “All-fiber-optic temperature sensor based on reduced graphene oxide,” Laser Phys. Lett. 11(3), 035901 (2014).
[Crossref]

Ma, Y.

Manna, A. K.

H. S. S. Ramakrishna Matte, A. Gomathi, A. K. Manna, D. J. Late, R. Datta, S. K. Pati, and C. N. R. Rao, “MoS2 and WS2 analogues of graphene,” Angew. Chem. Int. Ed. Engl. 49(24), 4059–4062 (2010).
[Crossref] [PubMed]

Mao, P. L.

P. L. Mao, Y. H. Luo, C. Y. Chen, S. H. Peng, X. J. Feng, J. Y. Tang, J. B. Fang, J. Zhang, H. H. Lu, J. H. Yu, and Z. Chen, “Design and optimization of surface plasmon resonance sensor based on multimode fiber,” Opt. Quantum Electron. 47(6), 1495–1502 (2015).
[Crossref]

Mathew, J.

Matias, I. R.

C. Bariáin, I. R. Matias, F. J. Arregui, and M. Lopez-Amo, “Optical fiber humidity sensor based on a tapered fiber coated with agarose gel,” Sens. Actuators B Chem. 69(1–2), 127–131 (2000).
[Crossref]

Mayorga-Martinez, C. C.

C. C. Mayorga-Martinez, A. Ambrosi, A. Y. S. Eng, Z. Sofer, and M. Pumera, “Metallic 1T-WS2 for selective impedimetric vapor sensing,” Adv. Funct. Mater. 25(35), 5611–5616 (2015).
[Crossref]

McEvoy, N.

M. O’Brien, K. Lee, R. Morrish, N. C. Berner, N. McEvoy, C. A. Wolden, and G. S. Duesberg, “Plasma assisted synthesis of WS2 for gas sensing applications,” Chem. Phys. Lett. 615, 6–10 (2014).
[Crossref]

Meng, Z.

Morrish, R.

M. O’Brien, K. Lee, R. Morrish, N. C. Berner, N. McEvoy, C. A. Wolden, and G. S. Duesberg, “Plasma assisted synthesis of WS2 for gas sensing applications,” Chem. Phys. Lett. 615, 6–10 (2014).
[Crossref]

Nodehi, S.

A. Lokman, S. Nodehi, M. Batumalay, H. Arof, H. Ahmad, and S. W. Harun, “Optical fiber humidity sensor based on a tapered fiber with hydroxyethylcellu lose/polyvinylidenefluoride composite,” Microw. Opt. Technol. Lett. 56(2), 380–382 (2014).
[Crossref]

Nor, R. M.

A. Lokman, H. Arof, S. W. Harun, Z. Harith, H. A. Rafaie, and R. M. Nor, “Optical fiber relative humidity sensor based on inline Mach-Zehnder interferometer With ZnO Nanowires Coating,” IEEE Sens. J. 16(2), 312–316 (2016).
[Crossref]

O’Brien, M.

M. O’Brien, K. Lee, R. Morrish, N. C. Berner, N. McEvoy, C. A. Wolden, and G. S. Duesberg, “Plasma assisted synthesis of WS2 for gas sensing applications,” Chem. Phys. Lett. 615, 6–10 (2014).
[Crossref]

Pan, Y.

Park, H.

Y. Kim, B. Jung, H. Lee, H. Kim, K. Lee, and H. Park, “Capacitive humidity sensor design based on anodic aluminum oxide,” Sens. Actuators B Chem. 141(2), 441–446 (2009).
[Crossref]

Partoens, B.

O. Leenaerts, B. Partoens, and F. M. Peeters, “Adsorption of H(2)O, NH(3), CO, NO(2), and NO on graphene: A first-principles study,” Phys. Rev. B 77(12), 125416 (2008).
[Crossref]

Pati, S. K.

H. S. S. Ramakrishna Matte, A. Gomathi, A. K. Manna, D. J. Late, R. Datta, S. K. Pati, and C. N. R. Rao, “MoS2 and WS2 analogues of graphene,” Angew. Chem. Int. Ed. Engl. 49(24), 4059–4062 (2010).
[Crossref] [PubMed]

Peeters, F. M.

O. Leenaerts, B. Partoens, and F. M. Peeters, “Adsorption of H(2)O, NH(3), CO, NO(2), and NO on graphene: A first-principles study,” Phys. Rev. B 77(12), 125416 (2008).
[Crossref]

Peng, S. H.

P. L. Mao, Y. H. Luo, C. Y. Chen, S. H. Peng, X. J. Feng, J. Y. Tang, J. B. Fang, J. Zhang, H. H. Lu, J. H. Yu, and Z. Chen, “Design and optimization of surface plasmon resonance sensor based on multimode fiber,” Opt. Quantum Electron. 47(6), 1495–1502 (2015).
[Crossref]

Perea-Lopez, N.

A. Berkdemir, H. R. Gutierrez, A. R. Botello-Mendez, N. Perea-Lopez, A. L. Elias, C. I. Chia, B. Wang, V. H. Crespi, F. Lopez-Urias, J. C. Charlier, H. Terrones, and M. Terrones, “Identification of individual and few layers of WS2 using Raman Spectroscopy,” Sci. Rep. 3, 1755 (2013).
[Crossref]

Pham, T. T.

V. Q. Bui, T. T. Pham, D. A. Le, C. M. Thi, and H. M. Le, “A first-principles investigation of various gas (CO, H2O, NO, and O2) absorptions on a WS2 monolayer: stability and electronic properties,” J. Phys. Condens. Matter 27(30), 305005 (2015).
[Crossref] [PubMed]

Pumera, M.

