Abstract

A laser Doppler velocimetry (LDV) sensor using the edge-filter enhanced self-mixing interferometry (ESMI) is presented based on speed measurements of single microparticles. The ESMI detection utilizes an acetylene edge-filter that maps the frequency modulation of a semiconductor laser into an intensity modulation as the laser wavelength is tuned to the steep edge of the absorption profile. In this work, the ESMI signal was analyzed for aerosol particles of different sizes from 1 μm to 10 μm at a distance of 2.5 m. At this operation range, the signal from single particles of all sizes was successfully acquired enabling particle velocity measurements through the Doppler shifted frequency along the beam axis. For the particular case of 10 μm particles, single aerosol particles were still detected at an unprecedented range of 10 m. A theoretical treatment describing the relation between Mie scattering theory and the self-mixing phenomenon on single-particle detection is presented supporting the experimental results. The results show that the edge-filter enhanced self-mixing technique opens new possibilities for self-mixing detection where longer ranges, lower backscattering laser powers and higher velocities are involved. For example, it can be used as a robust and inexpensive anemometer for LDV applications for airflows with low-number density of microparticles.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Edge filter enhanced self-mixing interferometry

Victor Contreras, Jan Lonnqvist, and Juha Toivonen
Opt. Lett. 40(12) 2814-2817 (2015)

Self-mixing laser Doppler flow sensor: an optofluidic implementation

Milan Nikolić, Elaine Hicks, Yah Leng Lim, Karl Bertling, and Aleksandar D. Rakić
Appl. Opt. 52(33) 8128-8133 (2013)

All-fiber multifunction continuous-wave coherent laser radar at 1.55 µm for range, speed, vibration, and wind measurements

Christer J. Karlsson, Fredrik Å. A. Olsson, Dietmar Letalick, and Michael Harris
Appl. Opt. 39(21) 3716-3726 (2000)

References

  • View by:
  • |
  • |
  • |

  1. G. Giuliani, M. Norgia, S. Donati, and T. Bosch, “Laser diode self-mixing technique for sensing applications,” J. Opt. A, Pure Appl. Opt. 4(6), 283–294 (2002).
    [Crossref]
  2. S. Donati, “Developing self-mixing interferometry for instrumentation and measurements,” Laser Photonics Rev. 6(3), 393–417 (2012).
    [Crossref]
  3. R. W. Tkach and A. R. Chraplyvy, “Regimes of feedback effects in 1.5-um distributed feedback lasers,” J. Lightwave Technol. 4(11), 1655–1661 (1986).
    [Crossref]
  4. S. Donati and R.-H. Horng, “The diagram of feedback regimes revisited,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500309 (2013).
    [Crossref]
  5. S. Donati and M. Norgia, “Self-mixing interferometry for biomedical signals sensing,” IEEE J. Sel. Top. Quantum Electron. 20(2), 6900108 (2014).
    [Crossref]
  6. C. Zakian, M. Dickinson, and T. King, “Particle sizing and flow measurement using self-mixing interferometry with a laser diode,” J. Opt. A, Pure Appl. Opt. 7(6), 445–452 (2005).
    [Crossref]
  7. G. Osche, Optical Detection Theory for Laser Applications (John Wiley and Sons Inc., 2002).
  8. S. Sudo, Y. Miyasaka, K. Nemoto, K. Kamikariya, and K. Otsuka, “Detection of small particles in fluid flow using a self-mixing laser,” Opt. Express 15(13), 8135–8145 (2007).
    [Crossref] [PubMed]
  9. H. Wang and J. Shen, “Fast and economic signal processing technique of laser diode self-mixing interferometry for particle size measurement,” Appl. Phys. B 115(2), 285–291 (2014).
    [Crossref]
  10. V. Contreras, J. Lonnqvist, and J. Toivonen, “Edge filter enhanced self-mixing interferometry,” Opt. Lett. 40(12), 2814–2817 (2015).
    [Crossref] [PubMed]
  11. J. R. Bottiger, P. J. Deluca, E. W. Stuebing, and D. R. Vanreenen, “An ink jet aerosol generator,” J. Aerosol Sci. 29, 995–996 (1998).
    [Crossref]
  12. S. Donati, “Responsivity and noise of self-mixing photodetection schemes,” IEEE J. Quantum Electron. 47(11), 1428–1433 (2011).
    [Crossref]
  13. M. Harris, G. N. Pearson, K. D. Ridley, C. J. Karlsson, F. A. Olsson, and D. Letalick, “Single-particle laser Doppler anemometry at 1.55 μm,” Appl. Opt. 40(6), 969–973 (2001).
    [Crossref] [PubMed]
  14. J. F. Holmes and B. J. Rask, “Optimum optical local-oscillator power levels for coherent detection with photodiodes,” Appl. Opt. 34(6), 927–933 (1995).
    [Crossref] [PubMed]
  15. C. Matzler, “MATLAB functions for Mie scattering and absorption,” Institute of Applied Physics, University of Bern (research report, 2002).
  16. P. J. Rodrigo and C. Pedersen, “Field performance of an all-semiconductor laser coherent Doppler lidar,” Opt. Lett. 37(12), 2277–2279 (2012).
    [Crossref] [PubMed]

