Abstract

In this paper, we demonstrate a dynamic holographic display in a quantum dot (ZnS/InP) doped liquid crystal device, where one of the interior cell surfaces is covered by a ZnSe layer. Such a hybrid device shows substantially improved photorefractive sensitivity of 2.2 cm3/J, which is almost 300 times larger than that in ZnS/InP doped liquid crystal device without the ZnSe layer. The holographic grating can form at intensities as low as ~0.8 mW/cm2, and exhibit a fast optical response of several to tens of milliseconds. Exploiting the superior performances of photosensitivity and fast response of this device, we obtain dynamic holographic videos of red, green, and blue colors, as well as a reconstructed image of high gray-scale fidelity.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Impact of thickness of liquid crystal layer on response rate and exponential gain coefficient with assistance of ZnSe film

Cuiling Meng, Hua Zhao, Tingyu Xue, Jiayin Fu, and Jingwen Zhang
Appl. Opt. 53(36) 8456-8462 (2014)

Hybrid liquid crystal photorefractive system for the photorefractive coupling of surface plasmon polaritons

Stephen B. Abbott, Keith R. Daly, Giampaolo D’Alessandro, Malgosia Kaczmarek, and David C. Smith
J. Opt. Soc. Am. B 29(8) 1947-1958 (2012)

Orientational photorefractive effects observed in polymer-dispersed liquid crystals

Hiroshi Ono and Nobuhiro Kawatsuki
Opt. Lett. 22(15) 1144-1146 (1997)

References

  • View by:
  • |
  • |
  • |

  1. D. Gabor, “A new microscopic principle,” Nature 161(4098), 777–778 (1948).
    [Crossref] [PubMed]
  2. J. Geng, “Three-dimensional display technologies,” Adv. Opt. Photonics 5(4), 456–535 (2013).
    [Crossref] [PubMed]
  3. P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
    [Crossref] [PubMed]
  4. S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
    [Crossref] [PubMed]
  5. X. Li, C. P. Chen, Y. Li, P. Zhou, X. Jiang, N. Rong, S. Liu, G. He, J. Lu, and Y. Su, “High-efficiency video-rate holographic display using quantum dot doped liquid crystal,” J. Disp. Technol. 12(4), 362–367 (2016).
    [Crossref]
  6. N. Tsutsumi, K. Kinashi, A. Nonomura, and W. Sakai, “Quickly updatable hologram images using poly(N-vinyl Carbazole) (PVCz) photorefractive polymer composite,” Materials (Basel) 5(12), 1477–1486 (2012).
    [Crossref]
  7. N. Tsutsumi, K. Kinashi, W. Sakai, J. Nishide, Y. Kawabe, and H. Sasabe, “Real-time three-dimensional holographic display using a monolithic organic compound dispersed film,” Opt. Mater. Express 2(8), 1003–1010 (2012).
    [Crossref]
  8. P. Wu, S. Q. Sun, S. Baig, and M. R. Wang, “Nanoscale optical reinforcement for enhanced reversible holography,” Opt. Express 20(3), 3091–3097 (2012).
    [Crossref] [PubMed]
  9. X. Li, C. P. Chen, H. Gao, Z. He, Y. Xiong, H. Li, W. Hu, Z. Ye, G. He, J. Lu, and Y. Su, “Video-rate holographic display using azo-dye-doped liquid crystal,” J. Disp. Technol. 10(6), 438–443 (2014).
    [Crossref]
  10. H. Zhao, C. Lian, F. Huang, T. Xue, X. Sun, Y. K. Zou, and J. Zhang, “Impact of grating spacing and electric field on real time updatable holographic recording in nanoscale ZnSe film assisted liquid crystal cells,” Appl. Phys. Lett. 101(21), 211118 (2012).
    [Crossref]
  11. E. Rudenko and A. Sukhov, “Photoinduced electrical conductivity and photorefraction in a nematic liquid crystal,” JETP Lett. 59, 142–146 (1994).
  12. G. P. Wiederrecht, B. A. Yoon, and M. R. Wasielewski, “High photorefractive gain in nematic liquid crystals doped with electron donor and acceptor molecules,” Science 270(5243), 1794–1797 (1995).
    [Crossref]
  13. S. Bartkiewicz, A. Miniewicz, B. Sahraoui, and F. Kajzar, “Dynamic charge-carrier-mobility-mediated holography in thin layers of photoconducting polymers,” Appl. Phys. Lett. 81(20), 3705–3707 (2002).
    [Crossref]
  14. A. Kabir, A. M. Ajward, and H. P. Wagner, “Holographic imaging using the phase coherent photorefractive effect in ZnSe quantum wells,” Appl. Phys. Lett. 93(6), 063504 (2008).
    [Crossref]
  15. F. Kajzar, S. Bartkiewicz, and A. Miniewicz, “Optical amplification with high gain in hybrid-polymer–liquid-crystal structures,” Appl. Phys. Lett. 74(20), 2924–2926 (1999).
    [Crossref]
  16. C. Meng, H. Zhao, T. Xue, J. Fu, and J. Zhang, “Impact of thickness of liquid crystal layer on response rate and exponential gain coefficient with assistance of ZnSe film,” Appl. Opt. 53(36), 8456–8462 (2014).
    [Crossref] [PubMed]
  17. R. R. Garcia and C. Berrospe-Rodriguez, “Enhancement of the coupling gain in GaAs-liquid crystal hybrid devices,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 561(1), 68–73 (2012).
    [Crossref]
  18. L. Sznitko, A. Anczykowska, J. Mysliwiec, and S. Bartkiewicz, “Influence of grating period on kinetics of self-diffraction in nematic liquid crystal panel with photoconducting polymeric layer,” Appl. Phys. Lett. 96(11), 111106 (2010).
    [Crossref]
  19. S. Suresh, “Investigations on the photoconductivity studies of ZnSe, ZnS and PbS thin films,” Sci. Res. Essays 10(10), 378–382 (2015).
  20. I. C. Khoo, M. Wood, M. Y. Shih, and P. Chen, “Extremely nonlinear photosensitive liquid crystals for image sensing and sensor protection,” Opt. Express 4(11), 432–442 (1999).
    [Crossref] [PubMed]
  21. B. Lynn, P. A. Blanche, and N. Peyghambarian, “Photorefractive polymers for holography,” J. Polym. Sci. B 52(3), 193–231 (2014).
    [Crossref]
  22. P. Günter and J.-P. Huignard, Photorefractive Materials and their Applications (Springer, 2007).
  23. P. Pagliusi and G. Cipparrone, “Photorefractive effect due to a photoinduced surface-charge modulation in undoped liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(6), 061708 (2004).
    [Crossref] [PubMed]
  24. I. C. Khoo, “Holographic grating formation in dye- and fullerene C60-doped nematic liquid-crystal film,” Opt. Lett. 20(20), 2137–2139 (1995).
    [Crossref] [PubMed]
  25. M.-Y. Xu, Y.-K. Liu, Y. Xiang, T. Xia, E. Wang, and Z.-D. Cheng, “A fast light-induced grating in bent-core nematic liquid crystals with in-plane switching,” Appl. Phys. Lett. 103(8), 083507 (2013).
    [Crossref]
  26. S. Bartkiewicz, A. Januszko, A. Miniewicz, and J. Parka, “Dye-doped liquid crystal composite for real-time holography,” Pure Appl. Opt. 5(6), 799–809 (1996).
    [Crossref]
  27. B. L. Volodin, K. Meerholz, B. Sandalphon, N. V. Kippelen, Kukhtarev, and N. Peyghambarian, “Highly efficient photorefractive polymers for dynamic holography,” Opt. Eng. 34(8), 2213–2223 (1995).
    [Crossref]
  28. M. A. Powell and C. R. Petts, “Temperature enhancement of the photorefractive sensitivity of BSO and BGO,” Opt. Lett. 11(1), 36–38 (1986).
    [Crossref] [PubMed]
  29. S. Tao, B. Tang, Y. Zhou, and L. Shen, “Quantitative study of the gray-scale fidelity of volume holographic images,” Appl. Opt. 38(17), 3767–3777 (1999).
    [Crossref] [PubMed]

