Abstract

The superlatives of graphene cover a whole range of properties: electrical, chemical, mechanical, thermal and others. These special properties earn graphene a place in current or future applications. Here we demonstrate one such application – adaptive contact lenses based on liquid crystals, where simultaneously the high electrical conductivity, transparency, flexibility and elasticity of graphene are being utilised. In our devices graphene is used as a transparent conductive coating on curved PMMA substrates. The adaptive lenses provide a + 0.7 D change in optical power with an applied voltage of 7.1 Vrms - perfect to correct presbyopia, the age-related condition that limits the near focus ability of the eye.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Electronic liquid crystal contact lenses for the correction of presbyopia

Harry E. Milton, Philip B. Morgan, John H. Clamp, and Helen F Gleeson
Opt. Express 22(7) 8035-8040 (2014)

Novel switching mode in a vertically aligned liquid crystal contact lens

Ishtiaque M. Syed, Sarabjot Kaur, Harry E. Milton, Devesh Mistry, James Bailey, Philip B. Morgan, J. Cliff Jones, and Helen F. Gleeson
Opt. Express 23(8) 9911-9916 (2015)

Polymer-dispersed liquid crystal devices with graphene electrodes

Seok-Hwan Chung and Hee Yeon Noh
Opt. Express 23(25) 32149-32157 (2015)

References

  • View by:
  • |
  • |
  • |

  1. P. Blake, P. D. Brimicombe, R. R. Nair, T. J. Booth, D. Jiang, F. Schedin, L. A. Ponomarenko, S. V. Morozov, H. F. Gleeson, E. W. Hill, A. K. Geim, and K. S. Novoselov, “Graphene-based liquid crystal device,” Nano Lett. 8(6), 1704–1708 (2008).
    [Crossref] [PubMed]
  2. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
    [Crossref] [PubMed]
  3. A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
    [Crossref] [PubMed]
  4. C. Lee, X. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science 321(5887), 385–388 (2008).
    [Crossref] [PubMed]
  5. A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett. 8(3), 902–907 (2008).
    [Crossref] [PubMed]
  6. S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
    [Crossref] [PubMed]
  7. K. Chung, C. H. Lee, and G. C. Yi, “Transferable GaN layers grown on ZnO-coated graphene layers for optoelectronic devices,” Science 330(6004), 655–657 (2010).
    [Crossref] [PubMed]
  8. T. H. Han, Y. Lee, M. R. Choi, S. H. Woo, S. H. Bae, B. H. Hong, J. H. Ahn, and T. W. Lee, “Extremely efficient flexible organic light-emitting diodes with modified graphene anode,” Nat. Photonics 6(2), 105–110 (2012).
    [Crossref]
  9. W. S. Koh, C. H. Gan, W. K. Phua, Y. A. Akimov, and P Bai, “the potential of graphene as an ito Replacement in Organic Solar Cells: An Optical Perspective,” IEEE J. Sel. Top. Quantum Electron. 20, 4000107 (2014).
  10. X. Wang, L. Zhi, and K. Müllen, “Transparent, conductive graphene electrodes for dye-sensitized solar cells,” Nano Lett. 8(1), 323–327 (2008).
    [Crossref] [PubMed]
  11. P. G. Campbell, M. D. Merrill, B. C. Wood, E. Montalvo, M. A. Worsley, T. F. Baumann, and J. Biener, “Battery/supercapacitor hybrid via non-covalent functionalization of graphene macro-assemblies,” J. Mater. Chem. A Mater. Energy Sustain. 2(42), 17764–17770 (2014).
    [Crossref]
  12. D. Kuzum, H. Takano, E. Shim, J. C. Reed, H. Juul, A. G. Richardson, J. de Vries, H. Bink, M. A. Dichter, T. H. Lucas, D. A. Coulter, E. Cubukcu, and B. Litt, “Transparent and flexible low noise graphene electrodes for simultaneous electrophysiology and neuroimaging,” Nat. Commun. 5, 5259 (2014).
    [Crossref] [PubMed]
  13. D. W. Park, A. A. Schendel, S. Mikael, S. K. Brodnick, T. J. Richner, J. P. Ness, M. R. Hayat, F. Atry, S. T. Frye, R. Pashaie, S. Thongpang, Z. Ma, and J. C. Williams, “Graphene-based carbon-layered electrode array technology for neural imaging and optogenetic applications,” Nat. Commun. 5, 5258 (2014).
    [Crossref] [PubMed]
  14. F. Hui, P. Vajha, Y. Shi, Y. Ji, H. Duan, A. Padovani, L. Larcher, X. R. Li, J. J. Xu, and M. Lanza, “Moving graphene devices from lab to market: advanced graphene-coated nanoprobes,” Nanoscale. in press.
  15. H. E. Milton, H. F. Gleeson, P. B. Morgan, J. W. Goodby, S. Cowling, and J. H. Clamp, “Switchable liquid crystal contact lenses: dynamic vision for the ageing eye,” Proc. SPIE 9004, 900401 (2014).
  16. H. E. Milton, P. B. Morgan, J. H. Clamp, and H. F. Gleeson, “Electronic liquid crystal contact lenses for the correction of presbyopia,” Opt. Express 22(7), 8035–8040 (2014).
    [Crossref] [PubMed]
  17. H. Milton, P. Brimicombe, P. Morgan, H. Gleeson, and J. Clamp, “Optimization of refractive liquid crystal lenses using an efficient multigrid simulation,” Opt. Express 20(10), 11159–11165 (2012).
    [Crossref] [PubMed]
  18. I. M. Syed, S. Kaur, H. E. Milton, D. Mistry, J. Bailey, P. B. Morgan, J. C. Jones, and H. F. Gleeson, “Novel switching mode in a vertically aligned liquid crystal contact lens,” Opt. Express 23(8), 9911–9916 (2015).
    [Crossref] [PubMed]
  19. A. R. Lingley, M. Ali, Y. Liao, R. Mirjalili, M. Klonner, M. Sopanen, S. Suihkonen, T. Shen, B. P. Otis, H. Lipsanen, and B. A. Parviz, “A single-pixel wireless contact lens display,” J. Micromech. Microeng. 21(12), 125014 (2011).
    [Crossref]
  20. Y.-T. Liao, H. Yao, A. R. Lingley, B. A. Parviz, and B. P. Otis, “A 3-microW CMOS Glucose Sensor for Wireless Contact-Lens Tear Glucose Monitoring,” IEEE J. Solid-State Circuits 47(1), 335–344 (2012).
    [Crossref]
  21. H. Langley, “Google’s smart contact lenses just went from concept to reality,” in http://www.techradar.com/news/wearables/google-s-smart-contact-lenses-just-went-from-concept-to-reality-1302370 (Techradar 2015).
  22. W. N. Charman, “Restoring accommodation: a dream or an approaching reality?” Ophthalmic Physiol. Opt. 25(1), 1–6 (2005).
    [Crossref] [PubMed]
  23. C. Peng, Z. Jia, D. Bianculli, T. Li, and J. Lou, “In situ electro-mechanical experiments and mechanics modeling of tensile cracking in indium tin oxide thin films on polyimide substrates,” J. Appl. Phys. 109(10), 1035301 (2011).
    [Crossref]
  24. D. W. Berreman, “Optics in stratified and anisotropic media: 4×4-matrix formulation,” J. Opt. Soc. Am. 62(4), 502–510 (1972).
    [Crossref]
  25. H. G. Yoon, N. W. Roberts, and H. F. Gleeson, “An experimental investigation of discrete changes in pitch in a thin, planar chiral nematic device,” Liq. Cryst. 33(4), 503–510 (2006).
    [Crossref]
  26. “emPower!™, the first electronic focusing prescription eyewear!” (2015), http://www.heitzoptical.com/Content/eyeglasses/lenses/pixeloptics/empower.aspx .
  27. M. Hofmann, Y.-P. Hsieh, A. L. Hsu, and J. Kong, “Scalable, flexible and high resolution patterning of CVD graphene,” Nanoscale 6(1), 289–292 (2014).
    [Crossref] [PubMed]