2015 (1)

2014 (2)

S. Donati and M. Norgia, “Self-mixing interferometry for biomedical signals sensing,” IEEE J. Sel. Top. Quantum Electron. 20(2), 6900108 (2014).
[Crossref]

H. Wang and J. Shen, “Fast and economic signal processing technique of laser diode self-mixing interferometry for particle size measurement,” Appl. Phys. B 115(2), 285–291 (2014).
[Crossref]

2013 (1)

S. Donati and R.-H. Horng, “The diagram of feedback regimes revisited,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500309 (2013).
[Crossref]

2012 (2)

S. Donati, “Developing self-mixing interferometry for instrumentation and measurements,” Laser Photonics Rev. 6(3), 393–417 (2012).
[Crossref]

P. J. Rodrigo and C. Pedersen, “Field performance of an all-semiconductor laser coherent Doppler lidar,” Opt. Lett. 37(12), 2277–2279 (2012).
[Crossref] [PubMed]

2011 (1)

S. Donati, “Responsivity and noise of self-mixing photodetection schemes,” IEEE J. Quantum Electron. 47(11), 1428–1433 (2011).
[Crossref]

2007 (1)

2005 (1)

C. Zakian, M. Dickinson, and T. King, “Particle sizing and flow measurement using self-mixing interferometry with a laser diode,” J. Opt. A, Pure Appl. Opt. 7(6), 445–452 (2005).
[Crossref]

2002 (1)

G. Giuliani, M. Norgia, S. Donati, and T. Bosch, “Laser diode self-mixing technique for sensing applications,” J. Opt. A, Pure Appl. Opt. 4(6), 283–294 (2002).
[Crossref]

2001 (1)

1998 (1)

J. R. Bottiger, P. J. Deluca, E. W. Stuebing, and D. R. Vanreenen, “An ink jet aerosol generator,” J. Aerosol Sci. 29, 995–996 (1998).
[Crossref]

1995 (1)

1986 (1)

R. W. Tkach and A. R. Chraplyvy, “Regimes of feedback effects in 1.5-um distributed feedback lasers,” J. Lightwave Technol. 4(11), 1655–1661 (1986).
[Crossref]

Bosch, T.

G. Giuliani, M. Norgia, S. Donati, and T. Bosch, “Laser diode self-mixing technique for sensing applications,” J. Opt. A, Pure Appl. Opt. 4(6), 283–294 (2002).
[Crossref]

Bottiger, J. R.

J. R. Bottiger, P. J. Deluca, E. W. Stuebing, and D. R. Vanreenen, “An ink jet aerosol generator,” J. Aerosol Sci. 29, 995–996 (1998).
[Crossref]

Chraplyvy, A. R.

R. W. Tkach and A. R. Chraplyvy, “Regimes of feedback effects in 1.5-um distributed feedback lasers,” J. Lightwave Technol. 4(11), 1655–1661 (1986).
[Crossref]

Contreras, V.

Deluca, P. J.

J. R. Bottiger, P. J. Deluca, E. W. Stuebing, and D. R. Vanreenen, “An ink jet aerosol generator,” J. Aerosol Sci. 29, 995–996 (1998).
[Crossref]

Dickinson, M.

C. Zakian, M. Dickinson, and T. King, “Particle sizing and flow measurement using self-mixing interferometry with a laser diode,” J. Opt. A, Pure Appl. Opt. 7(6), 445–452 (2005).
[Crossref]

Donati, S.

S. Donati and M. Norgia, “Self-mixing interferometry for biomedical signals sensing,” IEEE J. Sel. Top. Quantum Electron. 20(2), 6900108 (2014).
[Crossref]

S. Donati and R.-H. Horng, “The diagram of feedback regimes revisited,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500309 (2013).
[Crossref]

S. Donati, “Developing self-mixing interferometry for instrumentation and measurements,” Laser Photonics Rev. 6(3), 393–417 (2012).
[Crossref]

S. Donati, “Responsivity and noise of self-mixing photodetection schemes,” IEEE J. Quantum Electron. 47(11), 1428–1433 (2011).
[Crossref]

G. Giuliani, M. Norgia, S. Donati, and T. Bosch, “Laser diode self-mixing technique for sensing applications,” J. Opt. A, Pure Appl. Opt. 4(6), 283–294 (2002).
[Crossref]

Giuliani, G.

G. Giuliani, M. Norgia, S. Donati, and T. Bosch, “Laser diode self-mixing technique for sensing applications,” J. Opt. A, Pure Appl. Opt. 4(6), 283–294 (2002).
[Crossref]

Harris, M.

Holmes, J. F.

Horng, R.-H.

S. Donati and R.-H. Horng, “The diagram of feedback regimes revisited,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500309 (2013).
[Crossref]

Kamikariya, K.

Karlsson, C. J.

King, T.

C. Zakian, M. Dickinson, and T. King, “Particle sizing and flow measurement using self-mixing interferometry with a laser diode,” J. Opt. A, Pure Appl. Opt. 7(6), 445–452 (2005).
[Crossref]

Letalick, D.

Lonnqvist, J.

Miyasaka, Y.

Nemoto, K.

Norgia, M.

S. Donati and M. Norgia, “Self-mixing interferometry for biomedical signals sensing,” IEEE J. Sel. Top. Quantum Electron. 20(2), 6900108 (2014).
[Crossref]

G. Giuliani, M. Norgia, S. Donati, and T. Bosch, “Laser diode self-mixing technique for sensing applications,” J. Opt. A, Pure Appl. Opt. 4(6), 283–294 (2002).
[Crossref]

Olsson, F. A.

Otsuka, K.

Pearson, G. N.

Pedersen, C.

Rask, B. J.

Ridley, K. D.

Rodrigo, P. J.

Shen, J.

H. Wang and J. Shen, “Fast and economic signal processing technique of laser diode self-mixing interferometry for particle size measurement,” Appl. Phys. B 115(2), 285–291 (2014).
[Crossref]

Stuebing, E. W.

J. R. Bottiger, P. J. Deluca, E. W. Stuebing, and D. R. Vanreenen, “An ink jet aerosol generator,” J. Aerosol Sci. 29, 995–996 (1998).
[Crossref]

Sudo, S.

Tkach, R. W.

R. W. Tkach and A. R. Chraplyvy, “Regimes of feedback effects in 1.5-um distributed feedback lasers,” J. Lightwave Technol. 4(11), 1655–1661 (1986).
[Crossref]

Toivonen, J.

Vanreenen, D. R.

J. R. Bottiger, P. J. Deluca, E. W. Stuebing, and D. R. Vanreenen, “An ink jet aerosol generator,” J. Aerosol Sci. 29, 995–996 (1998).
[Crossref]

Wang, H.

H. Wang and J. Shen, “Fast and economic signal processing technique of laser diode self-mixing interferometry for particle size measurement,” Appl. Phys. B 115(2), 285–291 (2014).
[Crossref]

Zakian, C.

C. Zakian, M. Dickinson, and T. King, “Particle sizing and flow measurement using self-mixing interferometry with a laser diode,” J. Opt. A, Pure Appl. Opt. 7(6), 445–452 (2005).
[Crossref]

Appl. Opt. (2)

Appl. Phys. B (1)

H. Wang and J. Shen, “Fast and economic signal processing technique of laser diode self-mixing interferometry for particle size measurement,” Appl. Phys. B 115(2), 285–291 (2014).
[Crossref]

IEEE J. Quantum Electron. (1)

S. Donati, “Responsivity and noise of self-mixing photodetection schemes,” IEEE J. Quantum Electron. 47(11), 1428–1433 (2011).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

S. Donati and R.-H. Horng, “The diagram of feedback regimes revisited,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500309 (2013).
[Crossref]

S. Donati and M. Norgia, “Self-mixing interferometry for biomedical signals sensing,” IEEE J. Sel. Top. Quantum Electron. 20(2), 6900108 (2014).
[Crossref]

J. Aerosol Sci. (1)

J. R. Bottiger, P. J. Deluca, E. W. Stuebing, and D. R. Vanreenen, “An ink jet aerosol generator,” J. Aerosol Sci. 29, 995–996 (1998).
[Crossref]