2016 (1)

X. Li, C. P. Chen, Y. Li, P. Zhou, X. Jiang, N. Rong, S. Liu, G. He, J. Lu, and Y. Su, “High-efficiency video-rate holographic display using quantum dot doped liquid crystal,” J. Disp. Technol. 12(4), 362–367 (2016).
[Crossref]

2015 (1)

S. Suresh, “Investigations on the photoconductivity studies of ZnSe, ZnS and PbS thin films,” Sci. Res. Essays 10(10), 378–382 (2015).

2014 (3)

X. Li, C. P. Chen, H. Gao, Z. He, Y. Xiong, H. Li, W. Hu, Z. Ye, G. He, J. Lu, and Y. Su, “Video-rate holographic display using azo-dye-doped liquid crystal,” J. Disp. Technol. 10(6), 438–443 (2014).
[Crossref]

B. Lynn, P. A. Blanche, and N. Peyghambarian, “Photorefractive polymers for holography,” J. Polym. Sci. B 52(3), 193–231 (2014).
[Crossref]

C. Meng, H. Zhao, T. Xue, J. Fu, and J. Zhang, “Impact of thickness of liquid crystal layer on response rate and exponential gain coefficient with assistance of ZnSe film,” Appl. Opt. 53(36), 8456–8462 (2014).
[Crossref] [PubMed]

2013 (2)

J. Geng, “Three-dimensional display technologies,” Adv. Opt. Photonics 5(4), 456–535 (2013).
[Crossref] [PubMed]

M.-Y. Xu, Y.-K. Liu, Y. Xiang, T. Xia, E. Wang, and Z.-D. Cheng, “A fast light-induced grating in bent-core nematic liquid crystals with in-plane switching,” Appl. Phys. Lett. 103(8), 083507 (2013).
[Crossref]

2012 (5)

N. Tsutsumi, K. Kinashi, A. Nonomura, and W. Sakai, “Quickly updatable hologram images using poly(N-vinyl Carbazole) (PVCz) photorefractive polymer composite,” Materials (Basel) 5(12), 1477–1486 (2012).
[Crossref]

R. R. Garcia and C. Berrospe-Rodriguez, “Enhancement of the coupling gain in GaAs-liquid crystal hybrid devices,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 561(1), 68–73 (2012).
[Crossref]

H. Zhao, C. Lian, F. Huang, T. Xue, X. Sun, Y. K. Zou, and J. Zhang, “Impact of grating spacing and electric field on real time updatable holographic recording in nanoscale ZnSe film assisted liquid crystal cells,” Appl. Phys. Lett. 101(21), 211118 (2012).
[Crossref]

P. Wu, S. Q. Sun, S. Baig, and M. R. Wang, “Nanoscale optical reinforcement for enhanced reversible holography,” Opt. Express 20(3), 3091–3097 (2012).
[Crossref] [PubMed]

N. Tsutsumi, K. Kinashi, W. Sakai, J. Nishide, Y. Kawabe, and H. Sasabe, “Real-time three-dimensional holographic display using a monolithic organic compound dispersed film,” Opt. Mater. Express 2(8), 1003–1010 (2012).
[Crossref]

2010 (2)

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref] [PubMed]

L. Sznitko, A. Anczykowska, J. Mysliwiec, and S. Bartkiewicz, “Influence of grating period on kinetics of self-diffraction in nematic liquid crystal panel with photoconducting polymeric layer,” Appl. Phys. Lett. 96(11), 111106 (2010).
[Crossref]

