Abstract

This paper examines the opportunities existing for engineering dispersion in non-silica whispering gallery mode microbubble resonators, for applications such as optical frequency comb generation. More specifically, the zero dispersion wavelength is analyzed as a function of microbubble diameter and wall thickness for several different material groups such as highly-nonlinear soft glasses, polymers and crystalline materials. The zero dispersion wavelength is shown to be highly-tunable by changing the thickness of the shell. Using certain materials it is shown that dispersion equalization can be realized at interesting wavelengths such as deep within the visible or mid-infrared, opening up new possibilities for optical frequency comb generation. This study represents the first extensive analysis of the prospects of using non-silica microbubbles for nonlinear optics.

© 2016 Optical Society of America

PDF Article
OSA Recommended Articles
Dispersion in silica microbubble resonators

Nicolas Riesen, Wen Qi Zhang, and Tanya M. Monro
Opt. Lett. 41(6) 1257-1260 (2016)

Material candidates for optical frequency comb generation in microspheres

Nicolas Riesen, Shahraam Afshar V., Alexandre François, and Tanya M. Monro
Opt. Express 23(11) 14784-14795 (2015)

Determining the geometric parameters of microbubble resonators from their spectra

Jonathan M. M. Hall, Alexandre François, Shahraam Afshar V., Nicolas Riesen, Matthew R. Henderson, Tess Reynolds, and Tanya M. Monro
J. Opt. Soc. Am. B 34(1) 44-51 (2017)

