Abstract

We present experimental data on message transmission in a free-space optical (FSO) link at an eye-safe wavelength, using a testbed consisting of one sender and two receiver terminals, where the latter two are a legitimate receiver and an eavesdropper. The testbed allows us to emulate a typical scenario of physical-layer (PHY) security such as satellite-to-ground laser communications. We estimate information-theoretic metrics including secrecy rate, secrecy outage probability, and expected code lengths for given secrecy criteria based on observed channel statistics. We then discuss operation principles of secure message transmission under realistic fading conditions, and provide a guideline on a multi-layer security architecture by combining PHY security and upper-layer (algorithmic) security.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Secure transmission for mixed FSO-RF relay networks with physical-layer key encryption and wiretap coding

Dawei Wang, Pinyi Ren, Julian Cheng, Qinghe Du, Yichen Wang, and Li Sun
Opt. Express 25(9) 10078-10089 (2017)

Performance Analysis of Physical-Layer Security in an OCDMA-Based Wiretap Channel

Jianhua Ji, Guirong Zhang, Wenjun Li, Lu Sun, Ke Wang, and Ming Xu
J. Opt. Commun. Netw. 9(10) 813-818 (2017)

Enhancing the Security of Free-Space Optical Communications With Secret Sharing and Key Agreement

Ning Wang, Xuegui Song, Julian Cheng, and Victor C. M. Leung
J. Opt. Commun. Netw. 6(12) 1072-1081 (2014)

References

  • View by:
  • |
  • |
  • |

  1. V. W. S. Chan, “Free-space optical communications,” J. Lightwave Technol. 24(12), 4750–4762 (2006).
    [Crossref]
  2. M. Toyoshima, “Trends in satellite communications and the role of optical free-space communications [Invited],” J. Opt. Netw. 4(6), 300–311 (2005).
    [Crossref]
  3. S. S. Muhammad, T. Plank, E. Leitgeb, A. Friedl, K. Zettl, T. Javornik, and N. Schmitt, “Challenges in establishing free space optical communications between flying vehicles,” in Proceedings of 6th International Symposium on Communication Systems, Networks and Digital Signal Processing (2008), pp. 82–86.
  4. F. Fidler, M. Knapek, J. Horwath, and W. R. Leeb, “Optical communications for High-Altitude Platforms,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1058–1070 (2010).
    [Crossref]
  5. Facebook, “Connecting the world from the sky,” Tech. Rep., Facebook (2014).
  6. D. Kedar and S. Arnon, “Urban optical wireless communication networks: the main challenges and possible solutions,” IEEE Commun. Mag. 42(5), S2–S7 (2004).
    [Crossref]
  7. J. C. Juarez, A. Dwivedi, A. R. Hammons, S. D. Jones, V. Weerackody, and R. A. Nichols, “Free-space optical communications for next-generation military networks,” IEEE Commun. Mag. 44(11), 46–51 (2006).
    [Crossref]
  8. W. S. Rabinovich, C. I. Moore, R. Mahon, P. G. Goetz, H. R. Burris, M. S. Ferraro, J. L. Murphy, L. M. Thomas, G. C. Gilbreath, M. Vilcheck, and M. R. Suite, “Free-space optical communications research and demonstrations at the U.S. Naval Research Laboratory,” Appl. Opt. 54(31), F189–F200 (2015).
    [Crossref] [PubMed]
  9. M. Agaskar and V. W. S. Chan, “Nulling strategies for preventing interference and interception of free space optical communication,” in Proceedings of IEEE International Conference on Communications (IEEE, 2013), pp. 3927–3932.
  10. A. Puryear and V. W. S. Chan, “Using spatial diversity to improve the confidentiality of atmospheric free space optical communication,” in Proceedings of IEEE Global Communications Conference (IEEE, 2011), pp. 1–6.
  11. M. Eghbal and J. Abouei, “Security enhancement in free-space optics using acousto-optic deflectors,” IEEE J. Opt. Commun. Netw. 6(8), 684–694 (2014).
    [Crossref]
  12. F. J. Lopez-Martinez, G. Gomez, and J. M. Garrido-Balsells, “Physical-layer security in free-space optical communications,” IEEE Photon. J. 7(2), 7901014 (2015).
    [Crossref]
  13. M. Bloch and J. Barros, Physical Layer Security: From Information Theory to Security Engineering (Cambridge University, 2011).
    [Crossref]
  14. X. Zhou, L. Song, and Y. Zhang, Physical Layer Security in Wireless Communications (CRC, 2013).
  15. M. Bloch, M. Hayashi, and A. Thangaraj, “Error-control coding for physical-layer secrecy,” Proc. IEEE 103(10), 1725–1746 (2015).
    [Crossref]
  16. A. D. Wyner, “The wire-tap channel,” Bell Syst. Tech. J. 54(8), 1355–1387 (1975).
    [Crossref]
  17. I. Csiszár and J. Körner, “Broadcast channels with confidential messages,” IEEE Trans. Inf. Theory 24(3), 339–348 (1978).
    [Crossref]
  18. R. Ahlswede and I. Csiszár, “Common randomness in information theory and cryptography. I. secret sharing,” IEEE Trans. Inf. Theory 39(4), 1121–1132 (1993).
    [Crossref]
  19. U. M. Maurer, “Secret key agreement by public discussion from common information,” IEEE Trans. Inf. Theory 39(3), 733–742 (1993).
    [Crossref]
  20. F. Oggier and B. Hassibi, “A perspective on the MIMO wiretap channel,” Proc. IEEE 103(10), 1874–1882 (2015).
    [Crossref]
  21. S. Goel and R. Negi, “Guaranteeing secrecy using artificial noise,” IEEE Trans. Wireless Commun. 7(6), 2180–2189 (2008).
    [Crossref]
  22. A. Khisti and G. W. Wornell, “Secure transmission with multiple antennas I: the MISOME wiretap channel,” IEEE Trans. Inf. Theory 56(7), 3088–3104 (2010).
    [Crossref]
  23. F. Oggier and B. Hassibi, “The secrecy capacity of the MIMO wiretap channel,” IEEE Trans. Inf. Theory 57(8), 4961–4972 (2011).
    [Crossref]
  24. N. Wang, X. Song, J. Cheng, and V. C. M. Leung, “Enhancing the security of free-space optical communications with secret sharing and key agreement,” J. Opt. Commun. Netw. 6(12), 1072–1081 (2014).
    [Crossref]
  25. H. Endo, T. S. Han, T. Aoki, and M. Sasaki, “Numerical study on secrecy capacity and code length dependence of the performances in optical wiretap channels,” IEEE Photon. J. 7(5), 7903418 (2015).
    [Crossref]
  26. X. Sun and I. B. Djordjevic, “Physical-layer security in orbital angular momentum multiplexing free-space optical communications,” IEEE Photon. J. 8(1), 7901110 (2016).
    [Crossref]
  27. H. Endo, M. Fujiwara, M. Kitamura, T. Ito, M. Toyoshima, H. Takenaka, R. Shimizu, T. Aoki, and M. Sasaki, “Physical layer security in free-space optical communications,” IEICE Tech. Rep. 115(448), 11–15 (2016).
  28. G. Vallone, D. G. Marangon, M. Canale, I. Savorgnan, D. Bacco, M. Barbieri, S. Calimani, C. Barbieri, N. Laurenti, and P. Villoresi, “Adaptive real time selection for quantum key distribution in lossy and turbulent free-space channels,” Phys. Rev. A 91, 042320 (2015).
    [Crossref]
  29. I. Capraro, A. Tomaello, A. Dall’Arche, F. Gerlin, R. Ursin, G. Vallone, and P. Villoresi, “Impact of turbulence in long range quantum and classical communications,” Phys. Rev. Lett. 109, 200502 (2012).
    [Crossref] [PubMed]
  30. J. Proakis and M. Salehi, Digital Communications, 5th ed. (McGraw-Hill, 2007).
  31. I. I. Kim, B. McArthur, and E. Korevaar, “Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for optical wireless communications,” in Proc. SPIE4214, (2001).
    [Crossref]
  32. W. S. Rabinovich, R. Mahon, H. R. Burris, G. C. Gilbreath, P. G. Goetz, C. I. Moore, M. F. Stell, M. J. Vilcheck, J. L. Witkowsky, L. Swingen, M. R. Suite, E. Oh, and J. Koplow, “Free-space optical communications link at 1550 nm using multiple-quantum-well modulating retroreflectors in a marine environment,” Opt. Eng. 44(5), 056001 (2005).
    [Crossref]
  33. L. C. Andrews, R. L. Phillips, and C. Y. Hopen, Laser Beam Scintillation with Applications (SPIE, 2001).
    [Crossref]
  34. P. K. Gopala, L. Lai, and H. El Gamal, “On the secrecy capacity of fading channels,” IEEE Trans. Inf. Theory 54(10), 4687–4698 (2008).
    [Crossref]
  35. S. Arisa, Y. Takayama, H. Endo, M. Fujiwara, M. Sasaki, and R. Shimizu, “Coupling efficiency of laser beam to multimode fiber for free space optical communication,” in Proceedings of International Conference on Space Optics (2014).
  36. T. S. Han, H. Endo, and M. Sasaki, “Reliability and secrecy functions of the wiretap channel under cost constraint,” IEEE Trans. Inf. Theory 60(11), 6819–6843 (2014).
    [Crossref]
  37. I. Csiszár, “Almost independence and secrecy capacity,” Probl. Peredachi Inf. 32(1), 48–57 (1996).
  38. M. Hayashi, “Exponential decreasing rate of leaked information in universal random privacy amplification,” IEEE Trans. Inf. Theory 57(6), 3989–4001 (2011).
    [Crossref]
  39. I. Csiszár and J. Körner, Information Theory: Coding Theorem for Discrete Memoryless Systems, (2nd ed.) (Cambridge University, 2011).
    [Crossref]