2008 (2)

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[Crossref] [PubMed]

A. Kabir, A. M. Ajward, and H. P. Wagner, “Holographic imaging using the phase coherent photorefractive effect in ZnSe quantum wells,” Appl. Phys. Lett. 93(6), 063504 (2008).
[Crossref]

2004 (1)

P. Pagliusi and G. Cipparrone, “Photorefractive effect due to a photoinduced surface-charge modulation in undoped liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(6), 061708 (2004).
[Crossref] [PubMed]

2002 (1)

S. Bartkiewicz, A. Miniewicz, B. Sahraoui, and F. Kajzar, “Dynamic charge-carrier-mobility-mediated holography in thin layers of photoconducting polymers,” Appl. Phys. Lett. 81(20), 3705–3707 (2002).
[Crossref]

1999 (3)

1996 (1)

S. Bartkiewicz, A. Januszko, A. Miniewicz, and J. Parka, “Dye-doped liquid crystal composite for real-time holography,” Pure Appl. Opt. 5(6), 799–809 (1996).
[Crossref]

1995 (3)

B. L. Volodin, K. Meerholz, B. Sandalphon, N. V. Kippelen, Kukhtarev, and N. Peyghambarian, “Highly efficient photorefractive polymers for dynamic holography,” Opt. Eng. 34(8), 2213–2223 (1995).
[Crossref]

G. P. Wiederrecht, B. A. Yoon, and M. R. Wasielewski, “High photorefractive gain in nematic liquid crystals doped with electron donor and acceptor molecules,” Science 270(5243), 1794–1797 (1995).
[Crossref]

I. C. Khoo, “Holographic grating formation in dye- and fullerene C60-doped nematic liquid-crystal film,” Opt. Lett. 20(20), 2137–2139 (1995).
[Crossref] [PubMed]

1994 (1)

E. Rudenko and A. Sukhov, “Photoinduced electrical conductivity and photorefraction in a nematic liquid crystal,” JETP Lett. 59, 142–146 (1994).

1986 (1)

1948 (1)

D. Gabor, “A new microscopic principle,” Nature 161(4098), 777–778 (1948).
[Crossref] [PubMed]

Ajward, A. M.

A. Kabir, A. M. Ajward, and H. P. Wagner, “Holographic imaging using the phase coherent photorefractive effect in ZnSe quantum wells,” Appl. Phys. Lett. 93(6), 063504 (2008).
[Crossref]

Anczykowska, A.

L. Sznitko, A. Anczykowska, J. Mysliwiec, and S. Bartkiewicz, “Influence of grating period on kinetics of self-diffraction in nematic liquid crystal panel with photoconducting polymeric layer,” Appl. Phys. Lett. 96(11), 111106 (2010).
[Crossref]

Bablumian, A.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref] [PubMed]

Baig, S.

Bartkiewicz, S.

L. Sznitko, A. Anczykowska, J. Mysliwiec, and S. Bartkiewicz, “Influence of grating period on kinetics of self-diffraction in nematic liquid crystal panel with photoconducting polymeric layer,” Appl. Phys. Lett. 96(11), 111106 (2010).
[Crossref]

S. Bartkiewicz, A. Miniewicz, B. Sahraoui, and F. Kajzar, “Dynamic charge-carrier-mobility-mediated holography in thin layers of photoconducting polymers,” Appl. Phys. Lett. 81(20), 3705–3707 (2002).
[Crossref]

F. Kajzar, S. Bartkiewicz, and A. Miniewicz, “Optical amplification with high gain in hybrid-polymer–liquid-crystal structures,” Appl. Phys. Lett. 74(20), 2924–2926 (1999).
[Crossref]

S. Bartkiewicz, A. Januszko, A. Miniewicz, and J. Parka, “Dye-doped liquid crystal composite for real-time holography,” Pure Appl. Opt. 5(6), 799–809 (1996).
[Crossref]

Berrospe-Rodriguez, C.

R. R. Garcia and C. Berrospe-Rodriguez, “Enhancement of the coupling gain in GaAs-liquid crystal hybrid devices,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 561(1), 68–73 (2012).
[Crossref]

Blanche, P. A.

B. Lynn, P. A. Blanche, and N. Peyghambarian, “Photorefractive polymers for holography,” J. Polym. Sci. B 52(3), 193–231 (2014).
[Crossref]

Blanche, P.-A.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref] [PubMed]

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[Crossref] [PubMed]

Chen, C. P.

X. Li, C. P. Chen, Y. Li, P. Zhou, X. Jiang, N. Rong, S. Liu, G. He, J. Lu, and Y. Su, “High-efficiency video-rate holographic display using quantum dot doped liquid crystal,” J. Disp. Technol. 12(4), 362–367 (2016).
[Crossref]

X. Li, C. P. Chen, H. Gao, Z. He, Y. Xiong, H. Li, W. Hu, Z. Ye, G. He, J. Lu, and Y. Su, “Video-rate holographic display using azo-dye-doped liquid crystal,” J. Disp. Technol. 10(6), 438–443 (2014).
[Crossref]

Chen, P.

Cheng, Z.-D.

M.-Y. Xu, Y.-K. Liu, Y. Xiang, T. Xia, E. Wang, and Z.-D. Cheng, “A fast light-induced grating in bent-core nematic liquid crystals with in-plane switching,” Appl. Phys. Lett. 103(8), 083507 (2013).
[Crossref]

Christenson, C.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref] [PubMed]

Cipparrone, G.

P. Pagliusi and G. Cipparrone, “Photorefractive effect due to a photoinduced surface-charge modulation in undoped liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(6), 061708 (2004).
[Crossref] [PubMed]

Flores, D.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref] [PubMed]

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[Crossref] [PubMed]

Fu, J.