2015 (1)

2014 (7)

H. E. Milton, P. B. Morgan, J. H. Clamp, and H. F. Gleeson, “Electronic liquid crystal contact lenses for the correction of presbyopia,” Opt. Express 22(7), 8035–8040 (2014).
[Crossref] [PubMed]

M. Hofmann, Y.-P. Hsieh, A. L. Hsu, and J. Kong, “Scalable, flexible and high resolution patterning of CVD graphene,” Nanoscale 6(1), 289–292 (2014).
[Crossref] [PubMed]

P. G. Campbell, M. D. Merrill, B. C. Wood, E. Montalvo, M. A. Worsley, T. F. Baumann, and J. Biener, “Battery/supercapacitor hybrid via non-covalent functionalization of graphene macro-assemblies,” J. Mater. Chem. A Mater. Energy Sustain. 2(42), 17764–17770 (2014).
[Crossref]

D. Kuzum, H. Takano, E. Shim, J. C. Reed, H. Juul, A. G. Richardson, J. de Vries, H. Bink, M. A. Dichter, T. H. Lucas, D. A. Coulter, E. Cubukcu, and B. Litt, “Transparent and flexible low noise graphene electrodes for simultaneous electrophysiology and neuroimaging,” Nat. Commun. 5, 5259 (2014).
[Crossref] [PubMed]

D. W. Park, A. A. Schendel, S. Mikael, S. K. Brodnick, T. J. Richner, J. P. Ness, M. R. Hayat, F. Atry, S. T. Frye, R. Pashaie, S. Thongpang, Z. Ma, and J. C. Williams, “Graphene-based carbon-layered electrode array technology for neural imaging and optogenetic applications,” Nat. Commun. 5, 5258 (2014).
[Crossref] [PubMed]

H. E. Milton, H. F. Gleeson, P. B. Morgan, J. W. Goodby, S. Cowling, and J. H. Clamp, “Switchable liquid crystal contact lenses: dynamic vision for the ageing eye,” Proc. SPIE 9004, 900401 (2014).

W. S. Koh, C. H. Gan, W. K. Phua, Y. A. Akimov, and P Bai, “the potential of graphene as an ito Replacement in Organic Solar Cells: An Optical Perspective,” IEEE J. Sel. Top. Quantum Electron. 20, 4000107 (2014).

2012 (3)

Y.-T. Liao, H. Yao, A. R. Lingley, B. A. Parviz, and B. P. Otis, “A 3-microW CMOS Glucose Sensor for Wireless Contact-Lens Tear Glucose Monitoring,” IEEE J. Solid-State Circuits 47(1), 335–344 (2012).
[Crossref]

T. H. Han, Y. Lee, M. R. Choi, S. H. Woo, S. H. Bae, B. H. Hong, J. H. Ahn, and T. W. Lee, “Extremely efficient flexible organic light-emitting diodes with modified graphene anode,” Nat. Photonics 6(2), 105–110 (2012).
[Crossref]

H. Milton, P. Brimicombe, P. Morgan, H. Gleeson, and J. Clamp, “Optimization of refractive liquid crystal lenses using an efficient multigrid simulation,” Opt. Express 20(10), 11159–11165 (2012).
[Crossref] [PubMed]

2011 (2)

C. Peng, Z. Jia, D. Bianculli, T. Li, and J. Lou, “In situ electro-mechanical experiments and mechanics modeling of tensile cracking in indium tin oxide thin films on polyimide substrates,” J. Appl. Phys. 109(10), 1035301 (2011).
[Crossref]

A. R. Lingley, M. Ali, Y. Liao, R. Mirjalili, M. Klonner, M. Sopanen, S. Suihkonen, T. Shen, B. P. Otis, H. Lipsanen, and B. A. Parviz, “A single-pixel wireless contact lens display,” J. Micromech. Microeng. 21(12), 125014 (2011).
[Crossref]

2010 (2)

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

K. Chung, C. H. Lee, and G. C. Yi, “Transferable GaN layers grown on ZnO-coated graphene layers for optoelectronic devices,” Science 330(6004), 655–657 (2010).
[Crossref] [PubMed]

2008 (4)

P. Blake, P. D. Brimicombe, R. R. Nair, T. J. Booth, D. Jiang, F. Schedin, L. A. Ponomarenko, S. V. Morozov, H. F. Gleeson, E. W. Hill, A. K. Geim, and K. S. Novoselov, “Graphene-based liquid crystal device,” Nano Lett. 8(6), 1704–1708 (2008).
[Crossref] [PubMed]

C. Lee, X. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science 321(5887), 385–388 (2008).
[Crossref] [PubMed]

A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett. 8(3), 902–907 (2008).
[Crossref] [PubMed]

X. Wang, L. Zhi, and K. Müllen, “Transparent, conductive graphene electrodes for dye-sensitized solar cells,” Nano Lett. 8(1), 323–327 (2008).
[Crossref] [PubMed]

2007 (1)

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
[Crossref] [PubMed]

2006 (1)

H. G. Yoon, N. W. Roberts, and H. F. Gleeson, “An experimental investigation of discrete changes in pitch in a thin, planar chiral nematic device,” Liq. Cryst. 33(4), 503–510 (2006).
[Crossref]

2005 (1)

W. N. Charman, “Restoring accommodation: a dream or an approaching reality?” Ophthalmic Physiol. Opt. 25(1), 1–6 (2005).
[Crossref] [PubMed]

2004 (1)

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

1972 (1)

Ahn, J. H.

T. H. Han, Y. Lee, M. R. Choi, S. H. Woo, S. H. Bae, B. H. Hong, J. H. Ahn, and T. W. Lee, “Extremely efficient flexible organic light-emitting diodes with modified graphene anode,” Nat. Photonics 6(2), 105–110 (2012).
[Crossref]

Ahn, J.-H.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

Akimov, Y. A.

W. S. Koh, C. H. Gan, W. K. Phua, Y. A. Akimov, and P Bai, “the potential of graphene as an ito Replacement in Organic Solar Cells: An Optical Perspective,” IEEE J. Sel. Top. Quantum Electron. 20, 4000107 (2014).

Ali, M.

A. R. Lingley, M. Ali, Y. Liao, R. Mirjalili, M. Klonner, M. Sopanen, S. Suihkonen, T. Shen, B. P. Otis, H. Lipsanen, and B. A. Parviz, “A single-pixel wireless contact lens display,” J. Micromech. Microeng. 21(12), 125014 (2011).
[Crossref]

Atry, F.

D. W. Park, A. A. Schendel, S. Mikael, S. K. Brodnick, T. J. Richner, J. P. Ness, M. R. Hayat, F. Atry, S. T. Frye, R. Pashaie, S. Thongpang, Z. Ma, and J. C. Williams, “Graphene-based carbon-layered electrode array technology for neural imaging and optogenetic applications,” Nat. Commun. 5, 5258 (2014).
[Crossref] [PubMed]

Bae, S.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

Bae, S. H.

T. H. Han, Y. Lee, M. R. Choi, S. H. Woo, S. H. Bae, B. H. Hong, J. H. Ahn, and T. W. Lee, “Extremely efficient flexible organic light-emitting diodes with modified graphene anode,” Nat. Photonics 6(2), 105–110 (2012).
[Crossref]

Bai, P

W. S. Koh, C. H. Gan, W. K. Phua, Y. A. Akimov, and P Bai, “the potential of graphene as an ito Replacement in Organic Solar Cells: An Optical Perspective,” IEEE J. Sel. Top. Quantum Electron. 20, 4000107 (2014).

Bailey, J.

