Abstract

We demonstrate a frequency diverse, multistatic microwave imaging system based on a set of transmit and receive, radiating, planar cavity apertures. The cavities consist of double-sided, copper-clad circuit boards, with a series of circular radiating irises patterned into the upper conducting plate. The iris arrangement is such that for any given transmitting and receiving aperture pair, a Mills-Cross pattern is formed from the overlapped patterns. The Mills-Cross distribution provides optimum coverage of the imaging scene in the spatial Fourier domain (k-space). The Mills-Cross configuration of the apertures produces measurement modes that are diverse and consistent with the computational imaging approach used for frequency-diverse apertures, yet significantly minimizes the redundancy of information received from the scene. We present a detailed analysis of the Mills-Cross aperture design, with numerical simulations that predict the performance of the apertures as part of an imaging system. Images reconstructed using fabricated apertures are presented, confirming the anticipated performance.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Dynamically reconfigurable holographic metasurface aperture for a Mills-Cross monochromatic microwave camera

Okan Yurduseven, Daniel L. Marks, Thomas Fromenteze, and David R. Smith
Opt. Express 26(5) 5281-5291 (2018)

Design considerations for a dynamic metamaterial aperture for computational imaging at microwave frequencies

Timothy Sleasman, Michael Boyarsky, Mohammadreza F. Imani, Jonah N. Gollub, and David R. Smith
J. Opt. Soc. Am. B 33(6) 1098-1111 (2016)

Spatially resolving antenna arrays using frequency diversity

Daniel L. Marks, Jonah Gollub, and David R. Smith
J. Opt. Soc. Am. A 33(5) 899-912 (2016)

References

  • View by:
  • |
  • |
  • |

  1. A. W. Doerry and F. M. Dickey, “Synthetic aperture radar,” Opt. Photonics News 15(11), 28–33 (2004).
    [Crossref]
  2. A. Moreira, P. Prats-Iraola, M. Younis, G. Krieger, I. Hajnsek, and K. P. Papathanassiou, “A tutorial on synthetic aperture radar,” IEEE Geosci. Rem. Sens. Mag. 1(1), 6–43 (2013).
    [Crossref]
  3. N. K. Nikolova, “Microwave imaging for breast cancer,” IEEE Microw. Mag. 12(7), 78–94 (2011).
    [Crossref]
  4. M. Fallahpour, J. T. Case, M. T. Ghasr, and R. Zoughi, “Piecewise and Wiener filter-based SAR techniques for monostatic microwave imaging of layered structures,” IEEE Trans. Antenn. Propag. 62(1), 282–294 (2014).
    [Crossref]
  5. Y. Wang and A. E. Fathy, “Advanced system level simulation platform for three-dimensional UWB through-wall imaging SAR using time-domain approach,” IEEE Trans. Geosci. Rem. Sens. 50(5), 1986–2000 (2012).
    [Crossref]
  6. S. Demirci, H. Cetinkaya, E. Yigit, C. Ozdemir, and A. A. Vertiy, “A study on millimeter-wave imaging of concealed objects: application using back-projection algorithm,” Prog. Electromagnetics Res. 128, 457–477 (2012).
    [Crossref]
  7. F. Qi, I. Ocket, D. Schreurs, and B. Nauwelaers, “A system-level simulator for indoor mmW SAR imaging and its applications,” Opt. Express 20(21), 23811–23820 (2012).
    [Crossref] [PubMed]
  8. J. A. Martinez-Lorenzo, F. Quivira, and C. M. Rappaport, “SAR imaging of suicide bombers wearing concealed explosive threats,” Prog. Electromagnetics Res. 125, 255–272 (2012).
    [Crossref]
  9. M. Elsdon, O. Yurduseven, and D. Smith, “Early stage breast cancer detection using indirect microwave holography,” Prog. Electromagnetics Res. 143, 405–419 (2013).
    [Crossref]
  10. R. K. Amineh, J. McCombe, and N. K. Nikolova, “Microwave holographic imaging using the antenna phaseless radiation pattern,” IEEE Antennas Wirel. Propag. Lett. 11, 1529–1532 (2012).
    [Crossref]
  11. J. Laviada, A. Arboleya-Arboleya, Y. Alvarez-Lopez, C. Garcia-Gonzalez, and F. Las-Heras, “Phaseless synthetic aperture radar with efficient sampling for broadband near-field imaging: theory and validation,” IEEE Trans. Antenn. Propag. 63(2), 573–584 (2015).
    [Crossref]
  12. O. Yurduseven, “Indirect microwave holographic imaging of concealed ordnance for airport security imaging systems,” Prog. Electromagnetics Res. 146, 7–13 (2014).
    [Crossref]
  13. D. M. Sheen, D. L. McMakin, and T. E. Hall, “Three-dimensional millimeter-wave imaging for concealed weapon detection,” IEEE Trans. Microw. Theory Tech. 49(9), 1581–1592 (2001).
    [Crossref]
  14. D. Smith, O. Yurduseven, B. Livingstone, and V. Schejbal, “Microwave imaging using indirect holographic techniques,” IEEE Antennas Propag. Mag. 56(1), 104–117 (2014).
    [Crossref]
  15. T. S. Ralston, G. L. Charvat, and J. E. Peabody, “Real-time Through-wall imaging using an ultrawideband multiple-input multiple-output (MIMO) phased array radar system,” IEEE International Symposium on Phased Array Systems and Technology, 551–558 (2010).
    [Crossref]
  16. B. H. Ku, P. Schmalenberg, O. Inac, O. D. Gurbuz, J. S. Lee, K. Shiozaki, and G. M. Rebeiz, “A 77–81-GHz 16-element phased-array receiver with ±50° beam scanning for advanced automotive radars,” IEEE Trans. Microw. Theory Tech. 62(11), 2823–2832 (2014).
    [Crossref]
  17. S. Withington, G. Saklatvala, and M. P. Hobson, “Partially coherent analysis of imaging and interferometric phased arrays: noise, correlations, and fluctuations,” J. Opt. Soc. Am. A 23(6), 1340–1348 (2006).
    [Crossref] [PubMed]
  18. G. L. Charvat, L. C. Kempel, E. J. Rothwell, and C. M. Coleman, “An ultrawideband (UWB) switched-antenna-array radar imaging system,” IEEE International Symposium on Phased Array Systems and Technology, 543–550, (2010).
    [Crossref]
  19. A. J. Fenn, D. H. Temme, W. P. Delaney, and W. E. Courtney, “The development of phased array radar technology,” Linc. Lab. J. 12(2), 321–340 (2000).
  20. D. Shrekenhamer, C. M. Watts, and W. J. Padilla, “Terahertz single pixel imaging with an optically controlled dynamic spatial light modulator,” Opt. Express 21(10), 12507–12518 (2013).
    [Crossref] [PubMed]
  21. D. J. Brady, K. Choi, D. L. Marks, R. Horisaki, and S. Lim, “Compressive holography,” Opt. Express 17(15), 13040–13049 (2009).
    [PubMed]
  22. D. Shin, A. Kirmani, V. K. Goyal, and J. H. Shapiro, “Photon-efficient computational 3-D and reflectivity imaging with single-photon detectors,” IEEE Trans. Comput. Imag. 1(2), 112–125 (2015).
    [Crossref]
  23. O. S. Cossairt, D. Miau, and S. K. Nayar, “Scaling law for computational imaging using spherical optics,” J. Opt. Soc. Am. A 28(12), 2540–2553 (2011).
    [Crossref] [PubMed]
  24. M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
    [Crossref]
  25. D. J. Brady, Optical Imaging and Spectroscopy (Wiley, 2009).
  26. D. H. Shin, C. W. Tan, B. G. Lee, J. J. Lee, and E. S. Kim, “Resolution-enhanced three-dimensional image reconstruction by use of smart pixel mapping in computational integral imaging,” Appl. Opt. 47(35), 6656–6665 (2008).
    [Crossref] [PubMed]
  27. S. S. Welsh, M. P. Edgar, R. Bowman, P. Jonathan, B. Sun, and M. J. Padgett, “Fast full-color computational imaging with single-pixel detectors,” Opt. Express 21(20), 23068–23074 (2013).
    [Crossref] [PubMed]
  28. J. A. Martinez-Lorenzo, J. H. Juesas, and W. Blackwell, “A single-transceiver compressive reflector antenna for high-sensing-capacity imaging,” IEEE Antennas Wirel. Propag. Lett. 15, 968–971 (2015).
    [Crossref]
  29. J. Hunt, T. Driscoll, A. Mrozack, G. Lipworth, M. Reynolds, D. Brady, and D. R. Smith, “Metamaterial apertures for computational imaging,” Science 339(6117), 310–313 (2013).
    [Crossref] [PubMed]
  30. G. Lipworth, A. Mrozack, J. Hunt, D. L. Marks, T. Driscoll, D. Brady, and D. R. Smith, “Metamaterial apertures for coherent computational imaging on the physical layer,” J. Opt. Soc. Am. A 30(8), 1603–1612 (2013).
    [Crossref] [PubMed]
  31. J. Hunt, J. Gollub, T. Driscoll, G. Lipworth, A. Mrozack, M. S. Reynolds, D. J. Brady, and D. R. Smith, “Metamaterial microwave holographic imaging system,” J. Opt. Soc. Am. A 31(10), 2109–2119 (2014).
    [Crossref] [PubMed]
  32. O. Yurduseven, M. F. Imani, H. Odabasi, J. Gollub, G. Lipworth, A. Rose, and D. R. Smith, “Resolution of the frequency diverse metamaterial aperture imager,” Prog. Electromagnetics Res. 150, 97–107 (2015).
    [Crossref]
  33. T. Fromenteze, O. Yurduseven, M. F. Imani, J. Gollub, C. Decroze, D. Carsenat, and D. R. Smith, “Computational imaging using a mode-mixing cavity at microwave frequencies,” Appl. Phys. Lett. 106(19), 194104 (2015).
    [Crossref]
  34. O. Yurduseven, V. R. Gowda, J. Gollub, and D. R. Smith, “Printed Aperiodic Cavity for Computational Microwave Imaging,” IEEE Microw. Wirel. Comp. Lett. (in production) (2016).
  35. D. L. Marks, J. Gollub, and D. R. Smith, “Spatially resolving antenna arrays using frequency diversity,” J. Opt. Soc. Am. A (in production) (2016).
  36. R. T. Hoctor and S. A. Kassam, “The unifying role of the coarray in aperture synthesis for coherent and incoherent imaging,” Proc. IEEE 78(4), 735–752 (1990).
    [Crossref]
  37. S. S. Ahmed, Electronic Microwave Imaging with Planar Multistatic Arrays (Logos Verlag Berlin GmbH, 2014).
  38. W. M. Siebert, Circuits, Signals, and Systems (Massachusetts Institute of Technology, 1985).
  39. G. Lipworth, A. Rose, O. Yurduseven, V. R. Gowda, M. F. Imani, H. Odabasi, P. Trofatter, J. Gollub, and D. R. Smith, “Comprehensive simulation platform for a metamaterial imaging system,” Appl. Opt. 54(31), 9343–9353 (2015).
    [Crossref] [PubMed]
  40. Q. Fang, P. M. Meaney, and K. D. Paulsen, “Singular value analysis of the Jacobian matrix in microwave image reconstruction,” IEEE Trans. Antenn. Propag. 54(8), 2371–2380 (2006).
    [Crossref]
  41. M. Pastorino, Microwave Imaging (Wiley, 2010).