Gabor, D.

D. Gabor, “A new microscopic principle,” Nature 161(4098), 777–778 (1948).
[Crossref] [PubMed]

Gao, H.

X. Li, C. P. Chen, H. Gao, Z. He, Y. Xiong, H. Li, W. Hu, Z. Ye, G. He, J. Lu, and Y. Su, “Video-rate holographic display using azo-dye-doped liquid crystal,” J. Disp. Technol. 10(6), 438–443 (2014).
[Crossref]

Garcia, R. R.

R. R. Garcia and C. Berrospe-Rodriguez, “Enhancement of the coupling gain in GaAs-liquid crystal hybrid devices,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 561(1), 68–73 (2012).
[Crossref]

Geng, J.

J. Geng, “Three-dimensional display technologies,” Adv. Opt. Photonics 5(4), 456–535 (2013).
[Crossref] [PubMed]

Gu, T.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref] [PubMed]

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[Crossref] [PubMed]

He, G.

X. Li, C. P. Chen, Y. Li, P. Zhou, X. Jiang, N. Rong, S. Liu, G. He, J. Lu, and Y. Su, “High-efficiency video-rate holographic display using quantum dot doped liquid crystal,” J. Disp. Technol. 12(4), 362–367 (2016).
[Crossref]

X. Li, C. P. Chen, H. Gao, Z. He, Y. Xiong, H. Li, W. Hu, Z. Ye, G. He, J. Lu, and Y. Su, “Video-rate holographic display using azo-dye-doped liquid crystal,” J. Disp. Technol. 10(6), 438–443 (2014).
[Crossref]

He, Z.

X. Li, C. P. Chen, H. Gao, Z. He, Y. Xiong, H. Li, W. Hu, Z. Ye, G. He, J. Lu, and Y. Su, “Video-rate holographic display using azo-dye-doped liquid crystal,” J. Disp. Technol. 10(6), 438–443 (2014).
[Crossref]

Hsieh, W.-Y.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref] [PubMed]

Hu, W.

X. Li, C. P. Chen, H. Gao, Z. He, Y. Xiong, H. Li, W. Hu, Z. Ye, G. He, J. Lu, and Y. Su, “Video-rate holographic display using azo-dye-doped liquid crystal,” J. Disp. Technol. 10(6), 438–443 (2014).
[Crossref]

Huang, F.

H. Zhao, C. Lian, F. Huang, T. Xue, X. Sun, Y. K. Zou, and J. Zhang, “Impact of grating spacing and electric field on real time updatable holographic recording in nanoscale ZnSe film assisted liquid crystal cells,” Appl. Phys. Lett. 101(21), 211118 (2012).
[Crossref]

Januszko, A.

S. Bartkiewicz, A. Januszko, A. Miniewicz, and J. Parka, “Dye-doped liquid crystal composite for real-time holography,” Pure Appl. Opt. 5(6), 799–809 (1996).
[Crossref]

Jiang, X.

X. Li, C. P. Chen, Y. Li, P. Zhou, X. Jiang, N. Rong, S. Liu, G. He, J. Lu, and Y. Su, “High-efficiency video-rate holographic display using quantum dot doped liquid crystal,” J. Disp. Technol. 12(4), 362–367 (2016).
[Crossref]

Kabir, A.

A. Kabir, A. M. Ajward, and H. P. Wagner, “Holographic imaging using the phase coherent photorefractive effect in ZnSe quantum wells,” Appl. Phys. Lett. 93(6), 063504 (2008).
[Crossref]

Kajzar, F.

S. Bartkiewicz, A. Miniewicz, B. Sahraoui, and F. Kajzar, “Dynamic charge-carrier-mobility-mediated holography in thin layers of photoconducting polymers,” Appl. Phys. Lett. 81(20), 3705–3707 (2002).
[Crossref]

F. Kajzar, S. Bartkiewicz, and A. Miniewicz, “Optical amplification with high gain in hybrid-polymer–liquid-crystal structures,” Appl. Phys. Lett. 74(20), 2924–2926 (1999).
[Crossref]

Kathaperumal, M.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref] [PubMed]

Kawabe, Y.

Khoo, I. C.

Kinashi, K.

N. Tsutsumi, K. Kinashi, W. Sakai, J. Nishide, Y. Kawabe, and H. Sasabe, “Real-time three-dimensional holographic display using a monolithic organic compound dispersed film,” Opt. Mater. Express 2(8), 1003–1010 (2012).
[Crossref]

N. Tsutsumi, K. Kinashi, A. Nonomura, and W. Sakai, “Quickly updatable hologram images using poly(N-vinyl Carbazole) (PVCz) photorefractive polymer composite,” Materials (Basel) 5(12), 1477–1486 (2012).
[Crossref]

Kippelen, N. V.

B. L. Volodin, K. Meerholz, B. Sandalphon, N. V. Kippelen, Kukhtarev, and N. Peyghambarian, “Highly efficient photorefractive polymers for dynamic holography,” Opt. Eng. 34(8), 2213–2223 (1995).
[Crossref]

Kukhtarev,

B. L. Volodin, K. Meerholz, B. Sandalphon, N. V. Kippelen, Kukhtarev, and N. Peyghambarian, “Highly efficient photorefractive polymers for dynamic holography,” Opt. Eng. 34(8), 2213–2223 (1995).
[Crossref]

Li, G.

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[Crossref] [PubMed]

Li, H.

X. Li, C. P. Chen, H. Gao, Z. He, Y. Xiong, H. Li, W. Hu, Z. Ye, G. He, J. Lu, and Y. Su, “Video-rate holographic display using azo-dye-doped liquid crystal,” J. Disp. Technol. 10(6), 438–443 (2014).
[Crossref]

Li, X.