C. C. Mayorga-Martinez, A. Ambrosi, A. Y. S. Eng, Z. Sofer, and M. Pumera, “Metallic 1T-WS2 for selective impedimetric vapor sensing,” Adv. Funct. Mater. 25(35), 5611–5616 (2015).
[Crossref]

A. Ambrosi, Z. Sofer, and M. Pumera, “2H → 1T phase transition and hydrogen evolution activity of MoS2, MoSe2, WS2 and WSe2 strongly depends on the MX2 composition,” Chem. Commun. (Camb.) 51(40), 8450–8453 (2015).
[Crossref] [PubMed]

Qiu, H.

Q. Chen, J. Chen, C. Gao, M. Zhang, J. Chen, and H. Qiu, “Hemin-functionalized WS2 nanosheets as highly active peroxidase mimetics for label-free colorimetric detection of H2O2 and glucose,” Analyst (Lond.) 140(8), 2857–2863 (2015).
[Crossref] [PubMed]

Rafaie, H. A.

A. Lokman, H. Arof, S. W. Harun, Z. Harith, H. A. Rafaie, and R. M. Nor, “Optical fiber relative humidity sensor based on inline Mach-Zehnder interferometer With ZnO Nanowires Coating,” IEEE Sens. J. 16(2), 312–316 (2016).
[Crossref]

Ramakrishna Matte, H. S. S.

H. S. S. Ramakrishna Matte, A. Gomathi, A. K. Manna, D. J. Late, R. Datta, S. K. Pati, and C. N. R. Rao, “MoS2 and WS2 analogues of graphene,” Angew. Chem. Int. Ed. Engl. 49(24), 4059–4062 (2010).
[Crossref] [PubMed]

Rao, C. N. R.

H. S. S. Ramakrishna Matte, A. Gomathi, A. K. Manna, D. J. Late, R. Datta, S. K. Pati, and C. N. R. Rao, “MoS2 and WS2 analogues of graphene,” Angew. Chem. Int. Ed. Engl. 49(24), 4059–4062 (2010).
[Crossref] [PubMed]

Semenova, Y.

Sofer, Z.

C. C. Mayorga-Martinez, A. Ambrosi, A. Y. S. Eng, Z. Sofer, and M. Pumera, “Metallic 1T-WS2 for selective impedimetric vapor sensing,” Adv. Funct. Mater. 25(35), 5611–5616 (2015).
[Crossref]

A. Ambrosi, Z. Sofer, and M. Pumera, “2H → 1T phase transition and hydrogen evolution activity of MoS2, MoSe2, WS2 and WSe2 strongly depends on the MX2 composition,” Chem. Commun. (Camb.) 51(40), 8450–8453 (2015).
[Crossref] [PubMed]

Song, J.

Y. Xue, Y. Zhang, Y. Liu, H. Liu, J. Song, J. Sophia, J. Liu, Z. Xu, Q. Xu, Z. Wang, J. Zheng, Y. Liu, S. Li, and Q. Bao, “Scalable production of a few-layer MoS2/WS2 vertical heterojunction array and its application for photodetectors,” ACS Nano 10(1), 573–580 (2016).
[Crossref] [PubMed]

Song, Z. Q.

Sophia, J.

Y. Xue, Y. Zhang, Y. Liu, H. Liu, J. Song, J. Sophia, J. Liu, Z. Xu, Q. Xu, Z. Wang, J. Zheng, Y. Liu, S. Li, and Q. Bao, “Scalable production of a few-layer MoS2/WS2 vertical heterojunction array and its application for photodetectors,” ACS Nano 10(1), 573–580 (2016).
[Crossref] [PubMed]

Tan, P. H.

W. Zhao, Z. Ghorannevis, L. Chu, M. Toh, C. Kloc, P. H. Tan, and G. Eda, “Evolution of electronic structure in atomically thin sheets of WS2 and WSe2.,” ACS Nano 7(1), 791–797 (2013).
[Crossref] [PubMed]

Tan, S.

Tan, S. Z.

J. Zhang, G. Z. Liao, S. S. Jin, D. Cao, Q. S. Wei, H. H. Lu, J. H. Yu, X. Cai, S. Z. Tan, Y. Xiao, J. Y. Tang, Y. H. Luo, and Z. Chen, “All-fiber-optic temperature sensor based on reduced graphene oxide,” Laser Phys. Lett. 11(3), 035901 (2014).
[Crossref]

Tang, J.

Tang, J. Y.

Y. H. Luo, Q. S. Wei, Y. Ma, H. H. Lu, J. H. Yu, J. Y. Tang, J. B. Yu, J. B. Fang, J. Zhang, and Z. Chen, “Side-polished-fiber based optical coupler assisted with a fused nano silica film,” Appl. Opt. 54(7), 1598–1605 (2015).
[Crossref]

P. L. Mao, Y. H. Luo, C. Y. Chen, S. H. Peng, X. J. Feng, J. Y. Tang, J. B. Fang, J. Zhang, H. H. Lu, J. H. Yu, and Z. Chen, “Design and optimization of surface plasmon resonance sensor based on multimode fiber,” Opt. Quantum Electron. 47(6), 1495–1502 (2015).
[Crossref]

B. Yang, Z. Chen, Y. T. Wang, J. Zhang, G. Z. Liao, Z. W. Tian, J. H. Yu, J. Y. Tang, Y. H. Luo, and H. H. Lu, “Fiber temperature sensor with nanostructured cladding by TiO2 nanoparticles self-assembled onto a side polished optical fiber,” Proc. SPIE 9655, 96553B (2015).
[Crossref]