Balakrishnan, J.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

Balandin, A. A.

A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett. 8(3), 902–907 (2008).
[Crossref] [PubMed]

Bao, W.

A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett. 8(3), 902–907 (2008).
[Crossref] [PubMed]

Baumann, T. F.

P. G. Campbell, M. D. Merrill, B. C. Wood, E. Montalvo, M. A. Worsley, T. F. Baumann, and J. Biener, “Battery/supercapacitor hybrid via non-covalent functionalization of graphene macro-assemblies,” J. Mater. Chem. A Mater. Energy Sustain. 2(42), 17764–17770 (2014).
[Crossref]

Berreman, D. W.

Bianculli, D.

C. Peng, Z. Jia, D. Bianculli, T. Li, and J. Lou, “In situ electro-mechanical experiments and mechanics modeling of tensile cracking in indium tin oxide thin films on polyimide substrates,” J. Appl. Phys. 109(10), 1035301 (2011).
[Crossref]

Biener, J.

P. G. Campbell, M. D. Merrill, B. C. Wood, E. Montalvo, M. A. Worsley, T. F. Baumann, and J. Biener, “Battery/supercapacitor hybrid via non-covalent functionalization of graphene macro-assemblies,” J. Mater. Chem. A Mater. Energy Sustain. 2(42), 17764–17770 (2014).
[Crossref]

Bink, H.

D. Kuzum, H. Takano, E. Shim, J. C. Reed, H. Juul, A. G. Richardson, J. de Vries, H. Bink, M. A. Dichter, T. H. Lucas, D. A. Coulter, E. Cubukcu, and B. Litt, “Transparent and flexible low noise graphene electrodes for simultaneous electrophysiology and neuroimaging,” Nat. Commun. 5, 5259 (2014).
[Crossref] [PubMed]

Blake, P.

P. Blake, P. D. Brimicombe, R. R. Nair, T. J. Booth, D. Jiang, F. Schedin, L. A. Ponomarenko, S. V. Morozov, H. F. Gleeson, E. W. Hill, A. K. Geim, and K. S. Novoselov, “Graphene-based liquid crystal device,” Nano Lett. 8(6), 1704–1708 (2008).
[Crossref] [PubMed]

Booth, T. J.

P. Blake, P. D. Brimicombe, R. R. Nair, T. J. Booth, D. Jiang, F. Schedin, L. A. Ponomarenko, S. V. Morozov, H. F. Gleeson, E. W. Hill, A. K. Geim, and K. S. Novoselov, “Graphene-based liquid crystal device,” Nano Lett. 8(6), 1704–1708 (2008).
[Crossref] [PubMed]

Brimicombe, P.

Brimicombe, P. D.

P. Blake, P. D. Brimicombe, R. R. Nair, T. J. Booth, D. Jiang, F. Schedin, L. A. Ponomarenko, S. V. Morozov, H. F. Gleeson, E. W. Hill, A. K. Geim, and K. S. Novoselov, “Graphene-based liquid crystal device,” Nano Lett. 8(6), 1704–1708 (2008).
[Crossref] [PubMed]

Brodnick, S. K.

D. W. Park, A. A. Schendel, S. Mikael, S. K. Brodnick, T. J. Richner, J. P. Ness, M. R. Hayat, F. Atry, S. T. Frye, R. Pashaie, S. Thongpang, Z. Ma, and J. C. Williams, “Graphene-based carbon-layered electrode array technology for neural imaging and optogenetic applications,” Nat. Commun. 5, 5258 (2014).
[Crossref] [PubMed]

Calizo, I.

A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett. 8(3), 902–907 (2008).
[Crossref] [PubMed]

Campbell, P. G.

P. G. Campbell, M. D. Merrill, B. C. Wood, E. Montalvo, M. A. Worsley, T. F. Baumann, and J. Biener, “Battery/supercapacitor hybrid via non-covalent functionalization of graphene macro-assemblies,” J. Mater. Chem. A Mater. Energy Sustain. 2(42), 17764–17770 (2014).
[Crossref]

Charman, W. N.

W. N. Charman, “Restoring accommodation: a dream or an approaching reality?” Ophthalmic Physiol. Opt. 25(1), 1–6 (2005).
[Crossref] [PubMed]

Choi, M. R.

T. H. Han, Y. Lee, M. R. Choi, S. H. Woo, S. H. Bae, B. H. Hong, J. H. Ahn, and T. W. Lee, “Extremely efficient flexible organic light-emitting diodes with modified graphene anode,” Nat. Photonics 6(2), 105–110 (2012).
[Crossref]

Chung, K.

K. Chung, C. H. Lee, and G. C. Yi, “Transferable GaN layers grown on ZnO-coated graphene layers for optoelectronic devices,” Science 330(6004), 655–657 (2010).
[Crossref] [PubMed]

Clamp, J.

Clamp, J. H.

H. E. Milton, P. B. Morgan, J. H. Clamp, and H. F. Gleeson, “Electronic liquid crystal contact lenses for the correction of presbyopia,” Opt. Express 22(7), 8035–8040 (2014).
[Crossref] [PubMed]

H. E. Milton, H. F. Gleeson, P. B. Morgan, J. W. Goodby, S. Cowling, and J. H. Clamp, “Switchable liquid crystal contact lenses: dynamic vision for the ageing eye,” Proc. SPIE 9004, 900401 (2014).

Coulter, D. A.

D. Kuzum, H. Takano, E. Shim, J. C. Reed, H. Juul, A. G. Richardson, J. de Vries, H. Bink, M. A. Dichter, T. H. Lucas, D. A. Coulter, E. Cubukcu, and B. Litt, “Transparent and flexible low noise graphene electrodes for simultaneous electrophysiology and neuroimaging,” Nat. Commun. 5, 5259 (2014).
[Crossref] [PubMed]

Cowling, S.

H. E. Milton, H. F. Gleeson, P. B. Morgan, J. W. Goodby, S. Cowling, and J. H. Clamp, “Switchable liquid crystal contact lenses: dynamic vision for the ageing eye,” Proc. SPIE 9004, 900401 (2014).

Cubukcu, E.

D. Kuzum, H. Takano, E. Shim, J. C. Reed, H. Juul, A. G. Richardson, J. de Vries, H. Bink, M. A. Dichter, T. H. Lucas, D. A. Coulter, E. Cubukcu, and B. Litt, “Transparent and flexible low noise graphene electrodes for simultaneous electrophysiology and neuroimaging,” Nat. Commun. 5, 5259 (2014).
[Crossref] [PubMed]

de Vries, J.

D. Kuzum, H. Takano, E. Shim, J. C. Reed, H. Juul, A. G. Richardson, J. de Vries, H. Bink, M. A. Dichter, T. H. Lucas, D. A. Coulter, E. Cubukcu, and B. Litt, “Transparent and flexible low noise graphene electrodes for simultaneous electrophysiology and neuroimaging,” Nat. Commun. 5, 5259 (2014).
[Crossref] [PubMed]

Dichter, M. A.

D. Kuzum, H. Takano, E. Shim, J. C. Reed, H. Juul, A. G. Richardson, J. de Vries, H. Bink, M. A. Dichter, T. H. Lucas, D. A. Coulter, E. Cubukcu, and B. Litt, “Transparent and flexible low noise graphene electrodes for simultaneous electrophysiology and neuroimaging,” Nat. Commun. 5, 5259 (2014).
[Crossref] [PubMed]

Duan, H.

F. Hui, P. Vajha, Y. Shi, Y. Ji, H. Duan, A. Padovani, L. Larcher, X. R. Li, J. J. Xu, and M. Lanza, “Moving graphene devices from lab to market: advanced graphene-coated nanoprobes,” Nanoscale. in press.

Dubonos, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Firsov, A. A.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Frye, S. T.