X. Li, C. P. Chen, Y. Li, P. Zhou, X. Jiang, N. Rong, S. Liu, G. He, J. Lu, and Y. Su, “High-efficiency video-rate holographic display using quantum dot doped liquid crystal,” J. Disp. Technol. 12(4), 362–367 (2016).
[Crossref]

X. Li, C. P. Chen, H. Gao, Z. He, Y. Xiong, H. Li, W. Hu, Z. Ye, G. He, J. Lu, and Y. Su, “Video-rate holographic display using azo-dye-doped liquid crystal,” J. Disp. Technol. 10(6), 438–443 (2014).
[Crossref]

Li, Y.

X. Li, C. P. Chen, Y. Li, P. Zhou, X. Jiang, N. Rong, S. Liu, G. He, J. Lu, and Y. Su, “High-efficiency video-rate holographic display using quantum dot doped liquid crystal,” J. Disp. Technol. 12(4), 362–367 (2016).
[Crossref]

Lian, C.

H. Zhao, C. Lian, F. Huang, T. Xue, X. Sun, Y. K. Zou, and J. Zhang, “Impact of grating spacing and electric field on real time updatable holographic recording in nanoscale ZnSe film assisted liquid crystal cells,” Appl. Phys. Lett. 101(21), 211118 (2012).
[Crossref]

Lin, W.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref] [PubMed]

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[Crossref] [PubMed]

Liu, S.

X. Li, C. P. Chen, Y. Li, P. Zhou, X. Jiang, N. Rong, S. Liu, G. He, J. Lu, and Y. Su, “High-efficiency video-rate holographic display using quantum dot doped liquid crystal,” J. Disp. Technol. 12(4), 362–367 (2016).
[Crossref]

Liu, Y.-K.

M.-Y. Xu, Y.-K. Liu, Y. Xiang, T. Xia, E. Wang, and Z.-D. Cheng, “A fast light-induced grating in bent-core nematic liquid crystals with in-plane switching,” Appl. Phys. Lett. 103(8), 083507 (2013).
[Crossref]

Lu, J.

X. Li, C. P. Chen, Y. Li, P. Zhou, X. Jiang, N. Rong, S. Liu, G. He, J. Lu, and Y. Su, “High-efficiency video-rate holographic display using quantum dot doped liquid crystal,” J. Disp. Technol. 12(4), 362–367 (2016).
[Crossref]

X. Li, C. P. Chen, H. Gao, Z. He, Y. Xiong, H. Li, W. Hu, Z. Ye, G. He, J. Lu, and Y. Su, “Video-rate holographic display using azo-dye-doped liquid crystal,” J. Disp. Technol. 10(6), 438–443 (2014).
[Crossref]

Lynn, B.

B. Lynn, P. A. Blanche, and N. Peyghambarian, “Photorefractive polymers for holography,” J. Polym. Sci. B 52(3), 193–231 (2014).
[Crossref]

Meerholz, K.

B. L. Volodin, K. Meerholz, B. Sandalphon, N. V. Kippelen, Kukhtarev, and N. Peyghambarian, “Highly efficient photorefractive polymers for dynamic holography,” Opt. Eng. 34(8), 2213–2223 (1995).
[Crossref]

Meng, C.

Miniewicz, A.

S. Bartkiewicz, A. Miniewicz, B. Sahraoui, and F. Kajzar, “Dynamic charge-carrier-mobility-mediated holography in thin layers of photoconducting polymers,” Appl. Phys. Lett. 81(20), 3705–3707 (2002).
[Crossref]

F. Kajzar, S. Bartkiewicz, and A. Miniewicz, “Optical amplification with high gain in hybrid-polymer–liquid-crystal structures,” Appl. Phys. Lett. 74(20), 2924–2926 (1999).
[Crossref]

S. Bartkiewicz, A. Januszko, A. Miniewicz, and J. Parka, “Dye-doped liquid crystal composite for real-time holography,” Pure Appl. Opt. 5(6), 799–809 (1996).
[Crossref]

Mysliwiec, J.

L. Sznitko, A. Anczykowska, J. Mysliwiec, and S. Bartkiewicz, “Influence of grating period on kinetics of self-diffraction in nematic liquid crystal panel with photoconducting polymeric layer,” Appl. Phys. Lett. 96(11), 111106 (2010).
[Crossref]

Nishide, J.

Nonomura, A.

N. Tsutsumi, K. Kinashi, A. Nonomura, and W. Sakai, “Quickly updatable hologram images using poly(N-vinyl Carbazole) (PVCz) photorefractive polymer composite,” Materials (Basel) 5(12), 1477–1486 (2012).
[Crossref]

Norwood, R. A.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref] [PubMed]

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[Crossref] [PubMed]

Pagliusi, P.

P. Pagliusi and G. Cipparrone, “Photorefractive effect due to a photoinduced surface-charge modulation in undoped liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(6), 061708 (2004).
[Crossref] [PubMed]

Parka, J.

S. Bartkiewicz, A. Januszko, A. Miniewicz, and J. Parka, “Dye-doped liquid crystal composite for real-time holography,” Pure Appl. Opt. 5(6), 799–809 (1996).
[Crossref]

Petts, C. R.

Peyghambarian, N.

B. Lynn, P. A. Blanche, and N. Peyghambarian, “Photorefractive polymers for holography,” J. Polym. Sci. B 52(3), 193–231 (2014).
[Crossref]

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref] [PubMed]

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[Crossref] [PubMed]

B. L. Volodin, K. Meerholz, B. Sandalphon, N. V. Kippelen, Kukhtarev, and N. Peyghambarian, “Highly efficient photorefractive polymers for dynamic holography,” Opt. Eng. 34(8), 2213–2223 (1995).
[Crossref]

Powell, M. A.

Rachwal, B.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref] [PubMed]

Rokutanda, S.

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[Crossref] [PubMed]

Rong, N.

X. Li, C. P. Chen, Y. Li, P. Zhou, X. Jiang, N. Rong, S. Liu, G. He, J. Lu, and Y. Su, “High-efficiency video-rate holographic display using quantum dot doped liquid crystal,” J. Disp. Technol. 12(4), 362–367 (2016).
[Crossref]

Rudenko, E.

E. Rudenko and A. Sukhov, “Photoinduced electrical conductivity and photorefraction in a nematic liquid crystal,” JETP Lett. 59, 142–146 (1994).

Sahraoui, B.

S. Bartkiewicz, A. Miniewicz, B. Sahraoui, and F. Kajzar, “Dynamic charge-carrier-mobility-mediated holography in thin layers of photoconducting polymers,” Appl. Phys. Lett. 81(20), 3705–3707 (2002).
[Crossref]

Sakai, W.

N. Tsutsumi, K. Kinashi, W. Sakai, J. Nishide, Y. Kawabe, and H. Sasabe, “Real-time three-dimensional holographic display using a monolithic organic compound dispersed film,” Opt. Mater. Express 2(8), 1003–1010 (2012).
[Crossref]

N. Tsutsumi, K. Kinashi, A. Nonomura, and W. Sakai, “Quickly updatable hologram images using poly(N-vinyl Carbazole) (PVCz) photorefractive polymer composite,” Materials (Basel) 5(12), 1477–1486 (2012).
[Crossref]

Sandalphon, B.

B. L. Volodin, K. Meerholz, B. Sandalphon, N. V. Kippelen, Kukhtarev, and N. Peyghambarian, “Highly efficient photorefractive polymers for dynamic holography,” Opt. Eng. 34(8), 2213–2223 (1995).
[Crossref]

Sasabe, H.

Shen, L.

Shih, M. Y.

Siddiqui, O.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref] [PubMed]

St Hilaire, P.

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[Crossref] [PubMed]

Su, Y.

X. Li, C. P. Chen, Y. Li, P. Zhou, X. Jiang, N. Rong, S. Liu, G. He, J. Lu, and Y. Su, “High-efficiency video-rate holographic display using quantum dot doped liquid crystal,” J. Disp. Technol. 12(4), 362–367 (2016).
[Crossref]

X. Li, C. P. Chen, H. Gao, Z. He, Y. Xiong, H. Li, W. Hu, Z. Ye, G. He, J. Lu, and Y. Su, “Video-rate holographic display using azo-dye-doped liquid crystal,” J. Disp. Technol. 10(6), 438–443 (2014).
[Crossref]

Sukhov, A.

E. Rudenko and A. Sukhov, “Photoinduced electrical conductivity and photorefraction in a nematic liquid crystal,” JETP Lett. 59, 142–146 (1994).

Sun, S. Q.

Sun, X.

H. Zhao, C. Lian, F. Huang, T. Xue, X. Sun, Y. K. Zou, and J. Zhang, “Impact of grating spacing and electric field on real time updatable holographic recording in nanoscale ZnSe film assisted liquid crystal cells,” Appl. Phys. Lett. 101(21), 211118 (2012).
[Crossref]

Suresh, S.

S. Suresh, “Investigations on the photoconductivity studies of ZnSe, ZnS and PbS thin films,” Sci. Res. Essays 10(10), 378–382 (2015).

Sznitko, L.

L. Sznitko, A. Anczykowska, J. Mysliwiec, and S. Bartkiewicz, “Influence of grating period on kinetics of self-diffraction in nematic liquid crystal panel with photoconducting polymeric layer,” Appl. Phys. Lett. 96(11), 111106 (2010).
[Crossref]

Tang, B.

Tao, S.

Tay, S.

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[Crossref] [PubMed]

Thomas, J.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref] [PubMed]

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[Crossref] [PubMed]

Tsutsumi, N.

N. Tsutsumi, K. Kinashi, A. Nonomura, and W. Sakai, “Quickly updatable hologram images using poly(N-vinyl Carbazole) (PVCz) photorefractive polymer composite,” Materials (Basel) 5(12), 1477–1486 (2012).
[Crossref]

N. Tsutsumi, K. Kinashi, W. Sakai, J. Nishide, Y. Kawabe, and H. Sasabe, “Real-time three-dimensional holographic display using a monolithic organic compound dispersed film,” Opt. Mater. Express 2(8), 1003–1010 (2012).
[Crossref]

Tunç, A. V.

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[Crossref] [PubMed]

Volodin, B. L.

B. L. Volodin, K. Meerholz, B. Sandalphon, N. V. Kippelen, Kukhtarev, and N. Peyghambarian, “Highly efficient photorefractive polymers for dynamic holography,” Opt. Eng. 34(8), 2213–2223 (1995).
[Crossref]

Voorakaranam, R.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref] [PubMed]

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[Crossref] [PubMed]

Wagner, H. P.

A. Kabir, A. M. Ajward, and H. P. Wagner, “Holographic imaging using the phase coherent photorefractive effect in ZnSe quantum wells,” Appl. Phys. Lett. 93(6), 063504 (2008).
[Crossref]

Wang, E.

M.-Y. Xu, Y.-K. Liu, Y. Xiang, T. Xia, E. Wang, and Z.-D. Cheng, “A fast light-induced grating in bent-core nematic liquid crystals with in-plane switching,” Appl. Phys. Lett. 103(8), 083507 (2013).
[Crossref]

Wang, M. R.

Wang, P.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref] [PubMed]

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[Crossref] [PubMed]

Wasielewski, M. R.

G. P. Wiederrecht, B. A. Yoon, and M. R. Wasielewski, “High photorefractive gain in nematic liquid crystals doped with electron donor and acceptor molecules,” Science 270(5243), 1794–1797 (1995).
[Crossref]

Wiederrecht, G. P.