2016 (2)

X. Sun and I. B. Djordjevic, “Physical-layer security in orbital angular momentum multiplexing free-space optical communications,” IEEE Photon. J. 8(1), 7901110 (2016).
[Crossref]

H. Endo, M. Fujiwara, M. Kitamura, T. Ito, M. Toyoshima, H. Takenaka, R. Shimizu, T. Aoki, and M. Sasaki, “Physical layer security in free-space optical communications,” IEICE Tech. Rep. 115(448), 11–15 (2016).

2015 (6)

G. Vallone, D. G. Marangon, M. Canale, I. Savorgnan, D. Bacco, M. Barbieri, S. Calimani, C. Barbieri, N. Laurenti, and P. Villoresi, “Adaptive real time selection for quantum key distribution in lossy and turbulent free-space channels,” Phys. Rev. A 91, 042320 (2015).
[Crossref]

H. Endo, T. S. Han, T. Aoki, and M. Sasaki, “Numerical study on secrecy capacity and code length dependence of the performances in optical wiretap channels,” IEEE Photon. J. 7(5), 7903418 (2015).
[Crossref]

F. J. Lopez-Martinez, G. Gomez, and J. M. Garrido-Balsells, “Physical-layer security in free-space optical communications,” IEEE Photon. J. 7(2), 7901014 (2015).
[Crossref]

M. Bloch, M. Hayashi, and A. Thangaraj, “Error-control coding for physical-layer secrecy,” Proc. IEEE 103(10), 1725–1746 (2015).
[Crossref]

F. Oggier and B. Hassibi, “A perspective on the MIMO wiretap channel,” Proc. IEEE 103(10), 1874–1882 (2015).
[Crossref]

W. S. Rabinovich, C. I. Moore, R. Mahon, P. G. Goetz, H. R. Burris, M. S. Ferraro, J. L. Murphy, L. M. Thomas, G. C. Gilbreath, M. Vilcheck, and M. R. Suite, “Free-space optical communications research and demonstrations at the U.S. Naval Research Laboratory,” Appl. Opt. 54(31), F189–F200 (2015).
[Crossref] [PubMed]

2014 (3)

T. S. Han, H. Endo, and M. Sasaki, “Reliability and secrecy functions of the wiretap channel under cost constraint,” IEEE Trans. Inf. Theory 60(11), 6819–6843 (2014).
[Crossref]

N. Wang, X. Song, J. Cheng, and V. C. M. Leung, “Enhancing the security of free-space optical communications with secret sharing and key agreement,” J. Opt. Commun. Netw. 6(12), 1072–1081 (2014).
[Crossref]

M. Eghbal and J. Abouei, “Security enhancement in free-space optics using acousto-optic deflectors,” IEEE J. Opt. Commun. Netw. 6(8), 684–694 (2014).
[Crossref]

2012 (1)

I. Capraro, A. Tomaello, A. Dall’Arche, F. Gerlin, R. Ursin, G. Vallone, and P. Villoresi, “Impact of turbulence in long range quantum and classical communications,” Phys. Rev. Lett. 109, 200502 (2012).
[Crossref] [PubMed]

2011 (2)

F. Oggier and B. Hassibi, “The secrecy capacity of the MIMO wiretap channel,” IEEE Trans. Inf. Theory 57(8), 4961–4972 (2011).
[Crossref]

M. Hayashi, “Exponential decreasing rate of leaked information in universal random privacy amplification,” IEEE Trans. Inf. Theory 57(6), 3989–4001 (2011).
[Crossref]

2010 (2)

F. Fidler, M. Knapek, J. Horwath, and W. R. Leeb, “Optical communications for High-Altitude Platforms,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1058–1070 (2010).
[Crossref]

A. Khisti and G. W. Wornell, “Secure transmission with multiple antennas I: the MISOME wiretap channel,” IEEE Trans. Inf. Theory 56(7), 3088–3104 (2010).
[Crossref]

2008 (2)

P. K. Gopala, L. Lai, and H. El Gamal, “On the secrecy capacity of fading channels,” IEEE Trans. Inf. Theory 54(10), 4687–4698 (2008).
[Crossref]

S. Goel and R. Negi, “Guaranteeing secrecy using artificial noise,” IEEE Trans. Wireless Commun. 7(6), 2180–2189 (2008).
[Crossref]

2006 (2)

V. W. S. Chan, “Free-space optical communications,” J. Lightwave Technol. 24(12), 4750–4762 (2006).
[Crossref]

J. C. Juarez, A. Dwivedi, A. R. Hammons, S. D. Jones, V. Weerackody, and R. A. Nichols, “Free-space optical communications for next-generation military networks,” IEEE Commun. Mag. 44(11), 46–51 (2006).
[Crossref]

2005 (2)

M. Toyoshima, “Trends in satellite communications and the role of optical free-space communications [Invited],” J. Opt. Netw. 4(6), 300–311 (2005).
[Crossref]

W. S. Rabinovich, R. Mahon, H. R. Burris, G. C. Gilbreath, P. G. Goetz, C. I. Moore, M. F. Stell, M. J. Vilcheck, J. L. Witkowsky, L. Swingen, M. R. Suite, E. Oh, and J. Koplow, “Free-space optical communications link at 1550 nm using multiple-quantum-well modulating retroreflectors in a marine environment,” Opt. Eng. 44(5), 056001 (2005).
[Crossref]

2004 (1)

D. Kedar and S. Arnon, “Urban optical wireless communication networks: the main challenges and possible solutions,” IEEE Commun. Mag. 42(5), S2–S7 (2004).
[Crossref]

1996 (1)

I. Csiszár, “Almost independence and secrecy capacity,” Probl. Peredachi Inf. 32(1), 48–57 (1996).

1993 (2)

R. Ahlswede and I. Csiszár, “Common randomness in information theory and cryptography. I. secret sharing,” IEEE Trans. Inf. Theory 39(4), 1121–1132 (1993).
[Crossref]

U. M. Maurer, “Secret key agreement by public discussion from common information,” IEEE Trans. Inf. Theory 39(3), 733–742 (1993).
[Crossref]

1978 (1)

I. Csiszár and J. Körner, “Broadcast channels with confidential messages,” IEEE Trans. Inf. Theory 24(3), 339–348 (1978).
[Crossref]

1975 (1)

A. D. Wyner, “The wire-tap channel,” Bell Syst. Tech. J. 54(8), 1355–1387 (1975).
[Crossref]

Abouei, J.