J. Zhang, G. Z. Liao, S. S. Jin, D. Cao, Q. S. Wei, H. H. Lu, J. H. Yu, X. Cai, S. Z. Tan, Y. Xiao, J. Y. Tang, Y. H. Luo, and Z. Chen, “All-fiber-optic temperature sensor based on reduced graphene oxide,” Laser Phys. Lett. 11(3), 035901 (2014).
[Crossref]

Y. H. Luo, X. L. Chen, M. Y. Xu, J. Ge, Y. L. Zhang, Y. H. He, J. Y. Tang, J. H. Yu, J. Zhang, Z. Chen, and X. D. Chen, “Spectra modulated surface plasmon resonance sensor based on side polished multi-mode optical fiber,” Spectrosc. Spect. Anal. 34(3), 577–581 (2014).
[PubMed]

Y. Q. Han, Z. Chen, D. Cao, J. H. Yu, H. Z. Li, X. L. He, J. Zhang, Y. H. Luo, H. H. Lu, J. Y. Tang, and H. K. Huang, “Side-polished fiber as a sensor for the determination of nematic liquid crystal orientation,” Sens. Actuators B Chem. 196, 663–669 (2014).
[Crossref]

Y. H. Luo, M. Y. Xu, X. L. Chen, J. Y. Tang, F. Wang, Y. L. Zhang, Y. H. He, and Z. Chen, “[Performance of wavelength modulation surface plasmon resonance biosensor],” Spectrosc. Spect. Anal. 34(5), 1178–1181 (2014).
[PubMed]

Terrones, H.

A. Berkdemir, H. R. Gutierrez, A. R. Botello-Mendez, N. Perea-Lopez, A. L. Elias, C. I. Chia, B. Wang, V. H. Crespi, F. Lopez-Urias, J. C. Charlier, H. Terrones, and M. Terrones, “Identification of individual and few layers of WS2 using Raman Spectroscopy,” Sci. Rep. 3, 1755 (2013).
[Crossref]

Terrones, M.

A. Berkdemir, H. R. Gutierrez, A. R. Botello-Mendez, N. Perea-Lopez, A. L. Elias, C. I. Chia, B. Wang, V. H. Crespi, F. Lopez-Urias, J. C. Charlier, H. Terrones, and M. Terrones, “Identification of individual and few layers of WS2 using Raman Spectroscopy,” Sci. Rep. 3, 1755 (2013).
[Crossref]

Thi, C. M.

V. Q. Bui, T. T. Pham, D. A. Le, C. M. Thi, and H. M. Le, “A first-principles investigation of various gas (CO, H2O, NO, and O2) absorptions on a WS2 monolayer: stability and electronic properties,” J. Phys. Condens. Matter 27(30), 305005 (2015).
[Crossref] [PubMed]

Tian, Z.

Tian, Z. W.

B. Yang, Z. Chen, Y. T. Wang, J. Zhang, G. Z. Liao, Z. W. Tian, J. H. Yu, J. Y. Tang, Y. H. Luo, and H. H. Lu, “Fiber temperature sensor with nanostructured cladding by TiO2 nanoparticles self-assembled onto a side polished optical fiber,” Proc. SPIE 9655, 96553B (2015).
[Crossref]

Tiwari, H.

U. Ahuja, A. Dashora, H. Tiwari, D. C. Kothari, and K. Venugopalan, “Electronic and optical properties of MoS2-WS2 multi-layers: first principles study,” Comput. Mater. Sci. 92, 451–456 (2014).
[Crossref]

Toh, M.

W. Zhao, Z. Ghorannevis, L. Chu, M. Toh, C. Kloc, P. H. Tan, and G. Eda, “Evolution of electronic structure in atomically thin sheets of WS2 and WSe2.,” ACS Nano 7(1), 791–797 (2013).
[Crossref] [PubMed]

Venugopalan, K.

U. Ahuja, A. Dashora, H. Tiwari, D. C. Kothari, and K. Venugopalan, “Electronic and optical properties of MoS2-WS2 multi-layers: first principles study,” Comput. Mater. Sci. 92, 451–456 (2014).
[Crossref]

Wang, B.

A. Berkdemir, H. R. Gutierrez, A. R. Botello-Mendez, N. Perea-Lopez, A. L. Elias, C. I. Chia, B. Wang, V. H. Crespi, F. Lopez-Urias, J. C. Charlier, H. Terrones, and M. Terrones, “Identification of individual and few layers of WS2 using Raman Spectroscopy,” Sci. Rep. 3, 1755 (2013).
[Crossref]

Wang, F.

Y. H. Luo, M. Y. Xu, X. L. Chen, J. Y. Tang, F. Wang, Y. L. Zhang, Y. H. He, and Z. Chen, “[Performance of wavelength modulation surface plasmon resonance biosensor],” Spectrosc. Spect. Anal. 34(5), 1178–1181 (2014).
[PubMed]

Wang, F. Y.

Wang, Y. T.

B. Yang, Z. Chen, Y. T. Wang, J. Zhang, G. Z. Liao, Z. W. Tian, J. H. Yu, J. Y. Tang, Y. H. Luo, and H. H. Lu, “Fiber temperature sensor with nanostructured cladding by TiO2 nanoparticles self-assembled onto a side polished optical fiber,” Proc. SPIE 9655, 96553B (2015).
[Crossref]

Wang, Z.