2015 (6)

J. Laviada, A. Arboleya-Arboleya, Y. Alvarez-Lopez, C. Garcia-Gonzalez, and F. Las-Heras, “Phaseless synthetic aperture radar with efficient sampling for broadband near-field imaging: theory and validation,” IEEE Trans. Antenn. Propag. 63(2), 573–584 (2015).
[Crossref]

D. Shin, A. Kirmani, V. K. Goyal, and J. H. Shapiro, “Photon-efficient computational 3-D and reflectivity imaging with single-photon detectors,” IEEE Trans. Comput. Imag. 1(2), 112–125 (2015).
[Crossref]

J. A. Martinez-Lorenzo, J. H. Juesas, and W. Blackwell, “A single-transceiver compressive reflector antenna for high-sensing-capacity imaging,” IEEE Antennas Wirel. Propag. Lett. 15, 968–971 (2015).
[Crossref]

O. Yurduseven, M. F. Imani, H. Odabasi, J. Gollub, G. Lipworth, A. Rose, and D. R. Smith, “Resolution of the frequency diverse metamaterial aperture imager,” Prog. Electromagnetics Res. 150, 97–107 (2015).
[Crossref]

T. Fromenteze, O. Yurduseven, M. F. Imani, J. Gollub, C. Decroze, D. Carsenat, and D. R. Smith, “Computational imaging using a mode-mixing cavity at microwave frequencies,” Appl. Phys. Lett. 106(19), 194104 (2015).
[Crossref]

G. Lipworth, A. Rose, O. Yurduseven, V. R. Gowda, M. F. Imani, H. Odabasi, P. Trofatter, J. Gollub, and D. R. Smith, “Comprehensive simulation platform for a metamaterial imaging system,” Appl. Opt. 54(31), 9343–9353 (2015).
[Crossref] [PubMed]

2014 (5)

J. Hunt, J. Gollub, T. Driscoll, G. Lipworth, A. Mrozack, M. S. Reynolds, D. J. Brady, and D. R. Smith, “Metamaterial microwave holographic imaging system,” J. Opt. Soc. Am. A 31(10), 2109–2119 (2014).
[Crossref] [PubMed]

O. Yurduseven, “Indirect microwave holographic imaging of concealed ordnance for airport security imaging systems,” Prog. Electromagnetics Res. 146, 7–13 (2014).
[Crossref]

D. Smith, O. Yurduseven, B. Livingstone, and V. Schejbal, “Microwave imaging using indirect holographic techniques,” IEEE Antennas Propag. Mag. 56(1), 104–117 (2014).
[Crossref]

B. H. Ku, P. Schmalenberg, O. Inac, O. D. Gurbuz, J. S. Lee, K. Shiozaki, and G. M. Rebeiz, “A 77–81-GHz 16-element phased-array receiver with ±50° beam scanning for advanced automotive radars,” IEEE Trans. Microw. Theory Tech. 62(11), 2823–2832 (2014).
[Crossref]

M. Fallahpour, J. T. Case, M. T. Ghasr, and R. Zoughi, “Piecewise and Wiener filter-based SAR techniques for monostatic microwave imaging of layered structures,” IEEE Trans. Antenn. Propag. 62(1), 282–294 (2014).
[Crossref]

2013 (6)

A. Moreira, P. Prats-Iraola, M. Younis, G. Krieger, I. Hajnsek, and K. P. Papathanassiou, “A tutorial on synthetic aperture radar,” IEEE Geosci. Rem. Sens. Mag. 1(1), 6–43 (2013).
[Crossref]

M. Elsdon, O. Yurduseven, and D. Smith, “Early stage breast cancer detection using indirect microwave holography,” Prog. Electromagnetics Res. 143, 405–419 (2013).
[Crossref]