D. W. Park, A. A. Schendel, S. Mikael, S. K. Brodnick, T. J. Richner, J. P. Ness, M. R. Hayat, F. Atry, S. T. Frye, R. Pashaie, S. Thongpang, Z. Ma, and J. C. Williams, “Graphene-based carbon-layered electrode array technology for neural imaging and optogenetic applications,” Nat. Commun. 5, 5258 (2014).
[Crossref] [PubMed]

Gan, C. H.

W. S. Koh, C. H. Gan, W. K. Phua, Y. A. Akimov, and P Bai, “the potential of graphene as an ito Replacement in Organic Solar Cells: An Optical Perspective,” IEEE J. Sel. Top. Quantum Electron. 20, 4000107 (2014).

Geim, A. K.

P. Blake, P. D. Brimicombe, R. R. Nair, T. J. Booth, D. Jiang, F. Schedin, L. A. Ponomarenko, S. V. Morozov, H. F. Gleeson, E. W. Hill, A. K. Geim, and K. S. Novoselov, “Graphene-based liquid crystal device,” Nano Lett. 8(6), 1704–1708 (2008).
[Crossref] [PubMed]

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
[Crossref] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Ghosh, S.

A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett. 8(3), 902–907 (2008).
[Crossref] [PubMed]

Gleeson, H.

Gleeson, H. F.

I. M. Syed, S. Kaur, H. E. Milton, D. Mistry, J. Bailey, P. B. Morgan, J. C. Jones, and H. F. Gleeson, “Novel switching mode in a vertically aligned liquid crystal contact lens,” Opt. Express 23(8), 9911–9916 (2015).
[Crossref] [PubMed]

H. E. Milton, P. B. Morgan, J. H. Clamp, and H. F. Gleeson, “Electronic liquid crystal contact lenses for the correction of presbyopia,” Opt. Express 22(7), 8035–8040 (2014).
[Crossref] [PubMed]

H. E. Milton, H. F. Gleeson, P. B. Morgan, J. W. Goodby, S. Cowling, and J. H. Clamp, “Switchable liquid crystal contact lenses: dynamic vision for the ageing eye,” Proc. SPIE 9004, 900401 (2014).

P. Blake, P. D. Brimicombe, R. R. Nair, T. J. Booth, D. Jiang, F. Schedin, L. A. Ponomarenko, S. V. Morozov, H. F. Gleeson, E. W. Hill, A. K. Geim, and K. S. Novoselov, “Graphene-based liquid crystal device,” Nano Lett. 8(6), 1704–1708 (2008).
[Crossref] [PubMed]

H. G. Yoon, N. W. Roberts, and H. F. Gleeson, “An experimental investigation of discrete changes in pitch in a thin, planar chiral nematic device,” Liq. Cryst. 33(4), 503–510 (2006).
[Crossref]

Goodby, J. W.

H. E. Milton, H. F. Gleeson, P. B. Morgan, J. W. Goodby, S. Cowling, and J. H. Clamp, “Switchable liquid crystal contact lenses: dynamic vision for the ageing eye,” Proc. SPIE 9004, 900401 (2014).

Grigorieva, I. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Han, T. H.

T. H. Han, Y. Lee, M. R. Choi, S. H. Woo, S. H. Bae, B. H. Hong, J. H. Ahn, and T. W. Lee, “Extremely efficient flexible organic light-emitting diodes with modified graphene anode,” Nat. Photonics 6(2), 105–110 (2012).
[Crossref]

Hayat, M. R.

D. W. Park, A. A. Schendel, S. Mikael, S. K. Brodnick, T. J. Richner, J. P. Ness, M. R. Hayat, F. Atry, S. T. Frye, R. Pashaie, S. Thongpang, Z. Ma, and J. C. Williams, “Graphene-based carbon-layered electrode array technology for neural imaging and optogenetic applications,” Nat. Commun. 5, 5258 (2014).
[Crossref] [PubMed]

Hill, E. W.

P. Blake, P. D. Brimicombe, R. R. Nair, T. J. Booth, D. Jiang, F. Schedin, L. A. Ponomarenko, S. V. Morozov, H. F. Gleeson, E. W. Hill, A. K. Geim, and K. S. Novoselov, “Graphene-based liquid crystal device,” Nano Lett. 8(6), 1704–1708 (2008).
[Crossref] [PubMed]

Hofmann, M.

M. Hofmann, Y.-P. Hsieh, A. L. Hsu, and J. Kong, “Scalable, flexible and high resolution patterning of CVD graphene,” Nanoscale 6(1), 289–292 (2014).
[Crossref] [PubMed]

Hone, J.

C. Lee, X. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science 321(5887), 385–388 (2008).
[Crossref] [PubMed]

Hong, B. H.

T. H. Han, Y. Lee, M. R. Choi, S. H. Woo, S. H. Bae, B. H. Hong, J. H. Ahn, and T. W. Lee, “Extremely efficient flexible organic light-emitting diodes with modified graphene anode,” Nat. Photonics 6(2), 105–110 (2012).
[Crossref]

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

Hsieh, Y.-P.

M. Hofmann, Y.-P. Hsieh, A. L. Hsu, and J. Kong, “Scalable, flexible and high resolution patterning of CVD graphene,” Nanoscale 6(1), 289–292 (2014).
[Crossref] [PubMed]

Hsu, A. L.

M. Hofmann, Y.-P. Hsieh, A. L. Hsu, and J. Kong, “Scalable, flexible and high resolution patterning of CVD graphene,” Nanoscale 6(1), 289–292 (2014).
[Crossref] [PubMed]

Hui, F.

F. Hui, P. Vajha, Y. Shi, Y. Ji, H. Duan, A. Padovani, L. Larcher, X. R. Li, J. J. Xu, and M. Lanza, “Moving graphene devices from lab to market: advanced graphene-coated nanoprobes,” Nanoscale. in press.

Iijima, S.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

Ji, Y.

F. Hui, P. Vajha, Y. Shi, Y. Ji, H. Duan, A. Padovani, L. Larcher, X. R. Li, J. J. Xu, and M. Lanza, “Moving graphene devices from lab to market: advanced graphene-coated nanoprobes,” Nanoscale. in press.

Jia, Z.

C. Peng, Z. Jia, D. Bianculli, T. Li, and J. Lou, “In situ electro-mechanical experiments and mechanics modeling of tensile cracking in indium tin oxide thin films on polyimide substrates,” J. Appl. Phys. 109(10), 1035301 (2011).
[Crossref]

Jiang, D.

P. Blake, P. D. Brimicombe, R. R. Nair, T. J. Booth, D. Jiang, F. Schedin, L. A. Ponomarenko, S. V. Morozov, H. F. Gleeson, E. W. Hill, A. K. Geim, and K. S. Novoselov, “Graphene-based liquid crystal device,” Nano Lett. 8(6), 1704–1708 (2008).
[Crossref] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Jones, J. C.

Juul, H.

D. Kuzum, H. Takano, E. Shim, J. C. Reed, H. Juul, A. G. Richardson, J. de Vries, H. Bink, M. A. Dichter, T. H. Lucas, D. A. Coulter, E. Cubukcu, and B. Litt, “Transparent and flexible low noise graphene electrodes for simultaneous electrophysiology and neuroimaging,” Nat. Commun. 5, 5259 (2014).
[Crossref] [PubMed]

Kaur, S.

Kim, H.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

Kim, H. R.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

Kim, K. S.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

Kim, Y.-J.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

Klonner, M.

A. R. Lingley, M. Ali, Y. Liao, R. Mirjalili, M. Klonner, M. Sopanen, S. Suihkonen, T. Shen, B. P. Otis, H. Lipsanen, and B. A. Parviz, “A single-pixel wireless contact lens display,” J. Micromech. Microeng. 21(12), 125014 (2011).
[Crossref]

Koh, W. S.

W. S. Koh, C. H. Gan, W. K. Phua, Y. A. Akimov, and P Bai, “the potential of graphene as an ito Replacement in Organic Solar Cells: An Optical Perspective,” IEEE J. Sel. Top. Quantum Electron. 20, 4000107 (2014).

Kong, J.

M. Hofmann, Y.-P. Hsieh, A. L. Hsu, and J. Kong, “Scalable, flexible and high resolution patterning of CVD graphene,” Nanoscale 6(1), 289–292 (2014).
[Crossref] [PubMed]

Kuzum, D.

D. Kuzum, H. Takano, E. Shim, J. C. Reed, H. Juul, A. G. Richardson, J. de Vries, H. Bink, M. A. Dichter, T. H. Lucas, D. A. Coulter, E. Cubukcu, and B. Litt, “Transparent and flexible low noise graphene electrodes for simultaneous electrophysiology and neuroimaging,” Nat. Commun. 5, 5259 (2014).
[Crossref] [PubMed]

Kysar, J. W.

C. Lee, X. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science 321(5887), 385–388 (2008).
[Crossref] [PubMed]

Lanza, M.

F. Hui, P. Vajha, Y. Shi, Y. Ji, H. Duan, A. Padovani, L. Larcher, X. R. Li, J. J. Xu, and M. Lanza, “Moving graphene devices from lab to market: advanced graphene-coated nanoprobes,” Nanoscale. in press.

Larcher, L.

F. Hui, P. Vajha, Y. Shi, Y. Ji, H. Duan, A. Padovani, L. Larcher, X. R. Li, J. J. Xu, and M. Lanza, “Moving graphene devices from lab to market: advanced graphene-coated nanoprobes,” Nanoscale. in press.

Lau, C. N.

A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett. 8(3), 902–907 (2008).
[Crossref] [PubMed]

Lee, C.

C. Lee, X. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science 321(5887), 385–388 (2008).
[Crossref] [PubMed]

Lee, C. H.

K. Chung, C. H. Lee, and G. C. Yi, “Transferable GaN layers grown on ZnO-coated graphene layers for optoelectronic devices,” Science 330(6004), 655–657 (2010).
[Crossref] [PubMed]

Lee, T. W.

T. H. Han, Y. Lee, M. R. Choi, S. H. Woo, S. H. Bae, B. H. Hong, J. H. Ahn, and T. W. Lee, “Extremely efficient flexible organic light-emitting diodes with modified graphene anode,” Nat. Photonics 6(2), 105–110 (2012).
[Crossref]

Lee, Y.

T. H. Han, Y. Lee, M. R. Choi, S. H. Woo, S. H. Bae, B. H. Hong, J. H. Ahn, and T. W. Lee, “Extremely efficient flexible organic light-emitting diodes with modified graphene anode,” Nat. Photonics 6(2), 105–110 (2012).
[Crossref]

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

Lei, T.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

Li, T.

C. Peng, Z. Jia, D. Bianculli, T. Li, and J. Lou, “In situ electro-mechanical experiments and mechanics modeling of tensile cracking in indium tin oxide thin films on polyimide substrates,” J. Appl. Phys. 109(10), 1035301 (2011).
[Crossref]

Li, X. R.

F. Hui, P. Vajha, Y. Shi, Y. Ji, H. Duan, A. Padovani, L. Larcher, X. R. Li, J. J. Xu, and M. Lanza, “Moving graphene devices from lab to market: advanced graphene-coated nanoprobes,” Nanoscale. in press.

Liao, Y.

A. R. Lingley, M. Ali, Y. Liao, R. Mirjalili, M. Klonner, M. Sopanen, S. Suihkonen, T. Shen, B. P. Otis, H. Lipsanen, and B. A. Parviz, “A single-pixel wireless contact lens display,” J. Micromech. Microeng. 21(12), 125014 (2011).
[Crossref]

Liao, Y.-T.

Y.-T. Liao, H. Yao, A. R. Lingley, B. A. Parviz, and B. P. Otis, “A 3-microW CMOS Glucose Sensor for Wireless Contact-Lens Tear Glucose Monitoring,” IEEE J. Solid-State Circuits 47(1), 335–344 (2012).
[Crossref]

Lingley, A. R.

Y.-T. Liao, H. Yao, A. R. Lingley, B. A. Parviz, and B. P. Otis, “A 3-microW CMOS Glucose Sensor for Wireless Contact-Lens Tear Glucose Monitoring,” IEEE J. Solid-State Circuits 47(1), 335–344 (2012).
[Crossref]

A. R. Lingley, M. Ali, Y. Liao, R. Mirjalili, M. Klonner, M. Sopanen, S. Suihkonen, T. Shen, B. P. Otis, H. Lipsanen, and B. A. Parviz, “A single-pixel wireless contact lens display,” J. Micromech. Microeng. 21(12), 125014 (2011).
[Crossref]

Lipsanen, H.

A. R. Lingley, M. Ali, Y. Liao, R. Mirjalili, M. Klonner, M. Sopanen, S. Suihkonen, T. Shen, B. P. Otis, H. Lipsanen, and B. A. Parviz, “A single-pixel wireless contact lens display,” J. Micromech. Microeng. 21(12), 125014 (2011).
[Crossref]

Litt, B.

D. Kuzum, H. Takano, E. Shim, J. C. Reed, H. Juul, A. G. Richardson, J. de Vries, H. Bink, M. A. Dichter, T. H. Lucas, D. A. Coulter, E. Cubukcu, and B. Litt, “Transparent and flexible low noise graphene electrodes for simultaneous electrophysiology and neuroimaging,” Nat. Commun. 5, 5259 (2014).
[Crossref] [PubMed]

Lou, J.

C. Peng, Z. Jia, D. Bianculli, T. Li, and J. Lou, “In situ electro-mechanical experiments and mechanics modeling of tensile cracking in indium tin oxide thin films on polyimide substrates,” J. Appl. Phys. 109(10), 1035301 (2011).
[Crossref]

Lucas, T. H.

D. Kuzum, H. Takano, E. Shim, J. C. Reed, H. Juul, A. G. Richardson, J. de Vries, H. Bink, M. A. Dichter, T. H. Lucas, D. A. Coulter, E. Cubukcu, and B. Litt, “Transparent and flexible low noise graphene electrodes for simultaneous electrophysiology and neuroimaging,” Nat. Commun. 5, 5259 (2014).
[Crossref] [PubMed]

Ma, Z.

D. W. Park, A. A. Schendel, S. Mikael, S. K. Brodnick, T. J. Richner, J. P. Ness, M. R. Hayat, F. Atry, S. T. Frye, R. Pashaie, S. Thongpang, Z. Ma, and J. C. Williams, “Graphene-based carbon-layered electrode array technology for neural imaging and optogenetic applications,” Nat. Commun. 5, 5258 (2014).
[Crossref] [PubMed]

Merrill, M. D.

P. G. Campbell, M. D. Merrill, B. C. Wood, E. Montalvo, M. A. Worsley, T. F. Baumann, and J. Biener, “Battery/supercapacitor hybrid via non-covalent functionalization of graphene macro-assemblies,” J. Mater. Chem. A Mater. Energy Sustain. 2(42), 17764–17770 (2014).
[Crossref]

Miao, F.

A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett. 8(3), 902–907 (2008).
[Crossref] [PubMed]

Mikael, S.

D. W. Park, A. A. Schendel, S. Mikael, S. K. Brodnick, T. J. Richner, J. P. Ness, M. R. Hayat, F. Atry, S. T. Frye, R. Pashaie, S. Thongpang, Z. Ma, and J. C. Williams, “Graphene-based carbon-layered electrode array technology for neural imaging and optogenetic applications,” Nat. Commun. 5, 5258 (2014).
[Crossref] [PubMed]

Milton, H.

Milton, H. E.

Mirjalili, R.