M. Eghbal and J. Abouei, “Security enhancement in free-space optics using acousto-optic deflectors,” IEEE J. Opt. Commun. Netw. 6(8), 684–694 (2014).
[Crossref]

Agaskar, M.

M. Agaskar and V. W. S. Chan, “Nulling strategies for preventing interference and interception of free space optical communication,” in Proceedings of IEEE International Conference on Communications (IEEE, 2013), pp. 3927–3932.

Ahlswede, R.

R. Ahlswede and I. Csiszár, “Common randomness in information theory and cryptography. I. secret sharing,” IEEE Trans. Inf. Theory 39(4), 1121–1132 (1993).
[Crossref]

Andrews, L. C.

L. C. Andrews, R. L. Phillips, and C. Y. Hopen, Laser Beam Scintillation with Applications (SPIE, 2001).
[Crossref]

Aoki, T.

H. Endo, M. Fujiwara, M. Kitamura, T. Ito, M. Toyoshima, H. Takenaka, R. Shimizu, T. Aoki, and M. Sasaki, “Physical layer security in free-space optical communications,” IEICE Tech. Rep. 115(448), 11–15 (2016).

H. Endo, T. S. Han, T. Aoki, and M. Sasaki, “Numerical study on secrecy capacity and code length dependence of the performances in optical wiretap channels,” IEEE Photon. J. 7(5), 7903418 (2015).
[Crossref]

Arisa, S.

S. Arisa, Y. Takayama, H. Endo, M. Fujiwara, M. Sasaki, and R. Shimizu, “Coupling efficiency of laser beam to multimode fiber for free space optical communication,” in Proceedings of International Conference on Space Optics (2014).

Arnon, S.

D. Kedar and S. Arnon, “Urban optical wireless communication networks: the main challenges and possible solutions,” IEEE Commun. Mag. 42(5), S2–S7 (2004).
[Crossref]

Bacco, D.

G. Vallone, D. G. Marangon, M. Canale, I. Savorgnan, D. Bacco, M. Barbieri, S. Calimani, C. Barbieri, N. Laurenti, and P. Villoresi, “Adaptive real time selection for quantum key distribution in lossy and turbulent free-space channels,” Phys. Rev. A 91, 042320 (2015).
[Crossref]

Barbieri, C.

G. Vallone, D. G. Marangon, M. Canale, I. Savorgnan, D. Bacco, M. Barbieri, S. Calimani, C. Barbieri, N. Laurenti, and P. Villoresi, “Adaptive real time selection for quantum key distribution in lossy and turbulent free-space channels,” Phys. Rev. A 91, 042320 (2015).
[Crossref]

Barbieri, M.

G. Vallone, D. G. Marangon, M. Canale, I. Savorgnan, D. Bacco, M. Barbieri, S. Calimani, C. Barbieri, N. Laurenti, and P. Villoresi, “Adaptive real time selection for quantum key distribution in lossy and turbulent free-space channels,” Phys. Rev. A 91, 042320 (2015).
[Crossref]

Barros, J.

M. Bloch and J. Barros, Physical Layer Security: From Information Theory to Security Engineering (Cambridge University, 2011).
[Crossref]

Bloch, M.

M. Bloch, M. Hayashi, and A. Thangaraj, “Error-control coding for physical-layer secrecy,” Proc. IEEE 103(10), 1725–1746 (2015).
[Crossref]

M. Bloch and J. Barros, Physical Layer Security: From Information Theory to Security Engineering (Cambridge University, 2011).
[Crossref]

Burris, H. R.

W. S. Rabinovich, C. I. Moore, R. Mahon, P. G. Goetz, H. R. Burris, M. S. Ferraro, J. L. Murphy, L. M. Thomas, G. C. Gilbreath, M. Vilcheck, and M. R. Suite, “Free-space optical communications research and demonstrations at the U.S. Naval Research Laboratory,” Appl. Opt. 54(31), F189–F200 (2015).
[Crossref] [PubMed]

W. S. Rabinovich, R. Mahon, H. R. Burris, G. C. Gilbreath, P. G. Goetz, C. I. Moore, M. F. Stell, M. J. Vilcheck, J. L. Witkowsky, L. Swingen, M. R. Suite, E. Oh, and J. Koplow, “Free-space optical communications link at 1550 nm using multiple-quantum-well modulating retroreflectors in a marine environment,” Opt. Eng. 44(5), 056001 (2005).
[Crossref]

Calimani, S.

G. Vallone, D. G. Marangon, M. Canale, I. Savorgnan, D. Bacco, M. Barbieri, S. Calimani, C. Barbieri, N. Laurenti, and P. Villoresi, “Adaptive real time selection for quantum key distribution in lossy and turbulent free-space channels,” Phys. Rev. A 91, 042320 (2015).
[Crossref]

Canale, M.

G. Vallone, D. G. Marangon, M. Canale, I. Savorgnan, D. Bacco, M. Barbieri, S. Calimani, C. Barbieri, N. Laurenti, and P. Villoresi, “Adaptive real time selection for quantum key distribution in lossy and turbulent free-space channels,” Phys. Rev. A 91, 042320 (2015).
[Crossref]

Capraro, I.

I. Capraro, A. Tomaello, A. Dall’Arche, F. Gerlin, R. Ursin, G. Vallone, and P. Villoresi, “Impact of turbulence in long range quantum and classical communications,” Phys. Rev. Lett. 109, 200502 (2012).
[Crossref] [PubMed]

Chan, V. W. S.

V. W. S. Chan, “Free-space optical communications,” J. Lightwave Technol. 24(12), 4750–4762 (2006).
[Crossref]

M. Agaskar and V. W. S. Chan, “Nulling strategies for preventing interference and interception of free space optical communication,” in Proceedings of IEEE International Conference on Communications (IEEE, 2013), pp. 3927–3932.

A. Puryear and V. W. S. Chan, “Using spatial diversity to improve the confidentiality of atmospheric free space optical communication,” in Proceedings of IEEE Global Communications Conference (IEEE, 2011), pp. 1–6.

Cheng, J.

Csiszár, I.

I. Csiszár, “Almost independence and secrecy capacity,” Probl. Peredachi Inf. 32(1), 48–57 (1996).

R. Ahlswede and I. Csiszár, “Common randomness in information theory and cryptography. I. secret sharing,” IEEE Trans. Inf. Theory 39(4), 1121–1132 (1993).
[Crossref]

I. Csiszár and J. Körner, “Broadcast channels with confidential messages,” IEEE Trans. Inf. Theory 24(3), 339–348 (1978).
[Crossref]

I. Csiszár and J. Körner, Information Theory: Coding Theorem for Discrete Memoryless Systems, (2nd ed.) (Cambridge University, 2011).
[Crossref]

Dall’Arche, A.

I. Capraro, A. Tomaello, A. Dall’Arche, F. Gerlin, R. Ursin, G. Vallone, and P. Villoresi, “Impact of turbulence in long range quantum and classical communications,” Phys. Rev. Lett. 109, 200502 (2012).
[Crossref] [PubMed]

Djordjevic, I. B.

X. Sun and I. B. Djordjevic, “Physical-layer security in orbital angular momentum multiplexing free-space optical communications,” IEEE Photon. J. 8(1), 7901110 (2016).
[Crossref]

Dwivedi, A.

J. C. Juarez, A. Dwivedi, A. R. Hammons, S. D. Jones, V. Weerackody, and R. A. Nichols, “Free-space optical communications for next-generation military networks,” IEEE Commun. Mag. 44(11), 46–51 (2006).
[Crossref]

Eghbal, M.

M. Eghbal and J. Abouei, “Security enhancement in free-space optics using acousto-optic deflectors,” IEEE J. Opt. Commun. Netw. 6(8), 684–694 (2014).
[Crossref]

El Gamal, H.

P. K. Gopala, L. Lai, and H. El Gamal, “On the secrecy capacity of fading channels,” IEEE Trans. Inf. Theory 54(10), 4687–4698 (2008).
[Crossref]

Endo, H.