G. P. Wiederrecht, B. A. Yoon, and M. R. Wasielewski, “High photorefractive gain in nematic liquid crystals doped with electron donor and acceptor molecules,” Science 270(5243), 1794–1797 (1995).
[Crossref]

Wood, M.

Wu, P.

Xia, T.

M.-Y. Xu, Y.-K. Liu, Y. Xiang, T. Xia, E. Wang, and Z.-D. Cheng, “A fast light-induced grating in bent-core nematic liquid crystals with in-plane switching,” Appl. Phys. Lett. 103(8), 083507 (2013).
[Crossref]

Xiang, Y.

M.-Y. Xu, Y.-K. Liu, Y. Xiang, T. Xia, E. Wang, and Z.-D. Cheng, “A fast light-induced grating in bent-core nematic liquid crystals with in-plane switching,” Appl. Phys. Lett. 103(8), 083507 (2013).
[Crossref]

Xiong, Y.

X. Li, C. P. Chen, H. Gao, Z. He, Y. Xiong, H. Li, W. Hu, Z. Ye, G. He, J. Lu, and Y. Su, “Video-rate holographic display using azo-dye-doped liquid crystal,” J. Disp. Technol. 10(6), 438–443 (2014).
[Crossref]

Xu, M.-Y.

M.-Y. Xu, Y.-K. Liu, Y. Xiang, T. Xia, E. Wang, and Z.-D. Cheng, “A fast light-induced grating in bent-core nematic liquid crystals with in-plane switching,” Appl. Phys. Lett. 103(8), 083507 (2013).
[Crossref]

Xue, T.

C. Meng, H. Zhao, T. Xue, J. Fu, and J. Zhang, “Impact of thickness of liquid crystal layer on response rate and exponential gain coefficient with assistance of ZnSe film,” Appl. Opt. 53(36), 8456–8462 (2014).
[Crossref] [PubMed]

H. Zhao, C. Lian, F. Huang, T. Xue, X. Sun, Y. K. Zou, and J. Zhang, “Impact of grating spacing and electric field on real time updatable holographic recording in nanoscale ZnSe film assisted liquid crystal cells,” Appl. Phys. Lett. 101(21), 211118 (2012).
[Crossref]

Yamamoto, M.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref] [PubMed]

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[Crossref] [PubMed]

Ye, Z.

X. Li, C. P. Chen, H. Gao, Z. He, Y. Xiong, H. Li, W. Hu, Z. Ye, G. He, J. Lu, and Y. Su, “Video-rate holographic display using azo-dye-doped liquid crystal,” J. Disp. Technol. 10(6), 438–443 (2014).
[Crossref]

Yoon, B. A.

G. P. Wiederrecht, B. A. Yoon, and M. R. Wasielewski, “High photorefractive gain in nematic liquid crystals doped with electron donor and acceptor molecules,” Science 270(5243), 1794–1797 (1995).
[Crossref]

Zhang, J.

C. Meng, H. Zhao, T. Xue, J. Fu, and J. Zhang, “Impact of thickness of liquid crystal layer on response rate and exponential gain coefficient with assistance of ZnSe film,” Appl. Opt. 53(36), 8456–8462 (2014).
[Crossref] [PubMed]

H. Zhao, C. Lian, F. Huang, T. Xue, X. Sun, Y. K. Zou, and J. Zhang, “Impact of grating spacing and electric field on real time updatable holographic recording in nanoscale ZnSe film assisted liquid crystal cells,” Appl. Phys. Lett. 101(21), 211118 (2012).
[Crossref]

Zhao, H.

C. Meng, H. Zhao, T. Xue, J. Fu, and J. Zhang, “Impact of thickness of liquid crystal layer on response rate and exponential gain coefficient with assistance of ZnSe film,” Appl. Opt. 53(36), 8456–8462 (2014).
[Crossref] [PubMed]

H. Zhao, C. Lian, F. Huang, T. Xue, X. Sun, Y. K. Zou, and J. Zhang, “Impact of grating spacing and electric field on real time updatable holographic recording in nanoscale ZnSe film assisted liquid crystal cells,” Appl. Phys. Lett. 101(21), 211118 (2012).
[Crossref]

Zhou, P.

X. Li, C. P. Chen, Y. Li, P. Zhou, X. Jiang, N. Rong, S. Liu, G. He, J. Lu, and Y. Su, “High-efficiency video-rate holographic display using quantum dot doped liquid crystal,” J. Disp. Technol. 12(4), 362–367 (2016).
[Crossref]

Zhou, Y.

Zou, Y. K.

H. Zhao, C. Lian, F. Huang, T. Xue, X. Sun, Y. K. Zou, and J. Zhang, “Impact of grating spacing and electric field on real time updatable holographic recording in nanoscale ZnSe film assisted liquid crystal cells,” Appl. Phys. Lett. 101(21), 211118 (2012).
[Crossref]

Adv. Opt. Photonics (1)

J. Geng, “Three-dimensional display technologies,” Adv. Opt. Photonics 5(4), 456–535 (2013).
[Crossref] [PubMed]

Appl. Opt. (2)

Appl. Phys. Lett. (6)

M.-Y. Xu, Y.-K. Liu, Y. Xiang, T. Xia, E. Wang, and Z.-D. Cheng, “A fast light-induced grating in bent-core nematic liquid crystals with in-plane switching,” Appl. Phys. Lett. 103(8), 083507 (2013).
[Crossref]

S. Bartkiewicz, A. Miniewicz, B. Sahraoui, and F. Kajzar, “Dynamic charge-carrier-mobility-mediated holography in thin layers of photoconducting polymers,” Appl. Phys. Lett. 81(20), 3705–3707 (2002).
[Crossref]

A. Kabir, A. M. Ajward, and H. P. Wagner, “Holographic imaging using the phase coherent photorefractive effect in ZnSe quantum wells,” Appl. Phys. Lett. 93(6), 063504 (2008).
[Crossref]