References

  • View by:
  • |
  • |
  • |

  1. A. Matsko, A. Savchenkov, D. Strekalov, V. Ilchenko, and L. Maleki, “Review of applications of whispering-gallery mode resonators in photonics and nonlinear optics,” IPN Progress Report 42–162 (2005).
  2. F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
    [Crossref] [PubMed]
  3. F. Vollmer, S. Arnold, and D. Keng, “Single virus detection from the reactive shift of a whispering-gallery mode,” Proc. Natl. Acad. Sci. U.S.A. 105(52), 20701–20704 (2008).
    [Crossref] [PubMed]
  4. A. Chiasera, Y. Dumeige, P. Féron, M. Ferrari, Y. Jestin, G. Nunzi Conti, S. Pelli, S. Soria, and G. C. Righini, “Spherical whispering‐gallery‐mode microresonators,” Laser Photonics Rev. 4(3), 457–482 (2010).
    [Crossref]
  5. A. François, N. Riesen, H. Ji, S. Afshar V, and T. M. Monro, “Polymer based whispering gallery mode laser for biosensing applications,” Appl. Phys. Lett. 106(3), 031104 (2015).
    [Crossref]
  6. S. Berneschi, D. Farnesi, F. Cosi, G. N. Conti, S. Pelli, G. C. Righini, and S. Soria, “High Q silica microbubble resonators fabricated by arc discharge,” Opt. Lett. 36(17), 3521–3523 (2011).
    [Crossref] [PubMed]
  7. M. Sumetsky, Y. Dulashko, and R. S. Windeler, “Super free spectral range tunable optical microbubble resonator,” Opt. Lett. 35(11), 1866–1868 (2010).
    [Crossref] [PubMed]
  8. P. Wang, J. M. Ward, Y. Yang, X. Feng, G. Brambilla, G. Farrell, and S. N. Chormaic, “Lead-silicate glass optical microbubble resonator,” Appl. Phys. Lett. 106(6), 061101 (2015).
    [Crossref]
  9. J. M. Ward, N. Dhasmana, and S. N. Chormaic, “Hollow core, whispering gallery resonator sensors,” Eur. Phys. J. Spec. Top. 223(10), 1917–1935 (2014).
    [Crossref]
  10. J. M. Ward, Y. Yang, and S. N. Chormaic, “Highly sensitive temperature measurements with liquid-core microbubble resonators,” IEEE Photonics Technol. Lett. 25(23), 2350–2353 (2013).
    [Crossref]
  11. A. Watkins, J. Ward, Y. Wu, and S. N. Chormaic, “Single-input spherical microbubble resonator,” Opt. Lett. 36(11), 2113–2115 (2011).
    [Crossref] [PubMed]
  12. Y. Yang, S. Saurabh, J. Ward, and S. N. Chormaic, “Coupled-mode-induced transparency in aerostatically tuned microbubble whispering-gallery resonators,” Opt. Lett. 40(8), 1834–1837 (2015).
    [Crossref] [PubMed]
  13. Y. Yang, J. Ward, and S. N. Chormaic, “Quasi-droplet microbubbles for high resolution sensing applications,” Opt. Express 22(6), 6881–6898 (2014).
    [Crossref] [PubMed]
  14. Z. Yu, T. Liu, J. Jiang, K. Liu, W. Chen, X. Zhang, X. Lin, and W. Liu, “High Q silica microbubble resonators fabricated by heating a pressurized glass capillary,” Proc. SPIE 9274, 92740L (2014).
    [Crossref]
  15. W. Lee, Y. Sun, H. Li, K. Reddy, M. Sumetsky, and X. Fan, “A quasi-droplet optofluidic ring resonator laser using a micro-bubble,” Appl. Phys. Lett. 99(9), 091102 (2011).
    [Crossref]
  16. R. Henze, T. Seifert, J. Ward, and O. Benson, “Tuning whispering gallery modes using internal aerostatic pressure,” Opt. Lett. 36(23), 4536–4538 (2011).
    [Crossref] [PubMed]
  17. M. Li, X. Wu, L. Liu, and L. Xu, “Kerr parametric oscillations and frequency comb generation from dispersion compensated silica micro-bubble resonators,” Opt. Express 21(14), 16908–16913 (2013).
    [Crossref] [PubMed]
  18. Y. Yang, J. M. Ward, and S. N. Chormaic, “Optimization of whispering gallery modes in microbubble resonators for sensing applications,” Proc. SPIE 8960, 89600I (2014).
    [Crossref]
  19. Y. Yang, S. Saurabh, J. M. Ward, and S. Nic Chormaic, “High-Q, ultrathin-walled microbubble resonator for aerostatic pressure sensing,” Opt. Express 24(1), 294–299 (2016).
    [Crossref] [PubMed]
  20. D. Farnesi, A. Barucci, G. C. Righini, G. N. Conti, and S. Soria, “Generation of hyper-parametric oscillations in silica microbubbles,” Opt. Lett. 40(19), 4508–4511 (2015).
    [Crossref] [PubMed]
  21. T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
    [Crossref] [PubMed]
  22. C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hänsch, N. Picqué, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 µm based on crystalline microresonators,” Nat. Commun. 4, 1345 (2013).
    [Crossref] [PubMed]
  23. J. Ye and S. T. Cundiff, Femtosecond Optical Frequency Combs: Principle, Operation, and Applications (Springer, 2005).
  24. I. H. Agha, Y. Okawachi, M. A. Foster, J. E. Sharping, and A. L. Gaeta, “Four-wave-mixing parametric oscillations in dispersion-compensated high-Q silica microspheres,” Phys. Rev. A 76(4), 043837 (2007).
    [Crossref]
  25. P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
    [Crossref] [PubMed]
  26. Y. Yang, Y. Ooka, R. M. Thompson, J. M. Ward, and S. N. Chormaic, “Degenerate four-wave mixing in a silica hollow bottle-like microresonator,” Opt. Lett. 41(3), 575–578 (2016).
    [Crossref] [PubMed]
  27. N. Riesen, S. Afshar V, A. François, and T. M. Monro, “Material candidates for optical frequency comb generation in microspheres,” Opt. Express 23(11), 14784–14795 (2015).
    [Crossref] [PubMed]
  28. D. Ristić, M. Mazzola, A. Chiappini, A. Rasoloniaina, P. Féron, R. Ramponi, G. C. Righini, G. Cibiel, M. Ivanda, and M. Ferrari, “Tailoring of the free spectral range and geometrical cavity dispersion of a microsphere by a coating layer,” Opt. Lett. 39(17), 5173–5176 (2014).
    [Crossref] [PubMed]
  29. I. Teraoka and S. Arnold, “Whispering-gallery modes in a microsphere coated with a high-refractive index layer: polarization-dependent sensitivity enhancement of the resonance-shift sensor and TE-TM resonance matching,” J. Opt. Soc. Am. B 24(3), 653–659 (2007).
    [Crossref]
  30. I. Teraoka and S. Arnold, “Enhancing the sensitivity of a whispering-gallery mode microsphere sensor by a high-refractive-index surface layer,” J. Opt. Soc. Am. B 23(7), 1434–1441 (2006).
    [Crossref]
  31. N. Lin, L. Jiang, S. Wang, Q. Chen, H. Xiao, Y. Lu, and H. Tsai, “Simulation and optimization of polymer-coated microsphere resonators in chemical vapor sensing,” Appl. Opt. 50(28), 5465–5472 (2011).
    [Crossref] [PubMed]
  32. G. Lin and Y. K. Chembo, “On the dispersion management of fluorite whispering-gallery mode resonators for Kerr optical frequency comb generation in the telecom and mid-infrared range,” Opt. Express 23(2), 1594–1604 (2015).
    [Crossref] [PubMed]
  33. T. J. Kippenberg, “Nonlinear optics in ultra-high-Q whispering-gallery optical microcavities,” California Institute of Technology, PhD Thesis (2004).
  34. D. H. Broaddus, M. A. Foster, I. H. Agha, J. T. Robinson, M. Lipson, and A. L. Gaeta, “Silicon-waveguide-coupled high-Q chalcogenide microspheres,” Opt. Express 17(8), 5998–6003 (2009).
    [Crossref] [PubMed]
  35. Y. K. Chembo and N. Yu, “Modal expansion approach to optical-frequency-comb generation with monolithic whispering-gallery-mode resonators,” Phys. Rev. A 82(3), 033801 (2010).
    [Crossref]
  36. N. Riesen, T. Reynolds, A. François, M. R. Henderson, and T. M. Monro, “Q-factor limits for far-field detection of whispering gallery modes in active microspheres,” Opt. Express 23(22), 28896–28904 (2015).
    [Crossref] [PubMed]
  37. R. Talebi, K. Abbasian, and A. Rostami, “Analytical modeling of quality factor for shell type microsphere resonators,” Prog. Electromag. Res. B 30, 293–311 (2011).
    [Crossref]
  38. M. L. Gorodetsky, A. A. Savchenkov, and V. S. Ilchenko, “Ultimate Q of optical microsphere resonators,” Opt. Lett. 21(7), 453–455 (1996).
    [Crossref] [PubMed]
  39. M. Oxborrow, “Traceable 2-D finite-element simulation of the whispering-gallery modes of axisymmetric electromagnetic resonators,” IEEE Trans. Microw. Theory Tech. 55(6), 1209–1218 (2007).
    [Crossref]
  40. N. Riesen, W. Q. Zhang, and T. M. Monro, “Dispersion in silica microbubble resonators,” Opt. Lett. 41(6), 1257–1260 (2016).
    [Crossref] [PubMed]
  41. T. M. Monro and H. Ebendorff-Heidepriem, “Progress in microstructured optical fibers,” Annu. Rev. Mater. Res. 36(1), 467–495 (2006).
    [Crossref]
  42. H. T. Munasinghe, A. Winterstein-Beckmann, C. Schiele, D. Manzani, L. Wondraczek, S. Afshar V, T. M. Monro, and H. Ebendorff-Heidepriem, “Lead-germanate glasses and fibers: a practical alternative to tellurite for nonlinear fiber applications,” Opt. Mater. Express 3(9), 1488–1503 (2013).
    [Crossref]
  43. M. R. Oermann, “Microstructured tellurite glass fibre laser development,” University of Adelaide, PhD Thesis (2011), Chap. 2.
  44. H. T. Munasinghe, A. Winterstein-Beckmann, C. Schiele, L. Wondraczek, and D. Manzani, S. Afshar V. T. M. Monro, and H. Ebendorff-Heidepriem, “Fabrication and properties of lead-germanate glasses for high nonlinearity fibre applications,” in European Conference on Optical Communication (Optical Society of America, 2013), paper Tu.3.A.5.
  45. Schott (Optical Glass Data Sheets, 2012). http://refractiveindex.info/download/data/2012/schott_optical_glass_collection_datasheets_dec_2012_us.pdf
  46. D. Ristić, A. Rasoloniaina, A. Chiappini, P. Féron, S. Pelli, G. N. Conti, M. Ivanda, G. C. Righini, G. Cibiel, and M. Ferrari, “About the role of phase matching between a coated microsphere and a tapered fiber: experimental study,” Opt. Express 21(18), 20954–20963 (2013).
    [Crossref] [PubMed]
  47. Material Absorption Data, (ISP Optics, 2014), www.ispoptics.com
  48. E. D. Palik, Handbook of optical constants of solids (Academic, 1998), Vol. 5.
  49. M. J. Dodge, “Refractive properties of magnesium fluoride,” Appl. Opt. 23(12), 1980–1985 (1984).
    [Crossref] [PubMed]
  50. M. Bass, C. DeCusatis, J. Enoch, V. Lakshminarayanan, G. Li, C. MacDonald, V. Mahajan, and E. Van Stryland, Handbook of Optics, Third Edition Volume IV: Optical Properties of Materials, Nonlinear Optics, Quantum Optics (McGraw-Hill, 2009).
  51. I. S. Grudinin, N. Yu, and L. Maleki, “Generation of optical frequency combs with a CaF2 resonator,” Opt. Lett. 34(7), 878–880 (2009).
    [Crossref] [PubMed]
  52. S. N. Kasarova, N. G. Sultanova, C. D. Ivanov, and I. D. Nikolov, “Analysis of the dispersion of optical plastic materials,” Opt. Mater. 29(11), 1481–1490 (2007).
    [Crossref]
  53. T. Kaino, K. Jinguji, and S. Nara, “Low loss poly (methylmethacrylate‐d8) core optical fibers,” Appl. Phys. Lett. 42(7), 567–569 (1983).
    [Crossref]
  54. Thorlabs (Polycarbonate, Acrylic, Cyclic-Olefin, PMMA Transmission Data, 2014), www.thorlabs.com
  55. M. Kyrish, U. Utzinger, M. R. Descour, B. K. Baggett, and T. S. Tkaczyk, “Ultra-slim plastic endomicroscope objective for non-linear microscopy,” Opt. Express 19(8), 7603–7615 (2011).
    [Crossref] [PubMed]
  56. D. J. Segelstein, “The complex refractive index of water,” University of Missouri, M.S. Thesis (1981).
  57. A. Armani, D. Armani, B. Min, K. Vahala, and S. Spillane, “Ultra-high-Q microcavity operation in H2O and D2O,” Appl. Phys. Lett. 87(15), 151118 (2005).
    [Crossref]