H. Endo, M. Fujiwara, M. Kitamura, T. Ito, M. Toyoshima, H. Takenaka, R. Shimizu, T. Aoki, and M. Sasaki, “Physical layer security in free-space optical communications,” IEICE Tech. Rep. 115(448), 11–15 (2016).

H. Endo, T. S. Han, T. Aoki, and M. Sasaki, “Numerical study on secrecy capacity and code length dependence of the performances in optical wiretap channels,” IEEE Photon. J. 7(5), 7903418 (2015).
[Crossref]

T. S. Han, H. Endo, and M. Sasaki, “Reliability and secrecy functions of the wiretap channel under cost constraint,” IEEE Trans. Inf. Theory 60(11), 6819–6843 (2014).
[Crossref]

S. Arisa, Y. Takayama, H. Endo, M. Fujiwara, M. Sasaki, and R. Shimizu, “Coupling efficiency of laser beam to multimode fiber for free space optical communication,” in Proceedings of International Conference on Space Optics (2014).

Ferraro, M. S.

Fidler, F.

F. Fidler, M. Knapek, J. Horwath, and W. R. Leeb, “Optical communications for High-Altitude Platforms,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1058–1070 (2010).
[Crossref]

Friedl, A.

S. S. Muhammad, T. Plank, E. Leitgeb, A. Friedl, K. Zettl, T. Javornik, and N. Schmitt, “Challenges in establishing free space optical communications between flying vehicles,” in Proceedings of 6th International Symposium on Communication Systems, Networks and Digital Signal Processing (2008), pp. 82–86.

Fujiwara, M.

H. Endo, M. Fujiwara, M. Kitamura, T. Ito, M. Toyoshima, H. Takenaka, R. Shimizu, T. Aoki, and M. Sasaki, “Physical layer security in free-space optical communications,” IEICE Tech. Rep. 115(448), 11–15 (2016).

S. Arisa, Y. Takayama, H. Endo, M. Fujiwara, M. Sasaki, and R. Shimizu, “Coupling efficiency of laser beam to multimode fiber for free space optical communication,” in Proceedings of International Conference on Space Optics (2014).

Garrido-Balsells, J. M.

F. J. Lopez-Martinez, G. Gomez, and J. M. Garrido-Balsells, “Physical-layer security in free-space optical communications,” IEEE Photon. J. 7(2), 7901014 (2015).
[Crossref]

Gerlin, F.

I. Capraro, A. Tomaello, A. Dall’Arche, F. Gerlin, R. Ursin, G. Vallone, and P. Villoresi, “Impact of turbulence in long range quantum and classical communications,” Phys. Rev. Lett. 109, 200502 (2012).
[Crossref] [PubMed]

Gilbreath, G. C.

W. S. Rabinovich, C. I. Moore, R. Mahon, P. G. Goetz, H. R. Burris, M. S. Ferraro, J. L. Murphy, L. M. Thomas, G. C. Gilbreath, M. Vilcheck, and M. R. Suite, “Free-space optical communications research and demonstrations at the U.S. Naval Research Laboratory,” Appl. Opt. 54(31), F189–F200 (2015).
[Crossref] [PubMed]

W. S. Rabinovich, R. Mahon, H. R. Burris, G. C. Gilbreath, P. G. Goetz, C. I. Moore, M. F. Stell, M. J. Vilcheck, J. L. Witkowsky, L. Swingen, M. R. Suite, E. Oh, and J. Koplow, “Free-space optical communications link at 1550 nm using multiple-quantum-well modulating retroreflectors in a marine environment,” Opt. Eng. 44(5), 056001 (2005).
[Crossref]

Goel, S.

S. Goel and R. Negi, “Guaranteeing secrecy using artificial noise,” IEEE Trans. Wireless Commun. 7(6), 2180–2189 (2008).
[Crossref]

Goetz, P. G.

W. S. Rabinovich, C. I. Moore, R. Mahon, P. G. Goetz, H. R. Burris, M. S. Ferraro, J. L. Murphy, L. M. Thomas, G. C. Gilbreath, M. Vilcheck, and M. R. Suite, “Free-space optical communications research and demonstrations at the U.S. Naval Research Laboratory,” Appl. Opt. 54(31), F189–F200 (2015).
[Crossref] [PubMed]

W. S. Rabinovich, R. Mahon, H. R. Burris, G. C. Gilbreath, P. G. Goetz, C. I. Moore, M. F. Stell, M. J. Vilcheck, J. L. Witkowsky, L. Swingen, M. R. Suite, E. Oh, and J. Koplow, “Free-space optical communications link at 1550 nm using multiple-quantum-well modulating retroreflectors in a marine environment,” Opt. Eng. 44(5), 056001 (2005).
[Crossref]

Gomez, G.

F. J. Lopez-Martinez, G. Gomez, and J. M. Garrido-Balsells, “Physical-layer security in free-space optical communications,” IEEE Photon. J. 7(2), 7901014 (2015).
[Crossref]

Gopala, P. K.

P. K. Gopala, L. Lai, and H. El Gamal, “On the secrecy capacity of fading channels,” IEEE Trans. Inf. Theory 54(10), 4687–4698 (2008).
[Crossref]

Hammons, A. R.

J. C. Juarez, A. Dwivedi, A. R. Hammons, S. D. Jones, V. Weerackody, and R. A. Nichols, “Free-space optical communications for next-generation military networks,” IEEE Commun. Mag. 44(11), 46–51 (2006).
[Crossref]

Han, T. S.

H. Endo, T. S. Han, T. Aoki, and M. Sasaki, “Numerical study on secrecy capacity and code length dependence of the performances in optical wiretap channels,” IEEE Photon. J. 7(5), 7903418 (2015).
[Crossref]

T. S. Han, H. Endo, and M. Sasaki, “Reliability and secrecy functions of the wiretap channel under cost constraint,” IEEE Trans. Inf. Theory 60(11), 6819–6843 (2014).
[Crossref]

Hassibi, B.

F. Oggier and B. Hassibi, “A perspective on the MIMO wiretap channel,” Proc. IEEE 103(10), 1874–1882 (2015).
[Crossref]

F. Oggier and B. Hassibi, “The secrecy capacity of the MIMO wiretap channel,” IEEE Trans. Inf. Theory 57(8), 4961–4972 (2011).
[Crossref]

Hayashi, M.

M. Bloch, M. Hayashi, and A. Thangaraj, “Error-control coding for physical-layer secrecy,” Proc. IEEE 103(10), 1725–1746 (2015).
[Crossref]

M. Hayashi, “Exponential decreasing rate of leaked information in universal random privacy amplification,” IEEE Trans. Inf. Theory 57(6), 3989–4001 (2011).
[Crossref]

Hopen, C. Y.

L. C. Andrews, R. L. Phillips, and C. Y. Hopen, Laser Beam Scintillation with Applications (SPIE, 2001).
[Crossref]

Horwath, J.

F. Fidler, M. Knapek, J. Horwath, and W. R. Leeb, “Optical communications for High-Altitude Platforms,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1058–1070 (2010).
[Crossref]

Ito, T.

H. Endo, M. Fujiwara, M. Kitamura, T. Ito, M. Toyoshima, H. Takenaka, R. Shimizu, T. Aoki, and M. Sasaki, “Physical layer security in free-space optical communications,” IEICE Tech. Rep. 115(448), 11–15 (2016).

Javornik, T.

S. S. Muhammad, T. Plank, E. Leitgeb, A. Friedl, K. Zettl, T. Javornik, and N. Schmitt, “Challenges in establishing free space optical communications between flying vehicles,” in Proceedings of 6th International Symposium on Communication Systems, Networks and Digital Signal Processing (2008), pp. 82–86.

Jones, S. D.

J. C. Juarez, A. Dwivedi, A. R. Hammons, S. D. Jones, V. Weerackody, and R. A. Nichols, “Free-space optical communications for next-generation military networks,” IEEE Commun. Mag. 44(11), 46–51 (2006).
[Crossref]

Juarez, J. C.

J. C. Juarez, A. Dwivedi, A. R. Hammons, S. D. Jones, V. Weerackody, and R. A. Nichols, “Free-space optical communications for next-generation military networks,” IEEE Commun. Mag. 44(11), 46–51 (2006).
[Crossref]

Kedar, D.