Y. Xue, Y. Zhang, Y. Liu, H. Liu, J. Song, J. Sophia, J. Liu, Z. Xu, Q. Xu, Z. Wang, J. Zheng, Y. Liu, S. Li, and Q. Bao, “Scalable production of a few-layer MoS2/WS2 vertical heterojunction array and its application for photodetectors,” ACS Nano 10(1), 573–580 (2016).
[Crossref] [PubMed]

Wei, Q.

J. Yu, S. Jin, Q. Wei, Z. Zang, H. Lu, X. He, Y. Luo, J. Tang, J. Zhang, and Z. Chen, “Hybrid optical fiber add-drop filter based on wavelength dependent light coupling between micro/nano fiber ring and side-polished fiber,” Sci. Rep. 5, 7710 (2015).
[Crossref] [PubMed]

Wei, Q. S.

Y. H. Luo, Q. S. Wei, Y. Ma, H. H. Lu, J. H. Yu, J. Y. Tang, J. B. Yu, J. B. Fang, J. Zhang, and Z. Chen, “Side-polished-fiber based optical coupler assisted with a fused nano silica film,” Appl. Opt. 54(7), 1598–1605 (2015).
[Crossref]

J. Zhang, G. Z. Liao, S. S. Jin, D. Cao, Q. S. Wei, H. H. Lu, J. H. Yu, X. Cai, S. Z. Tan, Y. Xiao, J. Y. Tang, Y. H. Luo, and Z. Chen, “All-fiber-optic temperature sensor based on reduced graphene oxide,” Laser Phys. Lett. 11(3), 035901 (2014).
[Crossref]

Wei, Z.

N. Huo, S. Yang, Z. Wei, S. S. Li, J. B. Xia, and J. Li, “Photoresponsive and gas sensing field-effect transistors based on multilayer WS2 nanoflakes,” Sci. Rep. 4, 5209 (2014).
[Crossref] [PubMed]

Wei, Z. T.

Wolden, C. A.

M. O’Brien, K. Lee, R. Morrish, N. C. Berner, N. McEvoy, C. A. Wolden, and G. S. Duesberg, “Plasma assisted synthesis of WS2 for gas sensing applications,” Chem. Phys. Lett. 615, 6–10 (2014).
[Crossref]

Xia, J. B.

N. Huo, S. Yang, Z. Wei, S. S. Li, J. B. Xia, and J. Li, “Photoresponsive and gas sensing field-effect transistors based on multilayer WS2 nanoflakes,” Sci. Rep. 4, 5209 (2014).
[Crossref] [PubMed]

Xia, L.

L. Xia, L. C. Li, W. Li, T. Kou, and D. M. Liu, “Novel optical fiber humidity sensor based on a no-core fiber structure,” Sens. Actuators A Phys. 190, 1–5 (2013).
[Crossref]

Xiao, Y.

Y. Xiao, J. Zhang, X. Cai, S. Tan, J. Yu, H. Lu, Y. Luo, G. Liao, S. Li, J. Tang, and Z. Chen, “Reduced graphene oxide for fiber-optic humidity sensing,” Opt. Express 22(25), 31555–31567 (2014).
[Crossref] [PubMed]

J. Zhang, G. Z. Liao, S. S. Jin, D. Cao, Q. S. Wei, H. H. Lu, J. H. Yu, X. Cai, S. Z. Tan, Y. Xiao, J. Y. Tang, Y. H. Luo, and Z. Chen, “All-fiber-optic temperature sensor based on reduced graphene oxide,” Laser Phys. Lett. 11(3), 035901 (2014).
[Crossref]

Xie, J. H.

Xu, H. L.

Xu, M. Y.

Y. H. Luo, X. L. Chen, M. Y. Xu, J. Ge, Y. L. Zhang, Y. H. He, J. Y. Tang, J. H. Yu, J. Zhang, Z. Chen, and X. D. Chen, “Spectra modulated surface plasmon resonance sensor based on side polished multi-mode optical fiber,” Spectrosc. Spect. Anal. 34(3), 577–581 (2014).
[PubMed]

Y. H. Luo, M. Y. Xu, X. L. Chen, J. Y. Tang, F. Wang, Y. L. Zhang, Y. H. He, and Z. Chen, “[Performance of wavelength modulation surface plasmon resonance biosensor],” Spectrosc. Spect. Anal. 34(5), 1178–1181 (2014).
[PubMed]

Xu, Q.

Y. Xue, Y. Zhang, Y. Liu, H. Liu, J. Song, J. Sophia, J. Liu, Z. Xu, Q. Xu, Z. Wang, J. Zheng, Y. Liu, S. Li, and Q. Bao, “Scalable production of a few-layer MoS2/WS2 vertical heterojunction array and its application for photodetectors,” ACS Nano 10(1), 573–580 (2016).
[Crossref] [PubMed]

Xu, Z.

Y. Xue, Y. Zhang, Y. Liu, H. Liu, J. Song, J. Sophia, J. Liu, Z. Xu, Q. Xu, Z. Wang, J. Zheng, Y. Liu, S. Li, and Q. Bao, “Scalable production of a few-layer MoS2/WS2 vertical heterojunction array and its application for photodetectors,” ACS Nano 10(1), 573–580 (2016).
[Crossref] [PubMed]

Xue, Y.

Y. Xue, Y. Zhang, Y. Liu, H. Liu, J. Song, J. Sophia, J. Liu, Z. Xu, Q. Xu, Z. Wang, J. Zheng, Y. Liu, S. Li, and Q. Bao, “Scalable production of a few-layer MoS2/WS2 vertical heterojunction array and its application for photodetectors,” ACS Nano 10(1), 573–580 (2016).
[Crossref] [PubMed]

Yang, B.

B. Yang, Z. Chen, Y. T. Wang, J. Zhang, G. Z. Liao, Z. W. Tian, J. H. Yu, J. Y. Tang, Y. H. Luo, and H. H. Lu, “Fiber temperature sensor with nanostructured cladding by TiO2 nanoparticles self-assembled onto a side polished optical fiber,” Proc. SPIE 9655, 96553B (2015).
[Crossref]

H. Lu, Z. Tian, H. Yu, B. Yang, G. Jing, G. Liao, J. Zhang, J. Yu, J. Tang, Y. Luo, and Z. Chen, “Optical fiber with nanostructured cladding of TiO2 nanoparticles self-assembled onto a side polished fiber and its temperature sensing,” Opt. Express 22(26), 32502–32508 (2014).
[Crossref] [PubMed]

Yang, S.

N. Huo, S. Yang, Z. Wei, S. S. Li, J. B. Xia, and J. Li, “Photoresponsive and gas sensing field-effect transistors based on multilayer WS2 nanoflakes,” Sci. Rep. 4, 5209 (2014).
[Crossref] [PubMed]

Yang, W.

C. Zhou, W. Yang, and H. Zhu, “Mechanism of charge transfer and its impacts on Fermi-level pinning for gas molecules adsorbed on monolayer WS2.,” J. Chem. Phys. 142(21), 214704 (2015).
[Crossref] [PubMed]

Yu, H.

Yu, J.

Yu, J. B.

Yu, J. H.

Y. H. Luo, Q. S. Wei, Y. Ma, H. H. Lu, J. H. Yu, J. Y. Tang, J. B. Yu, J. B. Fang, J. Zhang, and Z. Chen, “Side-polished-fiber based optical coupler assisted with a fused nano silica film,” Appl. Opt. 54(7), 1598–1605 (2015).
[Crossref]

P. L. Mao, Y. H. Luo, C. Y. Chen, S. H. Peng, X. J. Feng, J. Y. Tang, J. B. Fang, J. Zhang, H. H. Lu, J. H. Yu, and Z. Chen, “Design and optimization of surface plasmon resonance sensor based on multimode fiber,” Opt. Quantum Electron. 47(6), 1495–1502 (2015).
[Crossref]

B. Yang, Z. Chen, Y. T. Wang, J. Zhang, G. Z. Liao, Z. W. Tian, J. H. Yu, J. Y. Tang, Y. H. Luo, and H. H. Lu, “Fiber temperature sensor with nanostructured cladding by TiO2 nanoparticles self-assembled onto a side polished optical fiber,” Proc. SPIE 9655, 96553B (2015).
[Crossref]

Y. Q. Han, Z. Chen, D. Cao, J. H. Yu, H. Z. Li, X. L. He, J. Zhang, Y. H. Luo, H. H. Lu, J. Y. Tang, and H. K. Huang, “Side-polished fiber as a sensor for the determination of nematic liquid crystal orientation,” Sens. Actuators B Chem. 196, 663–669 (2014).
[Crossref]

Y. H. Luo, X. L. Chen, M. Y. Xu, J. Ge, Y. L. Zhang, Y. H. He, J. Y. Tang, J. H. Yu, J. Zhang, Z. Chen, and X. D. Chen, “Spectra modulated surface plasmon resonance sensor based on side polished multi-mode optical fiber,” Spectrosc. Spect. Anal. 34(3), 577–581 (2014).
[PubMed]

J. Zhang, G. Z. Liao, S. S. Jin, D. Cao, Q. S. Wei, H. H. Lu, J. H. Yu, X. Cai, S. Z. Tan, Y. Xiao, J. Y. Tang, Y. H. Luo, and Z. Chen, “All-fiber-optic temperature sensor based on reduced graphene oxide,” Laser Phys. Lett. 11(3), 035901 (2014).
[Crossref]

Yu, Y.

Zang, Z.

J. Yu, S. Jin, Q. Wei, Z. Zang, H. Lu, X. He, Y. Luo, J. Tang, J. Zhang, and Z. Chen, “Hybrid optical fiber add-drop filter based on wavelength dependent light coupling between micro/nano fiber ring and side-polished fiber,” Sci. Rep. 5, 7710 (2015).
[Crossref] [PubMed]

Zeng, Y. X.

P. F. Jiang, Z. Chen, Y. X. Zeng, L. H. Liu, and F. L. Li, “Optical propagation characteristics of side-polished fibers,” Semiconductor Optoelectron. 27(5), 578–581 (2006).

Zhang, J.

J. Yu, S. Jin, Q. Wei, Z. Zang, H. Lu, X. He, Y. Luo, J. Tang, J. Zhang, and Z. Chen, “Hybrid optical fiber add-drop filter based on wavelength dependent light coupling between micro/nano fiber ring and side-polished fiber,” Sci. Rep. 5, 7710 (2015).
[Crossref] [PubMed]

B. Yang, Z. Chen, Y. T. Wang, J. Zhang, G. Z. Liao, Z. W. Tian, J. H. Yu, J. Y. Tang, Y. H. Luo, and H. H. Lu, “Fiber temperature sensor with nanostructured cladding by TiO2 nanoparticles self-assembled onto a side polished optical fiber,” Proc. SPIE 9655, 96553B (2015).
[Crossref]

P. L. Mao, Y. H. Luo, C. Y. Chen, S. H. Peng, X. J. Feng, J. Y. Tang, J. B. Fang, J. Zhang, H. H. Lu, J. H. Yu, and Z. Chen, “Design and optimization of surface plasmon resonance sensor based on multimode fiber,” Opt. Quantum Electron. 47(6), 1495–1502 (2015).
[Crossref]

Y. H. Luo, Q. S. Wei, Y. Ma, H. H. Lu, J. H. Yu, J. Y. Tang, J. B. Yu, J. B. Fang, J. Zhang, and Z. Chen, “Side-polished-fiber based optical coupler assisted with a fused nano silica film,” Appl. Opt. 54(7), 1598–1605 (2015).
[Crossref]

H. Lu, Z. Tian, H. Yu, B. Yang, G. Jing, G. Liao, J. Zhang, J. Yu, J. Tang, Y. Luo, and Z. Chen, “Optical fiber with nanostructured cladding of TiO2 nanoparticles self-assembled onto a side polished fiber and its temperature sensing,” Opt. Express 22(26), 32502–32508 (2014).
[Crossref] [PubMed]

Y. Xiao, J. Zhang, X. Cai, S. Tan, J. Yu, H. Lu, Y. Luo, G. Liao, S. Li, J. Tang, and Z. Chen, “Reduced graphene oxide for fiber-optic humidity sensing,” Opt. Express 22(25), 31555–31567 (2014).
[Crossref] [PubMed]

Y. H. Luo, X. L. Chen, M. Y. Xu, J. Ge, Y. L. Zhang, Y. H. He, J. Y. Tang, J. H. Yu, J. Zhang, Z. Chen, and X. D. Chen, “Spectra modulated surface plasmon resonance sensor based on side polished multi-mode optical fiber,” Spectrosc. Spect. Anal. 34(3), 577–581 (2014).
[PubMed]

J. Zhang, G. Z. Liao, S. S. Jin, D. Cao, Q. S. Wei, H. H. Lu, J. H. Yu, X. Cai, S. Z. Tan, Y. Xiao, J. Y. Tang, Y. H. Luo, and Z. Chen, “All-fiber-optic temperature sensor based on reduced graphene oxide,” Laser Phys. Lett. 11(3), 035901 (2014).
[Crossref]

Y. Q. Han, Z. Chen, D. Cao, J. H. Yu, H. Z. Li, X. L. He, J. Zhang, Y. H. Luo, H. H. Lu, J. Y. Tang, and H. K. Huang, “Side-polished fiber as a sensor for the determination of nematic liquid crystal orientation,” Sens. Actuators B Chem. 196, 663–669 (2014).
[Crossref]

Zhang, M.

Q. Chen, J. Chen, C. Gao, M. Zhang, J. Chen, and H. Qiu, “Hemin-functionalized WS2 nanosheets as highly active peroxidase mimetics for label-free colorimetric detection of H2O2 and glucose,” Analyst (Lond.) 140(8), 2857–2863 (2015).
[Crossref] [PubMed]

Zhang, X. K.

Zhang, X. L.

Zhang, Y.

Y. Xue, Y. Zhang, Y. Liu, H. Liu, J. Song, J. Sophia, J. Liu, Z. Xu, Q. Xu, Z. Wang, J. Zheng, Y. Liu, S. Li, and Q. Bao, “Scalable production of a few-layer MoS2/WS2 vertical heterojunction array and its application for photodetectors,” ACS Nano 10(1), 573–580 (2016).
[Crossref] [PubMed]

Zhang, Y. L.

Y. H. Luo, M. Y. Xu, X. L. Chen, J. Y. Tang, F. Wang, Y. L. Zhang, Y. H. He, and Z. Chen, “[Performance of wavelength modulation surface plasmon resonance biosensor],” Spectrosc. Spect. Anal. 34(5), 1178–1181 (2014).
[PubMed]

Y. H. Luo, X. L. Chen, M. Y. Xu, J. Ge, Y. L. Zhang, Y. H. He, J. Y. Tang, J. H. Yu, J. Zhang, Z. Chen, and X. D. Chen, “Spectra modulated surface plasmon resonance sensor based on side polished multi-mode optical fiber,” Spectrosc. Spect. Anal. 34(3), 577–581 (2014).
[PubMed]

Zhao, W.

W. Zhao, Z. Ghorannevis, L. Chu, M. Toh, C. Kloc, P. H. Tan, and G. Eda, “Evolution of electronic structure in atomically thin sheets of WS2 and WSe2.,” ACS Nano 7(1), 791–797 (2013).
[Crossref] [PubMed]

Zheng, J.

Y. Xue, Y. Zhang, Y. Liu, H. Liu, J. Song, J. Sophia, J. Liu, Z. Xu, Q. Xu, Z. Wang, J. Zheng, Y. Liu, S. Li, and Q. Bao, “Scalable production of a few-layer MoS2/WS2 vertical heterojunction array and its application for photodetectors,” ACS Nano 10(1), 573–580 (2016).
[Crossref] [PubMed]

Zhou, C.

C. Zhou, W. Yang, and H. Zhu, “Mechanism of charge transfer and its impacts on Fermi-level pinning for gas molecules adsorbed on monolayer WS2.,” J. Chem. Phys. 142(21), 214704 (2015).
[Crossref] [PubMed]

Zhu, H.