2016 (3)

2015 (7)

2014 (5)

J. M. Ward, N. Dhasmana, and S. N. Chormaic, “Hollow core, whispering gallery resonator sensors,” Eur. Phys. J. Spec. Top. 223(10), 1917–1935 (2014).
[Crossref]

Z. Yu, T. Liu, J. Jiang, K. Liu, W. Chen, X. Zhang, X. Lin, and W. Liu, “High Q silica microbubble resonators fabricated by heating a pressurized glass capillary,” Proc. SPIE 9274, 92740L (2014).
[Crossref]

Y. Yang, J. M. Ward, and S. N. Chormaic, “Optimization of whispering gallery modes in microbubble resonators for sensing applications,” Proc. SPIE 8960, 89600I (2014).
[Crossref]

Y. Yang, J. Ward, and S. N. Chormaic, “Quasi-droplet microbubbles for high resolution sensing applications,” Opt. Express 22(6), 6881–6898 (2014).
[Crossref] [PubMed]

D. Ristić, M. Mazzola, A. Chiappini, A. Rasoloniaina, P. Féron, R. Ramponi, G. C. Righini, G. Cibiel, M. Ivanda, and M. Ferrari, “Tailoring of the free spectral range and geometrical cavity dispersion of a microsphere by a coating layer,” Opt. Lett. 39(17), 5173–5176 (2014).
[Crossref] [PubMed]

2013 (5)

2011 (8)

M. Kyrish, U. Utzinger, M. R. Descour, B. K. Baggett, and T. S. Tkaczyk, “Ultra-slim plastic endomicroscope objective for non-linear microscopy,” Opt. Express 19(8), 7603–7615 (2011).
[Crossref] [PubMed]

A. Watkins, J. Ward, Y. Wu, and S. N. Chormaic, “Single-input spherical microbubble resonator,” Opt. Lett. 36(11), 2113–2115 (2011).
[Crossref] [PubMed]

S. Berneschi, D. Farnesi, F. Cosi, G. N. Conti, S. Pelli, G. C. Righini, and S. Soria, “High Q silica microbubble resonators fabricated by arc discharge,” Opt. Lett. 36(17), 3521–3523 (2011).
[Crossref] [PubMed]

N. Lin, L. Jiang, S. Wang, Q. Chen, H. Xiao, Y. Lu, and H. Tsai, “Simulation and optimization of polymer-coated microsphere resonators in chemical vapor sensing,” Appl. Opt. 50(28), 5465–5472 (2011).
[Crossref] [PubMed]

R. Henze, T. Seifert, J. Ward, and O. Benson, “Tuning whispering gallery modes using internal aerostatic pressure,” Opt. Lett. 36(23), 4536–4538 (2011).
[Crossref] [PubMed]

W. Lee, Y. Sun, H. Li, K. Reddy, M. Sumetsky, and X. Fan, “A quasi-droplet optofluidic ring resonator laser using a micro-bubble,” Appl. Phys. Lett. 99(9), 091102 (2011).
[Crossref]

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
[Crossref] [PubMed]

R. Talebi, K. Abbasian, and A. Rostami, “Analytical modeling of quality factor for shell type microsphere resonators,” Prog. Electromag. Res. B 30, 293–311 (2011).
[Crossref]

2010 (3)

A. Chiasera, Y. Dumeige, P. Féron, M. Ferrari, Y. Jestin, G. Nunzi Conti, S. Pelli, S. Soria, and G. C. Righini, “Spherical whispering‐gallery‐mode microresonators,” Laser Photonics Rev. 4(3), 457–482 (2010).
[Crossref]

Y. K. Chembo and N. Yu, “Modal expansion approach to optical-frequency-comb generation with monolithic whispering-gallery-mode resonators,” Phys. Rev. A 82(3), 033801 (2010).
[Crossref]

M. Sumetsky, Y. Dulashko, and R. S. Windeler, “Super free spectral range tunable optical microbubble resonator,” Opt. Lett. 35(11), 1866–1868 (2010).
[Crossref] [PubMed]

2009 (2)

2008 (2)

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
[Crossref] [PubMed]

F. Vollmer, S. Arnold, and D. Keng, “Single virus detection from the reactive shift of a whispering-gallery mode,” Proc. Natl. Acad. Sci. U.S.A. 105(52), 20701–20704 (2008).
[Crossref] [PubMed]

2007 (5)

M. Oxborrow, “Traceable 2-D finite-element simulation of the whispering-gallery modes of axisymmetric electromagnetic resonators,” IEEE Trans. Microw. Theory Tech. 55(6), 1209–1218 (2007).
[Crossref]

I. H. Agha, Y. Okawachi, M. A. Foster, J. E. Sharping, and A. L. Gaeta, “Four-wave-mixing parametric oscillations in dispersion-compensated high-Q silica microspheres,” Phys. Rev. A 76(4), 043837 (2007).
[Crossref]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

S. N. Kasarova, N. G. Sultanova, C. D. Ivanov, and I. D. Nikolov, “Analysis of the dispersion of optical plastic materials,” Opt. Mater. 29(11), 1481–1490 (2007).
[Crossref]

I. Teraoka and S. Arnold, “Whispering-gallery modes in a microsphere coated with a high-refractive index layer: polarization-dependent sensitivity enhancement of the resonance-shift sensor and TE-TM resonance matching,” J. Opt. Soc. Am. B 24(3), 653–659 (2007).
[Crossref]

2006 (2)

2005 (1)

A. Armani, D. Armani, B. Min, K. Vahala, and S. Spillane, “Ultra-high-Q microcavity operation in H2O and D2O,” Appl. Phys. Lett. 87(15), 151118 (2005).
[Crossref]

1996 (1)

1984 (1)

1983 (1)

T. Kaino, K. Jinguji, and S. Nara, “Low loss poly (methylmethacrylate‐d8) core optical fibers,” Appl. Phys. Lett. 42(7), 567–569 (1983).
[Crossref]

Abbasian, K.

R. Talebi, K. Abbasian, and A. Rostami, “Analytical modeling of quality factor for shell type microsphere resonators,” Prog. Electromag. Res. B 30, 293–311 (2011).
[Crossref]

Afshar V, S.

Agha, I. H.