J. Lightwave Technol. (1)

R. W. Tkach and A. R. Chraplyvy, “Regimes of feedback effects in 1.5-um distributed feedback lasers,” J. Lightwave Technol. 4(11), 1655–1661 (1986).
[Crossref]

J. Opt. A, Pure Appl. Opt. (2)

G. Giuliani, M. Norgia, S. Donati, and T. Bosch, “Laser diode self-mixing technique for sensing applications,” J. Opt. A, Pure Appl. Opt. 4(6), 283–294 (2002).
[Crossref]

C. Zakian, M. Dickinson, and T. King, “Particle sizing and flow measurement using self-mixing interferometry with a laser diode,” J. Opt. A, Pure Appl. Opt. 7(6), 445–452 (2005).
[Crossref]

Laser Photonics Rev. (1)

S. Donati, “Developing self-mixing interferometry for instrumentation and measurements,” Laser Photonics Rev. 6(3), 393–417 (2012).
[Crossref]

Opt. Express (1)

Opt. Lett. (2)

Other (2)

C. Matzler, “MATLAB functions for Mie scattering and absorption,” Institute of Applied Physics, University of Bern (research report, 2002).

G. Osche, Optical Detection Theory for Laser Applications (John Wiley and Sons Inc., 2002).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup for edge filter enhanced self-mixing interferometry (ESMI) experiments. The power P0 of a DFB laser is focused using the telescope system with the lenses L1 and L2. The probe volume (2zr(w0/2)2) is located at a distance sL from the telescope. The term s0 represents the distance from the laser output to the focusing lens L2. The airflow is produced by a fan and the dried aerosols are injected into the pipe through the cylindrical oven. The backscattering signal is produced when aerosols cross the probe volume inside the pipe enabling velocity measurements in the line of sight (vLOS). The beam splitter BS is used to direct a fraction of laser power Ps for signal detection. The laser power Ps is coupled by an aspheric lens L3 into a fiber-ended acetylene (C2H2) cell connected to a photodiode DET. The photocurrent from DET is amplified and digitized for further signal analysis.

Fig. 2
Fig. 2

(a) ESMI signal for different particle sizes measured at 2.5 m distance. The horizontal line represents the noise level threshold used for particle detection. Error bars are calculated from the standard deviation of individual signals for each particle size. (b) ESMI signal of a 10 μm particle in the frequency domain. This Figure shows 35 consecutive blocks, corresponding to a temporal evolution of 6 ms. The signal is produced from the backscattering light of a moving latex aerosol of 10 μm diameter measured at 2.5 m far from the telescope (sL). The ESMI signal appears at a frequency of 1.7 MHz with a small harmonic signal at 3.4 MHz.

Fig. 3
Fig. 3

Calculated scattering and backscattering cross-sections and experimentally derived cross-sections plotted for spherical aerosol particles. The calculated cross-sections are estimated using the Mie theory for polystyrene spheres with a refractive index n = 1.57 + 0.007i at 1532 nm.

Fig. 4
Fig. 4

ESMI signal from 10 μm latex spheres detected at different distance sL between the laser and the focusing lens of the telescope system. The signal follows an inverse quadratic relationship with the target distance as predicted by the theory.

Tables (1)

Tables Icon

Table 1 Calculated waists and probe lengths for the laser focused at different ranges, sL. Clear single particle events are observed at all measured distances when 10 μm particles are present in the air flow.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

i DET =ρ η c E 2 =ρ η c { E 0 2 +2 E 0 E bs + E bs 2 },
i DET =ρ η c ( R 2 / R 1 ) 1/2 T 1 [ P 0 +2 ( T 1 2 / R 1 ) 1/2 ( 2γL+ln R 1 R 2 ) 1 A 1/2 P 0 cos( 2ks ) ],
i DET =ρ η c κ 1 [ P 0 + κ 2 A 1/2 P 0 cos( 2ks ) ].
i DET =ρ η c κ 1 [ P 0 + κ 2 ( P 0 P bs ) 1/2 cos( 2ks ) ].
P bs = π 2 P 0 N σ sca λ= π 2 P 0 N Q sca π a 2 λ,
P= P 0 exp( L N C2H2 m ν 0 )exp[ L N C2H2 mΔνcos( 2ks ) ],
P= P 0 exp( L N C2H2 m ν 0 )[ 1L N C2H2 mΔνcos( 2ks )+... ].
i DC =ρ η c κ 1 C DC P 0 ,
i AC =ρ η c κ 1 κ 2 C DC F esmi ( P 0 P bs ) 1/2 cos( 2ks ),

Metrics