C. Zhou, W. Yang, and H. Zhu, “Mechanism of charge transfer and its impacts on Fermi-level pinning for gas molecules adsorbed on monolayer WS2.,” J. Chem. Phys. 142(21), 214704 (2015).
[Crossref] [PubMed]

ACS Nano (2)

Y. Xue, Y. Zhang, Y. Liu, H. Liu, J. Song, J. Sophia, J. Liu, Z. Xu, Q. Xu, Z. Wang, J. Zheng, Y. Liu, S. Li, and Q. Bao, “Scalable production of a few-layer MoS2/WS2 vertical heterojunction array and its application for photodetectors,” ACS Nano 10(1), 573–580 (2016).
[Crossref] [PubMed]

W. Zhao, Z. Ghorannevis, L. Chu, M. Toh, C. Kloc, P. H. Tan, and G. Eda, “Evolution of electronic structure in atomically thin sheets of WS2 and WSe2.,” ACS Nano 7(1), 791–797 (2013).
[Crossref] [PubMed]

Adv. Funct. Mater. (1)

C. C. Mayorga-Martinez, A. Ambrosi, A. Y. S. Eng, Z. Sofer, and M. Pumera, “Metallic 1T-WS2 for selective impedimetric vapor sensing,” Adv. Funct. Mater. 25(35), 5611–5616 (2015).
[Crossref]

Analyst (Lond.) (1)

Q. Chen, J. Chen, C. Gao, M. Zhang, J. Chen, and H. Qiu, “Hemin-functionalized WS2 nanosheets as highly active peroxidase mimetics for label-free colorimetric detection of H2O2 and glucose,” Analyst (Lond.) 140(8), 2857–2863 (2015).
[Crossref] [PubMed]

Angew. Chem. Int. Ed. Engl. (1)

H. S. S. Ramakrishna Matte, A. Gomathi, A. K. Manna, D. J. Late, R. Datta, S. K. Pati, and C. N. R. Rao, “MoS2 and WS2 analogues of graphene,” Angew. Chem. Int. Ed. Engl. 49(24), 4059–4062 (2010).
[Crossref] [PubMed]

Appl. Opt. (2)

Chem. Commun. (Camb.) (1)

A. Ambrosi, Z. Sofer, and M. Pumera, “2H → 1T phase transition and hydrogen evolution activity of MoS2, MoSe2, WS2 and WSe2 strongly depends on the MX2 composition,” Chem. Commun. (Camb.) 51(40), 8450–8453 (2015).
[Crossref] [PubMed]

Chem. Phys. Lett. (1)

M. O’Brien, K. Lee, R. Morrish, N. C. Berner, N. McEvoy, C. A. Wolden, and G. S. Duesberg, “Plasma assisted synthesis of WS2 for gas sensing applications,” Chem. Phys. Lett. 615, 6–10 (2014).
[Crossref]

Chin. Opt. Lett. (3)

Comput. Mater. Sci. (1)

U. Ahuja, A. Dashora, H. Tiwari, D. C. Kothari, and K. Venugopalan, “Electronic and optical properties of MoS2-WS2 multi-layers: first principles study,” Comput. Mater. Sci. 92, 451–456 (2014).
[Crossref]

IEEE Sens. J. (1)

A. Lokman, H. Arof, S. W. Harun, Z. Harith, H. A. Rafaie, and R. M. Nor, “Optical fiber relative humidity sensor based on inline Mach-Zehnder interferometer With ZnO Nanowires Coating,” IEEE Sens. J. 16(2), 312–316 (2016).
[Crossref]

J. Chem. Phys. (1)

C. Zhou, W. Yang, and H. Zhu, “Mechanism of charge transfer and its impacts on Fermi-level pinning for gas molecules adsorbed on monolayer WS2.,” J. Chem. Phys. 142(21), 214704 (2015).
[Crossref] [PubMed]

J. Phys. Condens. Matter (1)

V. Q. Bui, T. T. Pham, D. A. Le, C. M. Thi, and H. M. Le, “A first-principles investigation of various gas (CO, H2O, NO, and O2) absorptions on a WS2 monolayer: stability and electronic properties,” J. Phys. Condens. Matter 27(30), 305005 (2015).
[Crossref] [PubMed]

Laser Phys. Lett. (1)

J. Zhang, G. Z. Liao, S. S. Jin, D. Cao, Q. S. Wei, H. H. Lu, J. H. Yu, X. Cai, S. Z. Tan, Y. Xiao, J. Y. Tang, Y. H. Luo, and Z. Chen, “All-fiber-optic temperature sensor based on reduced graphene oxide,” Laser Phys. Lett. 11(3), 035901 (2014).
[Crossref]

Microw. Opt. Technol. Lett. (1)

A. Lokman, S. Nodehi, M. Batumalay, H. Arof, H. Ahmad, and S. W. Harun, “Optical fiber humidity sensor based on a tapered fiber with hydroxyethylcellu lose/polyvinylidenefluoride composite,” Microw. Opt. Technol. Lett. 56(2), 380–382 (2014).
[Crossref]

Opt. Express (3)

Opt. Quantum Electron. (1)

P. L. Mao, Y. H. Luo, C. Y. Chen, S. H. Peng, X. J. Feng, J. Y. Tang, J. B. Fang, J. Zhang, H. H. Lu, J. H. Yu, and Z. Chen, “Design and optimization of surface plasmon resonance sensor based on multimode fiber,” Opt. Quantum Electron. 47(6), 1495–1502 (2015).
[Crossref]

Phys. Rev. B (1)

O. Leenaerts, B. Partoens, and F. M. Peeters, “Adsorption of H(2)O, NH(3), CO, NO(2), and NO on graphene: A first-principles study,” Phys. Rev. B 77(12), 125416 (2008).
[Crossref]

Physica B (1)