D. Shrekenhamer, C. M. Watts, and W. J. Padilla, “Terahertz single pixel imaging with an optically controlled dynamic spatial light modulator,” Opt. Express 21(10), 12507–12518 (2013).
[Crossref] [PubMed]

J. Hunt, T. Driscoll, A. Mrozack, G. Lipworth, M. Reynolds, D. Brady, and D. R. Smith, “Metamaterial apertures for computational imaging,” Science 339(6117), 310–313 (2013).
[Crossref] [PubMed]

G. Lipworth, A. Mrozack, J. Hunt, D. L. Marks, T. Driscoll, D. Brady, and D. R. Smith, “Metamaterial apertures for coherent computational imaging on the physical layer,” J. Opt. Soc. Am. A 30(8), 1603–1612 (2013).
[Crossref] [PubMed]

S. S. Welsh, M. P. Edgar, R. Bowman, P. Jonathan, B. Sun, and M. J. Padgett, “Fast full-color computational imaging with single-pixel detectors,” Opt. Express 21(20), 23068–23074 (2013).
[Crossref] [PubMed]

2012 (5)

R. K. Amineh, J. McCombe, and N. K. Nikolova, “Microwave holographic imaging using the antenna phaseless radiation pattern,” IEEE Antennas Wirel. Propag. Lett. 11, 1529–1532 (2012).
[Crossref]

Y. Wang and A. E. Fathy, “Advanced system level simulation platform for three-dimensional UWB through-wall imaging SAR using time-domain approach,” IEEE Trans. Geosci. Rem. Sens. 50(5), 1986–2000 (2012).
[Crossref]

S. Demirci, H. Cetinkaya, E. Yigit, C. Ozdemir, and A. A. Vertiy, “A study on millimeter-wave imaging of concealed objects: application using back-projection algorithm,” Prog. Electromagnetics Res. 128, 457–477 (2012).
[Crossref]

F. Qi, I. Ocket, D. Schreurs, and B. Nauwelaers, “A system-level simulator for indoor mmW SAR imaging and its applications,” Opt. Express 20(21), 23811–23820 (2012).
[Crossref] [PubMed]

J. A. Martinez-Lorenzo, F. Quivira, and C. M. Rappaport, “SAR imaging of suicide bombers wearing concealed explosive threats,” Prog. Electromagnetics Res. 125, 255–272 (2012).
[Crossref]

2011 (2)

2009 (1)

2008 (2)

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
[Crossref]

D. H. Shin, C. W. Tan, B. G. Lee, J. J. Lee, and E. S. Kim, “Resolution-enhanced three-dimensional image reconstruction by use of smart pixel mapping in computational integral imaging,” Appl. Opt. 47(35), 6656–6665 (2008).
[Crossref] [PubMed]

2006 (2)

Q. Fang, P. M. Meaney, and K. D. Paulsen, “Singular value analysis of the Jacobian matrix in microwave image reconstruction,” IEEE Trans. Antenn. Propag. 54(8), 2371–2380 (2006).
[Crossref]

S. Withington, G. Saklatvala, and M. P. Hobson, “Partially coherent analysis of imaging and interferometric phased arrays: noise, correlations, and fluctuations,” J. Opt. Soc. Am. A 23(6), 1340–1348 (2006).
[Crossref] [PubMed]

2004 (1)

A. W. Doerry and F. M. Dickey, “Synthetic aperture radar,” Opt. Photonics News 15(11), 28–33 (2004).
[Crossref]

2001 (1)

D. M. Sheen, D. L. McMakin, and T. E. Hall, “Three-dimensional millimeter-wave imaging for concealed weapon detection,” IEEE Trans. Microw. Theory Tech. 49(9), 1581–1592 (2001).
[Crossref]

2000 (1)

A. J. Fenn, D. H. Temme, W. P. Delaney, and W. E. Courtney, “The development of phased array radar technology,” Linc. Lab. J. 12(2), 321–340 (2000).

1990 (1)

R. T. Hoctor and S. A. Kassam, “The unifying role of the coarray in aperture synthesis for coherent and incoherent imaging,” Proc. IEEE 78(4), 735–752 (1990).
[Crossref]

Alvarez-Lopez, Y.

J. Laviada, A. Arboleya-Arboleya, Y. Alvarez-Lopez, C. Garcia-Gonzalez, and F. Las-Heras, “Phaseless synthetic aperture radar with efficient sampling for broadband near-field imaging: theory and validation,” IEEE Trans. Antenn. Propag. 63(2), 573–584 (2015).
[Crossref]

Amineh, R. K.

R. K. Amineh, J. McCombe, and N. K. Nikolova, “Microwave holographic imaging using the antenna phaseless radiation pattern,” IEEE Antennas Wirel. Propag. Lett. 11, 1529–1532 (2012).
[Crossref]

Arboleya-Arboleya, A.

J. Laviada, A. Arboleya-Arboleya, Y. Alvarez-Lopez, C. Garcia-Gonzalez, and F. Las-Heras, “Phaseless synthetic aperture radar with efficient sampling for broadband near-field imaging: theory and validation,” IEEE Trans. Antenn. Propag. 63(2), 573–584 (2015).
[Crossref]

Baraniuk, R. G.

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
[Crossref]

Blackwell, W.

J. A. Martinez-Lorenzo, J. H. Juesas, and W. Blackwell, “A single-transceiver compressive reflector antenna for high-sensing-capacity imaging,” IEEE Antennas Wirel. Propag. Lett. 15, 968–971 (2015).
[Crossref]

Bowman, R.

Brady, D.

G. Lipworth, A. Mrozack, J. Hunt, D. L. Marks, T. Driscoll, D. Brady, and D. R. Smith, “Metamaterial apertures for coherent computational imaging on the physical layer,” J. Opt. Soc. Am. A 30(8), 1603–1612 (2013).
[Crossref] [PubMed]

J. Hunt, T. Driscoll, A. Mrozack, G. Lipworth, M. Reynolds, D. Brady, and D. R. Smith, “Metamaterial apertures for computational imaging,” Science 339(6117), 310–313 (2013).
[Crossref] [PubMed]

Brady, D. J.

Carsenat, D.

T. Fromenteze, O. Yurduseven, M. F. Imani, J. Gollub, C. Decroze, D. Carsenat, and D. R. Smith, “Computational imaging using a mode-mixing cavity at microwave frequencies,” Appl. Phys. Lett. 106(19), 194104 (2015).
[Crossref]

Case, J. T.

M. Fallahpour, J. T. Case, M. T. Ghasr, and R. Zoughi, “Piecewise and Wiener filter-based SAR techniques for monostatic microwave imaging of layered structures,” IEEE Trans. Antenn. Propag. 62(1), 282–294 (2014).
[Crossref]

Cetinkaya, H.

S. Demirci, H. Cetinkaya, E. Yigit, C. Ozdemir, and A. A. Vertiy, “A study on millimeter-wave imaging of concealed objects: application using back-projection algorithm,” Prog. Electromagnetics Res. 128, 457–477 (2012).
[Crossref]

Charvat, G. L.

G. L. Charvat, L. C. Kempel, E. J. Rothwell, and C. M. Coleman, “An ultrawideband (UWB) switched-antenna-array radar imaging system,” IEEE International Symposium on Phased Array Systems and Technology, 543–550, (2010).
[Crossref]

T. S. Ralston, G. L. Charvat, and J. E. Peabody, “Real-time Through-wall imaging using an ultrawideband multiple-input multiple-output (MIMO) phased array radar system,” IEEE International Symposium on Phased Array Systems and Technology, 551–558 (2010).
[Crossref]

Choi, K.

Coleman, C. M.