D. H. Broaddus, M. A. Foster, I. H. Agha, J. T. Robinson, M. Lipson, and A. L. Gaeta, “Silicon-waveguide-coupled high-Q chalcogenide microspheres,” Opt. Express 17(8), 5998–6003 (2009).
[Crossref] [PubMed]

I. H. Agha, Y. Okawachi, M. A. Foster, J. E. Sharping, and A. L. Gaeta, “Four-wave-mixing parametric oscillations in dispersion-compensated high-Q silica microspheres,” Phys. Rev. A 76(4), 043837 (2007).
[Crossref]

Arcizet, O.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

Armani, A.

A. Armani, D. Armani, B. Min, K. Vahala, and S. Spillane, “Ultra-high-Q microcavity operation in H2O and D2O,” Appl. Phys. Lett. 87(15), 151118 (2005).
[Crossref]

Armani, D.

A. Armani, D. Armani, B. Min, K. Vahala, and S. Spillane, “Ultra-high-Q microcavity operation in H2O and D2O,” Appl. Phys. Lett. 87(15), 151118 (2005).
[Crossref]

Arnold, S.

Baggett, B. K.

Barucci, A.

Benson, O.

Berneschi, S.

Brambilla, G.

P. Wang, J. M. Ward, Y. Yang, X. Feng, G. Brambilla, G. Farrell, and S. N. Chormaic, “Lead-silicate glass optical microbubble resonator,” Appl. Phys. Lett. 106(6), 061101 (2015).
[Crossref]

Broaddus, D. H.

Chembo, Y. K.

G. Lin and Y. K. Chembo, “On the dispersion management of fluorite whispering-gallery mode resonators for Kerr optical frequency comb generation in the telecom and mid-infrared range,” Opt. Express 23(2), 1594–1604 (2015).
[Crossref] [PubMed]

Y. K. Chembo and N. Yu, “Modal expansion approach to optical-frequency-comb generation with monolithic whispering-gallery-mode resonators,” Phys. Rev. A 82(3), 033801 (2010).
[Crossref]

Chen, Q.

Chen, W.

Z. Yu, T. Liu, J. Jiang, K. Liu, W. Chen, X. Zhang, X. Lin, and W. Liu, “High Q silica microbubble resonators fabricated by heating a pressurized glass capillary,” Proc. SPIE 9274, 92740L (2014).
[Crossref]

Chiappini, A.

Chiasera, A.

A. Chiasera, Y. Dumeige, P. Féron, M. Ferrari, Y. Jestin, G. Nunzi Conti, S. Pelli, S. Soria, and G. C. Righini, “Spherical whispering‐gallery‐mode microresonators,” Laser Photonics Rev. 4(3), 457–482 (2010).
[Crossref]

Chormaic, S. N.

Y. Yang, Y. Ooka, R. M. Thompson, J. M. Ward, and S. N. Chormaic, “Degenerate four-wave mixing in a silica hollow bottle-like microresonator,” Opt. Lett. 41(3), 575–578 (2016).
[Crossref] [PubMed]

Y. Yang, S. Saurabh, J. Ward, and S. N. Chormaic, “Coupled-mode-induced transparency in aerostatically tuned microbubble whispering-gallery resonators,” Opt. Lett. 40(8), 1834–1837 (2015).
[Crossref] [PubMed]

P. Wang, J. M. Ward, Y. Yang, X. Feng, G. Brambilla, G. Farrell, and S. N. Chormaic, “Lead-silicate glass optical microbubble resonator,” Appl. Phys. Lett. 106(6), 061101 (2015).
[Crossref]

Y. Yang, J. M. Ward, and S. N. Chormaic, “Optimization of whispering gallery modes in microbubble resonators for sensing applications,” Proc. SPIE 8960, 89600I (2014).
[Crossref]

J. M. Ward, N. Dhasmana, and S. N. Chormaic, “Hollow core, whispering gallery resonator sensors,” Eur. Phys. J. Spec. Top. 223(10), 1917–1935 (2014).
[Crossref]

Y. Yang, J. Ward, and S. N. Chormaic, “Quasi-droplet microbubbles for high resolution sensing applications,” Opt. Express 22(6), 6881–6898 (2014).
[Crossref] [PubMed]

J. M. Ward, Y. Yang, and S. N. Chormaic, “Highly sensitive temperature measurements with liquid-core microbubble resonators,” IEEE Photonics Technol. Lett. 25(23), 2350–2353 (2013).
[Crossref]

A. Watkins, J. Ward, Y. Wu, and S. N. Chormaic, “Single-input spherical microbubble resonator,” Opt. Lett. 36(11), 2113–2115 (2011).
[Crossref] [PubMed]

Cibiel, G.

Conti, G. N.

Cosi, F.

Del’Haye, P.

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hänsch, N. Picqué, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 µm based on crystalline microresonators,” Nat. Commun. 4, 1345 (2013).
[Crossref] [PubMed]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

Descour, M. R.

Dhasmana, N.

J. M. Ward, N. Dhasmana, and S. N. Chormaic, “Hollow core, whispering gallery resonator sensors,” Eur. Phys. J. Spec. Top. 223(10), 1917–1935 (2014).
[Crossref]

Diddams, S. A.

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
[Crossref] [PubMed]

Dodge, M. J.

Dulashko, Y.

Dumeige, Y.

A. Chiasera, Y. Dumeige, P. Féron, M. Ferrari, Y. Jestin, G. Nunzi Conti, S. Pelli, S. Soria, and G. C. Righini, “Spherical whispering‐gallery‐mode microresonators,” Laser Photonics Rev. 4(3), 457–482 (2010).
[Crossref]

Ebendorff-Heidepriem, H.

Fan, X.

W. Lee, Y. Sun, H. Li, K. Reddy, M. Sumetsky, and X. Fan, “A quasi-droplet optofluidic ring resonator laser using a micro-bubble,” Appl. Phys. Lett. 99(9), 091102 (2011).
[Crossref]

Farnesi, D.

Farrell, G.

P. Wang, J. M. Ward, Y. Yang, X. Feng, G. Brambilla, G. Farrell, and S. N. Chormaic, “Lead-silicate glass optical microbubble resonator,” Appl. Phys. Lett. 106(6), 061101 (2015).
[Crossref]

Feng, X.

P. Wang, J. M. Ward, Y. Yang, X. Feng, G. Brambilla, G. Farrell, and S. N. Chormaic, “Lead-silicate glass optical microbubble resonator,” Appl. Phys. Lett. 106(6), 061101 (2015).
[Crossref]

Féron, P.

Ferrari, M.

Foster, M. A.

D. H. Broaddus, M. A. Foster, I. H. Agha, J. T. Robinson, M. Lipson, and A. L. Gaeta, “Silicon-waveguide-coupled high-Q chalcogenide microspheres,” Opt. Express 17(8), 5998–6003 (2009).
[Crossref] [PubMed]

I. H. Agha, Y. Okawachi, M. A. Foster, J. E. Sharping, and A. L. Gaeta, “Four-wave-mixing parametric oscillations in dispersion-compensated high-Q silica microspheres,” Phys. Rev. A 76(4), 043837 (2007).
[Crossref]

François, A.