A. Kumar and P. K. Ahluwalia, “Tunable dielectric response of transition metals dichalcogenides MX2 (M=Mo, W; X=S, Se, Te): effect of quantum confinement,” Physica B 407(24), 4627–4634 (2012).
[Crossref]

Proc. SPIE (1)

B. Yang, Z. Chen, Y. T. Wang, J. Zhang, G. Z. Liao, Z. W. Tian, J. H. Yu, J. Y. Tang, Y. H. Luo, and H. H. Lu, “Fiber temperature sensor with nanostructured cladding by TiO2 nanoparticles self-assembled onto a side polished optical fiber,” Proc. SPIE 9655, 96553B (2015).
[Crossref]

Sci. Rep. (3)

N. Huo, S. Yang, Z. Wei, S. S. Li, J. B. Xia, and J. Li, “Photoresponsive and gas sensing field-effect transistors based on multilayer WS2 nanoflakes,” Sci. Rep. 4, 5209 (2014).
[Crossref] [PubMed]

J. Yu, S. Jin, Q. Wei, Z. Zang, H. Lu, X. He, Y. Luo, J. Tang, J. Zhang, and Z. Chen, “Hybrid optical fiber add-drop filter based on wavelength dependent light coupling between micro/nano fiber ring and side-polished fiber,” Sci. Rep. 5, 7710 (2015).
[Crossref] [PubMed]

A. Berkdemir, H. R. Gutierrez, A. R. Botello-Mendez, N. Perea-Lopez, A. L. Elias, C. I. Chia, B. Wang, V. H. Crespi, F. Lopez-Urias, J. C. Charlier, H. Terrones, and M. Terrones, “Identification of individual and few layers of WS2 using Raman Spectroscopy,” Sci. Rep. 3, 1755 (2013).
[Crossref]

Semiconductor Optoelectron. (1)

P. F. Jiang, Z. Chen, Y. X. Zeng, L. H. Liu, and F. L. Li, “Optical propagation characteristics of side-polished fibers,” Semiconductor Optoelectron. 27(5), 578–581 (2006).

Sens. Actuators A Phys. (1)

L. Xia, L. C. Li, W. Li, T. Kou, and D. M. Liu, “Novel optical fiber humidity sensor based on a no-core fiber structure,” Sens. Actuators A Phys. 190, 1–5 (2013).
[Crossref]

Sens. Actuators B Chem. (3)

Y. Q. Han, Z. Chen, D. Cao, J. H. Yu, H. Z. Li, X. L. He, J. Zhang, Y. H. Luo, H. H. Lu, J. Y. Tang, and H. K. Huang, “Side-polished fiber as a sensor for the determination of nematic liquid crystal orientation,” Sens. Actuators B Chem. 196, 663–669 (2014).
[Crossref]

C. Bariáin, I. R. Matias, F. J. Arregui, and M. Lopez-Amo, “Optical fiber humidity sensor based on a tapered fiber coated with agarose gel,” Sens. Actuators B Chem. 69(1–2), 127–131 (2000).
[Crossref]

Y. Kim, B. Jung, H. Lee, H. Kim, K. Lee, and H. Park, “Capacitive humidity sensor design based on anodic aluminum oxide,” Sens. Actuators B Chem. 141(2), 441–446 (2009).
[Crossref]

Spectrosc. Spect. Anal. (2)

Y. H. Luo, X. L. Chen, M. Y. Xu, J. Ge, Y. L. Zhang, Y. H. He, J. Y. Tang, J. H. Yu, J. Zhang, Z. Chen, and X. D. Chen, “Spectra modulated surface plasmon resonance sensor based on side polished multi-mode optical fiber,” Spectrosc. Spect. Anal. 34(3), 577–581 (2014).
[PubMed]

Y. H. Luo, M. Y. Xu, X. L. Chen, J. Y. Tang, F. Wang, Y. L. Zhang, Y. H. He, and Z. Chen, “[Performance of wavelength modulation surface plasmon resonance biosensor],” Spectrosc. Spect. Anal. 34(5), 1178–1181 (2014).
[PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a) Schematic diagram of the sensor; (b) Morphological characteristic of SPF; (c) The output optical power of the WS2CSPF during evaporating the alcohol naturally; (d) SEM image of the WS2CSPF cross section at a magnification of 846 and 19140; (e) SEM image of the WS2CSPF surface at a magnification of 259; (f) Enlarged view of the region marked by the square in (e) at a magnification of 31270.
Fig. 2
Fig. 2 Raman spectrum of the WS2 layers on SPF.
Fig. 3
Fig. 3 Experimental set-up for humidity sensing.
Fig. 4
Fig. 4 (a) Variation of relative humidity in the chamber measured by commercial humidity/temperature meter, variation of relative output optical power through: (b) unpolished SMF, (c) SPF, (d) WS2CSPF.
Fig. 5
Fig. 5 Relative output optical power of WS2CSPF as a function of relative humidity and SPF’s data.
Fig. 6
Fig. 6 Variation of actual relative humidity and relative output optical power of WS2CSPF during1000-3000 s of increasing humidity.
Fig. 7
Fig. 7 WS2CSPF humidity sensor response to breath exposure
Fig. 8
Fig. 8 Variation of relative output optical power when adjusting the relative humidity between 40%RH and 75%RH for several consecutive cycles (Temperature = 25°C).
Fig. 9
Fig. 9 (a) Variation of temperature in the chamber measured using a commercial humidity/temperature meter; (b) Variation of relative output optical power through WS2CSPF; (c) Relative output optical power of WS2CSPF as a function of temperature at 55%RH.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

S = Δ P Δ H
R H = R P S

Metrics