A. R. Lingley, M. Ali, Y. Liao, R. Mirjalili, M. Klonner, M. Sopanen, S. Suihkonen, T. Shen, B. P. Otis, H. Lipsanen, and B. A. Parviz, “A single-pixel wireless contact lens display,” J. Micromech. Microeng. 21(12), 125014 (2011).
[Crossref]

Mistry, D.

Montalvo, E.

P. G. Campbell, M. D. Merrill, B. C. Wood, E. Montalvo, M. A. Worsley, T. F. Baumann, and J. Biener, “Battery/supercapacitor hybrid via non-covalent functionalization of graphene macro-assemblies,” J. Mater. Chem. A Mater. Energy Sustain. 2(42), 17764–17770 (2014).
[Crossref]

Morgan, P.

Morgan, P. B.

Morozov, S. V.

P. Blake, P. D. Brimicombe, R. R. Nair, T. J. Booth, D. Jiang, F. Schedin, L. A. Ponomarenko, S. V. Morozov, H. F. Gleeson, E. W. Hill, A. K. Geim, and K. S. Novoselov, “Graphene-based liquid crystal device,” Nano Lett. 8(6), 1704–1708 (2008).
[Crossref] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Müllen, K.

X. Wang, L. Zhi, and K. Müllen, “Transparent, conductive graphene electrodes for dye-sensitized solar cells,” Nano Lett. 8(1), 323–327 (2008).
[Crossref] [PubMed]

Nair, R. R.

P. Blake, P. D. Brimicombe, R. R. Nair, T. J. Booth, D. Jiang, F. Schedin, L. A. Ponomarenko, S. V. Morozov, H. F. Gleeson, E. W. Hill, A. K. Geim, and K. S. Novoselov, “Graphene-based liquid crystal device,” Nano Lett. 8(6), 1704–1708 (2008).
[Crossref] [PubMed]

Ness, J. P.

D. W. Park, A. A. Schendel, S. Mikael, S. K. Brodnick, T. J. Richner, J. P. Ness, M. R. Hayat, F. Atry, S. T. Frye, R. Pashaie, S. Thongpang, Z. Ma, and J. C. Williams, “Graphene-based carbon-layered electrode array technology for neural imaging and optogenetic applications,” Nat. Commun. 5, 5258 (2014).
[Crossref] [PubMed]

Novoselov, K. S.

P. Blake, P. D. Brimicombe, R. R. Nair, T. J. Booth, D. Jiang, F. Schedin, L. A. Ponomarenko, S. V. Morozov, H. F. Gleeson, E. W. Hill, A. K. Geim, and K. S. Novoselov, “Graphene-based liquid crystal device,” Nano Lett. 8(6), 1704–1708 (2008).
[Crossref] [PubMed]

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
[Crossref] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Otis, B. P.

Y.-T. Liao, H. Yao, A. R. Lingley, B. A. Parviz, and B. P. Otis, “A 3-microW CMOS Glucose Sensor for Wireless Contact-Lens Tear Glucose Monitoring,” IEEE J. Solid-State Circuits 47(1), 335–344 (2012).
[Crossref]

A. R. Lingley, M. Ali, Y. Liao, R. Mirjalili, M. Klonner, M. Sopanen, S. Suihkonen, T. Shen, B. P. Otis, H. Lipsanen, and B. A. Parviz, “A single-pixel wireless contact lens display,” J. Micromech. Microeng. 21(12), 125014 (2011).
[Crossref]

Özyilmaz, B.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

Padovani, A.

F. Hui, P. Vajha, Y. Shi, Y. Ji, H. Duan, A. Padovani, L. Larcher, X. R. Li, J. J. Xu, and M. Lanza, “Moving graphene devices from lab to market: advanced graphene-coated nanoprobes,” Nanoscale. in press.

Park, D. W.

D. W. Park, A. A. Schendel, S. Mikael, S. K. Brodnick, T. J. Richner, J. P. Ness, M. R. Hayat, F. Atry, S. T. Frye, R. Pashaie, S. Thongpang, Z. Ma, and J. C. Williams, “Graphene-based carbon-layered electrode array technology for neural imaging and optogenetic applications,” Nat. Commun. 5, 5258 (2014).
[Crossref] [PubMed]

Park, J.-S.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

Parviz, B. A.

Y.-T. Liao, H. Yao, A. R. Lingley, B. A. Parviz, and B. P. Otis, “A 3-microW CMOS Glucose Sensor for Wireless Contact-Lens Tear Glucose Monitoring,” IEEE J. Solid-State Circuits 47(1), 335–344 (2012).
[Crossref]

A. R. Lingley, M. Ali, Y. Liao, R. Mirjalili, M. Klonner, M. Sopanen, S. Suihkonen, T. Shen, B. P. Otis, H. Lipsanen, and B. A. Parviz, “A single-pixel wireless contact lens display,” J. Micromech. Microeng. 21(12), 125014 (2011).
[Crossref]

Pashaie, R.

D. W. Park, A. A. Schendel, S. Mikael, S. K. Brodnick, T. J. Richner, J. P. Ness, M. R. Hayat, F. Atry, S. T. Frye, R. Pashaie, S. Thongpang, Z. Ma, and J. C. Williams, “Graphene-based carbon-layered electrode array technology for neural imaging and optogenetic applications,” Nat. Commun. 5, 5258 (2014).
[Crossref] [PubMed]

Peng, C.

C. Peng, Z. Jia, D. Bianculli, T. Li, and J. Lou, “In situ electro-mechanical experiments and mechanics modeling of tensile cracking in indium tin oxide thin films on polyimide substrates,” J. Appl. Phys. 109(10), 1035301 (2011).
[Crossref]

Phua, W. K.

W. S. Koh, C. H. Gan, W. K. Phua, Y. A. Akimov, and P Bai, “the potential of graphene as an ito Replacement in Organic Solar Cells: An Optical Perspective,” IEEE J. Sel. Top. Quantum Electron. 20, 4000107 (2014).

Ponomarenko, L. A.

P. Blake, P. D. Brimicombe, R. R. Nair, T. J. Booth, D. Jiang, F. Schedin, L. A. Ponomarenko, S. V. Morozov, H. F. Gleeson, E. W. Hill, A. K. Geim, and K. S. Novoselov, “Graphene-based liquid crystal device,” Nano Lett. 8(6), 1704–1708 (2008).
[Crossref] [PubMed]

Reed, J. C.

D. Kuzum, H. Takano, E. Shim, J. C. Reed, H. Juul, A. G. Richardson, J. de Vries, H. Bink, M. A. Dichter, T. H. Lucas, D. A. Coulter, E. Cubukcu, and B. Litt, “Transparent and flexible low noise graphene electrodes for simultaneous electrophysiology and neuroimaging,” Nat. Commun. 5, 5259 (2014).
[Crossref] [PubMed]

Richardson, A. G.

D. Kuzum, H. Takano, E. Shim, J. C. Reed, H. Juul, A. G. Richardson, J. de Vries, H. Bink, M. A. Dichter, T. H. Lucas, D. A. Coulter, E. Cubukcu, and B. Litt, “Transparent and flexible low noise graphene electrodes for simultaneous electrophysiology and neuroimaging,” Nat. Commun. 5, 5259 (2014).
[Crossref] [PubMed]

Richner, T. J.

D. W. Park, A. A. Schendel, S. Mikael, S. K. Brodnick, T. J. Richner, J. P. Ness, M. R. Hayat, F. Atry, S. T. Frye, R. Pashaie, S. Thongpang, Z. Ma, and J. C. Williams, “Graphene-based carbon-layered electrode array technology for neural imaging and optogenetic applications,” Nat. Commun. 5, 5258 (2014).
[Crossref] [PubMed]

Roberts, N. W.

H. G. Yoon, N. W. Roberts, and H. F. Gleeson, “An experimental investigation of discrete changes in pitch in a thin, planar chiral nematic device,” Liq. Cryst. 33(4), 503–510 (2006).
[Crossref]

Schedin, F.

P. Blake, P. D. Brimicombe, R. R. Nair, T. J. Booth, D. Jiang, F. Schedin, L. A. Ponomarenko, S. V. Morozov, H. F. Gleeson, E. W. Hill, A. K. Geim, and K. S. Novoselov, “Graphene-based liquid crystal device,” Nano Lett. 8(6), 1704–1708 (2008).
[Crossref] [PubMed]

Schendel, A. A.

D. W. Park, A. A. Schendel, S. Mikael, S. K. Brodnick, T. J. Richner, J. P. Ness, M. R. Hayat, F. Atry, S. T. Frye, R. Pashaie, S. Thongpang, Z. Ma, and J. C. Williams, “Graphene-based carbon-layered electrode array technology for neural imaging and optogenetic applications,” Nat. Commun. 5, 5258 (2014).
[Crossref] [PubMed]

Shen, T.

A. R. Lingley, M. Ali, Y. Liao, R. Mirjalili, M. Klonner, M. Sopanen, S. Suihkonen, T. Shen, B. P. Otis, H. Lipsanen, and B. A. Parviz, “A single-pixel wireless contact lens display,” J. Micromech. Microeng. 21(12), 125014 (2011).
[Crossref]

Shi, Y.

F. Hui, P. Vajha, Y. Shi, Y. Ji, H. Duan, A. Padovani, L. Larcher, X. R. Li, J. J. Xu, and M. Lanza, “Moving graphene devices from lab to market: advanced graphene-coated nanoprobes,” Nanoscale. in press.

Shim, E.

D. Kuzum, H. Takano, E. Shim, J. C. Reed, H. Juul, A. G. Richardson, J. de Vries, H. Bink, M. A. Dichter, T. H. Lucas, D. A. Coulter, E. Cubukcu, and B. Litt, “Transparent and flexible low noise graphene electrodes for simultaneous electrophysiology and neuroimaging,” Nat. Commun. 5, 5259 (2014).
[Crossref] [PubMed]

Song, Y. I.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

Sopanen, M.

A. R. Lingley, M. Ali, Y. Liao, R. Mirjalili, M. Klonner, M. Sopanen, S. Suihkonen, T. Shen, B. P. Otis, H. Lipsanen, and B. A. Parviz, “A single-pixel wireless contact lens display,” J. Micromech. Microeng. 21(12), 125014 (2011).
[Crossref]

Suihkonen, S.

A. R. Lingley, M. Ali, Y. Liao, R. Mirjalili, M. Klonner, M. Sopanen, S. Suihkonen, T. Shen, B. P. Otis, H. Lipsanen, and B. A. Parviz, “A single-pixel wireless contact lens display,” J. Micromech. Microeng. 21(12), 125014 (2011).
[Crossref]

Syed, I. M.

Takano, H.

D. Kuzum, H. Takano, E. Shim, J. C. Reed, H. Juul, A. G. Richardson, J. de Vries, H. Bink, M. A. Dichter, T. H. Lucas, D. A. Coulter, E. Cubukcu, and B. Litt, “Transparent and flexible low noise graphene electrodes for simultaneous electrophysiology and neuroimaging,” Nat. Commun. 5, 5259 (2014).
[Crossref] [PubMed]

Teweldebrhan, D.

A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett. 8(3), 902–907 (2008).
[Crossref] [PubMed]

Thongpang, S.

D. W. Park, A. A. Schendel, S. Mikael, S. K. Brodnick, T. J. Richner, J. P. Ness, M. R. Hayat, F. Atry, S. T. Frye, R. Pashaie, S. Thongpang, Z. Ma, and J. C. Williams, “Graphene-based carbon-layered electrode array technology for neural imaging and optogenetic applications,” Nat. Commun. 5, 5258 (2014).
[Crossref] [PubMed]

Vajha, P.

F. Hui, P. Vajha, Y. Shi, Y. Ji, H. Duan, A. Padovani, L. Larcher, X. R. Li, J. J. Xu, and M. Lanza, “Moving graphene devices from lab to market: advanced graphene-coated nanoprobes,” Nanoscale. in press.

Wang, X.

X. Wang, L. Zhi, and K. Müllen, “Transparent, conductive graphene electrodes for dye-sensitized solar cells,” Nano Lett. 8(1), 323–327 (2008).
[Crossref] [PubMed]

Wei, X.

C. Lee, X. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science 321(5887), 385–388 (2008).
[Crossref] [PubMed]

Williams, J. C.

D. W. Park, A. A. Schendel, S. Mikael, S. K. Brodnick, T. J. Richner, J. P. Ness, M. R. Hayat, F. Atry, S. T. Frye, R. Pashaie, S. Thongpang, Z. Ma, and J. C. Williams, “Graphene-based carbon-layered electrode array technology for neural imaging and optogenetic applications,” Nat. Commun. 5, 5258 (2014).
[Crossref] [PubMed]

Woo, S. H.

T. H. Han, Y. Lee, M. R. Choi, S. H. Woo, S. H. Bae, B. H. Hong, J. H. Ahn, and T. W. Lee, “Extremely efficient flexible organic light-emitting diodes with modified graphene anode,” Nat. Photonics 6(2), 105–110 (2012).
[Crossref]

Wood, B. C.

P. G. Campbell, M. D. Merrill, B. C. Wood, E. Montalvo, M. A. Worsley, T. F. Baumann, and J. Biener, “Battery/supercapacitor hybrid via non-covalent functionalization of graphene macro-assemblies,” J. Mater. Chem. A Mater. Energy Sustain. 2(42), 17764–17770 (2014).
[Crossref]

Worsley, M. A.

P. G. Campbell, M. D. Merrill, B. C. Wood, E. Montalvo, M. A. Worsley, T. F. Baumann, and J. Biener, “Battery/supercapacitor hybrid via non-covalent functionalization of graphene macro-assemblies,” J. Mater. Chem. A Mater. Energy Sustain. 2(42), 17764–17770 (2014).
[Crossref]

Xu, J. J.

F. Hui, P. Vajha, Y. Shi, Y. Ji, H. Duan, A. Padovani, L. Larcher, X. R. Li, J. J. Xu, and M. Lanza, “Moving graphene devices from lab to market: advanced graphene-coated nanoprobes,” Nanoscale. in press.

Xu, X.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

Yao, H.

Y.-T. Liao, H. Yao, A. R. Lingley, B. A. Parviz, and B. P. Otis, “A 3-microW CMOS Glucose Sensor for Wireless Contact-Lens Tear Glucose Monitoring,” IEEE J. Solid-State Circuits 47(1), 335–344 (2012).
[Crossref]

Yi, G. C.

K. Chung, C. H. Lee, and G. C. Yi, “Transferable GaN layers grown on ZnO-coated graphene layers for optoelectronic devices,” Science 330(6004), 655–657 (2010).
[Crossref] [PubMed]

Yoon, H. G.

H. G. Yoon, N. W. Roberts, and H. F. Gleeson, “An experimental investigation of discrete changes in pitch in a thin, planar chiral nematic device,” Liq. Cryst. 33(4), 503–510 (2006).
[Crossref]

Zhang, Y.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Zheng, Y.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

Zhi, L.

X. Wang, L. Zhi, and K. Müllen, “Transparent, conductive graphene electrodes for dye-sensitized solar cells,” Nano Lett. 8(1), 323–327 (2008).
[Crossref] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

W. S. Koh, C. H. Gan, W. K. Phua, Y. A. Akimov, and P Bai, “the potential of graphene as an ito Replacement in Organic Solar Cells: An Optical Perspective,” IEEE J. Sel. Top. Quantum Electron. 20, 4000107 (2014).

IEEE J. Solid-State Circuits (1)

Y.-T. Liao, H. Yao, A. R. Lingley, B. A. Parviz, and B. P. Otis, “A 3-microW CMOS Glucose Sensor for Wireless Contact-Lens Tear Glucose Monitoring,” IEEE J. Solid-State Circuits 47(1), 335–344 (2012).
[Crossref]

J. Appl. Phys. (1)

C. Peng, Z. Jia, D. Bianculli, T. Li, and J. Lou, “In situ electro-mechanical experiments and mechanics modeling of tensile cracking in indium tin oxide thin films on polyimide substrates,” J. Appl. Phys. 109(10), 1035301 (2011).
[Crossref]

J. Mater. Chem. A Mater. Energy Sustain. (1)

P. G. Campbell, M. D. Merrill, B. C. Wood, E. Montalvo, M. A. Worsley, T. F. Baumann, and J. Biener, “Battery/supercapacitor hybrid via non-covalent functionalization of graphene macro-assemblies,” J. Mater. Chem. A Mater. Energy Sustain. 2(42), 17764–17770 (2014).
[Crossref]

J. Micromech. Microeng. (1)

A. R. Lingley, M. Ali, Y. Liao, R. Mirjalili, M. Klonner, M. Sopanen, S. Suihkonen, T. Shen, B. P. Otis, H. Lipsanen, and B. A. Parviz, “A single-pixel wireless contact lens display,” J. Micromech. Microeng. 21(12), 125014 (2011).
[Crossref]

J. Opt. Soc. Am. (1)

Liq. Cryst. (1)

H. G. Yoon, N. W. Roberts, and H. F. Gleeson, “An experimental investigation of discrete changes in pitch in a thin, planar chiral nematic device,” Liq. Cryst. 33(4), 503–510 (2006).
[Crossref]

Nano Lett. (3)

X. Wang, L. Zhi, and K. Müllen, “Transparent, conductive graphene electrodes for dye-sensitized solar cells,” Nano Lett. 8(1), 323–327 (2008).
[Crossref] [PubMed]

A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett. 8(3), 902–907 (2008).
[Crossref] [PubMed]

P. Blake, P. D. Brimicombe, R. R. Nair, T. J. Booth, D. Jiang, F. Schedin, L. A. Ponomarenko, S. V. Morozov, H. F. Gleeson, E. W. Hill, A. K. Geim, and K. S. Novoselov, “Graphene-based liquid crystal device,” Nano Lett. 8(6), 1704–1708 (2008).
[Crossref] [PubMed]

Nanoscale (1)

M. Hofmann, Y.-P. Hsieh, A. L. Hsu, and J. Kong, “Scalable, flexible and high resolution patterning of CVD graphene,” Nanoscale 6(1), 289–292 (2014).
[Crossref] [PubMed]

Nat. Commun. (2)

D. Kuzum, H. Takano, E. Shim, J. C. Reed, H. Juul, A. G. Richardson, J. de Vries, H. Bink, M. A. Dichter, T. H. Lucas, D. A. Coulter, E. Cubukcu, and B. Litt, “Transparent and flexible low noise graphene electrodes for simultaneous electrophysiology and neuroimaging,” Nat. Commun. 5, 5259 (2014).
[Crossref] [PubMed]

D. W. Park, A. A. Schendel, S. Mikael, S. K. Brodnick, T. J. Richner, J. P. Ness, M. R. Hayat, F. Atry, S. T. Frye, R. Pashaie, S. Thongpang, Z. Ma, and J. C. Williams, “Graphene-based carbon-layered electrode array technology for neural imaging and optogenetic applications,” Nat. Commun. 5, 5258 (2014).
[Crossref] [PubMed]

Nat. Mater. (1)

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

Nat. Photonics (1)

T. H. Han, Y. Lee, M. R. Choi, S. H. Woo, S. H. Bae, B. H. Hong, J. H. Ahn, and T. W. Lee, “Extremely efficient flexible organic light-emitting diodes with modified graphene anode,” Nat. Photonics 6(2), 105–110 (2012).
[Crossref]

Ophthalmic Physiol. Opt. (1)

W. N. Charman, “Restoring accommodation: a dream or an approaching reality?” Ophthalmic Physiol. Opt. 25(1), 1–6 (2005).
[Crossref] [PubMed]

Opt. Express (3)

Proc. SPIE (1)

H. E. Milton, H. F. Gleeson, P. B. Morgan, J. W. Goodby, S. Cowling, and J. H. Clamp, “Switchable liquid crystal contact lenses: dynamic vision for the ageing eye,” Proc. SPIE 9004, 900401 (2014).

Science (3)

K. Chung, C. H. Lee, and G. C. Yi, “Transferable GaN layers grown on ZnO-coated graphene layers for optoelectronic devices,” Science 330(6004), 655–657 (2010).
[Crossref] [PubMed]

C. Lee, X. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science 321(5887), 385–388 (2008).
[Crossref] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Other (3)

F. Hui, P. Vajha, Y. Shi, Y. Ji, H. Duan, A. Padovani, L. Larcher, X. R. Li, J. J. Xu, and M. Lanza, “Moving graphene devices from lab to market: advanced graphene-coated nanoprobes,” Nanoscale. in press.

H. Langley, “Google’s smart contact lenses just went from concept to reality,” in http://www.techradar.com/news/wearables/google-s-smart-contact-lenses-just-went-from-concept-to-reality-1302370 (Techradar 2015).

“emPower!™, the first electronic focusing prescription eyewear!” (2015), http://www.heitzoptical.com/Content/eyeglasses/lenses/pixeloptics/empower.aspx .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) A schematic diagram of the LC contact lens constructed with a graphene electrode on the convex side of the PMMA substrate ‘A’ and Indium Tin Oxide (ITO) on the concave side of substrate ‘B’. The insert shows construction details (not to scale) with the LC director parallel to the lens substrates (no voltage applied). The convex and concave substrates provide positive optical powers of + 6.4 ± 0.1 D and + 7.6 ± 0.1 D respectively; the radius of curvature of the lens is 7.8mm, matching the curvature of the human cornea. The thickness of the LC layer between the substrates at the centre of the lens is 50 µm. (b) is a photograph of a contact lens substrate with graphene deposited onto the central curved section of the lens (6 x 6 mm2) so that whole curved area is active. (c) Demonstrates the excellent transparency from the clarity of the text through the graphene-coated substrate lens. The text seen in focus through the lens demonstrates the optical power of the lens substrate. The average optical transmittance of graphene deposited onto a flat substrate using the same process as used for depositing it on the curved substrates was found to be 98% [1].

Fig. 2
Fig. 2

Textural micrograph images (maximum transmission, i.e. rubbing direction at 45° to the crossed polarizers) of the LC contact lens at room temperature as the applied voltage is varied. The change in the birefringence colours can clearly be observed as the voltage increases from (a) 0 Vrms to higher voltages (b-e). The images have been taken near the centre of the lens; the faint concentric lines are sub-micron inhomogeneities in the PMMA surfaces caused by circular lathing during manufacture. The scale for all images is as marked on the lower right hand side of Fig. (a).

Fig. 3
Fig. 3

The voltage-dependence of the change in optical power of the adaptive contact lens. A continuous change in optical power is observed and Vth is consistent with capacitance measurements and the optical micrographs.

Fig. 4
Fig. 4

(a) The PSF measurements of the LC contact lens at 0 and 7.1 Vrms respectively at the appropriate focal planes. (b) The MTF curves of the LC contact lens compared with that of the substrates. The OFF and ON states of the device exhibit MTF50 values of 0.52 and 0.63 line pairs/mrad respectively. (c) Images of text brought into focus with the LC lens with and without the application of 7.1 Vrms. The relatively small change observed in the two images due to the small optical change of + 0.70.1 D.

Metrics