Gaeta, A. L.

D. H. Broaddus, M. A. Foster, I. H. Agha, J. T. Robinson, M. Lipson, and A. L. Gaeta, “Silicon-waveguide-coupled high-Q chalcogenide microspheres,” Opt. Express 17(8), 5998–6003 (2009).
[Crossref] [PubMed]

I. H. Agha, Y. Okawachi, M. A. Foster, J. E. Sharping, and A. L. Gaeta, “Four-wave-mixing parametric oscillations in dispersion-compensated high-Q silica microspheres,” Phys. Rev. A 76(4), 043837 (2007).
[Crossref]

Gorodetsky, M. L.

Grudinin, I. S.

Hänsch, T. W.

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hänsch, N. Picqué, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 µm based on crystalline microresonators,” Nat. Commun. 4, 1345 (2013).
[Crossref] [PubMed]

Henderson, M. R.

Henze, R.

Herr, T.

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hänsch, N. Picqué, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 µm based on crystalline microresonators,” Nat. Commun. 4, 1345 (2013).
[Crossref] [PubMed]

Hofer, J.

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hänsch, N. Picqué, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 µm based on crystalline microresonators,” Nat. Commun. 4, 1345 (2013).
[Crossref] [PubMed]

Holzwarth, R.

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hänsch, N. Picqué, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 µm based on crystalline microresonators,” Nat. Commun. 4, 1345 (2013).
[Crossref] [PubMed]

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
[Crossref] [PubMed]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

Ilchenko, V. S.

Ivanda, M.

Ivanov, C. D.

S. N. Kasarova, N. G. Sultanova, C. D. Ivanov, and I. D. Nikolov, “Analysis of the dispersion of optical plastic materials,” Opt. Mater. 29(11), 1481–1490 (2007).
[Crossref]

Jestin, Y.

A. Chiasera, Y. Dumeige, P. Féron, M. Ferrari, Y. Jestin, G. Nunzi Conti, S. Pelli, S. Soria, and G. C. Righini, “Spherical whispering‐gallery‐mode microresonators,” Laser Photonics Rev. 4(3), 457–482 (2010).
[Crossref]

Ji, H.

A. François, N. Riesen, H. Ji, S. Afshar V, and T. M. Monro, “Polymer based whispering gallery mode laser for biosensing applications,” Appl. Phys. Lett. 106(3), 031104 (2015).
[Crossref]

Jiang, J.

Z. Yu, T. Liu, J. Jiang, K. Liu, W. Chen, X. Zhang, X. Lin, and W. Liu, “High Q silica microbubble resonators fabricated by heating a pressurized glass capillary,” Proc. SPIE 9274, 92740L (2014).
[Crossref]

Jiang, L.

Jinguji, K.

T. Kaino, K. Jinguji, and S. Nara, “Low loss poly (methylmethacrylate‐d8) core optical fibers,” Appl. Phys. Lett. 42(7), 567–569 (1983).
[Crossref]

Kaino, T.

T. Kaino, K. Jinguji, and S. Nara, “Low loss poly (methylmethacrylate‐d8) core optical fibers,” Appl. Phys. Lett. 42(7), 567–569 (1983).
[Crossref]

Kasarova, S. N.

S. N. Kasarova, N. G. Sultanova, C. D. Ivanov, and I. D. Nikolov, “Analysis of the dispersion of optical plastic materials,” Opt. Mater. 29(11), 1481–1490 (2007).
[Crossref]

Keng, D.

F. Vollmer, S. Arnold, and D. Keng, “Single virus detection from the reactive shift of a whispering-gallery mode,” Proc. Natl. Acad. Sci. U.S.A. 105(52), 20701–20704 (2008).
[Crossref] [PubMed]

Kippenberg, T. J.

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hänsch, N. Picqué, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 µm based on crystalline microresonators,” Nat. Commun. 4, 1345 (2013).
[Crossref] [PubMed]

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
[Crossref] [PubMed]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

Kyrish, M.

Lee, W.

W. Lee, Y. Sun, H. Li, K. Reddy, M. Sumetsky, and X. Fan, “A quasi-droplet optofluidic ring resonator laser using a micro-bubble,” Appl. Phys. Lett. 99(9), 091102 (2011).
[Crossref]

Li, H.

W. Lee, Y. Sun, H. Li, K. Reddy, M. Sumetsky, and X. Fan, “A quasi-droplet optofluidic ring resonator laser using a micro-bubble,” Appl. Phys. Lett. 99(9), 091102 (2011).
[Crossref]

Li, M.

Lin, G.

Lin, N.

Lin, X.

Z. Yu, T. Liu, J. Jiang, K. Liu, W. Chen, X. Zhang, X. Lin, and W. Liu, “High Q silica microbubble resonators fabricated by heating a pressurized glass capillary,” Proc. SPIE 9274, 92740L (2014).
[Crossref]

Lipson, M.

Liu, K.

Z. Yu, T. Liu, J. Jiang, K. Liu, W. Chen, X. Zhang, X. Lin, and W. Liu, “High Q silica microbubble resonators fabricated by heating a pressurized glass capillary,” Proc. SPIE 9274, 92740L (2014).
[Crossref]

Liu, L.

Liu, T.

Z. Yu, T. Liu, J. Jiang, K. Liu, W. Chen, X. Zhang, X. Lin, and W. Liu, “High Q silica microbubble resonators fabricated by heating a pressurized glass capillary,” Proc. SPIE 9274, 92740L (2014).
[Crossref]

Liu, W.

Z. Yu, T. Liu, J. Jiang, K. Liu, W. Chen, X. Zhang, X. Lin, and W. Liu, “High Q silica microbubble resonators fabricated by heating a pressurized glass capillary,” Proc. SPIE 9274, 92740L (2014).
[Crossref]

Lu, Y.

Maleki, L.

Manzani, D.

Mazzola, M.

Min, B.

A. Armani, D. Armani, B. Min, K. Vahala, and S. Spillane, “Ultra-high-Q microcavity operation in H2O and D2O,” Appl. Phys. Lett. 87(15), 151118 (2005).
[Crossref]

Monro, T. M.

Munasinghe, H. T.

Nara, S.

T. Kaino, K. Jinguji, and S. Nara, “Low loss poly (methylmethacrylate‐d8) core optical fibers,” Appl. Phys. Lett. 42(7), 567–569 (1983).
[Crossref]

Nic Chormaic, S.

Nikolov, I. D.

S. N. Kasarova, N. G. Sultanova, C. D. Ivanov, and I. D. Nikolov, “Analysis of the dispersion of optical plastic materials,” Opt. Mater. 29(11), 1481–1490 (2007).
[Crossref]

Nunzi Conti, G.

A. Chiasera, Y. Dumeige, P. Féron, M. Ferrari, Y. Jestin, G. Nunzi Conti, S. Pelli, S. Soria, and G. C. Righini, “Spherical whispering‐gallery‐mode microresonators,” Laser Photonics Rev. 4(3), 457–482 (2010).
[Crossref]

Okawachi, Y.