G. L. Charvat, L. C. Kempel, E. J. Rothwell, and C. M. Coleman, “An ultrawideband (UWB) switched-antenna-array radar imaging system,” IEEE International Symposium on Phased Array Systems and Technology, 543–550, (2010).
[Crossref]

Cossairt, O. S.

Courtney, W. E.

A. J. Fenn, D. H. Temme, W. P. Delaney, and W. E. Courtney, “The development of phased array radar technology,” Linc. Lab. J. 12(2), 321–340 (2000).

Davenport, M. A.

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
[Crossref]

Decroze, C.

T. Fromenteze, O. Yurduseven, M. F. Imani, J. Gollub, C. Decroze, D. Carsenat, and D. R. Smith, “Computational imaging using a mode-mixing cavity at microwave frequencies,” Appl. Phys. Lett. 106(19), 194104 (2015).
[Crossref]

Delaney, W. P.

A. J. Fenn, D. H. Temme, W. P. Delaney, and W. E. Courtney, “The development of phased array radar technology,” Linc. Lab. J. 12(2), 321–340 (2000).

Demirci, S.

S. Demirci, H. Cetinkaya, E. Yigit, C. Ozdemir, and A. A. Vertiy, “A study on millimeter-wave imaging of concealed objects: application using back-projection algorithm,” Prog. Electromagnetics Res. 128, 457–477 (2012).
[Crossref]

Dickey, F. M.

A. W. Doerry and F. M. Dickey, “Synthetic aperture radar,” Opt. Photonics News 15(11), 28–33 (2004).
[Crossref]

Doerry, A. W.

A. W. Doerry and F. M. Dickey, “Synthetic aperture radar,” Opt. Photonics News 15(11), 28–33 (2004).
[Crossref]

Driscoll, T.

Duarte, M. F.

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
[Crossref]

Edgar, M. P.

Elsdon, M.

M. Elsdon, O. Yurduseven, and D. Smith, “Early stage breast cancer detection using indirect microwave holography,” Prog. Electromagnetics Res. 143, 405–419 (2013).
[Crossref]

Fallahpour, M.

M. Fallahpour, J. T. Case, M. T. Ghasr, and R. Zoughi, “Piecewise and Wiener filter-based SAR techniques for monostatic microwave imaging of layered structures,” IEEE Trans. Antenn. Propag. 62(1), 282–294 (2014).
[Crossref]

Fang, Q.

Q. Fang, P. M. Meaney, and K. D. Paulsen, “Singular value analysis of the Jacobian matrix in microwave image reconstruction,” IEEE Trans. Antenn. Propag. 54(8), 2371–2380 (2006).
[Crossref]

Fathy, A. E.

Y. Wang and A. E. Fathy, “Advanced system level simulation platform for three-dimensional UWB through-wall imaging SAR using time-domain approach,” IEEE Trans. Geosci. Rem. Sens. 50(5), 1986–2000 (2012).
[Crossref]

Fenn, A. J.

A. J. Fenn, D. H. Temme, W. P. Delaney, and W. E. Courtney, “The development of phased array radar technology,” Linc. Lab. J. 12(2), 321–340 (2000).

Fromenteze, T.

T. Fromenteze, O. Yurduseven, M. F. Imani, J. Gollub, C. Decroze, D. Carsenat, and D. R. Smith, “Computational imaging using a mode-mixing cavity at microwave frequencies,” Appl. Phys. Lett. 106(19), 194104 (2015).
[Crossref]

Garcia-Gonzalez, C.

J. Laviada, A. Arboleya-Arboleya, Y. Alvarez-Lopez, C. Garcia-Gonzalez, and F. Las-Heras, “Phaseless synthetic aperture radar with efficient sampling for broadband near-field imaging: theory and validation,” IEEE Trans. Antenn. Propag. 63(2), 573–584 (2015).
[Crossref]

Ghasr, M. T.

M. Fallahpour, J. T. Case, M. T. Ghasr, and R. Zoughi, “Piecewise and Wiener filter-based SAR techniques for monostatic microwave imaging of layered structures,” IEEE Trans. Antenn. Propag. 62(1), 282–294 (2014).
[Crossref]

Gollub, J.

T. Fromenteze, O. Yurduseven, M. F. Imani, J. Gollub, C. Decroze, D. Carsenat, and D. R. Smith, “Computational imaging using a mode-mixing cavity at microwave frequencies,” Appl. Phys. Lett. 106(19), 194104 (2015).
[Crossref]

O. Yurduseven, M. F. Imani, H. Odabasi, J. Gollub, G. Lipworth, A. Rose, and D. R. Smith, “Resolution of the frequency diverse metamaterial aperture imager,” Prog. Electromagnetics Res. 150, 97–107 (2015).
[Crossref]

G. Lipworth, A. Rose, O. Yurduseven, V. R. Gowda, M. F. Imani, H. Odabasi, P. Trofatter, J. Gollub, and D. R. Smith, “Comprehensive simulation platform for a metamaterial imaging system,” Appl. Opt. 54(31), 9343–9353 (2015).
[Crossref] [PubMed]

J. Hunt, J. Gollub, T. Driscoll, G. Lipworth, A. Mrozack, M. S. Reynolds, D. J. Brady, and D. R. Smith, “Metamaterial microwave holographic imaging system,” J. Opt. Soc. Am. A 31(10), 2109–2119 (2014).
[Crossref] [PubMed]

Gowda, V. R.

Goyal, V. K.

D. Shin, A. Kirmani, V. K. Goyal, and J. H. Shapiro, “Photon-efficient computational 3-D and reflectivity imaging with single-photon detectors,” IEEE Trans. Comput. Imag. 1(2), 112–125 (2015).
[Crossref]

Gurbuz, O. D.

B. H. Ku, P. Schmalenberg, O. Inac, O. D. Gurbuz, J. S. Lee, K. Shiozaki, and G. M. Rebeiz, “A 77–81-GHz 16-element phased-array receiver with ±50° beam scanning for advanced automotive radars,” IEEE Trans. Microw. Theory Tech. 62(11), 2823–2832 (2014).
[Crossref]

Hajnsek, I.

A. Moreira, P. Prats-Iraola, M. Younis, G. Krieger, I. Hajnsek, and K. P. Papathanassiou, “A tutorial on synthetic aperture radar,” IEEE Geosci. Rem. Sens. Mag. 1(1), 6–43 (2013).
[Crossref]

Hall, T. E.

D. M. Sheen, D. L. McMakin, and T. E. Hall, “Three-dimensional millimeter-wave imaging for concealed weapon detection,” IEEE Trans. Microw. Theory Tech. 49(9), 1581–1592 (2001).
[Crossref]

Hobson, M. P.

Hoctor, R. T.

R. T. Hoctor and S. A. Kassam, “The unifying role of the coarray in aperture synthesis for coherent and incoherent imaging,” Proc. IEEE 78(4), 735–752 (1990).
[Crossref]

Horisaki, R.

Hunt, J.

Imani, M. F.

O. Yurduseven, M. F. Imani, H. Odabasi, J. Gollub, G. Lipworth, A. Rose, and D. R. Smith, “Resolution of the frequency diverse metamaterial aperture imager,” Prog. Electromagnetics Res. 150, 97–107 (2015).
[Crossref]

T. Fromenteze, O. Yurduseven, M. F. Imani, J. Gollub, C. Decroze, D. Carsenat, and D. R. Smith, “Computational imaging using a mode-mixing cavity at microwave frequencies,” Appl. Phys. Lett. 106(19), 194104 (2015).
[Crossref]

G. Lipworth, A. Rose, O. Yurduseven, V. R. Gowda, M. F. Imani, H. Odabasi, P. Trofatter, J. Gollub, and D. R. Smith, “Comprehensive simulation platform for a metamaterial imaging system,” Appl. Opt. 54(31), 9343–9353 (2015).
[Crossref] [PubMed]

Inac, O.