F. Kajzar, S. Bartkiewicz, and A. Miniewicz, “Optical amplification with high gain in hybrid-polymer–liquid-crystal structures,” Appl. Phys. Lett. 74(20), 2924–2926 (1999).
[Crossref]

L. Sznitko, A. Anczykowska, J. Mysliwiec, and S. Bartkiewicz, “Influence of grating period on kinetics of self-diffraction in nematic liquid crystal panel with photoconducting polymeric layer,” Appl. Phys. Lett. 96(11), 111106 (2010).
[Crossref]

H. Zhao, C. Lian, F. Huang, T. Xue, X. Sun, Y. K. Zou, and J. Zhang, “Impact of grating spacing and electric field on real time updatable holographic recording in nanoscale ZnSe film assisted liquid crystal cells,” Appl. Phys. Lett. 101(21), 211118 (2012).
[Crossref]

J. Disp. Technol. (2)

X. Li, C. P. Chen, Y. Li, P. Zhou, X. Jiang, N. Rong, S. Liu, G. He, J. Lu, and Y. Su, “High-efficiency video-rate holographic display using quantum dot doped liquid crystal,” J. Disp. Technol. 12(4), 362–367 (2016).
[Crossref]

X. Li, C. P. Chen, H. Gao, Z. He, Y. Xiong, H. Li, W. Hu, Z. Ye, G. He, J. Lu, and Y. Su, “Video-rate holographic display using azo-dye-doped liquid crystal,” J. Disp. Technol. 10(6), 438–443 (2014).
[Crossref]

J. Polym. Sci. B (1)

B. Lynn, P. A. Blanche, and N. Peyghambarian, “Photorefractive polymers for holography,” J. Polym. Sci. B 52(3), 193–231 (2014).
[Crossref]

JETP Lett. (1)

E. Rudenko and A. Sukhov, “Photoinduced electrical conductivity and photorefraction in a nematic liquid crystal,” JETP Lett. 59, 142–146 (1994).

Materials (Basel) (1)

N. Tsutsumi, K. Kinashi, A. Nonomura, and W. Sakai, “Quickly updatable hologram images using poly(N-vinyl Carbazole) (PVCz) photorefractive polymer composite,” Materials (Basel) 5(12), 1477–1486 (2012).
[Crossref]

Mol. Cryst. Liq. Cryst. (Phila. Pa.) (1)

R. R. Garcia and C. Berrospe-Rodriguez, “Enhancement of the coupling gain in GaAs-liquid crystal hybrid devices,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 561(1), 68–73 (2012).
[Crossref]

Nature (3)

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref] [PubMed]

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[Crossref] [PubMed]

D. Gabor, “A new microscopic principle,” Nature 161(4098), 777–778 (1948).
[Crossref] [PubMed]

Opt. Eng. (1)

B. L. Volodin, K. Meerholz, B. Sandalphon, N. V. Kippelen, Kukhtarev, and N. Peyghambarian, “Highly efficient photorefractive polymers for dynamic holography,” Opt. Eng. 34(8), 2213–2223 (1995).
[Crossref]

Opt. Express (2)

Opt. Lett. (2)

Opt. Mater. Express (1)

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

P. Pagliusi and G. Cipparrone, “Photorefractive effect due to a photoinduced surface-charge modulation in undoped liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(6), 061708 (2004).
[Crossref] [PubMed]

Pure Appl. Opt. (1)

S. Bartkiewicz, A. Januszko, A. Miniewicz, and J. Parka, “Dye-doped liquid crystal composite for real-time holography,” Pure Appl. Opt. 5(6), 799–809 (1996).
[Crossref]

Sci. Res. Essays (1)

S. Suresh, “Investigations on the photoconductivity studies of ZnSe, ZnS and PbS thin films,” Sci. Res. Essays 10(10), 378–382 (2015).

Science (1)

G. P. Wiederrecht, B. A. Yoon, and M. R. Wasielewski, “High photorefractive gain in nematic liquid crystals doped with electron donor and acceptor molecules,” Science 270(5243), 1794–1797 (1995).
[Crossref]

Other (1)

P. Günter and J.-P. Huignard, Photorefractive Materials and their Applications (Springer, 2007).

Supplementary Material (3)

NameDescription
» Visualization 1: MP4 (5105 KB)      Visualization 1 blue running horse
» Visualization 2: MP4 (15180 KB)      Visualization 1 red running horse
» Visualization 3: MP4 (11782 KB)      Visualization 1 green running horse

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Figure 1
Figure 1 (a) Structure of the hybrid LC device; (b) Geometry for recording holograms.
Figure 2
Figure 2 Transmission spectrum of the hybrid LC device.
Fig. 3
Fig. 3 Dependence of photoconductivity in the hybrid LC cell on the laser powers.
Figure 4
Figure 4 Dependence of the diffraction efficiency on the total recording laser powers.
Fig. 5
Fig. 5 First-order diffraction intensity versus response time at different recording laser powers.
Fig. 6
Fig. 6 Dependence of the response time on the total recording laser powers.
Fig. 7
Fig. 7 Experimental setup for the holographic display. M1-M3: mirrors, SLF: spatial light filter, SLM: spatial light modulator.
Figure 8
Figure 8 (a) Snapshots of the holographic videos reconstructed by three different wavelengths of 632.8 nm, 532 nm, and 488 nm at an applied electrical field of 5 V/μm (Visualization 1,Visualization 2,Visualization 3); (b) Reconstructed images of a “panther”.

Tables (2)

Tables Icon

Table 1 Three Kinds of Cell Configurations.

Tables Icon

Table 2 Summary of the Experimental Data for the Three Kinds of LC Devices.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

S = Δ n α I τ ,

Metrics