D. Kedar and S. Arnon, “Urban optical wireless communication networks: the main challenges and possible solutions,” IEEE Commun. Mag. 42(5), S2–S7 (2004).
[Crossref]

Khisti, A.

A. Khisti and G. W. Wornell, “Secure transmission with multiple antennas I: the MISOME wiretap channel,” IEEE Trans. Inf. Theory 56(7), 3088–3104 (2010).
[Crossref]

Kim, I. I.

I. I. Kim, B. McArthur, and E. Korevaar, “Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for optical wireless communications,” in Proc. SPIE4214, (2001).
[Crossref]

Kitamura, M.

H. Endo, M. Fujiwara, M. Kitamura, T. Ito, M. Toyoshima, H. Takenaka, R. Shimizu, T. Aoki, and M. Sasaki, “Physical layer security in free-space optical communications,” IEICE Tech. Rep. 115(448), 11–15 (2016).

Knapek, M.

F. Fidler, M. Knapek, J. Horwath, and W. R. Leeb, “Optical communications for High-Altitude Platforms,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1058–1070 (2010).
[Crossref]

Koplow, J.

W. S. Rabinovich, R. Mahon, H. R. Burris, G. C. Gilbreath, P. G. Goetz, C. I. Moore, M. F. Stell, M. J. Vilcheck, J. L. Witkowsky, L. Swingen, M. R. Suite, E. Oh, and J. Koplow, “Free-space optical communications link at 1550 nm using multiple-quantum-well modulating retroreflectors in a marine environment,” Opt. Eng. 44(5), 056001 (2005).
[Crossref]

Korevaar, E.

I. I. Kim, B. McArthur, and E. Korevaar, “Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for optical wireless communications,” in Proc. SPIE4214, (2001).
[Crossref]

Körner, J.

I. Csiszár and J. Körner, “Broadcast channels with confidential messages,” IEEE Trans. Inf. Theory 24(3), 339–348 (1978).
[Crossref]

I. Csiszár and J. Körner, Information Theory: Coding Theorem for Discrete Memoryless Systems, (2nd ed.) (Cambridge University, 2011).
[Crossref]

Lai, L.

P. K. Gopala, L. Lai, and H. El Gamal, “On the secrecy capacity of fading channels,” IEEE Trans. Inf. Theory 54(10), 4687–4698 (2008).
[Crossref]

Laurenti, N.

G. Vallone, D. G. Marangon, M. Canale, I. Savorgnan, D. Bacco, M. Barbieri, S. Calimani, C. Barbieri, N. Laurenti, and P. Villoresi, “Adaptive real time selection for quantum key distribution in lossy and turbulent free-space channels,” Phys. Rev. A 91, 042320 (2015).
[Crossref]

Leeb, W. R.

F. Fidler, M. Knapek, J. Horwath, and W. R. Leeb, “Optical communications for High-Altitude Platforms,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1058–1070 (2010).
[Crossref]

Leitgeb, E.

S. S. Muhammad, T. Plank, E. Leitgeb, A. Friedl, K. Zettl, T. Javornik, and N. Schmitt, “Challenges in establishing free space optical communications between flying vehicles,” in Proceedings of 6th International Symposium on Communication Systems, Networks and Digital Signal Processing (2008), pp. 82–86.

Leung, V. C. M.

Lopez-Martinez, F. J.

F. J. Lopez-Martinez, G. Gomez, and J. M. Garrido-Balsells, “Physical-layer security in free-space optical communications,” IEEE Photon. J. 7(2), 7901014 (2015).
[Crossref]

Mahon, R.

W. S. Rabinovich, C. I. Moore, R. Mahon, P. G. Goetz, H. R. Burris, M. S. Ferraro, J. L. Murphy, L. M. Thomas, G. C. Gilbreath, M. Vilcheck, and M. R. Suite, “Free-space optical communications research and demonstrations at the U.S. Naval Research Laboratory,” Appl. Opt. 54(31), F189–F200 (2015).
[Crossref] [PubMed]

W. S. Rabinovich, R. Mahon, H. R. Burris, G. C. Gilbreath, P. G. Goetz, C. I. Moore, M. F. Stell, M. J. Vilcheck, J. L. Witkowsky, L. Swingen, M. R. Suite, E. Oh, and J. Koplow, “Free-space optical communications link at 1550 nm using multiple-quantum-well modulating retroreflectors in a marine environment,” Opt. Eng. 44(5), 056001 (2005).
[Crossref]

Marangon, D. G.

G. Vallone, D. G. Marangon, M. Canale, I. Savorgnan, D. Bacco, M. Barbieri, S. Calimani, C. Barbieri, N. Laurenti, and P. Villoresi, “Adaptive real time selection for quantum key distribution in lossy and turbulent free-space channels,” Phys. Rev. A 91, 042320 (2015).
[Crossref]

Maurer, U. M.

U. M. Maurer, “Secret key agreement by public discussion from common information,” IEEE Trans. Inf. Theory 39(3), 733–742 (1993).
[Crossref]

McArthur, B.

I. I. Kim, B. McArthur, and E. Korevaar, “Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for optical wireless communications,” in Proc. SPIE4214, (2001).
[Crossref]

Moore, C. I.

W. S. Rabinovich, C. I. Moore, R. Mahon, P. G. Goetz, H. R. Burris, M. S. Ferraro, J. L. Murphy, L. M. Thomas, G. C. Gilbreath, M. Vilcheck, and M. R. Suite, “Free-space optical communications research and demonstrations at the U.S. Naval Research Laboratory,” Appl. Opt. 54(31), F189–F200 (2015).
[Crossref] [PubMed]

W. S. Rabinovich, R. Mahon, H. R. Burris, G. C. Gilbreath, P. G. Goetz, C. I. Moore, M. F. Stell, M. J. Vilcheck, J. L. Witkowsky, L. Swingen, M. R. Suite, E. Oh, and J. Koplow, “Free-space optical communications link at 1550 nm using multiple-quantum-well modulating retroreflectors in a marine environment,” Opt. Eng. 44(5), 056001 (2005).
[Crossref]

Muhammad, S. S.

S. S. Muhammad, T. Plank, E. Leitgeb, A. Friedl, K. Zettl, T. Javornik, and N. Schmitt, “Challenges in establishing free space optical communications between flying vehicles,” in Proceedings of 6th International Symposium on Communication Systems, Networks and Digital Signal Processing (2008), pp. 82–86.

Murphy, J. L.

Negi, R.

S. Goel and R. Negi, “Guaranteeing secrecy using artificial noise,” IEEE Trans. Wireless Commun. 7(6), 2180–2189 (2008).
[Crossref]

Nichols, R. A.

J. C. Juarez, A. Dwivedi, A. R. Hammons, S. D. Jones, V. Weerackody, and R. A. Nichols, “Free-space optical communications for next-generation military networks,” IEEE Commun. Mag. 44(11), 46–51 (2006).
[Crossref]

Oggier, F.

F. Oggier and B. Hassibi, “A perspective on the MIMO wiretap channel,” Proc. IEEE 103(10), 1874–1882 (2015).
[Crossref]

F. Oggier and B. Hassibi, “The secrecy capacity of the MIMO wiretap channel,” IEEE Trans. Inf. Theory 57(8), 4961–4972 (2011).
[Crossref]

Oh, E.

W. S. Rabinovich, R. Mahon, H. R. Burris, G. C. Gilbreath, P. G. Goetz, C. I. Moore, M. F. Stell, M. J. Vilcheck, J. L. Witkowsky, L. Swingen, M. R. Suite, E. Oh, and J. Koplow, “Free-space optical communications link at 1550 nm using multiple-quantum-well modulating retroreflectors in a marine environment,” Opt. Eng. 44(5), 056001 (2005).
[Crossref]

Phillips, R. L.

L. C. Andrews, R. L. Phillips, and C. Y. Hopen, Laser Beam Scintillation with Applications (SPIE, 2001).
[Crossref]

Plank, T.

S. S. Muhammad, T. Plank, E. Leitgeb, A. Friedl, K. Zettl, T. Javornik, and N. Schmitt, “Challenges in establishing free space optical communications between flying vehicles,” in Proceedings of 6th International Symposium on Communication Systems, Networks and Digital Signal Processing (2008), pp. 82–86.

Proakis, J.

J. Proakis and M. Salehi, Digital Communications, 5th ed. (McGraw-Hill, 2007).

Puryear, A.

A. Puryear and V. W. S. Chan, “Using spatial diversity to improve the confidentiality of atmospheric free space optical communication,” in Proceedings of IEEE Global Communications Conference (IEEE, 2011), pp. 1–6.

Rabinovich, W. S.

W. S. Rabinovich, C. I. Moore, R. Mahon, P. G. Goetz, H. R. Burris, M. S. Ferraro, J. L. Murphy, L. M. Thomas, G. C. Gilbreath, M. Vilcheck, and M. R. Suite, “Free-space optical communications research and demonstrations at the U.S. Naval Research Laboratory,” Appl. Opt. 54(31), F189–F200 (2015).
[Crossref] [PubMed]

W. S. Rabinovich, R. Mahon, H. R. Burris, G. C. Gilbreath, P. G. Goetz, C. I. Moore, M. F. Stell, M. J. Vilcheck, J. L. Witkowsky, L. Swingen, M. R. Suite, E. Oh, and J. Koplow, “Free-space optical communications link at 1550 nm using multiple-quantum-well modulating retroreflectors in a marine environment,” Opt. Eng. 44(5), 056001 (2005).
[Crossref]

Salehi, M.

J. Proakis and M. Salehi, Digital Communications, 5th ed. (McGraw-Hill, 2007).

Sasaki, M.

H. Endo, M. Fujiwara, M. Kitamura, T. Ito, M. Toyoshima, H. Takenaka, R. Shimizu, T. Aoki, and M. Sasaki, “Physical layer security in free-space optical communications,” IEICE Tech. Rep. 115(448), 11–15 (2016).

H. Endo, T. S. Han, T. Aoki, and M. Sasaki, “Numerical study on secrecy capacity and code length dependence of the performances in optical wiretap channels,” IEEE Photon. J. 7(5), 7903418 (2015).
[Crossref]

T. S. Han, H. Endo, and M. Sasaki, “Reliability and secrecy functions of the wiretap channel under cost constraint,” IEEE Trans. Inf. Theory 60(11), 6819–6843 (2014).
[Crossref]

S. Arisa, Y. Takayama, H. Endo, M. Fujiwara, M. Sasaki, and R. Shimizu, “Coupling efficiency of laser beam to multimode fiber for free space optical communication,” in Proceedings of International Conference on Space Optics (2014).

Savorgnan, I.

G. Vallone, D. G. Marangon, M. Canale, I. Savorgnan, D. Bacco, M. Barbieri, S. Calimani, C. Barbieri, N. Laurenti, and P. Villoresi, “Adaptive real time selection for quantum key distribution in lossy and turbulent free-space channels,” Phys. Rev. A 91, 042320 (2015).
[Crossref]

Schmitt, N.

S. S. Muhammad, T. Plank, E. Leitgeb, A. Friedl, K. Zettl, T. Javornik, and N. Schmitt, “Challenges in establishing free space optical communications between flying vehicles,” in Proceedings of 6th International Symposium on Communication Systems, Networks and Digital Signal Processing (2008), pp. 82–86.

Shimizu, R.

H. Endo, M. Fujiwara, M. Kitamura, T. Ito, M. Toyoshima, H. Takenaka, R. Shimizu, T. Aoki, and M. Sasaki, “Physical layer security in free-space optical communications,” IEICE Tech. Rep. 115(448), 11–15 (2016).

S. Arisa, Y. Takayama, H. Endo, M. Fujiwara, M. Sasaki, and R. Shimizu, “Coupling efficiency of laser beam to multimode fiber for free space optical communication,” in Proceedings of International Conference on Space Optics (2014).

Song, L.

X. Zhou, L. Song, and Y. Zhang, Physical Layer Security in Wireless Communications (CRC, 2013).

Song, X.

Stell, M. F.

W. S. Rabinovich, R. Mahon, H. R. Burris, G. C. Gilbreath, P. G. Goetz, C. I. Moore, M. F. Stell, M. J. Vilcheck, J. L. Witkowsky, L. Swingen, M. R. Suite, E. Oh, and J. Koplow, “Free-space optical communications link at 1550 nm using multiple-quantum-well modulating retroreflectors in a marine environment,” Opt. Eng. 44(5), 056001 (2005).
[Crossref]

Suite, M. R.

W. S. Rabinovich, C. I. Moore, R. Mahon, P. G. Goetz, H. R. Burris, M. S. Ferraro, J. L. Murphy, L. M. Thomas, G. C. Gilbreath, M. Vilcheck, and M. R. Suite, “Free-space optical communications research and demonstrations at the U.S. Naval Research Laboratory,” Appl. Opt. 54(31), F189–F200 (2015).
[Crossref] [PubMed]

W. S. Rabinovich, R. Mahon, H. R. Burris, G. C. Gilbreath, P. G. Goetz, C. I. Moore, M. F. Stell, M. J. Vilcheck, J. L. Witkowsky, L. Swingen, M. R. Suite, E. Oh, and J. Koplow, “Free-space optical communications link at 1550 nm using multiple-quantum-well modulating retroreflectors in a marine environment,” Opt. Eng. 44(5), 056001 (2005).
[Crossref]

Sun, X.

X. Sun and I. B. Djordjevic, “Physical-layer security in orbital angular momentum multiplexing free-space optical communications,” IEEE Photon. J. 8(1), 7901110 (2016).
[Crossref]

Swingen, L.

W. S. Rabinovich, R. Mahon, H. R. Burris, G. C. Gilbreath, P. G. Goetz, C. I. Moore, M. F. Stell, M. J. Vilcheck, J. L. Witkowsky, L. Swingen, M. R. Suite, E. Oh, and J. Koplow, “Free-space optical communications link at 1550 nm using multiple-quantum-well modulating retroreflectors in a marine environment,” Opt. Eng. 44(5), 056001 (2005).
[Crossref]

Takayama, Y.

S. Arisa, Y. Takayama, H. Endo, M. Fujiwara, M. Sasaki, and R. Shimizu, “Coupling efficiency of laser beam to multimode fiber for free space optical communication,” in Proceedings of International Conference on Space Optics (2014).

Takenaka, H.

H. Endo, M. Fujiwara, M. Kitamura, T. Ito, M. Toyoshima, H. Takenaka, R. Shimizu, T. Aoki, and M. Sasaki, “Physical layer security in free-space optical communications,” IEICE Tech. Rep. 115(448), 11–15 (2016).

Thangaraj, A.

M. Bloch, M. Hayashi, and A. Thangaraj, “Error-control coding for physical-layer secrecy,” Proc. IEEE 103(10), 1725–1746 (2015).
[Crossref]

Thomas, L. M.

Tomaello, A.

I. Capraro, A. Tomaello, A. Dall’Arche, F. Gerlin, R. Ursin, G. Vallone, and P. Villoresi, “Impact of turbulence in long range quantum and classical communications,” Phys. Rev. Lett. 109, 200502 (2012).
[Crossref] [PubMed]

Toyoshima, M.

H. Endo, M. Fujiwara, M. Kitamura, T. Ito, M. Toyoshima, H. Takenaka, R. Shimizu, T. Aoki, and M. Sasaki, “Physical layer security in free-space optical communications,” IEICE Tech. Rep. 115(448), 11–15 (2016).

M. Toyoshima, “Trends in satellite communications and the role of optical free-space communications [Invited],” J. Opt. Netw. 4(6), 300–311 (2005).
[Crossref]

Ursin, R.

I. Capraro, A. Tomaello, A. Dall’Arche, F. Gerlin, R. Ursin, G. Vallone, and P. Villoresi, “Impact of turbulence in long range quantum and classical communications,” Phys. Rev. Lett. 109, 200502 (2012).
[Crossref] [PubMed]

Vallone, G.