I. H. Agha, Y. Okawachi, M. A. Foster, J. E. Sharping, and A. L. Gaeta, “Four-wave-mixing parametric oscillations in dispersion-compensated high-Q silica microspheres,” Phys. Rev. A 76(4), 043837 (2007).
[Crossref]

Ooka, Y.

Oxborrow, M.

M. Oxborrow, “Traceable 2-D finite-element simulation of the whispering-gallery modes of axisymmetric electromagnetic resonators,” IEEE Trans. Microw. Theory Tech. 55(6), 1209–1218 (2007).
[Crossref]

Pelli, S.

Picqué, N.

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hänsch, N. Picqué, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 µm based on crystalline microresonators,” Nat. Commun. 4, 1345 (2013).
[Crossref] [PubMed]

Ramponi, R.

Rasoloniaina, A.

Reddy, K.

W. Lee, Y. Sun, H. Li, K. Reddy, M. Sumetsky, and X. Fan, “A quasi-droplet optofluidic ring resonator laser using a micro-bubble,” Appl. Phys. Lett. 99(9), 091102 (2011).
[Crossref]

Reynolds, T.

Riesen, N.

Righini, G. C.

Ristic, D.

Robinson, J. T.

Rostami, A.

R. Talebi, K. Abbasian, and A. Rostami, “Analytical modeling of quality factor for shell type microsphere resonators,” Prog. Electromag. Res. B 30, 293–311 (2011).
[Crossref]

Saurabh, S.

Savchenkov, A. A.

Schiele, C.

Schliesser, A.

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hänsch, N. Picqué, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 µm based on crystalline microresonators,” Nat. Commun. 4, 1345 (2013).
[Crossref] [PubMed]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

Seifert, T.

Sharping, J. E.

I. H. Agha, Y. Okawachi, M. A. Foster, J. E. Sharping, and A. L. Gaeta, “Four-wave-mixing parametric oscillations in dispersion-compensated high-Q silica microspheres,” Phys. Rev. A 76(4), 043837 (2007).
[Crossref]

Soria, S.

Spillane, S.

A. Armani, D. Armani, B. Min, K. Vahala, and S. Spillane, “Ultra-high-Q microcavity operation in H2O and D2O,” Appl. Phys. Lett. 87(15), 151118 (2005).
[Crossref]

Sultanova, N. G.

S. N. Kasarova, N. G. Sultanova, C. D. Ivanov, and I. D. Nikolov, “Analysis of the dispersion of optical plastic materials,” Opt. Mater. 29(11), 1481–1490 (2007).
[Crossref]

Sumetsky, M.

W. Lee, Y. Sun, H. Li, K. Reddy, M. Sumetsky, and X. Fan, “A quasi-droplet optofluidic ring resonator laser using a micro-bubble,” Appl. Phys. Lett. 99(9), 091102 (2011).
[Crossref]

M. Sumetsky, Y. Dulashko, and R. S. Windeler, “Super free spectral range tunable optical microbubble resonator,” Opt. Lett. 35(11), 1866–1868 (2010).
[Crossref] [PubMed]

Sun, Y.

W. Lee, Y. Sun, H. Li, K. Reddy, M. Sumetsky, and X. Fan, “A quasi-droplet optofluidic ring resonator laser using a micro-bubble,” Appl. Phys. Lett. 99(9), 091102 (2011).
[Crossref]

Talebi, R.

R. Talebi, K. Abbasian, and A. Rostami, “Analytical modeling of quality factor for shell type microsphere resonators,” Prog. Electromag. Res. B 30, 293–311 (2011).
[Crossref]

Teraoka, I.

Thompson, R. M.

Tkaczyk, T. S.

Tsai, H.

Utzinger, U.

Vahala, K.

A. Armani, D. Armani, B. Min, K. Vahala, and S. Spillane, “Ultra-high-Q microcavity operation in H2O and D2O,” Appl. Phys. Lett. 87(15), 151118 (2005).
[Crossref]

Vollmer, F.

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
[Crossref] [PubMed]

F. Vollmer, S. Arnold, and D. Keng, “Single virus detection from the reactive shift of a whispering-gallery mode,” Proc. Natl. Acad. Sci. U.S.A. 105(52), 20701–20704 (2008).
[Crossref] [PubMed]

Wang, C. Y.

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hänsch, N. Picqué, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 µm based on crystalline microresonators,” Nat. Commun. 4, 1345 (2013).
[Crossref] [PubMed]

Wang, P.

P. Wang, J. M. Ward, Y. Yang, X. Feng, G. Brambilla, G. Farrell, and S. N. Chormaic, “Lead-silicate glass optical microbubble resonator,” Appl. Phys. Lett. 106(6), 061101 (2015).
[Crossref]

Wang, S.

Ward, J.

Ward, J. M.

Y. Yang, S. Saurabh, J. M. Ward, and S. Nic Chormaic, “High-Q, ultrathin-walled microbubble resonator for aerostatic pressure sensing,” Opt. Express 24(1), 294–299 (2016).
[Crossref] [PubMed]

Y. Yang, Y. Ooka, R. M. Thompson, J. M. Ward, and S. N. Chormaic, “Degenerate four-wave mixing in a silica hollow bottle-like microresonator,” Opt. Lett. 41(3), 575–578 (2016).
[Crossref] [PubMed]

P. Wang, J. M. Ward, Y. Yang, X. Feng, G. Brambilla, G. Farrell, and S. N. Chormaic, “Lead-silicate glass optical microbubble resonator,” Appl. Phys. Lett. 106(6), 061101 (2015).
[Crossref]

Y. Yang, J. M. Ward, and S. N. Chormaic, “Optimization of whispering gallery modes in microbubble resonators for sensing applications,” Proc. SPIE 8960, 89600I (2014).
[Crossref]

J. M. Ward, N. Dhasmana, and S. N. Chormaic, “Hollow core, whispering gallery resonator sensors,” Eur. Phys. J. Spec. Top. 223(10), 1917–1935 (2014).
[Crossref]

J. M. Ward, Y. Yang, and S. N. Chormaic, “Highly sensitive temperature measurements with liquid-core microbubble resonators,” IEEE Photonics Technol. Lett. 25(23), 2350–2353 (2013).
[Crossref]

Watkins, A.

Wilken, T.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

Windeler, R. S.

Winterstein-Beckmann, A.

Wondraczek, L.

Wu, X.

Wu, Y.

Xiao, H.

Xu, L.

Yang, Y.