B. H. Ku, P. Schmalenberg, O. Inac, O. D. Gurbuz, J. S. Lee, K. Shiozaki, and G. M. Rebeiz, “A 77–81-GHz 16-element phased-array receiver with ±50° beam scanning for advanced automotive radars,” IEEE Trans. Microw. Theory Tech. 62(11), 2823–2832 (2014).
[Crossref]

Jonathan, P.

Juesas, J. H.

J. A. Martinez-Lorenzo, J. H. Juesas, and W. Blackwell, “A single-transceiver compressive reflector antenna for high-sensing-capacity imaging,” IEEE Antennas Wirel. Propag. Lett. 15, 968–971 (2015).
[Crossref]

Kassam, S. A.

R. T. Hoctor and S. A. Kassam, “The unifying role of the coarray in aperture synthesis for coherent and incoherent imaging,” Proc. IEEE 78(4), 735–752 (1990).
[Crossref]

Kelly, K. F.

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
[Crossref]

Kempel, L. C.

G. L. Charvat, L. C. Kempel, E. J. Rothwell, and C. M. Coleman, “An ultrawideband (UWB) switched-antenna-array radar imaging system,” IEEE International Symposium on Phased Array Systems and Technology, 543–550, (2010).
[Crossref]

Kim, E. S.

Kirmani, A.

D. Shin, A. Kirmani, V. K. Goyal, and J. H. Shapiro, “Photon-efficient computational 3-D and reflectivity imaging with single-photon detectors,” IEEE Trans. Comput. Imag. 1(2), 112–125 (2015).
[Crossref]

Krieger, G.

A. Moreira, P. Prats-Iraola, M. Younis, G. Krieger, I. Hajnsek, and K. P. Papathanassiou, “A tutorial on synthetic aperture radar,” IEEE Geosci. Rem. Sens. Mag. 1(1), 6–43 (2013).
[Crossref]

Ku, B. H.

B. H. Ku, P. Schmalenberg, O. Inac, O. D. Gurbuz, J. S. Lee, K. Shiozaki, and G. M. Rebeiz, “A 77–81-GHz 16-element phased-array receiver with ±50° beam scanning for advanced automotive radars,” IEEE Trans. Microw. Theory Tech. 62(11), 2823–2832 (2014).
[Crossref]

Las-Heras, F.

J. Laviada, A. Arboleya-Arboleya, Y. Alvarez-Lopez, C. Garcia-Gonzalez, and F. Las-Heras, “Phaseless synthetic aperture radar with efficient sampling for broadband near-field imaging: theory and validation,” IEEE Trans. Antenn. Propag. 63(2), 573–584 (2015).
[Crossref]

Laska, J. N.

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
[Crossref]

Laviada, J.

J. Laviada, A. Arboleya-Arboleya, Y. Alvarez-Lopez, C. Garcia-Gonzalez, and F. Las-Heras, “Phaseless synthetic aperture radar with efficient sampling for broadband near-field imaging: theory and validation,” IEEE Trans. Antenn. Propag. 63(2), 573–584 (2015).
[Crossref]

Lee, B. G.

Lee, J. J.

Lee, J. S.

B. H. Ku, P. Schmalenberg, O. Inac, O. D. Gurbuz, J. S. Lee, K. Shiozaki, and G. M. Rebeiz, “A 77–81-GHz 16-element phased-array receiver with ±50° beam scanning for advanced automotive radars,” IEEE Trans. Microw. Theory Tech. 62(11), 2823–2832 (2014).
[Crossref]

Lim, S.

Lipworth, G.

Livingstone, B.

D. Smith, O. Yurduseven, B. Livingstone, and V. Schejbal, “Microwave imaging using indirect holographic techniques,” IEEE Antennas Propag. Mag. 56(1), 104–117 (2014).
[Crossref]

Marks, D. L.

Martinez-Lorenzo, J. A.

J. A. Martinez-Lorenzo, J. H. Juesas, and W. Blackwell, “A single-transceiver compressive reflector antenna for high-sensing-capacity imaging,” IEEE Antennas Wirel. Propag. Lett. 15, 968–971 (2015).
[Crossref]

J. A. Martinez-Lorenzo, F. Quivira, and C. M. Rappaport, “SAR imaging of suicide bombers wearing concealed explosive threats,” Prog. Electromagnetics Res. 125, 255–272 (2012).
[Crossref]

McCombe, J.

R. K. Amineh, J. McCombe, and N. K. Nikolova, “Microwave holographic imaging using the antenna phaseless radiation pattern,” IEEE Antennas Wirel. Propag. Lett. 11, 1529–1532 (2012).
[Crossref]

McMakin, D. L.

D. M. Sheen, D. L. McMakin, and T. E. Hall, “Three-dimensional millimeter-wave imaging for concealed weapon detection,” IEEE Trans. Microw. Theory Tech. 49(9), 1581–1592 (2001).
[Crossref]

Meaney, P. M.

Q. Fang, P. M. Meaney, and K. D. Paulsen, “Singular value analysis of the Jacobian matrix in microwave image reconstruction,” IEEE Trans. Antenn. Propag. 54(8), 2371–2380 (2006).
[Crossref]

Miau, D.

Moreira, A.

A. Moreira, P. Prats-Iraola, M. Younis, G. Krieger, I. Hajnsek, and K. P. Papathanassiou, “A tutorial on synthetic aperture radar,” IEEE Geosci. Rem. Sens. Mag. 1(1), 6–43 (2013).
[Crossref]

Mrozack, A.

Nauwelaers, B.

Nayar, S. K.

Nikolova, N. K.

R. K. Amineh, J. McCombe, and N. K. Nikolova, “Microwave holographic imaging using the antenna phaseless radiation pattern,” IEEE Antennas Wirel. Propag. Lett. 11, 1529–1532 (2012).
[Crossref]

N. K. Nikolova, “Microwave imaging for breast cancer,” IEEE Microw. Mag. 12(7), 78–94 (2011).
[Crossref]

Ocket, I.

Odabasi, H.

O. Yurduseven, M. F. Imani, H. Odabasi, J. Gollub, G. Lipworth, A. Rose, and D. R. Smith, “Resolution of the frequency diverse metamaterial aperture imager,” Prog. Electromagnetics Res. 150, 97–107 (2015).
[Crossref]

G. Lipworth, A. Rose, O. Yurduseven, V. R. Gowda, M. F. Imani, H. Odabasi, P. Trofatter, J. Gollub, and D. R. Smith, “Comprehensive simulation platform for a metamaterial imaging system,” Appl. Opt. 54(31), 9343–9353 (2015).
[Crossref] [PubMed]

Ozdemir, C.

S. Demirci, H. Cetinkaya, E. Yigit, C. Ozdemir, and A. A. Vertiy, “A study on millimeter-wave imaging of concealed objects: application using back-projection algorithm,” Prog. Electromagnetics Res. 128, 457–477 (2012).
[Crossref]

Padgett, M. J.

Padilla, W. J.

Papathanassiou, K. P.

A. Moreira, P. Prats-Iraola, M. Younis, G. Krieger, I. Hajnsek, and K. P. Papathanassiou, “A tutorial on synthetic aperture radar,” IEEE Geosci. Rem. Sens. Mag. 1(1), 6–43 (2013).
[Crossref]

Paulsen, K. D.