G. Vallone, D. G. Marangon, M. Canale, I. Savorgnan, D. Bacco, M. Barbieri, S. Calimani, C. Barbieri, N. Laurenti, and P. Villoresi, “Adaptive real time selection for quantum key distribution in lossy and turbulent free-space channels,” Phys. Rev. A 91, 042320 (2015).
[Crossref]

I. Capraro, A. Tomaello, A. Dall’Arche, F. Gerlin, R. Ursin, G. Vallone, and P. Villoresi, “Impact of turbulence in long range quantum and classical communications,” Phys. Rev. Lett. 109, 200502 (2012).
[Crossref] [PubMed]

Vilcheck, M.

Vilcheck, M. J.

W. S. Rabinovich, R. Mahon, H. R. Burris, G. C. Gilbreath, P. G. Goetz, C. I. Moore, M. F. Stell, M. J. Vilcheck, J. L. Witkowsky, L. Swingen, M. R. Suite, E. Oh, and J. Koplow, “Free-space optical communications link at 1550 nm using multiple-quantum-well modulating retroreflectors in a marine environment,” Opt. Eng. 44(5), 056001 (2005).
[Crossref]

Villoresi, P.

G. Vallone, D. G. Marangon, M. Canale, I. Savorgnan, D. Bacco, M. Barbieri, S. Calimani, C. Barbieri, N. Laurenti, and P. Villoresi, “Adaptive real time selection for quantum key distribution in lossy and turbulent free-space channels,” Phys. Rev. A 91, 042320 (2015).
[Crossref]

I. Capraro, A. Tomaello, A. Dall’Arche, F. Gerlin, R. Ursin, G. Vallone, and P. Villoresi, “Impact of turbulence in long range quantum and classical communications,” Phys. Rev. Lett. 109, 200502 (2012).
[Crossref] [PubMed]

Wang, N.

Weerackody, V.

J. C. Juarez, A. Dwivedi, A. R. Hammons, S. D. Jones, V. Weerackody, and R. A. Nichols, “Free-space optical communications for next-generation military networks,” IEEE Commun. Mag. 44(11), 46–51 (2006).
[Crossref]

Witkowsky, J. L.

W. S. Rabinovich, R. Mahon, H. R. Burris, G. C. Gilbreath, P. G. Goetz, C. I. Moore, M. F. Stell, M. J. Vilcheck, J. L. Witkowsky, L. Swingen, M. R. Suite, E. Oh, and J. Koplow, “Free-space optical communications link at 1550 nm using multiple-quantum-well modulating retroreflectors in a marine environment,” Opt. Eng. 44(5), 056001 (2005).
[Crossref]

Wornell, G. W.

A. Khisti and G. W. Wornell, “Secure transmission with multiple antennas I: the MISOME wiretap channel,” IEEE Trans. Inf. Theory 56(7), 3088–3104 (2010).
[Crossref]

Wyner, A. D.

A. D. Wyner, “The wire-tap channel,” Bell Syst. Tech. J. 54(8), 1355–1387 (1975).
[Crossref]

Zettl, K.

S. S. Muhammad, T. Plank, E. Leitgeb, A. Friedl, K. Zettl, T. Javornik, and N. Schmitt, “Challenges in establishing free space optical communications between flying vehicles,” in Proceedings of 6th International Symposium on Communication Systems, Networks and Digital Signal Processing (2008), pp. 82–86.

Zhang, Y.

X. Zhou, L. Song, and Y. Zhang, Physical Layer Security in Wireless Communications (CRC, 2013).

Zhou, X.

X. Zhou, L. Song, and Y. Zhang, Physical Layer Security in Wireless Communications (CRC, 2013).

Appl. Opt. (1)

Bell Syst. Tech. J. (1)

A. D. Wyner, “The wire-tap channel,” Bell Syst. Tech. J. 54(8), 1355–1387 (1975).
[Crossref]

IEEE Commun. Mag. (2)

D. Kedar and S. Arnon, “Urban optical wireless communication networks: the main challenges and possible solutions,” IEEE Commun. Mag. 42(5), S2–S7 (2004).
[Crossref]

J. C. Juarez, A. Dwivedi, A. R. Hammons, S. D. Jones, V. Weerackody, and R. A. Nichols, “Free-space optical communications for next-generation military networks,” IEEE Commun. Mag. 44(11), 46–51 (2006).
[Crossref]

IEEE J. Opt. Commun. Netw. (1)

M. Eghbal and J. Abouei, “Security enhancement in free-space optics using acousto-optic deflectors,” IEEE J. Opt. Commun. Netw. 6(8), 684–694 (2014).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

F. Fidler, M. Knapek, J. Horwath, and W. R. Leeb, “Optical communications for High-Altitude Platforms,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1058–1070 (2010).
[Crossref]

IEEE Photon. J. (3)

F. J. Lopez-Martinez, G. Gomez, and J. M. Garrido-Balsells, “Physical-layer security in free-space optical communications,” IEEE Photon. J. 7(2), 7901014 (2015).
[Crossref]

H. Endo, T. S. Han, T. Aoki, and M. Sasaki, “Numerical study on secrecy capacity and code length dependence of the performances in optical wiretap channels,” IEEE Photon. J. 7(5), 7903418 (2015).
[Crossref]

X. Sun and I. B. Djordjevic, “Physical-layer security in orbital angular momentum multiplexing free-space optical communications,” IEEE Photon. J. 8(1), 7901110 (2016).
[Crossref]

IEEE Trans. Inf. Theory (8)

I. Csiszár and J. Körner, “Broadcast channels with confidential messages,” IEEE Trans. Inf. Theory 24(3), 339–348 (1978).
[Crossref]

R. Ahlswede and I. Csiszár, “Common randomness in information theory and cryptography. I. secret sharing,” IEEE Trans. Inf. Theory 39(4), 1121–1132 (1993).
[Crossref]

U. M. Maurer, “Secret key agreement by public discussion from common information,” IEEE Trans. Inf. Theory 39(3), 733–742 (1993).
[Crossref]

M. Hayashi, “Exponential decreasing rate of leaked information in universal random privacy amplification,” IEEE Trans. Inf. Theory 57(6), 3989–4001 (2011).
[Crossref]

A. Khisti and G. W. Wornell, “Secure transmission with multiple antennas I: the MISOME wiretap channel,” IEEE Trans. Inf. Theory 56(7), 3088–3104 (2010).
[Crossref]

F. Oggier and B. Hassibi, “The secrecy capacity of the MIMO wiretap channel,” IEEE Trans. Inf. Theory 57(8), 4961–4972 (2011).
[Crossref]

P. K. Gopala, L. Lai, and H. El Gamal, “On the secrecy capacity of fading channels,” IEEE Trans. Inf. Theory 54(10), 4687–4698 (2008).
[Crossref]

T. S. Han, H. Endo, and M. Sasaki, “Reliability and secrecy functions of the wiretap channel under cost constraint,” IEEE Trans. Inf. Theory 60(11), 6819–6843 (2014).
[Crossref]

IEEE Trans. Wireless Commun. (1)

S. Goel and R. Negi, “Guaranteeing secrecy using artificial noise,” IEEE Trans. Wireless Commun. 7(6), 2180–2189 (2008).
[Crossref]

IEICE Tech. Rep. (1)

H. Endo, M. Fujiwara, M. Kitamura, T. Ito, M. Toyoshima, H. Takenaka, R. Shimizu, T. Aoki, and M. Sasaki, “Physical layer security in free-space optical communications,” IEICE Tech. Rep. 115(448), 11–15 (2016).

J. Lightwave Technol. (1)

J. Opt. Commun. Netw. (1)

J. Opt. Netw. (1)

Opt. Eng. (1)

W. S. Rabinovich, R. Mahon, H. R. Burris, G. C. Gilbreath, P. G. Goetz, C. I. Moore, M. F. Stell, M. J. Vilcheck, J. L. Witkowsky, L. Swingen, M. R. Suite, E. Oh, and J. Koplow, “Free-space optical communications link at 1550 nm using multiple-quantum-well modulating retroreflectors in a marine environment,” Opt. Eng. 44(5), 056001 (2005).
[Crossref]

Phys. Rev. A (1)

G. Vallone, D. G. Marangon, M. Canale, I. Savorgnan, D. Bacco, M. Barbieri, S. Calimani, C. Barbieri, N. Laurenti, and P. Villoresi, “Adaptive real time selection for quantum key distribution in lossy and turbulent free-space channels,” Phys. Rev. A 91, 042320 (2015).
[Crossref]

Phys. Rev. Lett. (1)

I. Capraro, A. Tomaello, A. Dall’Arche, F. Gerlin, R. Ursin, G. Vallone, and P. Villoresi, “Impact of turbulence in long range quantum and classical communications,” Phys. Rev. Lett. 109, 200502 (2012).
[Crossref] [PubMed]

Probl. Peredachi Inf. (1)

I. Csiszár, “Almost independence and secrecy capacity,” Probl. Peredachi Inf. 32(1), 48–57 (1996).

Proc. IEEE (2)

M. Bloch, M. Hayashi, and A. Thangaraj, “Error-control coding for physical-layer secrecy,” Proc. IEEE 103(10), 1725–1746 (2015).
[Crossref]

F. Oggier and B. Hassibi, “A perspective on the MIMO wiretap channel,” Proc. IEEE 103(10), 1874–1882 (2015).
[Crossref]

Other (11)

M. Bloch and J. Barros, Physical Layer Security: From Information Theory to Security Engineering (Cambridge University, 2011).
[Crossref]

X. Zhou, L. Song, and Y. Zhang, Physical Layer Security in Wireless Communications (CRC, 2013).

M. Agaskar and V. W. S. Chan, “Nulling strategies for preventing interference and interception of free space optical communication,” in Proceedings of IEEE International Conference on Communications (IEEE, 2013), pp. 3927–3932.

A. Puryear and V. W. S. Chan, “Using spatial diversity to improve the confidentiality of atmospheric free space optical communication,” in Proceedings of IEEE Global Communications Conference (IEEE, 2011), pp. 1–6.

J. Proakis and M. Salehi, Digital Communications, 5th ed. (McGraw-Hill, 2007).

I. I. Kim, B. McArthur, and E. Korevaar, “Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for optical wireless communications,” in Proc. SPIE4214, (2001).
[Crossref]

S. Arisa, Y. Takayama, H. Endo, M. Fujiwara, M. Sasaki, and R. Shimizu, “Coupling efficiency of laser beam to multimode fiber for free space optical communication,” in Proceedings of International Conference on Space Optics (2014).

L. C. Andrews, R. L. Phillips, and C. Y. Hopen, Laser Beam Scintillation with Applications (SPIE, 2001).
[Crossref]

I. Csiszár and J. Körner, Information Theory: Coding Theorem for Discrete Memoryless Systems, (2nd ed.) (Cambridge University, 2011).
[Crossref]

S. S. Muhammad, T. Plank, E. Leitgeb, A. Friedl, K. Zettl, T. Javornik, and N. Schmitt, “Challenges in establishing free space optical communications between flying vehicles,” in Proceedings of 6th International Symposium on Communication Systems, Networks and Digital Signal Processing (2008), pp. 82–86.

Facebook, “Connecting the world from the sky,” Tech. Rep., Facebook (2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic diagram of the wireless wiretap channel model and wiretap channel coding [27].

Fig. 2
Fig. 2

(a) Overview of Tokyo FSO Testbed. Alice’s terminal is installed on a building roof at UEC. Bob’s and Eve’s terminals are located on a building at NICT. ©OpenStreetMap contributors, CC-BY-SA. (b) Schematic layout of experimental setup of Alice’s, Bob’s, and Eve’s terminals [27].

Fig. 3
Fig. 3

Experimental configuration of FSO transmission campaign held on 17 November 2015, and typical waveforms received by Eve (upper) and Bob (lower) over 5 μs. The data are taken at 14:43:00 JST. In the figure, we subtracted the DC offset of a detector from the received signal.

Fig. 4
Fig. 4

Temporal variation of instantaneous secrecy rate RS,i (solid line) and the average output voltage (dotted line) for the experimental data at 17:37:00 JST, the late evening time about an hour after the sunset, on 17 November 2015. In each time slot, the measurement duration is 4 ms and 4 × 104 bits are contained. Two upper left insets are the histograms of the output voltage for the best case (between 12 ms and 16 ms) and the worst case (between 76 ms and 80 ms). The upper rightmost inset is the output voltage histogram for the whole period of the 200 ms transmission. Width of histogram bins are 0.3 mV both for Bob’s and Eve’s data (see Appendix A). In the histogram, we subtracted the DC offset of the detector from the received signal.

Fig. 5
Fig. 5

Temporal variation of instantaneous secrecy rate RS,i (solid line) and the average output voltage (dotted line) for the experimental data at 16:34:20 JST, just one minute after the sunset time, on 17 November 2015. In each time slot, the measurement duration is 4 ms and 4 × 104 bits are contained. For comparison, the ergodic secrecy rate RS,erg (chain line) and the long span secrecy rate RS,T (dashed line) are also shown. Two upper left insets are the histograms of the output voltage of the detectors for the best case (between 24 ms and 28) and the worst case (between 144 ms and 148 ms). The upper rightmost inset is the output voltage histogram for the whole period of the 200 ms transmission. Width of histogram bins are 0.3 mV both for Bob’s and Eve’s data. In the histogram, we subtracted the DC offset of the detector from the received signal.

Fig. 6
Fig. 6

Secrecy outage probability PS(RS,i < Rth) as a function of target rate Rth for 5 campaign periods on 17 November 2015. In each time period, 10 independent 200 ms FSO transmissions (totally 20 Mbits), namely, 500 of 4 ms FSO transmission is contained.

Fig. 7
Fig. 7

(a) Code length dependence of leaked information measure δ n E between 76 ms and 80 ms in Fig. 4. (b) Repetition rate dependence of leaked information measure δ n E over the whole observation time of 200 ms in Fig. 5.

Fig. 8
Fig. 8

Bin width dependence of the mutual information I(PX, PZ|X,HE) for the time slot from 76 ms to 80 ms in Fig. 4.

Tables (1)

Tables Icon

Table 1 Mean values of the scintillation index σ I 2 and refractive-index structure constant C n 2 for each campaign perioda.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

Y = H B X + N B ,
Z = H E X + N E ,
R B R S , i ( h B , h E ) max [ 0 , I ( P X , P Y | X , H B ) I ( P X , P Z | X , H E ) ] .
I ( P X , P Y | X , H B ) = x { 0 , 1 } y { 0 , 1 } P X ( x ) P Y | X , H B ( y | x , h B ) log 2 [ P Y | X , H B ( y | x , h B ) x P X ( x ) P Y | X , H B ( y | x , h B ) ] .
P Y | X , H B ( 1 | x , h B ) = N ( y y th | x , h B ) N ( x ) , P Y | X , H B ( 0 | x , h B ) = N ( y y th | x , h B ) N ( x ) ,
P Z | X , H E ( z ( i ) | x , h E ) = N ( z ( i ) | x , h E ) N ( x ) ,
I ( P X , P Z | X , H E ) = x { 0 , 1 } i = 1 K P X ( x ) P Z | X , H E ( z ( i ) | x , h E ) log 2 [ P Z | X , H E ( z ( i ) | x , h E ) x P X ( x ) P Z | X , H E ( z ( i ) | x , h E ) ] .
R S , T I ( P X , E [ P Y | X , H B ] ) I ( P X , E [ P Z | X , H E ] ) ,
R S , erg E [ R S , i ( h B , h E ) ] ,
E [ I ( P , W ) ] I ( P , E [ W ] )
R S , erg = E [ I ( P X , P Y | X , H B ) I ( P X , P Z | X , H E ) ]
I ( P X , E [ P Y | X , H B ] ) I ( P X , E [ P Z | X , H E ] )
= R S , T ,
H sec ( R E ) max 0 ρ 1 ( ϕ ( ρ | P Z | X , H E , P X ) + ρ R E ln 2 ) ,
ϕ ( ρ | P Z | X , H E , P X ) ln i = 1 K ( x = { 0 , 1 } P X ( x ) P Z | X , H E ( z ( i ) | x , h E ) 1 1 ρ ) 1 ρ ,

Metrics