Y. Yang, Y. Ooka, R. M. Thompson, J. M. Ward, and S. N. Chormaic, “Degenerate four-wave mixing in a silica hollow bottle-like microresonator,” Opt. Lett. 41(3), 575–578 (2016).
[Crossref] [PubMed]

Y. Yang, S. Saurabh, J. M. Ward, and S. Nic Chormaic, “High-Q, ultrathin-walled microbubble resonator for aerostatic pressure sensing,” Opt. Express 24(1), 294–299 (2016).
[Crossref] [PubMed]

Y. Yang, S. Saurabh, J. Ward, and S. N. Chormaic, “Coupled-mode-induced transparency in aerostatically tuned microbubble whispering-gallery resonators,” Opt. Lett. 40(8), 1834–1837 (2015).
[Crossref] [PubMed]

P. Wang, J. M. Ward, Y. Yang, X. Feng, G. Brambilla, G. Farrell, and S. N. Chormaic, “Lead-silicate glass optical microbubble resonator,” Appl. Phys. Lett. 106(6), 061101 (2015).
[Crossref]

Y. Yang, J. M. Ward, and S. N. Chormaic, “Optimization of whispering gallery modes in microbubble resonators for sensing applications,” Proc. SPIE 8960, 89600I (2014).
[Crossref]

Y. Yang, J. Ward, and S. N. Chormaic, “Quasi-droplet microbubbles for high resolution sensing applications,” Opt. Express 22(6), 6881–6898 (2014).
[Crossref] [PubMed]

J. M. Ward, Y. Yang, and S. N. Chormaic, “Highly sensitive temperature measurements with liquid-core microbubble resonators,” IEEE Photonics Technol. Lett. 25(23), 2350–2353 (2013).
[Crossref]

Yu, N.

Y. K. Chembo and N. Yu, “Modal expansion approach to optical-frequency-comb generation with monolithic whispering-gallery-mode resonators,” Phys. Rev. A 82(3), 033801 (2010).
[Crossref]

I. S. Grudinin, N. Yu, and L. Maleki, “Generation of optical frequency combs with a CaF2 resonator,” Opt. Lett. 34(7), 878–880 (2009).
[Crossref] [PubMed]

Yu, Z.

Z. Yu, T. Liu, J. Jiang, K. Liu, W. Chen, X. Zhang, X. Lin, and W. Liu, “High Q silica microbubble resonators fabricated by heating a pressurized glass capillary,” Proc. SPIE 9274, 92740L (2014).
[Crossref]

Zhang, W. Q.

Zhang, X.

Z. Yu, T. Liu, J. Jiang, K. Liu, W. Chen, X. Zhang, X. Lin, and W. Liu, “High Q silica microbubble resonators fabricated by heating a pressurized glass capillary,” Proc. SPIE 9274, 92740L (2014).
[Crossref]

Annu. Rev. Mater. Res. (1)

T. M. Monro and H. Ebendorff-Heidepriem, “Progress in microstructured optical fibers,” Annu. Rev. Mater. Res. 36(1), 467–495 (2006).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (5)

A. Armani, D. Armani, B. Min, K. Vahala, and S. Spillane, “Ultra-high-Q microcavity operation in H2O and D2O,” Appl. Phys. Lett. 87(15), 151118 (2005).
[Crossref]

T. Kaino, K. Jinguji, and S. Nara, “Low loss poly (methylmethacrylate‐d8) core optical fibers,” Appl. Phys. Lett. 42(7), 567–569 (1983).
[Crossref]

A. François, N. Riesen, H. Ji, S. Afshar V, and T. M. Monro, “Polymer based whispering gallery mode laser for biosensing applications,” Appl. Phys. Lett. 106(3), 031104 (2015).
[Crossref]

P. Wang, J. M. Ward, Y. Yang, X. Feng, G. Brambilla, G. Farrell, and S. N. Chormaic, “Lead-silicate glass optical microbubble resonator,” Appl. Phys. Lett. 106(6), 061101 (2015).
[Crossref]

W. Lee, Y. Sun, H. Li, K. Reddy, M. Sumetsky, and X. Fan, “A quasi-droplet optofluidic ring resonator laser using a micro-bubble,” Appl. Phys. Lett. 99(9), 091102 (2011).
[Crossref]

Eur. Phys. J. Spec. Top. (1)

J. M. Ward, N. Dhasmana, and S. N. Chormaic, “Hollow core, whispering gallery resonator sensors,” Eur. Phys. J. Spec. Top. 223(10), 1917–1935 (2014).
[Crossref]

IEEE Photonics Technol. Lett. (1)

J. M. Ward, Y. Yang, and S. N. Chormaic, “Highly sensitive temperature measurements with liquid-core microbubble resonators,” IEEE Photonics Technol. Lett. 25(23), 2350–2353 (2013).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

M. Oxborrow, “Traceable 2-D finite-element simulation of the whispering-gallery modes of axisymmetric electromagnetic resonators,” IEEE Trans. Microw. Theory Tech. 55(6), 1209–1218 (2007).
[Crossref]

J. Opt. Soc. Am. B (2)

Laser Photonics Rev. (1)

A. Chiasera, Y. Dumeige, P. Féron, M. Ferrari, Y. Jestin, G. Nunzi Conti, S. Pelli, S. Soria, and G. C. Righini, “Spherical whispering‐gallery‐mode microresonators,” Laser Photonics Rev. 4(3), 457–482 (2010).
[Crossref]

Nat. Commun. (1)

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hänsch, N. Picqué, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 µm based on crystalline microresonators,” Nat. Commun. 4, 1345 (2013).
[Crossref] [PubMed]

Nat. Methods (1)

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
[Crossref] [PubMed]

Nature (1)

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

Opt. Express (9)

D. H. Broaddus, M. A. Foster, I. H. Agha, J. T. Robinson, M. Lipson, and A. L. Gaeta, “Silicon-waveguide-coupled high-Q chalcogenide microspheres,” Opt. Express 17(8), 5998–6003 (2009).
[Crossref] [PubMed]

M. Kyrish, U. Utzinger, M. R. Descour, B. K. Baggett, and T. S. Tkaczyk, “Ultra-slim plastic endomicroscope objective for non-linear microscopy,” Opt. Express 19(8), 7603–7615 (2011).
[Crossref] [PubMed]

M. Li, X. Wu, L. Liu, and L. Xu, “Kerr parametric oscillations and frequency comb generation from dispersion compensated silica micro-bubble resonators,” Opt. Express 21(14), 16908–16913 (2013).
[Crossref] [PubMed]

D. Ristić, A. Rasoloniaina, A. Chiappini, P. Féron, S. Pelli, G. N. Conti, M. Ivanda, G. C. Righini, G. Cibiel, and M. Ferrari, “About the role of phase matching between a coated microsphere and a tapered fiber: experimental study,” Opt. Express 21(18), 20954–20963 (2013).
[Crossref] [PubMed]

Y. Yang, J. Ward, and S. N. Chormaic, “Quasi-droplet microbubbles for high resolution sensing applications,” Opt. Express 22(6), 6881–6898 (2014).
[Crossref] [PubMed]

G. Lin and Y. K. Chembo, “On the dispersion management of fluorite whispering-gallery mode resonators for Kerr optical frequency comb generation in the telecom and mid-infrared range,” Opt. Express 23(2), 1594–1604 (2015).
[Crossref] [PubMed]

N. Riesen, S. Afshar V, A. François, and T. M. Monro, “Material candidates for optical frequency comb generation in microspheres,” Opt. Express 23(11), 14784–14795 (2015).
[Crossref] [PubMed]