Q. Fang, P. M. Meaney, and K. D. Paulsen, “Singular value analysis of the Jacobian matrix in microwave image reconstruction,” IEEE Trans. Antenn. Propag. 54(8), 2371–2380 (2006).
[Crossref]

Peabody, J. E.

T. S. Ralston, G. L. Charvat, and J. E. Peabody, “Real-time Through-wall imaging using an ultrawideband multiple-input multiple-output (MIMO) phased array radar system,” IEEE International Symposium on Phased Array Systems and Technology, 551–558 (2010).
[Crossref]

Prats-Iraola, P.

A. Moreira, P. Prats-Iraola, M. Younis, G. Krieger, I. Hajnsek, and K. P. Papathanassiou, “A tutorial on synthetic aperture radar,” IEEE Geosci. Rem. Sens. Mag. 1(1), 6–43 (2013).
[Crossref]

Qi, F.

Quivira, F.

J. A. Martinez-Lorenzo, F. Quivira, and C. M. Rappaport, “SAR imaging of suicide bombers wearing concealed explosive threats,” Prog. Electromagnetics Res. 125, 255–272 (2012).
[Crossref]

Ralston, T. S.

T. S. Ralston, G. L. Charvat, and J. E. Peabody, “Real-time Through-wall imaging using an ultrawideband multiple-input multiple-output (MIMO) phased array radar system,” IEEE International Symposium on Phased Array Systems and Technology, 551–558 (2010).
[Crossref]

Rappaport, C. M.

J. A. Martinez-Lorenzo, F. Quivira, and C. M. Rappaport, “SAR imaging of suicide bombers wearing concealed explosive threats,” Prog. Electromagnetics Res. 125, 255–272 (2012).
[Crossref]

Rebeiz, G. M.

B. H. Ku, P. Schmalenberg, O. Inac, O. D. Gurbuz, J. S. Lee, K. Shiozaki, and G. M. Rebeiz, “A 77–81-GHz 16-element phased-array receiver with ±50° beam scanning for advanced automotive radars,” IEEE Trans. Microw. Theory Tech. 62(11), 2823–2832 (2014).
[Crossref]

Reynolds, M.

J. Hunt, T. Driscoll, A. Mrozack, G. Lipworth, M. Reynolds, D. Brady, and D. R. Smith, “Metamaterial apertures for computational imaging,” Science 339(6117), 310–313 (2013).
[Crossref] [PubMed]

Reynolds, M. S.

Rose, A.

O. Yurduseven, M. F. Imani, H. Odabasi, J. Gollub, G. Lipworth, A. Rose, and D. R. Smith, “Resolution of the frequency diverse metamaterial aperture imager,” Prog. Electromagnetics Res. 150, 97–107 (2015).
[Crossref]

G. Lipworth, A. Rose, O. Yurduseven, V. R. Gowda, M. F. Imani, H. Odabasi, P. Trofatter, J. Gollub, and D. R. Smith, “Comprehensive simulation platform for a metamaterial imaging system,” Appl. Opt. 54(31), 9343–9353 (2015).
[Crossref] [PubMed]

Rothwell, E. J.

G. L. Charvat, L. C. Kempel, E. J. Rothwell, and C. M. Coleman, “An ultrawideband (UWB) switched-antenna-array radar imaging system,” IEEE International Symposium on Phased Array Systems and Technology, 543–550, (2010).
[Crossref]

Saklatvala, G.

Schejbal, V.

D. Smith, O. Yurduseven, B. Livingstone, and V. Schejbal, “Microwave imaging using indirect holographic techniques,” IEEE Antennas Propag. Mag. 56(1), 104–117 (2014).
[Crossref]

Schmalenberg, P.

B. H. Ku, P. Schmalenberg, O. Inac, O. D. Gurbuz, J. S. Lee, K. Shiozaki, and G. M. Rebeiz, “A 77–81-GHz 16-element phased-array receiver with ±50° beam scanning for advanced automotive radars,” IEEE Trans. Microw. Theory Tech. 62(11), 2823–2832 (2014).
[Crossref]

Schreurs, D.

Shapiro, J. H.

D. Shin, A. Kirmani, V. K. Goyal, and J. H. Shapiro, “Photon-efficient computational 3-D and reflectivity imaging with single-photon detectors,” IEEE Trans. Comput. Imag. 1(2), 112–125 (2015).
[Crossref]

Sheen, D. M.

D. M. Sheen, D. L. McMakin, and T. E. Hall, “Three-dimensional millimeter-wave imaging for concealed weapon detection,” IEEE Trans. Microw. Theory Tech. 49(9), 1581–1592 (2001).
[Crossref]

Shin, D.

D. Shin, A. Kirmani, V. K. Goyal, and J. H. Shapiro, “Photon-efficient computational 3-D and reflectivity imaging with single-photon detectors,” IEEE Trans. Comput. Imag. 1(2), 112–125 (2015).
[Crossref]

Shin, D. H.

Shiozaki, K.

B. H. Ku, P. Schmalenberg, O. Inac, O. D. Gurbuz, J. S. Lee, K. Shiozaki, and G. M. Rebeiz, “A 77–81-GHz 16-element phased-array receiver with ±50° beam scanning for advanced automotive radars,” IEEE Trans. Microw. Theory Tech. 62(11), 2823–2832 (2014).
[Crossref]

Shrekenhamer, D.

Smith, D.

D. Smith, O. Yurduseven, B. Livingstone, and V. Schejbal, “Microwave imaging using indirect holographic techniques,” IEEE Antennas Propag. Mag. 56(1), 104–117 (2014).
[Crossref]

M. Elsdon, O. Yurduseven, and D. Smith, “Early stage breast cancer detection using indirect microwave holography,” Prog. Electromagnetics Res. 143, 405–419 (2013).
[Crossref]

Smith, D. R.

T. Fromenteze, O. Yurduseven, M. F. Imani, J. Gollub, C. Decroze, D. Carsenat, and D. R. Smith, “Computational imaging using a mode-mixing cavity at microwave frequencies,” Appl. Phys. Lett. 106(19), 194104 (2015).
[Crossref]

O. Yurduseven, M. F. Imani, H. Odabasi, J. Gollub, G. Lipworth, A. Rose, and D. R. Smith, “Resolution of the frequency diverse metamaterial aperture imager,” Prog. Electromagnetics Res. 150, 97–107 (2015).
[Crossref]

G. Lipworth, A. Rose, O. Yurduseven, V. R. Gowda, M. F. Imani, H. Odabasi, P. Trofatter, J. Gollub, and D. R. Smith, “Comprehensive simulation platform for a metamaterial imaging system,” Appl. Opt. 54(31), 9343–9353 (2015).
[Crossref] [PubMed]

J. Hunt, J. Gollub, T. Driscoll, G. Lipworth, A. Mrozack, M. S. Reynolds, D. J. Brady, and D. R. Smith, “Metamaterial microwave holographic imaging system,” J. Opt. Soc. Am. A 31(10), 2109–2119 (2014).
[Crossref] [PubMed]

J. Hunt, T. Driscoll, A. Mrozack, G. Lipworth, M. Reynolds, D. Brady, and D. R. Smith, “Metamaterial apertures for computational imaging,” Science 339(6117), 310–313 (2013).
[Crossref] [PubMed]

G. Lipworth, A. Mrozack, J. Hunt, D. L. Marks, T. Driscoll, D. Brady, and D. R. Smith, “Metamaterial apertures for coherent computational imaging on the physical layer,” J. Opt. Soc. Am. A 30(8), 1603–1612 (2013).
[Crossref] [PubMed]

Sun, B.

Sun, T.

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
[Crossref]

Takhar, D.

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
[Crossref]

Tan, C. W.

Temme, D. H.

A. J. Fenn, D. H. Temme, W. P. Delaney, and W. E. Courtney, “The development of phased array radar technology,” Linc. Lab. J. 12(2), 321–340 (2000).

Trofatter, P.

Vertiy, A. A.

S. Demirci, H. Cetinkaya, E. Yigit, C. Ozdemir, and A. A. Vertiy, “A study on millimeter-wave imaging of concealed objects: application using back-projection algorithm,” Prog. Electromagnetics Res. 128, 457–477 (2012).
[Crossref]

Wang, Y.

Y. Wang and A. E. Fathy, “Advanced system level simulation platform for three-dimensional UWB through-wall imaging SAR using time-domain approach,” IEEE Trans. Geosci. Rem. Sens. 50(5), 1986–2000 (2012).
[Crossref]

Watts, C. M.

Welsh, S. S.

Withington, S.

Yigit, E.

S. Demirci, H. Cetinkaya, E. Yigit, C. Ozdemir, and A. A. Vertiy, “A study on millimeter-wave imaging of concealed objects: application using back-projection algorithm,” Prog. Electromagnetics Res. 128, 457–477 (2012).
[Crossref]

Younis, M.

A. Moreira, P. Prats-Iraola, M. Younis, G. Krieger, I. Hajnsek, and K. P. Papathanassiou, “A tutorial on synthetic aperture radar,” IEEE Geosci. Rem. Sens. Mag. 1(1), 6–43 (2013).
[Crossref]

Yurduseven, O.

T. Fromenteze, O. Yurduseven, M. F. Imani, J. Gollub, C. Decroze, D. Carsenat, and D. R. Smith, “Computational imaging using a mode-mixing cavity at microwave frequencies,” Appl. Phys. Lett. 106(19), 194104 (2015).
[Crossref]

O. Yurduseven, M. F. Imani, H. Odabasi, J. Gollub, G. Lipworth, A. Rose, and D. R. Smith, “Resolution of the frequency diverse metamaterial aperture imager,” Prog. Electromagnetics Res. 150, 97–107 (2015).
[Crossref]

G. Lipworth, A. Rose, O. Yurduseven, V. R. Gowda, M. F. Imani, H. Odabasi, P. Trofatter, J. Gollub, and D. R. Smith, “Comprehensive simulation platform for a metamaterial imaging system,” Appl. Opt. 54(31), 9343–9353 (2015).
[Crossref] [PubMed]

D. Smith, O. Yurduseven, B. Livingstone, and V. Schejbal, “Microwave imaging using indirect holographic techniques,” IEEE Antennas Propag. Mag. 56(1), 104–117 (2014).
[Crossref]

O. Yurduseven, “Indirect microwave holographic imaging of concealed ordnance for airport security imaging systems,” Prog. Electromagnetics Res. 146, 7–13 (2014).
[Crossref]

M. Elsdon, O. Yurduseven, and D. Smith, “Early stage breast cancer detection using indirect microwave holography,” Prog. Electromagnetics Res. 143, 405–419 (2013).
[Crossref]

Zoughi, R.

M. Fallahpour, J. T. Case, M. T. Ghasr, and R. Zoughi, “Piecewise and Wiener filter-based SAR techniques for monostatic microwave imaging of layered structures,” IEEE Trans. Antenn. Propag. 62(1), 282–294 (2014).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

T. Fromenteze, O. Yurduseven, M. F. Imani, J. Gollub, C. Decroze, D. Carsenat, and D. R. Smith, “Computational imaging using a mode-mixing cavity at microwave frequencies,” Appl. Phys. Lett. 106(19), 194104 (2015).
[Crossref]

IEEE Antennas Propag. Mag. (1)

D. Smith, O. Yurduseven, B. Livingstone, and V. Schejbal, “Microwave imaging using indirect holographic techniques,” IEEE Antennas Propag. Mag. 56(1), 104–117 (2014).
[Crossref]

IEEE Antennas Wirel. Propag. Lett. (2)

R. K. Amineh, J. McCombe, and N. K. Nikolova, “Microwave holographic imaging using the antenna phaseless radiation pattern,” IEEE Antennas Wirel. Propag. Lett. 11, 1529–1532 (2012).
[Crossref]

J. A. Martinez-Lorenzo, J. H. Juesas, and W. Blackwell, “A single-transceiver compressive reflector antenna for high-sensing-capacity imaging,” IEEE Antennas Wirel. Propag. Lett. 15, 968–971 (2015).
[Crossref]

IEEE Geosci. Rem. Sens. Mag. (1)

A. Moreira, P. Prats-Iraola, M. Younis, G. Krieger, I. Hajnsek, and K. P. Papathanassiou, “A tutorial on synthetic aperture radar,” IEEE Geosci. Rem. Sens. Mag. 1(1), 6–43 (2013).
[Crossref]

IEEE Microw. Mag. (1)

N. K. Nikolova, “Microwave imaging for breast cancer,” IEEE Microw. Mag. 12(7), 78–94 (2011).
[Crossref]

IEEE Signal Process. Mag. (1)

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
[Crossref]

IEEE Trans. Antenn. Propag. (3)

M. Fallahpour, J. T. Case, M. T. Ghasr, and R. Zoughi, “Piecewise and Wiener filter-based SAR techniques for monostatic microwave imaging of layered structures,” IEEE Trans. Antenn. Propag. 62(1), 282–294 (2014).
[Crossref]

J. Laviada, A. Arboleya-Arboleya, Y. Alvarez-Lopez, C. Garcia-Gonzalez, and F. Las-Heras, “Phaseless synthetic aperture radar with efficient sampling for broadband near-field imaging: theory and validation,” IEEE Trans. Antenn. Propag. 63(2), 573–584 (2015).
[Crossref]

Q. Fang, P. M. Meaney, and K. D. Paulsen, “Singular value analysis of the Jacobian matrix in microwave image reconstruction,” IEEE Trans. Antenn. Propag. 54(8), 2371–2380 (2006).
[Crossref]

IEEE Trans. Comput. Imag. (1)

D. Shin, A. Kirmani, V. K. Goyal, and J. H. Shapiro, “Photon-efficient computational 3-D and reflectivity imaging with single-photon detectors,” IEEE Trans. Comput. Imag. 1(2), 112–125 (2015).
[Crossref]

IEEE Trans. Geosci. Rem. Sens. (1)

Y. Wang and A. E. Fathy, “Advanced system level simulation platform for three-dimensional UWB through-wall imaging SAR using time-domain approach,” IEEE Trans. Geosci. Rem. Sens. 50(5), 1986–2000 (2012).
[Crossref]

IEEE Trans. Microw. Theory Tech. (2)

D. M. Sheen, D. L. McMakin, and T. E. Hall, “Three-dimensional millimeter-wave imaging for concealed weapon detection,” IEEE Trans. Microw. Theory Tech. 49(9), 1581–1592 (2001).
[Crossref]

B. H. Ku, P. Schmalenberg, O. Inac, O. D. Gurbuz, J. S. Lee, K. Shiozaki, and G. M. Rebeiz, “A 77–81-GHz 16-element phased-array receiver with ±50° beam scanning for advanced automotive radars,” IEEE Trans. Microw. Theory Tech. 62(11), 2823–2832 (2014).
[Crossref]

J. Opt. Soc. Am. A (4)

Linc. Lab. J. (1)

A. J. Fenn, D. H. Temme, W. P. Delaney, and W. E. Courtney, “The development of phased array radar technology,” Linc. Lab. J. 12(2), 321–340 (2000).

Opt. Express (4)

Opt. Photonics News (1)

A. W. Doerry and F. M. Dickey, “Synthetic aperture radar,” Opt. Photonics News 15(11), 28–33 (2004).
[Crossref]

Proc. IEEE (1)

R. T. Hoctor and S. A. Kassam, “The unifying role of the coarray in aperture synthesis for coherent and incoherent imaging,” Proc. IEEE 78(4), 735–752 (1990).
[Crossref]

Prog. Electromagnetics Res. (5)

O. Yurduseven, M. F. Imani, H. Odabasi, J. Gollub, G. Lipworth, A. Rose, and D. R. Smith, “Resolution of the frequency diverse metamaterial aperture imager,” Prog. Electromagnetics Res. 150, 97–107 (2015).
[Crossref]

O. Yurduseven, “Indirect microwave holographic imaging of concealed ordnance for airport security imaging systems,” Prog. Electromagnetics Res. 146, 7–13 (2014).
[Crossref]

J. A. Martinez-Lorenzo, F. Quivira, and C. M. Rappaport, “SAR imaging of suicide bombers wearing concealed explosive threats,” Prog. Electromagnetics Res. 125, 255–272 (2012).
[Crossref]

M. Elsdon, O. Yurduseven, and D. Smith, “Early stage breast cancer detection using indirect microwave holography,” Prog. Electromagnetics Res. 143, 405–419 (2013).
[Crossref]

S. Demirci, H. Cetinkaya, E. Yigit, C. Ozdemir, and A. A. Vertiy, “A study on millimeter-wave imaging of concealed objects: application using back-projection algorithm,” Prog. Electromagnetics Res. 128, 457–477 (2012).
[Crossref]

Science (1)

J. Hunt, T. Driscoll, A. Mrozack, G. Lipworth, M. Reynolds, D. Brady, and D. R. Smith, “Metamaterial apertures for computational imaging,” Science 339(6117), 310–313 (2013).
[Crossref] [PubMed]

Other (8)

S. S. Ahmed, Electronic Microwave Imaging with Planar Multistatic Arrays (Logos Verlag Berlin GmbH, 2014).

W. M. Siebert, Circuits, Signals, and Systems (Massachusetts Institute of Technology, 1985).

O. Yurduseven, V. R. Gowda, J. Gollub, and D. R. Smith, “Printed Aperiodic Cavity for Computational Microwave Imaging,” IEEE Microw. Wirel. Comp. Lett. (in production) (2016).

D. L. Marks, J. Gollub, and D. R. Smith, “Spatially resolving antenna arrays using frequency diversity,” J. Opt. Soc. Am. A (in production) (2016).

M. Pastorino, Microwave Imaging (Wiley, 2010).

G. L. Charvat, L. C. Kempel, E. J. Rothwell, and C. M. Coleman, “An ultrawideband (UWB) switched-antenna-array radar imaging system,” IEEE International Symposium on Phased Array Systems and Technology, 543–550, (2010).
[Crossref]

D. J. Brady, Optical Imaging and Spectroscopy (Wiley, 2009).

T. S. Ralston, G. L. Charvat, and J. E. Peabody, “Real-time Through-wall imaging using an ultrawideband multiple-input multiple-output (MIMO) phased array radar system,” IEEE International Symposium on Phased Array Systems and Technology, 551–558 (2010).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1 Spatial and k-space analysis of two apertures - k 0 | r |>>1 (a) apertures with discrete transmit and receiving points, and their convolution in the spatial domain (b) projections of the discrete points onto k-spheres in the Fourier domain (c) convolution in the Fourier domain and projection onto a 2D plane. Rx and Tx denote receiving and transmitting, respectively.
Fig. 2
Fig. 2 Some iris configurations analyzed for the optimization of the effective aperture and k-space sampling (a) periodic (b) aperiodic (c) diagonal (d) rectangular (e) circular (f) Mills-Cross.
Fig. 3
Fig. 3 Optimized radiating iris patterns for the receiving and transmitting apertures (a) receiving pattern (b) transmitting pattern (c) coverage pattern in the spatial domain (effective aperture).
Fig. 4
Fig. 4 Fabricated Mills-Cross cavity apertures (a) receiving aperture (b) transmitting aperture (c) schematic of the Mills-Cross antennas (inside the via fence region). Receiving irises are for the receiving aperture while the transmitting irises are for the transmitting aperture.
Fig. 5
Fig. 5 Time-domain impulse response of the Mills-Cross cavity apertures.
Fig. 6
Fig. 6 S11 and radiation efficiency patterns of the Mills-Cross cavity apertures as a function of frequency.
Fig. 7
Fig. 7 Back-propagated patterns and effective aperture distributions for the transmitting and receiving Mills-Cross apertures (a) 17.5 GHz (b) 22 GHz (c) 26.5 GHz (d) superposed over the K-band (101 frequency points).
Fig. 8
Fig. 8 Back-propagated patterns and effective aperture distributions for the non-optimized apertures with radiating irises distributed across the full-aperture. The patterns are superposed over the K-band (101 frequency points).
Fig. 9
Fig. 9 Imaging systems for SVD analysis (a) Fibonacci cavity apertures (b) Mills-Cross cavity apertures (L = 10 cm, S = 1 m and d = 1 m).
Fig. 10
Fig. 10 Comparison between the normalized SVD patterns of Fibonacci and Mills-Cross cavity apertures (log-linear plot).
Fig. 11
Fig. 11 Normalized amplitude patterns (dB) of the measurement matrix, | H | , at selected frequencies. Fibonacci cavity aperture (a) 17.5 GHz (b) 22 GHz (c) 26.5 GHz; Mills-Cross cavity aperture (d) 17.5 GHz (e) 22 GHz (f) 26.5 GHz.
Fig. 12
Fig. 12 Mills-Cross imaging system consisting of 12 apertures (6 receiving, Rx, and 6 transmitting, Tx) (a) experimental system set-up (b) imaging system layout (transmitting and receiving apertures are highlighted in dark and light blue colors, respectively).
Fig. 13
Fig. 13 Depiction of the Mills-Cross imaging system for 3D imaging (not drawn to scale). Resolution target is shown as the imaged object inside the 3D reconstruction volume as an example. Position (y, z) and rotation (minus sign denotes counter-clockwise rotation) of the Mills-Cross apertures in units of meter and degree; Rx1 = (0.13, −0.33, 6°), Rx2 = (−0.14, −0.35, −2°), Rx3 = (0.15, −0.04, 0°), Rx4 = (−0.13, −0.14, 0°), Rx5 = (0.13, 0.14, 9°), Rx6 = (−0.14, 0.19, 3°), Tx1 = (0.22, −0.18, 2°), Tx2 = (0.03, −0.18, 0°), Tx3 = (−0.26, −0.22, 0°), Tx4 = (0.28, 0.04, 0°), Tx5 = (0,0, 0.6°), Tx6 = (−0.2, 0.03, −4°).
Fig. 14
Fig. 14 Reconstructed image of a 1.5 cm resolution target together with a picture of the actual target.
Fig. 15
Fig. 15 Reconstructed image of an L-shaped phantom together with a picture of the actual target.
Fig. 16
Fig. 16 Reconstructed image of word “DUKE” target together with a picture of the actual target.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

g Mx1 = H MxN f Nx1
f recon = H g
A eff = i=y' y' j=z' z' E A T x (i,j) E A R x (yi,zj)
Q= N Tx N Rx f 0 B
Q= 2πf 2α
η(f)= z=1 M y=1 N | S 21 (y,z;f) | 2 1 | S 11 (f) | 2 2 | f:17.5GHz26.5GHz
η(f)= z=1 M y=1 N | S 21 (y,z;f) | 2 | f:17.5GHz26.5GHz
δ r = c 2B
δ cr = λ 0 d L eff

Metrics