N. Riesen, T. Reynolds, A. François, M. R. Henderson, and T. M. Monro, “Q-factor limits for far-field detection of whispering gallery modes in active microspheres,” Opt. Express 23(22), 28896–28904 (2015).
[Crossref] [PubMed]

Y. Yang, S. Saurabh, J. M. Ward, and S. Nic Chormaic, “High-Q, ultrathin-walled microbubble resonator for aerostatic pressure sensing,” Opt. Express 24(1), 294–299 (2016).
[Crossref] [PubMed]

Opt. Lett. (11)

Y. Yang, Y. Ooka, R. M. Thompson, J. M. Ward, and S. N. Chormaic, “Degenerate four-wave mixing in a silica hollow bottle-like microresonator,” Opt. Lett. 41(3), 575–578 (2016).
[Crossref] [PubMed]

N. Riesen, W. Q. Zhang, and T. M. Monro, “Dispersion in silica microbubble resonators,” Opt. Lett. 41(6), 1257–1260 (2016).
[Crossref] [PubMed]

D. Farnesi, A. Barucci, G. C. Righini, G. N. Conti, and S. Soria, “Generation of hyper-parametric oscillations in silica microbubbles,” Opt. Lett. 40(19), 4508–4511 (2015).
[Crossref] [PubMed]

Y. Yang, S. Saurabh, J. Ward, and S. N. Chormaic, “Coupled-mode-induced transparency in aerostatically tuned microbubble whispering-gallery resonators,” Opt. Lett. 40(8), 1834–1837 (2015).
[Crossref] [PubMed]

D. Ristić, M. Mazzola, A. Chiappini, A. Rasoloniaina, P. Féron, R. Ramponi, G. C. Righini, G. Cibiel, M. Ivanda, and M. Ferrari, “Tailoring of the free spectral range and geometrical cavity dispersion of a microsphere by a coating layer,” Opt. Lett. 39(17), 5173–5176 (2014).
[Crossref] [PubMed]

A. Watkins, J. Ward, Y. Wu, and S. N. Chormaic, “Single-input spherical microbubble resonator,” Opt. Lett. 36(11), 2113–2115 (2011).
[Crossref] [PubMed]

S. Berneschi, D. Farnesi, F. Cosi, G. N. Conti, S. Pelli, G. C. Righini, and S. Soria, “High Q silica microbubble resonators fabricated by arc discharge,” Opt. Lett. 36(17), 3521–3523 (2011).
[Crossref] [PubMed]

R. Henze, T. Seifert, J. Ward, and O. Benson, “Tuning whispering gallery modes using internal aerostatic pressure,” Opt. Lett. 36(23), 4536–4538 (2011).
[Crossref] [PubMed]

M. Sumetsky, Y. Dulashko, and R. S. Windeler, “Super free spectral range tunable optical microbubble resonator,” Opt. Lett. 35(11), 1866–1868 (2010).
[Crossref] [PubMed]

I. S. Grudinin, N. Yu, and L. Maleki, “Generation of optical frequency combs with a CaF2 resonator,” Opt. Lett. 34(7), 878–880 (2009).
[Crossref] [PubMed]

M. L. Gorodetsky, A. A. Savchenkov, and V. S. Ilchenko, “Ultimate Q of optical microsphere resonators,” Opt. Lett. 21(7), 453–455 (1996).
[Crossref] [PubMed]

Opt. Mater. (1)

S. N. Kasarova, N. G. Sultanova, C. D. Ivanov, and I. D. Nikolov, “Analysis of the dispersion of optical plastic materials,” Opt. Mater. 29(11), 1481–1490 (2007).
[Crossref]

Opt. Mater. Express (1)

Phys. Rev. A (2)

I. H. Agha, Y. Okawachi, M. A. Foster, J. E. Sharping, and A. L. Gaeta, “Four-wave-mixing parametric oscillations in dispersion-compensated high-Q silica microspheres,” Phys. Rev. A 76(4), 043837 (2007).
[Crossref]

Y. K. Chembo and N. Yu, “Modal expansion approach to optical-frequency-comb generation with monolithic whispering-gallery-mode resonators,” Phys. Rev. A 82(3), 033801 (2010).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (1)

F. Vollmer, S. Arnold, and D. Keng, “Single virus detection from the reactive shift of a whispering-gallery mode,” Proc. Natl. Acad. Sci. U.S.A. 105(52), 20701–20704 (2008).
[Crossref] [PubMed]

Proc. SPIE (2)

Z. Yu, T. Liu, J. Jiang, K. Liu, W. Chen, X. Zhang, X. Lin, and W. Liu, “High Q silica microbubble resonators fabricated by heating a pressurized glass capillary,” Proc. SPIE 9274, 92740L (2014).
[Crossref]

Y. Yang, J. M. Ward, and S. N. Chormaic, “Optimization of whispering gallery modes in microbubble resonators for sensing applications,” Proc. SPIE 8960, 89600I (2014).
[Crossref]

Prog. Electromag. Res. B (1)

R. Talebi, K. Abbasian, and A. Rostami, “Analytical modeling of quality factor for shell type microsphere resonators,” Prog. Electromag. Res. B 30, 293–311 (2011).
[Crossref]

Science (1)

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
[Crossref] [PubMed]

Other (11)

J. Ye and S. T. Cundiff, Femtosecond Optical Frequency Combs: Principle, Operation, and Applications (Springer, 2005).

T. J. Kippenberg, “Nonlinear optics in ultra-high-Q whispering-gallery optical microcavities,” California Institute of Technology, PhD Thesis (2004).

A. Matsko, A. Savchenkov, D. Strekalov, V. Ilchenko, and L. Maleki, “Review of applications of whispering-gallery mode resonators in photonics and nonlinear optics,” IPN Progress Report 42–162 (2005).

Thorlabs (Polycarbonate, Acrylic, Cyclic-Olefin, PMMA Transmission Data, 2014), www.thorlabs.com

D. J. Segelstein, “The complex refractive index of water,” University of Missouri, M.S. Thesis (1981).

M. R. Oermann, “Microstructured tellurite glass fibre laser development,” University of Adelaide, PhD Thesis (2011), Chap. 2.

H. T. Munasinghe, A. Winterstein-Beckmann, C. Schiele, L. Wondraczek, and D. Manzani, S. Afshar V. T. M. Monro, and H. Ebendorff-Heidepriem, “Fabrication and properties of lead-germanate glasses for high nonlinearity fibre applications,” in European Conference on Optical Communication (Optical Society of America, 2013), paper Tu.3.A.5.

Schott (Optical Glass Data Sheets, 2012). http://refractiveindex.info/download/data/2012/schott_optical_glass_collection_datasheets_dec_2012_us.pdf

Material Absorption Data, (ISP Optics, 2014), www.ispoptics.com

E. D. Palik, Handbook of optical constants of solids (Academic, 1998), Vol. 5.

M. Bass, C. DeCusatis, J. Enoch, V. Lakshminarayanan, G. Li, C. MacDonald, V. Mahajan, and E. Van Stryland, Handbook of Optics, Third Edition Volume IV: Optical Properties of Materials, Nonlinear Optics, Quantum Optics (McGraw-Hill, 2009).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics