Abstract

Here we demonstrate the combination of a semiconductor nanowire and a plasmonic bowtie nanoantenna. A subwavelength InP nanowire was placed precisely in the middle of the nanogap of a gold bowtie nanoantenna with a nanomanipulator installed in a focused ion beam system. We observed a significantly large enhancement (by a factor of 110) of the photoluminescence intensity from this coupled system when the excitation wavelength was at the plasmonic resonance with its polarization parallel to the nanoantenna. Moreover, simulation results revealed that this large enhancement was caused by an interesting interplay between the plasmonic resonance of the nanoantenna and the breakdown of the field suppression effect in the subwavelength nanowire. Our results show that the combination of a nanowire and a nanoantenna gives us a new degree of freedom to design light-matter interactions on a nanoscale.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Bowtie plasmonic quantum cascade laser antenna

Nanfang Yu, Ertugrul Cubukcu, Laurent Diehl, David Bour, Scott Corzine, Jintian Zhu, Gloria Höfler, Kenneth B. Crozier, and Federico Capasso
Opt. Express 15(20) 13272-13281 (2007)

Validation of electromagnetic field enhancement in near-infrared through Sierpinski fractal nanoantennas

Semih Cakmakyapan, Neval A. Cinel, Atilla Ozgur Cakmak, and Ekmel Ozbay
Opt. Express 22(16) 19504-19512 (2014)

Metamorphic plasmonic nanoantennas for self-enhanced nonlinear light generation

Konrad Schraml, Armin Regler, Johannes Bartl, Glenn Glashagen, Jakob Wierzbowski, Jonathan J. Finley, and Michael Kaniber
Optica 3(12) 1453-1459 (2016)

References

  • View by:
  • |
  • |
  • |

  1. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
    [Crossref] [PubMed]
  2. D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, “Quantum optics with surface plasmons,” Phys. Rev. Lett. 97(5), 053002 (2006).
    [Crossref] [PubMed]
  3. A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007).
    [Crossref] [PubMed]
  4. A. F. Koenderink, “On the use of Purcell factors for plasmon antennas,” Opt. Lett. 35(24), 4208–4210 (2010).
    [Crossref] [PubMed]
  5. K. J. Russell, T.-L. Liu, S. Cui, and E. L. Hu, “Large spontaneous emission enhancement in plasmonic nanocavities,” Nat. Photonics 6(7), 459–462 (2012).
    [Crossref]
  6. A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
    [Crossref]
  7. A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photonics 2(6), 365–370 (2008).
    [Crossref]
  8. Y. Alaverdyan, N. Vamivakas, J. Barnes, C. Lebouteiller, J. Hare, and M. Atatüre, “Spectral tunability of a plasmonic antenna with a dielectric nanocrystal,” Opt. Express 19(19), 18175–18181 (2011).
    [Crossref] [PubMed]
  9. M. D. Birowosuto, A. Yokoo, G. Zhang, K. Tateno, E. Kuramochi, H. Taniyama, M. Takiguchi, and M. Notomi, “Movable high-Q nanoresonators realized by semiconductor nanowires on a Si photonic crystal platform,” Nat. Mater. 13(3), 279–285 (2014).
    [Crossref] [PubMed]
  10. A. W. Schell, G. Kewes, T. Hanke, A. Leitenstorfer, R. Bratschitsch, O. Benson, and T. Aichele, “Single defect centers in diamond nanocrystals as quantum probes for plasmonic nanostructures,” Opt. Express 19(8), 7914–7920 (2011).
    [Crossref] [PubMed]
  11. H. Aouani, S. Itzhakov, D. Gachet, E. Devaux, T. W. Ebbesen, H. Rigneault, D. Oron, and J. Wenger, “Colloidal quantum dots as probes of excitation field enhancement in photonic antennas,” ACS Nano 4(8), 4571–4578 (2010).
    [Crossref] [PubMed]
  12. D. Saxena, S. Mokkapati, P. Parkinson, N. Jiang, Q. Gao, H. H. Tan, and C. Jagadish, “Optically pumped room-temperature GaAs nanowire lasers,” Nat. Photonics 7(12), 963–968 (2013).
    [Crossref]
  13. C. Pan, L. Dong, G. Zhu, S. Niu, R. Yu, Q. Yang, Y. Liu, and Z. L. Wang, “High-resolution electroluminescent imaging of pressure distribution using a piezoelectric nanowire LED array,” Nat. Photonics 7(9), 752–758 (2013).
    [Crossref]
  14. P. Krogstrup, H. I. Jørgensen, M. Heiss, O. Demichel, J. V. Holm, M. Aagesen, J. Nygard, and A. Fontcuberta i Morral, “Single-nanowire solar cells beyond the Shockley-Queisser limit,” Nat. Photonics 7(4), 306–310 (2013).
    [Crossref]
  15. G. Bulgarini, M. E. Reimer, M. Hocevar, E. P. A. M. Bakkers, L. P. Kouwenhoven, and V. Zwiller, “Avalanche amplification of a single exciton in a semiconductor nanowire,” Nat. Photonics 6(7), 455–458 (2012).
    [Crossref]
  16. M. Heiss, Y. Fontana, A. Gustafsson, G. Wüst, C. Magen, D. D. O’Regan, J. W. Luo, B. Ketterer, S. Conesa-Boj, A. V. Kuhlmann, J. Houel, E. Russo-Averchi, J. R. Morante, M. Cantoni, N. Marzari, J. Arbiol, A. Zunger, R. J. Warburton, and A. Fontcuberta i Morral, “Self-assembled quantum dots in a nanowire system for quantum photonics,” Nat. Mater. 12(5), 439–444 (2013).
    [Crossref] [PubMed]
  17. J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Åberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
    [Crossref] [PubMed]
  18. R. S. Wagner and W. C. Ellis, “Vapor-liquid-solid mechanism of single crystal growth,” Appl. Phys. Lett. 4(5), 89–90 (1964).
    [Crossref]
  19. M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber, “Growth of nanowire superlattice structures for nanoscale photonics and electronics,” Nature 415(6872), 617–620 (2002).
    [Crossref] [PubMed]
  20. K. Tateno, G. Zhang, H. Gotoh, and T. Sogawa, “VLS growth of alternating InAsP/InP heterostructure nanowires for multiple-quantum-dot structures,” Nano Lett. 12(6), 2888–2893 (2012).
    [Crossref] [PubMed]
  21. R. E. Algra, M. A. Verheijen, M. T. Borgström, L.-F. Feiner, G. Immink, W. J. P. van Enckevort, E. Vlieg, and E. P. A. M. Bakkers, “Twinning superlattices in indium phosphide nanowires,” Nature 456(7220), 369–372 (2008).
    [Crossref] [PubMed]
  22. F. Qian, Y. Li, S. Gradečak, H.-G. Park, Y. Dong, Y. Ding, Z. L. Wang, and C. M. Lieber, “Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers,” Nat. Mater. 7(9), 701–706 (2008).
    [Crossref] [PubMed]
  23. M. T. Borgström, V. Zwiller, E. Müller, and A. Imamoglu, “Optically bright quantum dots in single Nanowires,” Nano Lett. 5(7), 1439–1443 (2005).
    [Crossref] [PubMed]
  24. J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J.-M. Gérard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4(3), 174–177 (2010).
  25. L. J. Lauhon, M. S. Gudiksen, D. Wang, and C. M. Lieber, “Epitaxial core-shell and core-multishell nanowire heterostructures,” Nature 420(6911), 57–61 (2002).
    [Crossref] [PubMed]
  26. X. Duan, Y. Huang, Y. Cui, J. Wang, and C. M. Lieber, “Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices,” Nature 409(6816), 66–69 (2001).
    [Crossref] [PubMed]
  27. B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).
    [Crossref] [PubMed]
  28. M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
    [Crossref] [PubMed]
  29. X. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, “Single-nanowire electrically driven lasers,” Nature 421(6920), 241–245 (2003).
    [Crossref] [PubMed]
  30. R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
    [Crossref] [PubMed]
  31. Y.-J. Lu, J. Kim, H.-Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M.-Y. Lu, B.-H. Li, X. Qiu, W.-H. Chang, L.-J. Chen, G. Shvets, C.-K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337(6093), 450–453 (2012).
    [Crossref] [PubMed]
  32. J. C. Johnson, H.-J. Choi, K. P. Knutsen, R. D. Schaller, P. Yang, and R. J. Saykally, “Single gallium nitride nanowire lasers,” Nat. Mater. 1(2), 106–110 (2002).
    [Crossref] [PubMed]
  33. O. Hayden, R. Agarwal, and C. M. Lieber, “Nanoscale avalanche photodiodes for highly sensitive and spatially resolved photon detection,” Nat. Mater. 5(5), 352–356 (2006).
    [Crossref] [PubMed]
  34. J. Wang, M. S. Gudiksen, X. Duan, Y. Cui, and C. M. Lieber, “Highly polarized photoluminescence and photodetection from single indium phosphide nanowires,” Science 293(5534), 1455–1457 (2001).
    [Crossref] [PubMed]
  35. Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature 447(7148), 1098–1101 (2007).
    [Crossref] [PubMed]
  36. L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Electrodynamics of Continuous Media (Pergamon, 1984).
  37. J. Bleuse, J. Claudon, M. Creasey, N. S. Malik, J.-M. Gérard, I. Maksymov, J.-P. Hugonin, and P. Lalanne, “Inhibition, enhancement, and control of spontaneous emission in photonic nanowires,” Phys. Rev. Lett. 106(10), 103601 (2011).
    [Crossref] [PubMed]
  38. G. Bulgarini, M. E. Reimer, T. Zehender, M. Hocevar, E. P. A. M. Bakkers, L. P. Kouwenhoven, and V. Zwiller, “Spontaneous emission control of single quantum dots in bottom-up nanowire waveguides,” Appl. Phys. Lett. 100(12), 121106 (2012).
    [Crossref]
  39. M. D. Birowosuto, G. Zhang, A. Yokoo, M. Takiguchi, and M. Notomi, “Spontaneous emission inhibition of telecom-band quantum disks inside single nanowire on different substrates,” Opt. Express 22(10), 11713–11726 (2014).
    [Crossref] [PubMed]
  40. G. Grinblat, M. Rahmani, E. Cortés, M. Caldarola, D. Comedi, S. A. Maier, and A. V. Bragas, “High-efficiency second harmonic generation from a single hybrid ZnO nanowire/Au plasmonic nano-oligomer,” Nano Lett. 14(11), 6660–6665 (2014).
    [Crossref] [PubMed]
  41. A. Casadei, E. F. Pecora, J. Trevino, C. Forestiere, D. Rüffer, E. Russo-Averchi, F. Matteini, G. Tutuncuoglu, M. Heiss, A. Fontcuberta i Morral, and L. Dal Negro, “Photonic-plasmonic coupling of GaAs single nanowires to optical nanoantennas,” Nano Lett. 14(5), 2271–2278 (2014).
    [Crossref] [PubMed]
  42. A. Casadei, E. A. Llado, F. Amaduzzi, E. Russo-Averchi, D. Rüffer, M. Heiss, L. Dal Negro, and A. F. Morral, “Polarization response of nanowires à la carte,” Sci. Rep. 5, 7651 (2015).
    [Crossref] [PubMed]
  43. L. Hao, C. Aßmann, J. C. Gallop, D. Cox, F. Ruede, O. Kazakova, P. Josephs-Franks, D. Drung, and T. Schurig, “Detection of single magnetic nanobead with a nano-superconducting quantum interference device,” Appl. Phys. Lett. 98(9), 092504 (2011).
    [Crossref]
  44. G. Zhang, K. Tateno, H. Gotoh, and T. Sogawa, “Vertically aligned InP nanowires grown via the self-assisted vapor–liquid–solid mode,” Appl. Phys. Express 5(5), 055201 (2012).
    [Crossref]
  45. S. Breuer, C. Pfüller, T. Flissikowski, O. Brandt, H. T. Grahn, L. Geelhaar, and H. Riechert, “Suitability of Au- and self-assisted GaAs nanowires for optoelectronic applications,” Nano Lett. 11(3), 1276–1279 (2011).
    [Crossref] [PubMed]
  46. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  47. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  48. S. Mokkapati, D. Saxena, N. Jiang, L. Li, H. H. Tan, and C. Jagadish, “An order of magnitude increase in the quantum efficiency of (Al)GaAs nanowires using hybrid photonic-plasmonic modes,” Nano Lett. 15(1), 307–312 (2015).
    [Crossref] [PubMed]
  49. N. Yamamoto, K. Araya, and F. J. García de Abajo, “Photon emission from silver particles induced by a high-energy electron beam,” Phys. Rev. B 64(20), 205419 (2001).
    [Crossref]
  50. F. J. García de Abajo, “Optical excitations in electron microscopy,” Rev. Mod. Phys. 82(1), 209–275 (2010).
    [Crossref]
  51. M. R. Beversluis, A. Bouhelier, and L. Novotny, “Continuum generation from single gold nanostructures through near-field mediated intraband transitions,” Phys. Rev. B 68(11), 115433 (2003).
    [Crossref]
  52. J. Giblin, V. Protasenko, and M. Kuno, “Wavelength sensitivity of single nanowire excitation polarization anisotropies explained through a generalized treatment of their linear absorption,” ACS Nano 3(7), 1979–1987 (2009).
    [Crossref] [PubMed]

2015 (2)

A. Casadei, E. A. Llado, F. Amaduzzi, E. Russo-Averchi, D. Rüffer, M. Heiss, L. Dal Negro, and A. F. Morral, “Polarization response of nanowires à la carte,” Sci. Rep. 5, 7651 (2015).
[Crossref] [PubMed]

S. Mokkapati, D. Saxena, N. Jiang, L. Li, H. H. Tan, and C. Jagadish, “An order of magnitude increase in the quantum efficiency of (Al)GaAs nanowires using hybrid photonic-plasmonic modes,” Nano Lett. 15(1), 307–312 (2015).
[Crossref] [PubMed]

2014 (4)

M. D. Birowosuto, G. Zhang, A. Yokoo, M. Takiguchi, and M. Notomi, “Spontaneous emission inhibition of telecom-band quantum disks inside single nanowire on different substrates,” Opt. Express 22(10), 11713–11726 (2014).
[Crossref] [PubMed]

G. Grinblat, M. Rahmani, E. Cortés, M. Caldarola, D. Comedi, S. A. Maier, and A. V. Bragas, “High-efficiency second harmonic generation from a single hybrid ZnO nanowire/Au plasmonic nano-oligomer,” Nano Lett. 14(11), 6660–6665 (2014).
[Crossref] [PubMed]

A. Casadei, E. F. Pecora, J. Trevino, C. Forestiere, D. Rüffer, E. Russo-Averchi, F. Matteini, G. Tutuncuoglu, M. Heiss, A. Fontcuberta i Morral, and L. Dal Negro, “Photonic-plasmonic coupling of GaAs single nanowires to optical nanoantennas,” Nano Lett. 14(5), 2271–2278 (2014).
[Crossref] [PubMed]

M. D. Birowosuto, A. Yokoo, G. Zhang, K. Tateno, E. Kuramochi, H. Taniyama, M. Takiguchi, and M. Notomi, “Movable high-Q nanoresonators realized by semiconductor nanowires on a Si photonic crystal platform,” Nat. Mater. 13(3), 279–285 (2014).
[Crossref] [PubMed]

2013 (5)

D. Saxena, S. Mokkapati, P. Parkinson, N. Jiang, Q. Gao, H. H. Tan, and C. Jagadish, “Optically pumped room-temperature GaAs nanowire lasers,” Nat. Photonics 7(12), 963–968 (2013).
[Crossref]

C. Pan, L. Dong, G. Zhu, S. Niu, R. Yu, Q. Yang, Y. Liu, and Z. L. Wang, “High-resolution electroluminescent imaging of pressure distribution using a piezoelectric nanowire LED array,” Nat. Photonics 7(9), 752–758 (2013).
[Crossref]

P. Krogstrup, H. I. Jørgensen, M. Heiss, O. Demichel, J. V. Holm, M. Aagesen, J. Nygard, and A. Fontcuberta i Morral, “Single-nanowire solar cells beyond the Shockley-Queisser limit,” Nat. Photonics 7(4), 306–310 (2013).
[Crossref]

M. Heiss, Y. Fontana, A. Gustafsson, G. Wüst, C. Magen, D. D. O’Regan, J. W. Luo, B. Ketterer, S. Conesa-Boj, A. V. Kuhlmann, J. Houel, E. Russo-Averchi, J. R. Morante, M. Cantoni, N. Marzari, J. Arbiol, A. Zunger, R. J. Warburton, and A. Fontcuberta i Morral, “Self-assembled quantum dots in a nanowire system for quantum photonics,” Nat. Mater. 12(5), 439–444 (2013).
[Crossref] [PubMed]

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Åberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[Crossref] [PubMed]

2012 (6)

G. Bulgarini, M. E. Reimer, M. Hocevar, E. P. A. M. Bakkers, L. P. Kouwenhoven, and V. Zwiller, “Avalanche amplification of a single exciton in a semiconductor nanowire,” Nat. Photonics 6(7), 455–458 (2012).
[Crossref]

K. J. Russell, T.-L. Liu, S. Cui, and E. L. Hu, “Large spontaneous emission enhancement in plasmonic nanocavities,” Nat. Photonics 6(7), 459–462 (2012).
[Crossref]

K. Tateno, G. Zhang, H. Gotoh, and T. Sogawa, “VLS growth of alternating InAsP/InP heterostructure nanowires for multiple-quantum-dot structures,” Nano Lett. 12(6), 2888–2893 (2012).
[Crossref] [PubMed]

Y.-J. Lu, J. Kim, H.-Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M.-Y. Lu, B.-H. Li, X. Qiu, W.-H. Chang, L.-J. Chen, G. Shvets, C.-K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337(6093), 450–453 (2012).
[Crossref] [PubMed]

G. Zhang, K. Tateno, H. Gotoh, and T. Sogawa, “Vertically aligned InP nanowires grown via the self-assisted vapor–liquid–solid mode,” Appl. Phys. Express 5(5), 055201 (2012).
[Crossref]

G. Bulgarini, M. E. Reimer, T. Zehender, M. Hocevar, E. P. A. M. Bakkers, L. P. Kouwenhoven, and V. Zwiller, “Spontaneous emission control of single quantum dots in bottom-up nanowire waveguides,” Appl. Phys. Lett. 100(12), 121106 (2012).
[Crossref]

2011 (5)

S. Breuer, C. Pfüller, T. Flissikowski, O. Brandt, H. T. Grahn, L. Geelhaar, and H. Riechert, “Suitability of Au- and self-assisted GaAs nanowires for optoelectronic applications,” Nano Lett. 11(3), 1276–1279 (2011).
[Crossref] [PubMed]

L. Hao, C. Aßmann, J. C. Gallop, D. Cox, F. Ruede, O. Kazakova, P. Josephs-Franks, D. Drung, and T. Schurig, “Detection of single magnetic nanobead with a nano-superconducting quantum interference device,” Appl. Phys. Lett. 98(9), 092504 (2011).
[Crossref]

J. Bleuse, J. Claudon, M. Creasey, N. S. Malik, J.-M. Gérard, I. Maksymov, J.-P. Hugonin, and P. Lalanne, “Inhibition, enhancement, and control of spontaneous emission in photonic nanowires,” Phys. Rev. Lett. 106(10), 103601 (2011).
[Crossref] [PubMed]

A. W. Schell, G. Kewes, T. Hanke, A. Leitenstorfer, R. Bratschitsch, O. Benson, and T. Aichele, “Single defect centers in diamond nanocrystals as quantum probes for plasmonic nanostructures,” Opt. Express 19(8), 7914–7920 (2011).
[Crossref] [PubMed]

Y. Alaverdyan, N. Vamivakas, J. Barnes, C. Lebouteiller, J. Hare, and M. Atatüre, “Spectral tunability of a plasmonic antenna with a dielectric nanocrystal,” Opt. Express 19(19), 18175–18181 (2011).
[Crossref] [PubMed]

2010 (5)

H. Aouani, S. Itzhakov, D. Gachet, E. Devaux, T. W. Ebbesen, H. Rigneault, D. Oron, and J. Wenger, “Colloidal quantum dots as probes of excitation field enhancement in photonic antennas,” ACS Nano 4(8), 4571–4578 (2010).
[Crossref] [PubMed]

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

A. F. Koenderink, “On the use of Purcell factors for plasmon antennas,” Opt. Lett. 35(24), 4208–4210 (2010).
[Crossref] [PubMed]

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J.-M. Gérard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4(3), 174–177 (2010).

F. J. García de Abajo, “Optical excitations in electron microscopy,” Rev. Mod. Phys. 82(1), 209–275 (2010).
[Crossref]

2009 (3)

J. Giblin, V. Protasenko, and M. Kuno, “Wavelength sensitivity of single nanowire excitation polarization anisotropies explained through a generalized treatment of their linear absorption,” ACS Nano 3(7), 1979–1987 (2009).
[Crossref] [PubMed]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

2008 (3)

A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photonics 2(6), 365–370 (2008).
[Crossref]

R. E. Algra, M. A. Verheijen, M. T. Borgström, L.-F. Feiner, G. Immink, W. J. P. van Enckevort, E. Vlieg, and E. P. A. M. Bakkers, “Twinning superlattices in indium phosphide nanowires,” Nature 456(7220), 369–372 (2008).
[Crossref] [PubMed]

F. Qian, Y. Li, S. Gradečak, H.-G. Park, Y. Dong, Y. Ding, Z. L. Wang, and C. M. Lieber, “Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers,” Nat. Mater. 7(9), 701–706 (2008).
[Crossref] [PubMed]

2007 (3)

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).
[Crossref] [PubMed]

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature 447(7148), 1098–1101 (2007).
[Crossref] [PubMed]

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007).
[Crossref] [PubMed]

2006 (2)

D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, “Quantum optics with surface plasmons,” Phys. Rev. Lett. 97(5), 053002 (2006).
[Crossref] [PubMed]

O. Hayden, R. Agarwal, and C. M. Lieber, “Nanoscale avalanche photodiodes for highly sensitive and spatially resolved photon detection,” Nat. Mater. 5(5), 352–356 (2006).
[Crossref] [PubMed]

2005 (1)

M. T. Borgström, V. Zwiller, E. Müller, and A. Imamoglu, “Optically bright quantum dots in single Nanowires,” Nano Lett. 5(7), 1439–1443 (2005).
[Crossref] [PubMed]

2003 (2)

X. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, “Single-nanowire electrically driven lasers,” Nature 421(6920), 241–245 (2003).
[Crossref] [PubMed]

M. R. Beversluis, A. Bouhelier, and L. Novotny, “Continuum generation from single gold nanostructures through near-field mediated intraband transitions,” Phys. Rev. B 68(11), 115433 (2003).
[Crossref]

2002 (3)

J. C. Johnson, H.-J. Choi, K. P. Knutsen, R. D. Schaller, P. Yang, and R. J. Saykally, “Single gallium nitride nanowire lasers,” Nat. Mater. 1(2), 106–110 (2002).
[Crossref] [PubMed]

L. J. Lauhon, M. S. Gudiksen, D. Wang, and C. M. Lieber, “Epitaxial core-shell and core-multishell nanowire heterostructures,” Nature 420(6911), 57–61 (2002).
[Crossref] [PubMed]

M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber, “Growth of nanowire superlattice structures for nanoscale photonics and electronics,” Nature 415(6872), 617–620 (2002).
[Crossref] [PubMed]

2001 (4)

X. Duan, Y. Huang, Y. Cui, J. Wang, and C. M. Lieber, “Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices,” Nature 409(6816), 66–69 (2001).
[Crossref] [PubMed]

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
[Crossref] [PubMed]

J. Wang, M. S. Gudiksen, X. Duan, Y. Cui, and C. M. Lieber, “Highly polarized photoluminescence and photodetection from single indium phosphide nanowires,” Science 293(5534), 1455–1457 (2001).
[Crossref] [PubMed]

N. Yamamoto, K. Araya, and F. J. García de Abajo, “Photon emission from silver particles induced by a high-energy electron beam,” Phys. Rev. B 64(20), 205419 (2001).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

1964 (1)

R. S. Wagner and W. C. Ellis, “Vapor-liquid-solid mechanism of single crystal growth,” Appl. Phys. Lett. 4(5), 89–90 (1964).
[Crossref]

Aagesen, M.

P. Krogstrup, H. I. Jørgensen, M. Heiss, O. Demichel, J. V. Holm, M. Aagesen, J. Nygard, and A. Fontcuberta i Morral, “Single-nanowire solar cells beyond the Shockley-Queisser limit,” Nat. Photonics 7(4), 306–310 (2013).
[Crossref]

Åberg, I.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Åberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[Crossref] [PubMed]

Agarwal, R.

O. Hayden, R. Agarwal, and C. M. Lieber, “Nanoscale avalanche photodiodes for highly sensitive and spatially resolved photon detection,” Nat. Mater. 5(5), 352–356 (2006).
[Crossref] [PubMed]

X. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, “Single-nanowire electrically driven lasers,” Nature 421(6920), 241–245 (2003).
[Crossref] [PubMed]

Aichele, T.

Akimov, A. V.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007).
[Crossref] [PubMed]

Alaverdyan, Y.

Algra, R. E.

R. E. Algra, M. A. Verheijen, M. T. Borgström, L.-F. Feiner, G. Immink, W. J. P. van Enckevort, E. Vlieg, and E. P. A. M. Bakkers, “Twinning superlattices in indium phosphide nanowires,” Nature 456(7220), 369–372 (2008).
[Crossref] [PubMed]

Amaduzzi, F.

A. Casadei, E. A. Llado, F. Amaduzzi, E. Russo-Averchi, D. Rüffer, M. Heiss, L. Dal Negro, and A. F. Morral, “Polarization response of nanowires à la carte,” Sci. Rep. 5, 7651 (2015).
[Crossref] [PubMed]

Anttu, N.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Åberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[Crossref] [PubMed]

Aouani, H.

H. Aouani, S. Itzhakov, D. Gachet, E. Devaux, T. W. Ebbesen, H. Rigneault, D. Oron, and J. Wenger, “Colloidal quantum dots as probes of excitation field enhancement in photonic antennas,” ACS Nano 4(8), 4571–4578 (2010).
[Crossref] [PubMed]

Araya, K.

N. Yamamoto, K. Araya, and F. J. García de Abajo, “Photon emission from silver particles induced by a high-energy electron beam,” Phys. Rev. B 64(20), 205419 (2001).
[Crossref]

Arbiol, J.

M. Heiss, Y. Fontana, A. Gustafsson, G. Wüst, C. Magen, D. D. O’Regan, J. W. Luo, B. Ketterer, S. Conesa-Boj, A. V. Kuhlmann, J. Houel, E. Russo-Averchi, J. R. Morante, M. Cantoni, N. Marzari, J. Arbiol, A. Zunger, R. J. Warburton, and A. Fontcuberta i Morral, “Self-assembled quantum dots in a nanowire system for quantum photonics,” Nat. Mater. 12(5), 439–444 (2013).
[Crossref] [PubMed]

Asoli, D.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Åberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[Crossref] [PubMed]

Aßmann, C.

L. Hao, C. Aßmann, J. C. Gallop, D. Cox, F. Ruede, O. Kazakova, P. Josephs-Franks, D. Drung, and T. Schurig, “Detection of single magnetic nanobead with a nano-superconducting quantum interference device,” Appl. Phys. Lett. 98(9), 092504 (2011).
[Crossref]

Atatüre, M.

Avlasevich, Y.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

Bakkers, E. P. A. M.

G. Bulgarini, M. E. Reimer, T. Zehender, M. Hocevar, E. P. A. M. Bakkers, L. P. Kouwenhoven, and V. Zwiller, “Spontaneous emission control of single quantum dots in bottom-up nanowire waveguides,” Appl. Phys. Lett. 100(12), 121106 (2012).
[Crossref]

G. Bulgarini, M. E. Reimer, M. Hocevar, E. P. A. M. Bakkers, L. P. Kouwenhoven, and V. Zwiller, “Avalanche amplification of a single exciton in a semiconductor nanowire,” Nat. Photonics 6(7), 455–458 (2012).
[Crossref]

R. E. Algra, M. A. Verheijen, M. T. Borgström, L.-F. Feiner, G. Immink, W. J. P. van Enckevort, E. Vlieg, and E. P. A. M. Bakkers, “Twinning superlattices in indium phosphide nanowires,” Nature 456(7220), 369–372 (2008).
[Crossref] [PubMed]

Barnard, E. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Barnes, J.

Bartal, G.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Bazin, M.

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J.-M. Gérard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4(3), 174–177 (2010).

Benson, O.

Beversluis, M. R.

M. R. Beversluis, A. Bouhelier, and L. Novotny, “Continuum generation from single gold nanostructures through near-field mediated intraband transitions,” Phys. Rev. B 68(11), 115433 (2003).
[Crossref]

Birowosuto, M. D.

M. D. Birowosuto, G. Zhang, A. Yokoo, M. Takiguchi, and M. Notomi, “Spontaneous emission inhibition of telecom-band quantum disks inside single nanowire on different substrates,” Opt. Express 22(10), 11713–11726 (2014).
[Crossref] [PubMed]

M. D. Birowosuto, A. Yokoo, G. Zhang, K. Tateno, E. Kuramochi, H. Taniyama, M. Takiguchi, and M. Notomi, “Movable high-Q nanoresonators realized by semiconductor nanowires on a Si photonic crystal platform,” Nat. Mater. 13(3), 279–285 (2014).
[Crossref] [PubMed]

Bleuse, J.

J. Bleuse, J. Claudon, M. Creasey, N. S. Malik, J.-M. Gérard, I. Maksymov, J.-P. Hugonin, and P. Lalanne, “Inhibition, enhancement, and control of spontaneous emission in photonic nanowires,” Phys. Rev. Lett. 106(10), 103601 (2011).
[Crossref] [PubMed]

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J.-M. Gérard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4(3), 174–177 (2010).

Borgström, M. T.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Åberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[Crossref] [PubMed]

R. E. Algra, M. A. Verheijen, M. T. Borgström, L.-F. Feiner, G. Immink, W. J. P. van Enckevort, E. Vlieg, and E. P. A. M. Bakkers, “Twinning superlattices in indium phosphide nanowires,” Nature 456(7220), 369–372 (2008).
[Crossref] [PubMed]

M. T. Borgström, V. Zwiller, E. Müller, and A. Imamoglu, “Optically bright quantum dots in single Nanowires,” Nano Lett. 5(7), 1439–1443 (2005).
[Crossref] [PubMed]

Bouhelier, A.

M. R. Beversluis, A. Bouhelier, and L. Novotny, “Continuum generation from single gold nanostructures through near-field mediated intraband transitions,” Phys. Rev. B 68(11), 115433 (2003).
[Crossref]

Bragas, A. V.

G. Grinblat, M. Rahmani, E. Cortés, M. Caldarola, D. Comedi, S. A. Maier, and A. V. Bragas, “High-efficiency second harmonic generation from a single hybrid ZnO nanowire/Au plasmonic nano-oligomer,” Nano Lett. 14(11), 6660–6665 (2014).
[Crossref] [PubMed]

Brandt, O.

S. Breuer, C. Pfüller, T. Flissikowski, O. Brandt, H. T. Grahn, L. Geelhaar, and H. Riechert, “Suitability of Au- and self-assisted GaAs nanowires for optoelectronic applications,” Nano Lett. 11(3), 1276–1279 (2011).
[Crossref] [PubMed]

Bratschitsch, R.

Breuer, S.

S. Breuer, C. Pfüller, T. Flissikowski, O. Brandt, H. T. Grahn, L. Geelhaar, and H. Riechert, “Suitability of Au- and self-assisted GaAs nanowires for optoelectronic applications,” Nano Lett. 11(3), 1276–1279 (2011).
[Crossref] [PubMed]

Brongersma, M. L.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Bulgarini, G.

G. Bulgarini, M. E. Reimer, T. Zehender, M. Hocevar, E. P. A. M. Bakkers, L. P. Kouwenhoven, and V. Zwiller, “Spontaneous emission control of single quantum dots in bottom-up nanowire waveguides,” Appl. Phys. Lett. 100(12), 121106 (2012).
[Crossref]

G. Bulgarini, M. E. Reimer, M. Hocevar, E. P. A. M. Bakkers, L. P. Kouwenhoven, and V. Zwiller, “Avalanche amplification of a single exciton in a semiconductor nanowire,” Nat. Photonics 6(7), 455–458 (2012).
[Crossref]

Cai, W.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Caldarola, M.

G. Grinblat, M. Rahmani, E. Cortés, M. Caldarola, D. Comedi, S. A. Maier, and A. V. Bragas, “High-efficiency second harmonic generation from a single hybrid ZnO nanowire/Au plasmonic nano-oligomer,” Nano Lett. 14(11), 6660–6665 (2014).
[Crossref] [PubMed]

Cantoni, M.

M. Heiss, Y. Fontana, A. Gustafsson, G. Wüst, C. Magen, D. D. O’Regan, J. W. Luo, B. Ketterer, S. Conesa-Boj, A. V. Kuhlmann, J. Houel, E. Russo-Averchi, J. R. Morante, M. Cantoni, N. Marzari, J. Arbiol, A. Zunger, R. J. Warburton, and A. Fontcuberta i Morral, “Self-assembled quantum dots in a nanowire system for quantum photonics,” Nat. Mater. 12(5), 439–444 (2013).
[Crossref] [PubMed]

Casadei, A.

A. Casadei, E. A. Llado, F. Amaduzzi, E. Russo-Averchi, D. Rüffer, M. Heiss, L. Dal Negro, and A. F. Morral, “Polarization response of nanowires à la carte,” Sci. Rep. 5, 7651 (2015).
[Crossref] [PubMed]

A. Casadei, E. F. Pecora, J. Trevino, C. Forestiere, D. Rüffer, E. Russo-Averchi, F. Matteini, G. Tutuncuoglu, M. Heiss, A. Fontcuberta i Morral, and L. Dal Negro, “Photonic-plasmonic coupling of GaAs single nanowires to optical nanoantennas,” Nano Lett. 14(5), 2271–2278 (2014).
[Crossref] [PubMed]

Chang, D. E.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007).
[Crossref] [PubMed]

D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, “Quantum optics with surface plasmons,” Phys. Rev. Lett. 97(5), 053002 (2006).
[Crossref] [PubMed]

Chang, W.-H.

Y.-J. Lu, J. Kim, H.-Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M.-Y. Lu, B.-H. Li, X. Qiu, W.-H. Chang, L.-J. Chen, G. Shvets, C.-K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337(6093), 450–453 (2012).
[Crossref] [PubMed]

Chen, H.-Y.

Y.-J. Lu, J. Kim, H.-Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M.-Y. Lu, B.-H. Li, X. Qiu, W.-H. Chang, L.-J. Chen, G. Shvets, C.-K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337(6093), 450–453 (2012).
[Crossref] [PubMed]

Chen, L.-J.

Y.-J. Lu, J. Kim, H.-Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M.-Y. Lu, B.-H. Li, X. Qiu, W.-H. Chang, L.-J. Chen, G. Shvets, C.-K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337(6093), 450–453 (2012).
[Crossref] [PubMed]

Choi, H.-J.

J. C. Johnson, H.-J. Choi, K. P. Knutsen, R. D. Schaller, P. Yang, and R. J. Saykally, “Single gallium nitride nanowire lasers,” Nat. Mater. 1(2), 106–110 (2002).
[Crossref] [PubMed]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Claudon, J.

J. Bleuse, J. Claudon, M. Creasey, N. S. Malik, J.-M. Gérard, I. Maksymov, J.-P. Hugonin, and P. Lalanne, “Inhibition, enhancement, and control of spontaneous emission in photonic nanowires,” Phys. Rev. Lett. 106(10), 103601 (2011).
[Crossref] [PubMed]

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J.-M. Gérard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4(3), 174–177 (2010).

Comedi, D.

G. Grinblat, M. Rahmani, E. Cortés, M. Caldarola, D. Comedi, S. A. Maier, and A. V. Bragas, “High-efficiency second harmonic generation from a single hybrid ZnO nanowire/Au plasmonic nano-oligomer,” Nano Lett. 14(11), 6660–6665 (2014).
[Crossref] [PubMed]

Conesa-Boj, S.

M. Heiss, Y. Fontana, A. Gustafsson, G. Wüst, C. Magen, D. D. O’Regan, J. W. Luo, B. Ketterer, S. Conesa-Boj, A. V. Kuhlmann, J. Houel, E. Russo-Averchi, J. R. Morante, M. Cantoni, N. Marzari, J. Arbiol, A. Zunger, R. J. Warburton, and A. Fontcuberta i Morral, “Self-assembled quantum dots in a nanowire system for quantum photonics,” Nat. Mater. 12(5), 439–444 (2013).
[Crossref] [PubMed]

Cortés, E.

G. Grinblat, M. Rahmani, E. Cortés, M. Caldarola, D. Comedi, S. A. Maier, and A. V. Bragas, “High-efficiency second harmonic generation from a single hybrid ZnO nanowire/Au plasmonic nano-oligomer,” Nano Lett. 14(11), 6660–6665 (2014).
[Crossref] [PubMed]

Cox, D.

L. Hao, C. Aßmann, J. C. Gallop, D. Cox, F. Ruede, O. Kazakova, P. Josephs-Franks, D. Drung, and T. Schurig, “Detection of single magnetic nanobead with a nano-superconducting quantum interference device,” Appl. Phys. Lett. 98(9), 092504 (2011).
[Crossref]

Creasey, M.

J. Bleuse, J. Claudon, M. Creasey, N. S. Malik, J.-M. Gérard, I. Maksymov, J.-P. Hugonin, and P. Lalanne, “Inhibition, enhancement, and control of spontaneous emission in photonic nanowires,” Phys. Rev. Lett. 106(10), 103601 (2011).
[Crossref] [PubMed]

Cui, S.

K. J. Russell, T.-L. Liu, S. Cui, and E. L. Hu, “Large spontaneous emission enhancement in plasmonic nanocavities,” Nat. Photonics 6(7), 459–462 (2012).
[Crossref]

Cui, Y.

J. Wang, M. S. Gudiksen, X. Duan, Y. Cui, and C. M. Lieber, “Highly polarized photoluminescence and photodetection from single indium phosphide nanowires,” Science 293(5534), 1455–1457 (2001).
[Crossref] [PubMed]

X. Duan, Y. Huang, Y. Cui, J. Wang, and C. M. Lieber, “Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices,” Nature 409(6816), 66–69 (2001).
[Crossref] [PubMed]

Dabidian, N.

Y.-J. Lu, J. Kim, H.-Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M.-Y. Lu, B.-H. Li, X. Qiu, W.-H. Chang, L.-J. Chen, G. Shvets, C.-K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337(6093), 450–453 (2012).
[Crossref] [PubMed]

Dai, L.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Dal Negro, L.

A. Casadei, E. A. Llado, F. Amaduzzi, E. Russo-Averchi, D. Rüffer, M. Heiss, L. Dal Negro, and A. F. Morral, “Polarization response of nanowires à la carte,” Sci. Rep. 5, 7651 (2015).
[Crossref] [PubMed]

A. Casadei, E. F. Pecora, J. Trevino, C. Forestiere, D. Rüffer, E. Russo-Averchi, F. Matteini, G. Tutuncuoglu, M. Heiss, A. Fontcuberta i Morral, and L. Dal Negro, “Photonic-plasmonic coupling of GaAs single nanowires to optical nanoantennas,” Nano Lett. 14(5), 2271–2278 (2014).
[Crossref] [PubMed]

Demichel, O.

P. Krogstrup, H. I. Jørgensen, M. Heiss, O. Demichel, J. V. Holm, M. Aagesen, J. Nygard, and A. Fontcuberta i Morral, “Single-nanowire solar cells beyond the Shockley-Queisser limit,” Nat. Photonics 7(4), 306–310 (2013).
[Crossref]

Deppert, K.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Åberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[Crossref] [PubMed]

Devaux, E.

H. Aouani, S. Itzhakov, D. Gachet, E. Devaux, T. W. Ebbesen, H. Rigneault, D. Oron, and J. Wenger, “Colloidal quantum dots as probes of excitation field enhancement in photonic antennas,” ACS Nano 4(8), 4571–4578 (2010).
[Crossref] [PubMed]

Dickinson, M. R.

A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photonics 2(6), 365–370 (2008).
[Crossref]

Dimroth, F.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Åberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[Crossref] [PubMed]

Ding, Y.

F. Qian, Y. Li, S. Gradečak, H.-G. Park, Y. Dong, Y. Ding, Z. L. Wang, and C. M. Lieber, “Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers,” Nat. Mater. 7(9), 701–706 (2008).
[Crossref] [PubMed]

Dong, L.

C. Pan, L. Dong, G. Zhu, S. Niu, R. Yu, Q. Yang, Y. Liu, and Z. L. Wang, “High-resolution electroluminescent imaging of pressure distribution using a piezoelectric nanowire LED array,” Nat. Photonics 7(9), 752–758 (2013).
[Crossref]

Dong, Y.

F. Qian, Y. Li, S. Gradečak, H.-G. Park, Y. Dong, Y. Ding, Z. L. Wang, and C. M. Lieber, “Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers,” Nat. Mater. 7(9), 701–706 (2008).
[Crossref] [PubMed]

Drung, D.

L. Hao, C. Aßmann, J. C. Gallop, D. Cox, F. Ruede, O. Kazakova, P. Josephs-Franks, D. Drung, and T. Schurig, “Detection of single magnetic nanobead with a nano-superconducting quantum interference device,” Appl. Phys. Lett. 98(9), 092504 (2011).
[Crossref]

Duan, X.

X. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, “Single-nanowire electrically driven lasers,” Nature 421(6920), 241–245 (2003).
[Crossref] [PubMed]

X. Duan, Y. Huang, Y. Cui, J. Wang, and C. M. Lieber, “Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices,” Nature 409(6816), 66–69 (2001).
[Crossref] [PubMed]

J. Wang, M. S. Gudiksen, X. Duan, Y. Cui, and C. M. Lieber, “Highly polarized photoluminescence and photodetection from single indium phosphide nanowires,” Science 293(5534), 1455–1457 (2001).
[Crossref] [PubMed]

Ebbesen, T. W.

H. Aouani, S. Itzhakov, D. Gachet, E. Devaux, T. W. Ebbesen, H. Rigneault, D. Oron, and J. Wenger, “Colloidal quantum dots as probes of excitation field enhancement in photonic antennas,” ACS Nano 4(8), 4571–4578 (2010).
[Crossref] [PubMed]

Ellis, W. C.

R. S. Wagner and W. C. Ellis, “Vapor-liquid-solid mechanism of single crystal growth,” Appl. Phys. Lett. 4(5), 89–90 (1964).
[Crossref]

Fan, S.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

Fang, Y.

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).
[Crossref] [PubMed]

Feick, H.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
[Crossref] [PubMed]

Feiner, L.-F.

R. E. Algra, M. A. Verheijen, M. T. Borgström, L.-F. Feiner, G. Immink, W. J. P. van Enckevort, E. Vlieg, and E. P. A. M. Bakkers, “Twinning superlattices in indium phosphide nanowires,” Nature 456(7220), 369–372 (2008).
[Crossref] [PubMed]

Flissikowski, T.

S. Breuer, C. Pfüller, T. Flissikowski, O. Brandt, H. T. Grahn, L. Geelhaar, and H. Riechert, “Suitability of Au- and self-assisted GaAs nanowires for optoelectronic applications,” Nano Lett. 11(3), 1276–1279 (2011).
[Crossref] [PubMed]

Fontana, Y.

M. Heiss, Y. Fontana, A. Gustafsson, G. Wüst, C. Magen, D. D. O’Regan, J. W. Luo, B. Ketterer, S. Conesa-Boj, A. V. Kuhlmann, J. Houel, E. Russo-Averchi, J. R. Morante, M. Cantoni, N. Marzari, J. Arbiol, A. Zunger, R. J. Warburton, and A. Fontcuberta i Morral, “Self-assembled quantum dots in a nanowire system for quantum photonics,” Nat. Mater. 12(5), 439–444 (2013).
[Crossref] [PubMed]

Fontcuberta i Morral, A.

A. Casadei, E. F. Pecora, J. Trevino, C. Forestiere, D. Rüffer, E. Russo-Averchi, F. Matteini, G. Tutuncuoglu, M. Heiss, A. Fontcuberta i Morral, and L. Dal Negro, “Photonic-plasmonic coupling of GaAs single nanowires to optical nanoantennas,” Nano Lett. 14(5), 2271–2278 (2014).
[Crossref] [PubMed]

M. Heiss, Y. Fontana, A. Gustafsson, G. Wüst, C. Magen, D. D. O’Regan, J. W. Luo, B. Ketterer, S. Conesa-Boj, A. V. Kuhlmann, J. Houel, E. Russo-Averchi, J. R. Morante, M. Cantoni, N. Marzari, J. Arbiol, A. Zunger, R. J. Warburton, and A. Fontcuberta i Morral, “Self-assembled quantum dots in a nanowire system for quantum photonics,” Nat. Mater. 12(5), 439–444 (2013).
[Crossref] [PubMed]

P. Krogstrup, H. I. Jørgensen, M. Heiss, O. Demichel, J. V. Holm, M. Aagesen, J. Nygard, and A. Fontcuberta i Morral, “Single-nanowire solar cells beyond the Shockley-Queisser limit,” Nat. Photonics 7(4), 306–310 (2013).
[Crossref]

Forestiere, C.

A. Casadei, E. F. Pecora, J. Trevino, C. Forestiere, D. Rüffer, E. Russo-Averchi, F. Matteini, G. Tutuncuoglu, M. Heiss, A. Fontcuberta i Morral, and L. Dal Negro, “Photonic-plasmonic coupling of GaAs single nanowires to optical nanoantennas,” Nano Lett. 14(5), 2271–2278 (2014).
[Crossref] [PubMed]

Fuss-Kailuweit, P.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Åberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[Crossref] [PubMed]

Gachet, D.

H. Aouani, S. Itzhakov, D. Gachet, E. Devaux, T. W. Ebbesen, H. Rigneault, D. Oron, and J. Wenger, “Colloidal quantum dots as probes of excitation field enhancement in photonic antennas,” ACS Nano 4(8), 4571–4578 (2010).
[Crossref] [PubMed]

Gallop, J. C.

L. Hao, C. Aßmann, J. C. Gallop, D. Cox, F. Ruede, O. Kazakova, P. Josephs-Franks, D. Drung, and T. Schurig, “Detection of single magnetic nanobead with a nano-superconducting quantum interference device,” Appl. Phys. Lett. 98(9), 092504 (2011).
[Crossref]

Gao, Q.

D. Saxena, S. Mokkapati, P. Parkinson, N. Jiang, Q. Gao, H. H. Tan, and C. Jagadish, “Optically pumped room-temperature GaAs nanowire lasers,” Nat. Photonics 7(12), 963–968 (2013).
[Crossref]

García de Abajo, F. J.

F. J. García de Abajo, “Optical excitations in electron microscopy,” Rev. Mod. Phys. 82(1), 209–275 (2010).
[Crossref]

N. Yamamoto, K. Araya, and F. J. García de Abajo, “Photon emission from silver particles induced by a high-energy electron beam,” Phys. Rev. B 64(20), 205419 (2001).
[Crossref]

Geelhaar, L.

S. Breuer, C. Pfüller, T. Flissikowski, O. Brandt, H. T. Grahn, L. Geelhaar, and H. Riechert, “Suitability of Au- and self-assisted GaAs nanowires for optoelectronic applications,” Nano Lett. 11(3), 1276–1279 (2011).
[Crossref] [PubMed]

Gérard, J.-M.

J. Bleuse, J. Claudon, M. Creasey, N. S. Malik, J.-M. Gérard, I. Maksymov, J.-P. Hugonin, and P. Lalanne, “Inhibition, enhancement, and control of spontaneous emission in photonic nanowires,” Phys. Rev. Lett. 106(10), 103601 (2011).
[Crossref] [PubMed]

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J.-M. Gérard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4(3), 174–177 (2010).

Giblin, J.

J. Giblin, V. Protasenko, and M. Kuno, “Wavelength sensitivity of single nanowire excitation polarization anisotropies explained through a generalized treatment of their linear absorption,” ACS Nano 3(7), 1979–1987 (2009).
[Crossref] [PubMed]

Gladden, C.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Gotoh, H.

G. Zhang, K. Tateno, H. Gotoh, and T. Sogawa, “Vertically aligned InP nanowires grown via the self-assisted vapor–liquid–solid mode,” Appl. Phys. Express 5(5), 055201 (2012).
[Crossref]

K. Tateno, G. Zhang, H. Gotoh, and T. Sogawa, “VLS growth of alternating InAsP/InP heterostructure nanowires for multiple-quantum-dot structures,” Nano Lett. 12(6), 2888–2893 (2012).
[Crossref] [PubMed]

Gradecak, S.

F. Qian, Y. Li, S. Gradečak, H.-G. Park, Y. Dong, Y. Ding, Z. L. Wang, and C. M. Lieber, “Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers,” Nat. Mater. 7(9), 701–706 (2008).
[Crossref] [PubMed]

Grahn, H. T.

S. Breuer, C. Pfüller, T. Flissikowski, O. Brandt, H. T. Grahn, L. Geelhaar, and H. Riechert, “Suitability of Au- and self-assisted GaAs nanowires for optoelectronic applications,” Nano Lett. 11(3), 1276–1279 (2011).
[Crossref] [PubMed]

Gregersen, N.

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J.-M. Gérard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4(3), 174–177 (2010).

Grigorenko, A. N.

A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photonics 2(6), 365–370 (2008).
[Crossref]

Grinblat, G.

G. Grinblat, M. Rahmani, E. Cortés, M. Caldarola, D. Comedi, S. A. Maier, and A. V. Bragas, “High-efficiency second harmonic generation from a single hybrid ZnO nanowire/Au plasmonic nano-oligomer,” Nano Lett. 14(11), 6660–6665 (2014).
[Crossref] [PubMed]

Gudiksen, M. S.

L. J. Lauhon, M. S. Gudiksen, D. Wang, and C. M. Lieber, “Epitaxial core-shell and core-multishell nanowire heterostructures,” Nature 420(6911), 57–61 (2002).
[Crossref] [PubMed]

M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber, “Growth of nanowire superlattice structures for nanoscale photonics and electronics,” Nature 415(6872), 617–620 (2002).
[Crossref] [PubMed]

J. Wang, M. S. Gudiksen, X. Duan, Y. Cui, and C. M. Lieber, “Highly polarized photoluminescence and photodetection from single indium phosphide nanowires,” Science 293(5534), 1455–1457 (2001).
[Crossref] [PubMed]

Gustafsson, A.

M. Heiss, Y. Fontana, A. Gustafsson, G. Wüst, C. Magen, D. D. O’Regan, J. W. Luo, B. Ketterer, S. Conesa-Boj, A. V. Kuhlmann, J. Houel, E. Russo-Averchi, J. R. Morante, M. Cantoni, N. Marzari, J. Arbiol, A. Zunger, R. J. Warburton, and A. Fontcuberta i Morral, “Self-assembled quantum dots in a nanowire system for quantum photonics,” Nat. Mater. 12(5), 439–444 (2013).
[Crossref] [PubMed]

Gwo, S.

Y.-J. Lu, J. Kim, H.-Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M.-Y. Lu, B.-H. Li, X. Qiu, W.-H. Chang, L.-J. Chen, G. Shvets, C.-K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337(6093), 450–453 (2012).
[Crossref] [PubMed]

Hanke, T.

Hao, L.

L. Hao, C. Aßmann, J. C. Gallop, D. Cox, F. Ruede, O. Kazakova, P. Josephs-Franks, D. Drung, and T. Schurig, “Detection of single magnetic nanobead with a nano-superconducting quantum interference device,” Appl. Phys. Lett. 98(9), 092504 (2011).
[Crossref]

Hare, J.

Hayden, O.

O. Hayden, R. Agarwal, and C. M. Lieber, “Nanoscale avalanche photodiodes for highly sensitive and spatially resolved photon detection,” Nat. Mater. 5(5), 352–356 (2006).
[Crossref] [PubMed]

Heiss, M.

A. Casadei, E. A. Llado, F. Amaduzzi, E. Russo-Averchi, D. Rüffer, M. Heiss, L. Dal Negro, and A. F. Morral, “Polarization response of nanowires à la carte,” Sci. Rep. 5, 7651 (2015).
[Crossref] [PubMed]

A. Casadei, E. F. Pecora, J. Trevino, C. Forestiere, D. Rüffer, E. Russo-Averchi, F. Matteini, G. Tutuncuoglu, M. Heiss, A. Fontcuberta i Morral, and L. Dal Negro, “Photonic-plasmonic coupling of GaAs single nanowires to optical nanoantennas,” Nano Lett. 14(5), 2271–2278 (2014).
[Crossref] [PubMed]

M. Heiss, Y. Fontana, A. Gustafsson, G. Wüst, C. Magen, D. D. O’Regan, J. W. Luo, B. Ketterer, S. Conesa-Boj, A. V. Kuhlmann, J. Houel, E. Russo-Averchi, J. R. Morante, M. Cantoni, N. Marzari, J. Arbiol, A. Zunger, R. J. Warburton, and A. Fontcuberta i Morral, “Self-assembled quantum dots in a nanowire system for quantum photonics,” Nat. Mater. 12(5), 439–444 (2013).
[Crossref] [PubMed]

P. Krogstrup, H. I. Jørgensen, M. Heiss, O. Demichel, J. V. Holm, M. Aagesen, J. Nygard, and A. Fontcuberta i Morral, “Single-nanowire solar cells beyond the Shockley-Queisser limit,” Nat. Photonics 7(4), 306–310 (2013).
[Crossref]

Hemmer, P. R.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007).
[Crossref] [PubMed]

D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, “Quantum optics with surface plasmons,” Phys. Rev. Lett. 97(5), 053002 (2006).
[Crossref] [PubMed]

Hocevar, M.

G. Bulgarini, M. E. Reimer, T. Zehender, M. Hocevar, E. P. A. M. Bakkers, L. P. Kouwenhoven, and V. Zwiller, “Spontaneous emission control of single quantum dots in bottom-up nanowire waveguides,” Appl. Phys. Lett. 100(12), 121106 (2012).
[Crossref]

G. Bulgarini, M. E. Reimer, M. Hocevar, E. P. A. M. Bakkers, L. P. Kouwenhoven, and V. Zwiller, “Avalanche amplification of a single exciton in a semiconductor nanowire,” Nat. Photonics 6(7), 455–458 (2012).
[Crossref]

Holm, J. V.

P. Krogstrup, H. I. Jørgensen, M. Heiss, O. Demichel, J. V. Holm, M. Aagesen, J. Nygard, and A. Fontcuberta i Morral, “Single-nanowire solar cells beyond the Shockley-Queisser limit,” Nat. Photonics 7(4), 306–310 (2013).
[Crossref]

Houel, J.

M. Heiss, Y. Fontana, A. Gustafsson, G. Wüst, C. Magen, D. D. O’Regan, J. W. Luo, B. Ketterer, S. Conesa-Boj, A. V. Kuhlmann, J. Houel, E. Russo-Averchi, J. R. Morante, M. Cantoni, N. Marzari, J. Arbiol, A. Zunger, R. J. Warburton, and A. Fontcuberta i Morral, “Self-assembled quantum dots in a nanowire system for quantum photonics,” Nat. Mater. 12(5), 439–444 (2013).
[Crossref] [PubMed]

Hu, E. L.

K. J. Russell, T.-L. Liu, S. Cui, and E. L. Hu, “Large spontaneous emission enhancement in plasmonic nanocavities,” Nat. Photonics 6(7), 459–462 (2012).
[Crossref]

Huang, J.

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).
[Crossref] [PubMed]

Huang, M. H.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
[Crossref] [PubMed]

Huang, Y.

X. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, “Single-nanowire electrically driven lasers,” Nature 421(6920), 241–245 (2003).
[Crossref] [PubMed]

X. Duan, Y. Huang, Y. Cui, J. Wang, and C. M. Lieber, “Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices,” Nature 409(6816), 66–69 (2001).
[Crossref] [PubMed]

Huffman, M.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Åberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[Crossref] [PubMed]

Hugonin, J.-P.

J. Bleuse, J. Claudon, M. Creasey, N. S. Malik, J.-M. Gérard, I. Maksymov, J.-P. Hugonin, and P. Lalanne, “Inhibition, enhancement, and control of spontaneous emission in photonic nanowires,” Phys. Rev. Lett. 106(10), 103601 (2011).
[Crossref] [PubMed]

Imamoglu, A.

M. T. Borgström, V. Zwiller, E. Müller, and A. Imamoglu, “Optically bright quantum dots in single Nanowires,” Nano Lett. 5(7), 1439–1443 (2005).
[Crossref] [PubMed]

Immink, G.

R. E. Algra, M. A. Verheijen, M. T. Borgström, L.-F. Feiner, G. Immink, W. J. P. van Enckevort, E. Vlieg, and E. P. A. M. Bakkers, “Twinning superlattices in indium phosphide nanowires,” Nature 456(7220), 369–372 (2008).
[Crossref] [PubMed]

Itzhakov, S.

H. Aouani, S. Itzhakov, D. Gachet, E. Devaux, T. W. Ebbesen, H. Rigneault, D. Oron, and J. Wenger, “Colloidal quantum dots as probes of excitation field enhancement in photonic antennas,” ACS Nano 4(8), 4571–4578 (2010).
[Crossref] [PubMed]

Jaffrennou, P.

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J.-M. Gérard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4(3), 174–177 (2010).

Jagadish, C.

S. Mokkapati, D. Saxena, N. Jiang, L. Li, H. H. Tan, and C. Jagadish, “An order of magnitude increase in the quantum efficiency of (Al)GaAs nanowires using hybrid photonic-plasmonic modes,” Nano Lett. 15(1), 307–312 (2015).
[Crossref] [PubMed]

D. Saxena, S. Mokkapati, P. Parkinson, N. Jiang, Q. Gao, H. H. Tan, and C. Jagadish, “Optically pumped room-temperature GaAs nanowire lasers,” Nat. Photonics 7(12), 963–968 (2013).
[Crossref]

Jiang, N.

S. Mokkapati, D. Saxena, N. Jiang, L. Li, H. H. Tan, and C. Jagadish, “An order of magnitude increase in the quantum efficiency of (Al)GaAs nanowires using hybrid photonic-plasmonic modes,” Nano Lett. 15(1), 307–312 (2015).
[Crossref] [PubMed]

D. Saxena, S. Mokkapati, P. Parkinson, N. Jiang, Q. Gao, H. H. Tan, and C. Jagadish, “Optically pumped room-temperature GaAs nanowire lasers,” Nat. Photonics 7(12), 963–968 (2013).
[Crossref]

Johnson, J. C.

J. C. Johnson, H.-J. Choi, K. P. Knutsen, R. D. Schaller, P. Yang, and R. J. Saykally, “Single gallium nitride nanowire lasers,” Nat. Mater. 1(2), 106–110 (2002).
[Crossref] [PubMed]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Jørgensen, H. I.

P. Krogstrup, H. I. Jørgensen, M. Heiss, O. Demichel, J. V. Holm, M. Aagesen, J. Nygard, and A. Fontcuberta i Morral, “Single-nanowire solar cells beyond the Shockley-Queisser limit,” Nat. Photonics 7(4), 306–310 (2013).
[Crossref]

Josephs-Franks, P.

L. Hao, C. Aßmann, J. C. Gallop, D. Cox, F. Ruede, O. Kazakova, P. Josephs-Franks, D. Drung, and T. Schurig, “Detection of single magnetic nanobead with a nano-superconducting quantum interference device,” Appl. Phys. Lett. 98(9), 092504 (2011).
[Crossref]

Jun, Y. C.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Kazakova, O.

L. Hao, C. Aßmann, J. C. Gallop, D. Cox, F. Ruede, O. Kazakova, P. Josephs-Franks, D. Drung, and T. Schurig, “Detection of single magnetic nanobead with a nano-superconducting quantum interference device,” Appl. Phys. Lett. 98(9), 092504 (2011).
[Crossref]

Kempa, T. J.

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).
[Crossref] [PubMed]

Ketterer, B.

M. Heiss, Y. Fontana, A. Gustafsson, G. Wüst, C. Magen, D. D. O’Regan, J. W. Luo, B. Ketterer, S. Conesa-Boj, A. V. Kuhlmann, J. Houel, E. Russo-Averchi, J. R. Morante, M. Cantoni, N. Marzari, J. Arbiol, A. Zunger, R. J. Warburton, and A. Fontcuberta i Morral, “Self-assembled quantum dots in a nanowire system for quantum photonics,” Nat. Mater. 12(5), 439–444 (2013).
[Crossref] [PubMed]

Kewes, G.

Kim, J.

Y.-J. Lu, J. Kim, H.-Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M.-Y. Lu, B.-H. Li, X. Qiu, W.-H. Chang, L.-J. Chen, G. Shvets, C.-K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337(6093), 450–453 (2012).
[Crossref] [PubMed]

Kind, H.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
[Crossref] [PubMed]

Kinkhabwala, A.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

Knutsen, K. P.

J. C. Johnson, H.-J. Choi, K. P. Knutsen, R. D. Schaller, P. Yang, and R. J. Saykally, “Single gallium nitride nanowire lasers,” Nat. Mater. 1(2), 106–110 (2002).
[Crossref] [PubMed]

Koenderink, A. F.

Kouwenhoven, L. P.

G. Bulgarini, M. E. Reimer, T. Zehender, M. Hocevar, E. P. A. M. Bakkers, L. P. Kouwenhoven, and V. Zwiller, “Spontaneous emission control of single quantum dots in bottom-up nanowire waveguides,” Appl. Phys. Lett. 100(12), 121106 (2012).
[Crossref]

G. Bulgarini, M. E. Reimer, M. Hocevar, E. P. A. M. Bakkers, L. P. Kouwenhoven, and V. Zwiller, “Avalanche amplification of a single exciton in a semiconductor nanowire,” Nat. Photonics 6(7), 455–458 (2012).
[Crossref]

Krogstrup, P.

P. Krogstrup, H. I. Jørgensen, M. Heiss, O. Demichel, J. V. Holm, M. Aagesen, J. Nygard, and A. Fontcuberta i Morral, “Single-nanowire solar cells beyond the Shockley-Queisser limit,” Nat. Photonics 7(4), 306–310 (2013).
[Crossref]

Kuhlmann, A. V.

M. Heiss, Y. Fontana, A. Gustafsson, G. Wüst, C. Magen, D. D. O’Regan, J. W. Luo, B. Ketterer, S. Conesa-Boj, A. V. Kuhlmann, J. Houel, E. Russo-Averchi, J. R. Morante, M. Cantoni, N. Marzari, J. Arbiol, A. Zunger, R. J. Warburton, and A. Fontcuberta i Morral, “Self-assembled quantum dots in a nanowire system for quantum photonics,” Nat. Mater. 12(5), 439–444 (2013).
[Crossref] [PubMed]

Kuno, M.

J. Giblin, V. Protasenko, and M. Kuno, “Wavelength sensitivity of single nanowire excitation polarization anisotropies explained through a generalized treatment of their linear absorption,” ACS Nano 3(7), 1979–1987 (2009).
[Crossref] [PubMed]

Kuramochi, E.

M. D. Birowosuto, A. Yokoo, G. Zhang, K. Tateno, E. Kuramochi, H. Taniyama, M. Takiguchi, and M. Notomi, “Movable high-Q nanoresonators realized by semiconductor nanowires on a Si photonic crystal platform,” Nat. Mater. 13(3), 279–285 (2014).
[Crossref] [PubMed]

Lalanne, P.

J. Bleuse, J. Claudon, M. Creasey, N. S. Malik, J.-M. Gérard, I. Maksymov, J.-P. Hugonin, and P. Lalanne, “Inhibition, enhancement, and control of spontaneous emission in photonic nanowires,” Phys. Rev. Lett. 106(10), 103601 (2011).
[Crossref] [PubMed]

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J.-M. Gérard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4(3), 174–177 (2010).

Lauhon, L. J.

L. J. Lauhon, M. S. Gudiksen, D. Wang, and C. M. Lieber, “Epitaxial core-shell and core-multishell nanowire heterostructures,” Nature 420(6911), 57–61 (2002).
[Crossref] [PubMed]

M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber, “Growth of nanowire superlattice structures for nanoscale photonics and electronics,” Nature 415(6872), 617–620 (2002).
[Crossref] [PubMed]

Lebouteiller, C.

Leitenstorfer, A.

Li, B.-H.

Y.-J. Lu, J. Kim, H.-Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M.-Y. Lu, B.-H. Li, X. Qiu, W.-H. Chang, L.-J. Chen, G. Shvets, C.-K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337(6093), 450–453 (2012).
[Crossref] [PubMed]

Li, L.

S. Mokkapati, D. Saxena, N. Jiang, L. Li, H. H. Tan, and C. Jagadish, “An order of magnitude increase in the quantum efficiency of (Al)GaAs nanowires using hybrid photonic-plasmonic modes,” Nano Lett. 15(1), 307–312 (2015).
[Crossref] [PubMed]

Li, Y.

F. Qian, Y. Li, S. Gradečak, H.-G. Park, Y. Dong, Y. Ding, Z. L. Wang, and C. M. Lieber, “Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers,” Nat. Mater. 7(9), 701–706 (2008).
[Crossref] [PubMed]

Lieber, C. M.

F. Qian, Y. Li, S. Gradečak, H.-G. Park, Y. Dong, Y. Ding, Z. L. Wang, and C. M. Lieber, “Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers,” Nat. Mater. 7(9), 701–706 (2008).
[Crossref] [PubMed]

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).
[Crossref] [PubMed]

O. Hayden, R. Agarwal, and C. M. Lieber, “Nanoscale avalanche photodiodes for highly sensitive and spatially resolved photon detection,” Nat. Mater. 5(5), 352–356 (2006).
[Crossref] [PubMed]

X. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, “Single-nanowire electrically driven lasers,” Nature 421(6920), 241–245 (2003).
[Crossref] [PubMed]

L. J. Lauhon, M. S. Gudiksen, D. Wang, and C. M. Lieber, “Epitaxial core-shell and core-multishell nanowire heterostructures,” Nature 420(6911), 57–61 (2002).
[Crossref] [PubMed]

M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber, “Growth of nanowire superlattice structures for nanoscale photonics and electronics,” Nature 415(6872), 617–620 (2002).
[Crossref] [PubMed]

X. Duan, Y. Huang, Y. Cui, J. Wang, and C. M. Lieber, “Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices,” Nature 409(6816), 66–69 (2001).
[Crossref] [PubMed]

J. Wang, M. S. Gudiksen, X. Duan, Y. Cui, and C. M. Lieber, “Highly polarized photoluminescence and photodetection from single indium phosphide nanowires,” Science 293(5534), 1455–1457 (2001).
[Crossref] [PubMed]

Liphardt, J.

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature 447(7148), 1098–1101 (2007).
[Crossref] [PubMed]

Liu, T.-L.

K. J. Russell, T.-L. Liu, S. Cui, and E. L. Hu, “Large spontaneous emission enhancement in plasmonic nanocavities,” Nat. Photonics 6(7), 459–462 (2012).
[Crossref]

Liu, Y.

C. Pan, L. Dong, G. Zhu, S. Niu, R. Yu, Q. Yang, Y. Liu, and Z. L. Wang, “High-resolution electroluminescent imaging of pressure distribution using a piezoelectric nanowire LED array,” Nat. Photonics 7(9), 752–758 (2013).
[Crossref]

Llado, E. A.

A. Casadei, E. A. Llado, F. Amaduzzi, E. Russo-Averchi, D. Rüffer, M. Heiss, L. Dal Negro, and A. F. Morral, “Polarization response of nanowires à la carte,” Sci. Rep. 5, 7651 (2015).
[Crossref] [PubMed]

Lu, M.-Y.

Y.-J. Lu, J. Kim, H.-Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M.-Y. Lu, B.-H. Li, X. Qiu, W.-H. Chang, L.-J. Chen, G. Shvets, C.-K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337(6093), 450–453 (2012).
[Crossref] [PubMed]

Lu, Y.-J.

Y.-J. Lu, J. Kim, H.-Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M.-Y. Lu, B.-H. Li, X. Qiu, W.-H. Chang, L.-J. Chen, G. Shvets, C.-K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337(6093), 450–453 (2012).
[Crossref] [PubMed]

Lukin, M. D.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007).
[Crossref] [PubMed]

D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, “Quantum optics with surface plasmons,” Phys. Rev. Lett. 97(5), 053002 (2006).
[Crossref] [PubMed]

Luo, J. W.

M. Heiss, Y. Fontana, A. Gustafsson, G. Wüst, C. Magen, D. D. O’Regan, J. W. Luo, B. Ketterer, S. Conesa-Boj, A. V. Kuhlmann, J. Houel, E. Russo-Averchi, J. R. Morante, M. Cantoni, N. Marzari, J. Arbiol, A. Zunger, R. J. Warburton, and A. Fontcuberta i Morral, “Self-assembled quantum dots in a nanowire system for quantum photonics,” Nat. Mater. 12(5), 439–444 (2013).
[Crossref] [PubMed]

Ma, R.-M.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Magen, C.

M. Heiss, Y. Fontana, A. Gustafsson, G. Wüst, C. Magen, D. D. O’Regan, J. W. Luo, B. Ketterer, S. Conesa-Boj, A. V. Kuhlmann, J. Houel, E. Russo-Averchi, J. R. Morante, M. Cantoni, N. Marzari, J. Arbiol, A. Zunger, R. J. Warburton, and A. Fontcuberta i Morral, “Self-assembled quantum dots in a nanowire system for quantum photonics,” Nat. Mater. 12(5), 439–444 (2013).
[Crossref] [PubMed]

Magnusson, M. H.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Åberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[Crossref] [PubMed]

Maier, S. A.

G. Grinblat, M. Rahmani, E. Cortés, M. Caldarola, D. Comedi, S. A. Maier, and A. V. Bragas, “High-efficiency second harmonic generation from a single hybrid ZnO nanowire/Au plasmonic nano-oligomer,” Nano Lett. 14(11), 6660–6665 (2014).
[Crossref] [PubMed]

Maksymov, I.

J. Bleuse, J. Claudon, M. Creasey, N. S. Malik, J.-M. Gérard, I. Maksymov, J.-P. Hugonin, and P. Lalanne, “Inhibition, enhancement, and control of spontaneous emission in photonic nanowires,” Phys. Rev. Lett. 106(10), 103601 (2011).
[Crossref] [PubMed]

Malik, N. S.

J. Bleuse, J. Claudon, M. Creasey, N. S. Malik, J.-M. Gérard, I. Maksymov, J.-P. Hugonin, and P. Lalanne, “Inhibition, enhancement, and control of spontaneous emission in photonic nanowires,” Phys. Rev. Lett. 106(10), 103601 (2011).
[Crossref] [PubMed]

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J.-M. Gérard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4(3), 174–177 (2010).

Mao, S.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
[Crossref] [PubMed]

Marzari, N.

M. Heiss, Y. Fontana, A. Gustafsson, G. Wüst, C. Magen, D. D. O’Regan, J. W. Luo, B. Ketterer, S. Conesa-Boj, A. V. Kuhlmann, J. Houel, E. Russo-Averchi, J. R. Morante, M. Cantoni, N. Marzari, J. Arbiol, A. Zunger, R. J. Warburton, and A. Fontcuberta i Morral, “Self-assembled quantum dots in a nanowire system for quantum photonics,” Nat. Mater. 12(5), 439–444 (2013).
[Crossref] [PubMed]

Matteini, F.

A. Casadei, E. F. Pecora, J. Trevino, C. Forestiere, D. Rüffer, E. Russo-Averchi, F. Matteini, G. Tutuncuoglu, M. Heiss, A. Fontcuberta i Morral, and L. Dal Negro, “Photonic-plasmonic coupling of GaAs single nanowires to optical nanoantennas,” Nano Lett. 14(5), 2271–2278 (2014).
[Crossref] [PubMed]

Moerner, W. E.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

Mokkapati, S.

S. Mokkapati, D. Saxena, N. Jiang, L. Li, H. H. Tan, and C. Jagadish, “An order of magnitude increase in the quantum efficiency of (Al)GaAs nanowires using hybrid photonic-plasmonic modes,” Nano Lett. 15(1), 307–312 (2015).
[Crossref] [PubMed]

D. Saxena, S. Mokkapati, P. Parkinson, N. Jiang, Q. Gao, H. H. Tan, and C. Jagadish, “Optically pumped room-temperature GaAs nanowire lasers,” Nat. Photonics 7(12), 963–968 (2013).
[Crossref]

Morante, J. R.

M. Heiss, Y. Fontana, A. Gustafsson, G. Wüst, C. Magen, D. D. O’Regan, J. W. Luo, B. Ketterer, S. Conesa-Boj, A. V. Kuhlmann, J. Houel, E. Russo-Averchi, J. R. Morante, M. Cantoni, N. Marzari, J. Arbiol, A. Zunger, R. J. Warburton, and A. Fontcuberta i Morral, “Self-assembled quantum dots in a nanowire system for quantum photonics,” Nat. Mater. 12(5), 439–444 (2013).
[Crossref] [PubMed]

Morral, A. F.

A. Casadei, E. A. Llado, F. Amaduzzi, E. Russo-Averchi, D. Rüffer, M. Heiss, L. Dal Negro, and A. F. Morral, “Polarization response of nanowires à la carte,” Sci. Rep. 5, 7651 (2015).
[Crossref] [PubMed]

Mukherjee, A.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007).
[Crossref] [PubMed]

Müllen, K.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

Müller, E.

M. T. Borgström, V. Zwiller, E. Müller, and A. Imamoglu, “Optically bright quantum dots in single Nanowires,” Nano Lett. 5(7), 1439–1443 (2005).
[Crossref] [PubMed]

Nakayama, Y.

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature 447(7148), 1098–1101 (2007).
[Crossref] [PubMed]

Niu, S.

C. Pan, L. Dong, G. Zhu, S. Niu, R. Yu, Q. Yang, Y. Liu, and Z. L. Wang, “High-resolution electroluminescent imaging of pressure distribution using a piezoelectric nanowire LED array,” Nat. Photonics 7(9), 752–758 (2013).
[Crossref]

Notomi, M.

M. D. Birowosuto, A. Yokoo, G. Zhang, K. Tateno, E. Kuramochi, H. Taniyama, M. Takiguchi, and M. Notomi, “Movable high-Q nanoresonators realized by semiconductor nanowires on a Si photonic crystal platform,” Nat. Mater. 13(3), 279–285 (2014).
[Crossref] [PubMed]

M. D. Birowosuto, G. Zhang, A. Yokoo, M. Takiguchi, and M. Notomi, “Spontaneous emission inhibition of telecom-band quantum disks inside single nanowire on different substrates,” Opt. Express 22(10), 11713–11726 (2014).
[Crossref] [PubMed]

Novotny, L.

M. R. Beversluis, A. Bouhelier, and L. Novotny, “Continuum generation from single gold nanostructures through near-field mediated intraband transitions,” Phys. Rev. B 68(11), 115433 (2003).
[Crossref]

Nygard, J.

P. Krogstrup, H. I. Jørgensen, M. Heiss, O. Demichel, J. V. Holm, M. Aagesen, J. Nygard, and A. Fontcuberta i Morral, “Single-nanowire solar cells beyond the Shockley-Queisser limit,” Nat. Photonics 7(4), 306–310 (2013).
[Crossref]

O’Regan, D. D.

M. Heiss, Y. Fontana, A. Gustafsson, G. Wüst, C. Magen, D. D. O’Regan, J. W. Luo, B. Ketterer, S. Conesa-Boj, A. V. Kuhlmann, J. Houel, E. Russo-Averchi, J. R. Morante, M. Cantoni, N. Marzari, J. Arbiol, A. Zunger, R. J. Warburton, and A. Fontcuberta i Morral, “Self-assembled quantum dots in a nanowire system for quantum photonics,” Nat. Mater. 12(5), 439–444 (2013).
[Crossref] [PubMed]

Onorato, R. M.

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature 447(7148), 1098–1101 (2007).
[Crossref] [PubMed]

Oron, D.

H. Aouani, S. Itzhakov, D. Gachet, E. Devaux, T. W. Ebbesen, H. Rigneault, D. Oron, and J. Wenger, “Colloidal quantum dots as probes of excitation field enhancement in photonic antennas,” ACS Nano 4(8), 4571–4578 (2010).
[Crossref] [PubMed]

Oulton, R. F.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Pan, C.

C. Pan, L. Dong, G. Zhu, S. Niu, R. Yu, Q. Yang, Y. Liu, and Z. L. Wang, “High-resolution electroluminescent imaging of pressure distribution using a piezoelectric nanowire LED array,” Nat. Photonics 7(9), 752–758 (2013).
[Crossref]

Park, H.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007).
[Crossref] [PubMed]

Park, H.-G.

F. Qian, Y. Li, S. Gradečak, H.-G. Park, Y. Dong, Y. Ding, Z. L. Wang, and C. M. Lieber, “Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers,” Nat. Mater. 7(9), 701–706 (2008).
[Crossref] [PubMed]

Parkinson, P.

D. Saxena, S. Mokkapati, P. Parkinson, N. Jiang, Q. Gao, H. H. Tan, and C. Jagadish, “Optically pumped room-temperature GaAs nanowire lasers,” Nat. Photonics 7(12), 963–968 (2013).
[Crossref]

Pauzauskie, P. J.

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature 447(7148), 1098–1101 (2007).
[Crossref] [PubMed]

Pecora, E. F.

A. Casadei, E. F. Pecora, J. Trevino, C. Forestiere, D. Rüffer, E. Russo-Averchi, F. Matteini, G. Tutuncuoglu, M. Heiss, A. Fontcuberta i Morral, and L. Dal Negro, “Photonic-plasmonic coupling of GaAs single nanowires to optical nanoantennas,” Nano Lett. 14(5), 2271–2278 (2014).
[Crossref] [PubMed]

Pfüller, C.

S. Breuer, C. Pfüller, T. Flissikowski, O. Brandt, H. T. Grahn, L. Geelhaar, and H. Riechert, “Suitability of Au- and self-assisted GaAs nanowires for optoelectronic applications,” Nano Lett. 11(3), 1276–1279 (2011).
[Crossref] [PubMed]

Protasenko, V.

J. Giblin, V. Protasenko, and M. Kuno, “Wavelength sensitivity of single nanowire excitation polarization anisotropies explained through a generalized treatment of their linear absorption,” ACS Nano 3(7), 1979–1987 (2009).
[Crossref] [PubMed]

Qian, F.

F. Qian, Y. Li, S. Gradečak, H.-G. Park, Y. Dong, Y. Ding, Z. L. Wang, and C. M. Lieber, “Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers,” Nat. Mater. 7(9), 701–706 (2008).
[Crossref] [PubMed]

Qiu, X.

Y.-J. Lu, J. Kim, H.-Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M.-Y. Lu, B.-H. Li, X. Qiu, W.-H. Chang, L.-J. Chen, G. Shvets, C.-K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337(6093), 450–453 (2012).
[Crossref] [PubMed]

Radenovic, A.

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature 447(7148), 1098–1101 (2007).
[Crossref] [PubMed]

Rahmani, M.

G. Grinblat, M. Rahmani, E. Cortés, M. Caldarola, D. Comedi, S. A. Maier, and A. V. Bragas, “High-efficiency second harmonic generation from a single hybrid ZnO nanowire/Au plasmonic nano-oligomer,” Nano Lett. 14(11), 6660–6665 (2014).
[Crossref] [PubMed]

Reimer, M. E.

G. Bulgarini, M. E. Reimer, T. Zehender, M. Hocevar, E. P. A. M. Bakkers, L. P. Kouwenhoven, and V. Zwiller, “Spontaneous emission control of single quantum dots in bottom-up nanowire waveguides,” Appl. Phys. Lett. 100(12), 121106 (2012).
[Crossref]

G. Bulgarini, M. E. Reimer, M. Hocevar, E. P. A. M. Bakkers, L. P. Kouwenhoven, and V. Zwiller, “Avalanche amplification of a single exciton in a semiconductor nanowire,” Nat. Photonics 6(7), 455–458 (2012).
[Crossref]

Riechert, H.

S. Breuer, C. Pfüller, T. Flissikowski, O. Brandt, H. T. Grahn, L. Geelhaar, and H. Riechert, “Suitability of Au- and self-assisted GaAs nanowires for optoelectronic applications,” Nano Lett. 11(3), 1276–1279 (2011).
[Crossref] [PubMed]

Rigneault, H.

H. Aouani, S. Itzhakov, D. Gachet, E. Devaux, T. W. Ebbesen, H. Rigneault, D. Oron, and J. Wenger, “Colloidal quantum dots as probes of excitation field enhancement in photonic antennas,” ACS Nano 4(8), 4571–4578 (2010).
[Crossref] [PubMed]

Roberts, N. W.

A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photonics 2(6), 365–370 (2008).
[Crossref]

Ruede, F.

L. Hao, C. Aßmann, J. C. Gallop, D. Cox, F. Ruede, O. Kazakova, P. Josephs-Franks, D. Drung, and T. Schurig, “Detection of single magnetic nanobead with a nano-superconducting quantum interference device,” Appl. Phys. Lett. 98(9), 092504 (2011).
[Crossref]

Rüffer, D.

A. Casadei, E. A. Llado, F. Amaduzzi, E. Russo-Averchi, D. Rüffer, M. Heiss, L. Dal Negro, and A. F. Morral, “Polarization response of nanowires à la carte,” Sci. Rep. 5, 7651 (2015).
[Crossref] [PubMed]

A. Casadei, E. F. Pecora, J. Trevino, C. Forestiere, D. Rüffer, E. Russo-Averchi, F. Matteini, G. Tutuncuoglu, M. Heiss, A. Fontcuberta i Morral, and L. Dal Negro, “Photonic-plasmonic coupling of GaAs single nanowires to optical nanoantennas,” Nano Lett. 14(5), 2271–2278 (2014).
[Crossref] [PubMed]

Russell, K. J.

K. J. Russell, T.-L. Liu, S. Cui, and E. L. Hu, “Large spontaneous emission enhancement in plasmonic nanocavities,” Nat. Photonics 6(7), 459–462 (2012).
[Crossref]

Russo, R.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
[Crossref] [PubMed]

Russo-Averchi, E.

A. Casadei, E. A. Llado, F. Amaduzzi, E. Russo-Averchi, D. Rüffer, M. Heiss, L. Dal Negro, and A. F. Morral, “Polarization response of nanowires à la carte,” Sci. Rep. 5, 7651 (2015).
[Crossref] [PubMed]

A. Casadei, E. F. Pecora, J. Trevino, C. Forestiere, D. Rüffer, E. Russo-Averchi, F. Matteini, G. Tutuncuoglu, M. Heiss, A. Fontcuberta i Morral, and L. Dal Negro, “Photonic-plasmonic coupling of GaAs single nanowires to optical nanoantennas,” Nano Lett. 14(5), 2271–2278 (2014).
[Crossref] [PubMed]

M. Heiss, Y. Fontana, A. Gustafsson, G. Wüst, C. Magen, D. D. O’Regan, J. W. Luo, B. Ketterer, S. Conesa-Boj, A. V. Kuhlmann, J. Houel, E. Russo-Averchi, J. R. Morante, M. Cantoni, N. Marzari, J. Arbiol, A. Zunger, R. J. Warburton, and A. Fontcuberta i Morral, “Self-assembled quantum dots in a nanowire system for quantum photonics,” Nat. Mater. 12(5), 439–444 (2013).
[Crossref] [PubMed]

Samuelson, L.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Åberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[Crossref] [PubMed]

Sanders, C. E.

Y.-J. Lu, J. Kim, H.-Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M.-Y. Lu, B.-H. Li, X. Qiu, W.-H. Chang, L.-J. Chen, G. Shvets, C.-K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337(6093), 450–453 (2012).
[Crossref] [PubMed]

Sauvan, C.

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J.-M. Gérard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4(3), 174–177 (2010).

Saxena, D.

S. Mokkapati, D. Saxena, N. Jiang, L. Li, H. H. Tan, and C. Jagadish, “An order of magnitude increase in the quantum efficiency of (Al)GaAs nanowires using hybrid photonic-plasmonic modes,” Nano Lett. 15(1), 307–312 (2015).
[Crossref] [PubMed]

D. Saxena, S. Mokkapati, P. Parkinson, N. Jiang, Q. Gao, H. H. Tan, and C. Jagadish, “Optically pumped room-temperature GaAs nanowire lasers,” Nat. Photonics 7(12), 963–968 (2013).
[Crossref]

Saykally, R. J.

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature 447(7148), 1098–1101 (2007).
[Crossref] [PubMed]

J. C. Johnson, H.-J. Choi, K. P. Knutsen, R. D. Schaller, P. Yang, and R. J. Saykally, “Single gallium nitride nanowire lasers,” Nat. Mater. 1(2), 106–110 (2002).
[Crossref] [PubMed]

Schaller, R. D.

J. C. Johnson, H.-J. Choi, K. P. Knutsen, R. D. Schaller, P. Yang, and R. J. Saykally, “Single gallium nitride nanowire lasers,” Nat. Mater. 1(2), 106–110 (2002).
[Crossref] [PubMed]

Schell, A. W.

Schuller, J. A.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Schurig, T.

L. Hao, C. Aßmann, J. C. Gallop, D. Cox, F. Ruede, O. Kazakova, P. Josephs-Franks, D. Drung, and T. Schurig, “Detection of single magnetic nanobead with a nano-superconducting quantum interference device,” Appl. Phys. Lett. 98(9), 092504 (2011).
[Crossref]

Shih, C.-K.

Y.-J. Lu, J. Kim, H.-Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M.-Y. Lu, B.-H. Li, X. Qiu, W.-H. Chang, L.-J. Chen, G. Shvets, C.-K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337(6093), 450–453 (2012).
[Crossref] [PubMed]

Shvets, G.

Y.-J. Lu, J. Kim, H.-Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M.-Y. Lu, B.-H. Li, X. Qiu, W.-H. Chang, L.-J. Chen, G. Shvets, C.-K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337(6093), 450–453 (2012).
[Crossref] [PubMed]

Siefer, G.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Åberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[Crossref] [PubMed]

Smith, D. C.

M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber, “Growth of nanowire superlattice structures for nanoscale photonics and electronics,” Nature 415(6872), 617–620 (2002).
[Crossref] [PubMed]

Sogawa, T.

K. Tateno, G. Zhang, H. Gotoh, and T. Sogawa, “VLS growth of alternating InAsP/InP heterostructure nanowires for multiple-quantum-dot structures,” Nano Lett. 12(6), 2888–2893 (2012).
[Crossref] [PubMed]

G. Zhang, K. Tateno, H. Gotoh, and T. Sogawa, “Vertically aligned InP nanowires grown via the self-assisted vapor–liquid–solid mode,” Appl. Phys. Express 5(5), 055201 (2012).
[Crossref]

Sørensen, A. S.

D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, “Quantum optics with surface plasmons,” Phys. Rev. Lett. 97(5), 053002 (2006).
[Crossref] [PubMed]

Sorger, V. J.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Takiguchi, M.

M. D. Birowosuto, A. Yokoo, G. Zhang, K. Tateno, E. Kuramochi, H. Taniyama, M. Takiguchi, and M. Notomi, “Movable high-Q nanoresonators realized by semiconductor nanowires on a Si photonic crystal platform,” Nat. Mater. 13(3), 279–285 (2014).
[Crossref] [PubMed]

M. D. Birowosuto, G. Zhang, A. Yokoo, M. Takiguchi, and M. Notomi, “Spontaneous emission inhibition of telecom-band quantum disks inside single nanowire on different substrates,” Opt. Express 22(10), 11713–11726 (2014).
[Crossref] [PubMed]

Tan, H. H.

S. Mokkapati, D. Saxena, N. Jiang, L. Li, H. H. Tan, and C. Jagadish, “An order of magnitude increase in the quantum efficiency of (Al)GaAs nanowires using hybrid photonic-plasmonic modes,” Nano Lett. 15(1), 307–312 (2015).
[Crossref] [PubMed]

D. Saxena, S. Mokkapati, P. Parkinson, N. Jiang, Q. Gao, H. H. Tan, and C. Jagadish, “Optically pumped room-temperature GaAs nanowire lasers,” Nat. Photonics 7(12), 963–968 (2013).
[Crossref]

Taniyama, H.

M. D. Birowosuto, A. Yokoo, G. Zhang, K. Tateno, E. Kuramochi, H. Taniyama, M. Takiguchi, and M. Notomi, “Movable high-Q nanoresonators realized by semiconductor nanowires on a Si photonic crystal platform,” Nat. Mater. 13(3), 279–285 (2014).
[Crossref] [PubMed]

Tateno, K.

M. D. Birowosuto, A. Yokoo, G. Zhang, K. Tateno, E. Kuramochi, H. Taniyama, M. Takiguchi, and M. Notomi, “Movable high-Q nanoresonators realized by semiconductor nanowires on a Si photonic crystal platform,” Nat. Mater. 13(3), 279–285 (2014).
[Crossref] [PubMed]

K. Tateno, G. Zhang, H. Gotoh, and T. Sogawa, “VLS growth of alternating InAsP/InP heterostructure nanowires for multiple-quantum-dot structures,” Nano Lett. 12(6), 2888–2893 (2012).
[Crossref] [PubMed]

G. Zhang, K. Tateno, H. Gotoh, and T. Sogawa, “Vertically aligned InP nanowires grown via the self-assisted vapor–liquid–solid mode,” Appl. Phys. Express 5(5), 055201 (2012).
[Crossref]

Tian, B.

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).
[Crossref] [PubMed]

Trevino, J.

A. Casadei, E. F. Pecora, J. Trevino, C. Forestiere, D. Rüffer, E. Russo-Averchi, F. Matteini, G. Tutuncuoglu, M. Heiss, A. Fontcuberta i Morral, and L. Dal Negro, “Photonic-plasmonic coupling of GaAs single nanowires to optical nanoantennas,” Nano Lett. 14(5), 2271–2278 (2014).
[Crossref] [PubMed]

Tutuncuoglu, G.

A. Casadei, E. F. Pecora, J. Trevino, C. Forestiere, D. Rüffer, E. Russo-Averchi, F. Matteini, G. Tutuncuoglu, M. Heiss, A. Fontcuberta i Morral, and L. Dal Negro, “Photonic-plasmonic coupling of GaAs single nanowires to optical nanoantennas,” Nano Lett. 14(5), 2271–2278 (2014).
[Crossref] [PubMed]

Vamivakas, N.

van Enckevort, W. J. P.

R. E. Algra, M. A. Verheijen, M. T. Borgström, L.-F. Feiner, G. Immink, W. J. P. van Enckevort, E. Vlieg, and E. P. A. M. Bakkers, “Twinning superlattices in indium phosphide nanowires,” Nature 456(7220), 369–372 (2008).
[Crossref] [PubMed]

Verheijen, M. A.

R. E. Algra, M. A. Verheijen, M. T. Borgström, L.-F. Feiner, G. Immink, W. J. P. van Enckevort, E. Vlieg, and E. P. A. M. Bakkers, “Twinning superlattices in indium phosphide nanowires,” Nature 456(7220), 369–372 (2008).
[Crossref] [PubMed]

Vlieg, E.

R. E. Algra, M. A. Verheijen, M. T. Borgström, L.-F. Feiner, G. Immink, W. J. P. van Enckevort, E. Vlieg, and E. P. A. M. Bakkers, “Twinning superlattices in indium phosphide nanowires,” Nature 456(7220), 369–372 (2008).
[Crossref] [PubMed]

Wagner, R. S.

R. S. Wagner and W. C. Ellis, “Vapor-liquid-solid mechanism of single crystal growth,” Appl. Phys. Lett. 4(5), 89–90 (1964).
[Crossref]

Wallentin, J.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Åberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[Crossref] [PubMed]

Wang, C.-Y.

Y.-J. Lu, J. Kim, H.-Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M.-Y. Lu, B.-H. Li, X. Qiu, W.-H. Chang, L.-J. Chen, G. Shvets, C.-K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337(6093), 450–453 (2012).
[Crossref] [PubMed]

Wang, D.

L. J. Lauhon, M. S. Gudiksen, D. Wang, and C. M. Lieber, “Epitaxial core-shell and core-multishell nanowire heterostructures,” Nature 420(6911), 57–61 (2002).
[Crossref] [PubMed]

Wang, J.

M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber, “Growth of nanowire superlattice structures for nanoscale photonics and electronics,” Nature 415(6872), 617–620 (2002).
[Crossref] [PubMed]

X. Duan, Y. Huang, Y. Cui, J. Wang, and C. M. Lieber, “Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices,” Nature 409(6816), 66–69 (2001).
[Crossref] [PubMed]

J. Wang, M. S. Gudiksen, X. Duan, Y. Cui, and C. M. Lieber, “Highly polarized photoluminescence and photodetection from single indium phosphide nanowires,” Science 293(5534), 1455–1457 (2001).
[Crossref] [PubMed]

Wang, Z. L.

C. Pan, L. Dong, G. Zhu, S. Niu, R. Yu, Q. Yang, Y. Liu, and Z. L. Wang, “High-resolution electroluminescent imaging of pressure distribution using a piezoelectric nanowire LED array,” Nat. Photonics 7(9), 752–758 (2013).
[Crossref]

F. Qian, Y. Li, S. Gradečak, H.-G. Park, Y. Dong, Y. Ding, Z. L. Wang, and C. M. Lieber, “Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers,” Nat. Mater. 7(9), 701–706 (2008).
[Crossref] [PubMed]

Warburton, R. J.

M. Heiss, Y. Fontana, A. Gustafsson, G. Wüst, C. Magen, D. D. O’Regan, J. W. Luo, B. Ketterer, S. Conesa-Boj, A. V. Kuhlmann, J. Houel, E. Russo-Averchi, J. R. Morante, M. Cantoni, N. Marzari, J. Arbiol, A. Zunger, R. J. Warburton, and A. Fontcuberta i Morral, “Self-assembled quantum dots in a nanowire system for quantum photonics,” Nat. Mater. 12(5), 439–444 (2013).
[Crossref] [PubMed]

Weber, E.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
[Crossref] [PubMed]

Wenger, J.

H. Aouani, S. Itzhakov, D. Gachet, E. Devaux, T. W. Ebbesen, H. Rigneault, D. Oron, and J. Wenger, “Colloidal quantum dots as probes of excitation field enhancement in photonic antennas,” ACS Nano 4(8), 4571–4578 (2010).
[Crossref] [PubMed]

White, J. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Witzigmann, B.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Åberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[Crossref] [PubMed]

Wu, C.

Y.-J. Lu, J. Kim, H.-Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M.-Y. Lu, B.-H. Li, X. Qiu, W.-H. Chang, L.-J. Chen, G. Shvets, C.-K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337(6093), 450–453 (2012).
[Crossref] [PubMed]

Wu, Y.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
[Crossref] [PubMed]

Wüst, G.

M. Heiss, Y. Fontana, A. Gustafsson, G. Wüst, C. Magen, D. D. O’Regan, J. W. Luo, B. Ketterer, S. Conesa-Boj, A. V. Kuhlmann, J. Houel, E. Russo-Averchi, J. R. Morante, M. Cantoni, N. Marzari, J. Arbiol, A. Zunger, R. J. Warburton, and A. Fontcuberta i Morral, “Self-assembled quantum dots in a nanowire system for quantum photonics,” Nat. Mater. 12(5), 439–444 (2013).
[Crossref] [PubMed]

Xu, H. Q.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Åberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[Crossref] [PubMed]

Yamamoto, N.

N. Yamamoto, K. Araya, and F. J. García de Abajo, “Photon emission from silver particles induced by a high-energy electron beam,” Phys. Rev. B 64(20), 205419 (2001).
[Crossref]

Yan, H.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
[Crossref] [PubMed]

Yang, P.

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature 447(7148), 1098–1101 (2007).
[Crossref] [PubMed]

J. C. Johnson, H.-J. Choi, K. P. Knutsen, R. D. Schaller, P. Yang, and R. J. Saykally, “Single gallium nitride nanowire lasers,” Nat. Mater. 1(2), 106–110 (2002).
[Crossref] [PubMed]

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
[Crossref] [PubMed]

Yang, Q.

C. Pan, L. Dong, G. Zhu, S. Niu, R. Yu, Q. Yang, Y. Liu, and Z. L. Wang, “High-resolution electroluminescent imaging of pressure distribution using a piezoelectric nanowire LED array,” Nat. Photonics 7(9), 752–758 (2013).
[Crossref]

Yokoo, A.

M. D. Birowosuto, A. Yokoo, G. Zhang, K. Tateno, E. Kuramochi, H. Taniyama, M. Takiguchi, and M. Notomi, “Movable high-Q nanoresonators realized by semiconductor nanowires on a Si photonic crystal platform,” Nat. Mater. 13(3), 279–285 (2014).
[Crossref] [PubMed]

M. D. Birowosuto, G. Zhang, A. Yokoo, M. Takiguchi, and M. Notomi, “Spontaneous emission inhibition of telecom-band quantum disks inside single nanowire on different substrates,” Opt. Express 22(10), 11713–11726 (2014).
[Crossref] [PubMed]

Yu, C. L.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007).
[Crossref] [PubMed]

Yu, G.

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).
[Crossref] [PubMed]

Yu, N.

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).
[Crossref] [PubMed]

Yu, R.

C. Pan, L. Dong, G. Zhu, S. Niu, R. Yu, Q. Yang, Y. Liu, and Z. L. Wang, “High-resolution electroluminescent imaging of pressure distribution using a piezoelectric nanowire LED array,” Nat. Photonics 7(9), 752–758 (2013).
[Crossref]

Yu, Z.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

Zehender, T.

G. Bulgarini, M. E. Reimer, T. Zehender, M. Hocevar, E. P. A. M. Bakkers, L. P. Kouwenhoven, and V. Zwiller, “Spontaneous emission control of single quantum dots in bottom-up nanowire waveguides,” Appl. Phys. Lett. 100(12), 121106 (2012).
[Crossref]

Zentgraf, T.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Zhang, G.

M. D. Birowosuto, A. Yokoo, G. Zhang, K. Tateno, E. Kuramochi, H. Taniyama, M. Takiguchi, and M. Notomi, “Movable high-Q nanoresonators realized by semiconductor nanowires on a Si photonic crystal platform,” Nat. Mater. 13(3), 279–285 (2014).
[Crossref] [PubMed]

M. D. Birowosuto, G. Zhang, A. Yokoo, M. Takiguchi, and M. Notomi, “Spontaneous emission inhibition of telecom-band quantum disks inside single nanowire on different substrates,” Opt. Express 22(10), 11713–11726 (2014).
[Crossref] [PubMed]

G. Zhang, K. Tateno, H. Gotoh, and T. Sogawa, “Vertically aligned InP nanowires grown via the self-assisted vapor–liquid–solid mode,” Appl. Phys. Express 5(5), 055201 (2012).
[Crossref]

K. Tateno, G. Zhang, H. Gotoh, and T. Sogawa, “VLS growth of alternating InAsP/InP heterostructure nanowires for multiple-quantum-dot structures,” Nano Lett. 12(6), 2888–2893 (2012).
[Crossref] [PubMed]

Zhang, X.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Zhang, Y.

A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photonics 2(6), 365–370 (2008).
[Crossref]

Zheng, X.

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).
[Crossref] [PubMed]

Zhu, G.

C. Pan, L. Dong, G. Zhu, S. Niu, R. Yu, Q. Yang, Y. Liu, and Z. L. Wang, “High-resolution electroluminescent imaging of pressure distribution using a piezoelectric nanowire LED array,” Nat. Photonics 7(9), 752–758 (2013).
[Crossref]

Zibrov, A. S.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007).
[Crossref] [PubMed]

Zunger, A.

M. Heiss, Y. Fontana, A. Gustafsson, G. Wüst, C. Magen, D. D. O’Regan, J. W. Luo, B. Ketterer, S. Conesa-Boj, A. V. Kuhlmann, J. Houel, E. Russo-Averchi, J. R. Morante, M. Cantoni, N. Marzari, J. Arbiol, A. Zunger, R. J. Warburton, and A. Fontcuberta i Morral, “Self-assembled quantum dots in a nanowire system for quantum photonics,” Nat. Mater. 12(5), 439–444 (2013).
[Crossref] [PubMed]

Zwiller, V.

G. Bulgarini, M. E. Reimer, M. Hocevar, E. P. A. M. Bakkers, L. P. Kouwenhoven, and V. Zwiller, “Avalanche amplification of a single exciton in a semiconductor nanowire,” Nat. Photonics 6(7), 455–458 (2012).
[Crossref]

G. Bulgarini, M. E. Reimer, T. Zehender, M. Hocevar, E. P. A. M. Bakkers, L. P. Kouwenhoven, and V. Zwiller, “Spontaneous emission control of single quantum dots in bottom-up nanowire waveguides,” Appl. Phys. Lett. 100(12), 121106 (2012).
[Crossref]

M. T. Borgström, V. Zwiller, E. Müller, and A. Imamoglu, “Optically bright quantum dots in single Nanowires,” Nano Lett. 5(7), 1439–1443 (2005).
[Crossref] [PubMed]

ACS Nano (2)

H. Aouani, S. Itzhakov, D. Gachet, E. Devaux, T. W. Ebbesen, H. Rigneault, D. Oron, and J. Wenger, “Colloidal quantum dots as probes of excitation field enhancement in photonic antennas,” ACS Nano 4(8), 4571–4578 (2010).
[Crossref] [PubMed]

J. Giblin, V. Protasenko, and M. Kuno, “Wavelength sensitivity of single nanowire excitation polarization anisotropies explained through a generalized treatment of their linear absorption,” ACS Nano 3(7), 1979–1987 (2009).
[Crossref] [PubMed]

Appl. Phys. Express (1)

G. Zhang, K. Tateno, H. Gotoh, and T. Sogawa, “Vertically aligned InP nanowires grown via the self-assisted vapor–liquid–solid mode,” Appl. Phys. Express 5(5), 055201 (2012).
[Crossref]

Appl. Phys. Lett. (3)

G. Bulgarini, M. E. Reimer, T. Zehender, M. Hocevar, E. P. A. M. Bakkers, L. P. Kouwenhoven, and V. Zwiller, “Spontaneous emission control of single quantum dots in bottom-up nanowire waveguides,” Appl. Phys. Lett. 100(12), 121106 (2012).
[Crossref]

L. Hao, C. Aßmann, J. C. Gallop, D. Cox, F. Ruede, O. Kazakova, P. Josephs-Franks, D. Drung, and T. Schurig, “Detection of single magnetic nanobead with a nano-superconducting quantum interference device,” Appl. Phys. Lett. 98(9), 092504 (2011).
[Crossref]

R. S. Wagner and W. C. Ellis, “Vapor-liquid-solid mechanism of single crystal growth,” Appl. Phys. Lett. 4(5), 89–90 (1964).
[Crossref]

Nano Lett. (6)

K. Tateno, G. Zhang, H. Gotoh, and T. Sogawa, “VLS growth of alternating InAsP/InP heterostructure nanowires for multiple-quantum-dot structures,” Nano Lett. 12(6), 2888–2893 (2012).
[Crossref] [PubMed]

M. T. Borgström, V. Zwiller, E. Müller, and A. Imamoglu, “Optically bright quantum dots in single Nanowires,” Nano Lett. 5(7), 1439–1443 (2005).
[Crossref] [PubMed]

S. Mokkapati, D. Saxena, N. Jiang, L. Li, H. H. Tan, and C. Jagadish, “An order of magnitude increase in the quantum efficiency of (Al)GaAs nanowires using hybrid photonic-plasmonic modes,” Nano Lett. 15(1), 307–312 (2015).
[Crossref] [PubMed]

G. Grinblat, M. Rahmani, E. Cortés, M. Caldarola, D. Comedi, S. A. Maier, and A. V. Bragas, “High-efficiency second harmonic generation from a single hybrid ZnO nanowire/Au plasmonic nano-oligomer,” Nano Lett. 14(11), 6660–6665 (2014).
[Crossref] [PubMed]

A. Casadei, E. F. Pecora, J. Trevino, C. Forestiere, D. Rüffer, E. Russo-Averchi, F. Matteini, G. Tutuncuoglu, M. Heiss, A. Fontcuberta i Morral, and L. Dal Negro, “Photonic-plasmonic coupling of GaAs single nanowires to optical nanoantennas,” Nano Lett. 14(5), 2271–2278 (2014).
[Crossref] [PubMed]

S. Breuer, C. Pfüller, T. Flissikowski, O. Brandt, H. T. Grahn, L. Geelhaar, and H. Riechert, “Suitability of Au- and self-assisted GaAs nanowires for optoelectronic applications,” Nano Lett. 11(3), 1276–1279 (2011).
[Crossref] [PubMed]

Nat. Mater. (6)

J. C. Johnson, H.-J. Choi, K. P. Knutsen, R. D. Schaller, P. Yang, and R. J. Saykally, “Single gallium nitride nanowire lasers,” Nat. Mater. 1(2), 106–110 (2002).
[Crossref] [PubMed]

O. Hayden, R. Agarwal, and C. M. Lieber, “Nanoscale avalanche photodiodes for highly sensitive and spatially resolved photon detection,” Nat. Mater. 5(5), 352–356 (2006).
[Crossref] [PubMed]

F. Qian, Y. Li, S. Gradečak, H.-G. Park, Y. Dong, Y. Ding, Z. L. Wang, and C. M. Lieber, “Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers,” Nat. Mater. 7(9), 701–706 (2008).
[Crossref] [PubMed]

M. D. Birowosuto, A. Yokoo, G. Zhang, K. Tateno, E. Kuramochi, H. Taniyama, M. Takiguchi, and M. Notomi, “Movable high-Q nanoresonators realized by semiconductor nanowires on a Si photonic crystal platform,” Nat. Mater. 13(3), 279–285 (2014).
[Crossref] [PubMed]

M. Heiss, Y. Fontana, A. Gustafsson, G. Wüst, C. Magen, D. D. O’Regan, J. W. Luo, B. Ketterer, S. Conesa-Boj, A. V. Kuhlmann, J. Houel, E. Russo-Averchi, J. R. Morante, M. Cantoni, N. Marzari, J. Arbiol, A. Zunger, R. J. Warburton, and A. Fontcuberta i Morral, “Self-assembled quantum dots in a nanowire system for quantum photonics,” Nat. Mater. 12(5), 439–444 (2013).
[Crossref] [PubMed]

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Nat. Photonics (8)

K. J. Russell, T.-L. Liu, S. Cui, and E. L. Hu, “Large spontaneous emission enhancement in plasmonic nanocavities,” Nat. Photonics 6(7), 459–462 (2012).
[Crossref]

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photonics 2(6), 365–370 (2008).
[Crossref]

D. Saxena, S. Mokkapati, P. Parkinson, N. Jiang, Q. Gao, H. H. Tan, and C. Jagadish, “Optically pumped room-temperature GaAs nanowire lasers,” Nat. Photonics 7(12), 963–968 (2013).
[Crossref]

C. Pan, L. Dong, G. Zhu, S. Niu, R. Yu, Q. Yang, Y. Liu, and Z. L. Wang, “High-resolution electroluminescent imaging of pressure distribution using a piezoelectric nanowire LED array,” Nat. Photonics 7(9), 752–758 (2013).
[Crossref]

P. Krogstrup, H. I. Jørgensen, M. Heiss, O. Demichel, J. V. Holm, M. Aagesen, J. Nygard, and A. Fontcuberta i Morral, “Single-nanowire solar cells beyond the Shockley-Queisser limit,” Nat. Photonics 7(4), 306–310 (2013).
[Crossref]

G. Bulgarini, M. E. Reimer, M. Hocevar, E. P. A. M. Bakkers, L. P. Kouwenhoven, and V. Zwiller, “Avalanche amplification of a single exciton in a semiconductor nanowire,” Nat. Photonics 6(7), 455–458 (2012).
[Crossref]

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J.-M. Gérard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4(3), 174–177 (2010).

Nature (9)

L. J. Lauhon, M. S. Gudiksen, D. Wang, and C. M. Lieber, “Epitaxial core-shell and core-multishell nanowire heterostructures,” Nature 420(6911), 57–61 (2002).
[Crossref] [PubMed]

X. Duan, Y. Huang, Y. Cui, J. Wang, and C. M. Lieber, “Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices,” Nature 409(6816), 66–69 (2001).
[Crossref] [PubMed]

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).
[Crossref] [PubMed]

R. E. Algra, M. A. Verheijen, M. T. Borgström, L.-F. Feiner, G. Immink, W. J. P. van Enckevort, E. Vlieg, and E. P. A. M. Bakkers, “Twinning superlattices in indium phosphide nanowires,” Nature 456(7220), 369–372 (2008).
[Crossref] [PubMed]

M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber, “Growth of nanowire superlattice structures for nanoscale photonics and electronics,” Nature 415(6872), 617–620 (2002).
[Crossref] [PubMed]

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature 447(7148), 1098–1101 (2007).
[Crossref] [PubMed]

X. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, “Single-nanowire electrically driven lasers,” Nature 421(6920), 241–245 (2003).
[Crossref] [PubMed]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. B (3)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

N. Yamamoto, K. Araya, and F. J. García de Abajo, “Photon emission from silver particles induced by a high-energy electron beam,” Phys. Rev. B 64(20), 205419 (2001).
[Crossref]

M. R. Beversluis, A. Bouhelier, and L. Novotny, “Continuum generation from single gold nanostructures through near-field mediated intraband transitions,” Phys. Rev. B 68(11), 115433 (2003).
[Crossref]

Phys. Rev. Lett. (2)

D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, “Quantum optics with surface plasmons,” Phys. Rev. Lett. 97(5), 053002 (2006).
[Crossref] [PubMed]

J. Bleuse, J. Claudon, M. Creasey, N. S. Malik, J.-M. Gérard, I. Maksymov, J.-P. Hugonin, and P. Lalanne, “Inhibition, enhancement, and control of spontaneous emission in photonic nanowires,” Phys. Rev. Lett. 106(10), 103601 (2011).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

F. J. García de Abajo, “Optical excitations in electron microscopy,” Rev. Mod. Phys. 82(1), 209–275 (2010).
[Crossref]

Sci. Rep. (1)

A. Casadei, E. A. Llado, F. Amaduzzi, E. Russo-Averchi, D. Rüffer, M. Heiss, L. Dal Negro, and A. F. Morral, “Polarization response of nanowires à la carte,” Sci. Rep. 5, 7651 (2015).
[Crossref] [PubMed]

Science (4)

Y.-J. Lu, J. Kim, H.-Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M.-Y. Lu, B.-H. Li, X. Qiu, W.-H. Chang, L.-J. Chen, G. Shvets, C.-K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337(6093), 450–453 (2012).
[Crossref] [PubMed]

J. Wang, M. S. Gudiksen, X. Duan, Y. Cui, and C. M. Lieber, “Highly polarized photoluminescence and photodetection from single indium phosphide nanowires,” Science 293(5534), 1455–1457 (2001).
[Crossref] [PubMed]

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
[Crossref] [PubMed]

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Åberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[Crossref] [PubMed]

Other (2)

L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Electrodynamics of Continuous Media (Pergamon, 1984).

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

Supplementary Material (1)

NameDescription
» Visualization 1: MP4 (7292 KB)      movie showing a nanowire being picked up by the nanomanipulator (16x speed)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Schematic structure of the sample and coordinate system for numerical calculations. The origin of the coordinate system is at the center of the nanoantenna on the substrate surface. X (Y) is the perpendicular (parallel) direction to the nanoantenna in plane. (b) Nanomanipulation process. We picked up a single nanowire with a diameter of 60 nm and a length of 7 μm and placed it in the nanoantenna gap. (c) SEM image of the fabricated sample. (d) Magnified SEM image of the nanoantenna. The stage was tilted by 45°.

Fig. 2
Fig. 2

Wavelength dependence of the electric field enhancement ratio (|Ea|/|E0|)2 calculated by FEM. Ea is the electric field at (X, Y, Z) = (0, 0, d/2) for the structure with the nanoantenna, and E0 is that for the structure without the nanoantenna. d is the nanowire diameter. The gray line shows (|Ea|/|E0|)2 = 1.

Fig. 3
Fig. 3

(a)-(c) Distributions of electric field |E| at Z = 25 nm for E// excitation. The electric fields were calculated for structures with (a) only a nanoantenna, (b) only a nanowire, and (c) the nanowire-nanoantenna system. The diameter of the nanowire d is 50 nm here, and the wavelength of the incident light is 660 nm. (d) Cross-sectional plot of |E|2 along the X direction at (Y, Z) = (0, 25 nm) for the structure with the nanowire-nanoantenna system. This cross-sectional plot corresponds to (c). (e) Field distribution at Z = 25 nm for E excitation. The electric field was calculated for the structure with the nanowire-nanoantenna system. d is 50 nm, and the wavelength of incident light is 660 nm.

Fig. 4
Fig. 4

CL intensity mapping images around the nanoantenna measured at room temperature. The emission was filtered with a band-pass filter (the bandwidth was 50 nm). The center wavelengths of the filter were 500 (a), 650 (b), and 800 nm (c). We excited the plasmonic mode with an electron beam with an acceleration voltage of 15 kV and a current of 18 nA. Scale bar, 100 nm.

Fig. 5
Fig. 5

(a) Coordinate system for PL measurement, where the antenna size is increased for clarity. x and y are the moving directions of the scanning stage, and we mounted the sample on the scanning stage with y parallel to the nanoantenna. The origin is set at the antenna position. (b) PL spectra measured for E excitation. The sample temperature was 80 K, the excitation wavelength was 636 nm, and the excitation power was 160 μW. (c)-(f) Mapping images of normalized PL intensity I/IR under various excitation and detection polarization settings: (c) E (perpendicular to the nanoantenna) excitation and E detection, (d) E// (parallel to the nanoantenna) excitation and E detection, (e) E excitation and E// detection, and (f) E// excitation and E// detection. The PL intensity is normalized by the intensity at a fixed reference position R (IR) in each set of data. The excitation wavelength was 636 nm, and the excitation power was 160 μW. For this measurement, we used a band-pass filter with a bandwidth of 15 nm and a center wavelength of 875 nm to detect the emission from the nanowire. (g)-(j) Mapping images of I/IR with excitation at a wavelength of 532 nm. The polarization of the excitation and the detection in (g)-(j) correspond to (c)-(f), respectively. The excitation power was 80 μW.

Fig. 6
Fig. 6

(a)-(d) Cross-sectional plots of PL intensity I along the nanowire as a function of x (the cutting line is shown as a white solid line in Fig. 5(c)) at an excitation wavelength of 636 nm. I0 (a), Iex (b), Iem (c), and Iex-em (d) correspond to Figs. 5(c)-5(f), respectively. (e)-(g) Relative PL intensity (Iex/I0, Iem/I0, Iex-em/I0) at excitation wavelengths of 532 (gray solid line), 636 (red solid line), and 691 (black solid line) nm. The excitation power was 160 μW at an excitation wavelength of 691 nm.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

f α l 0 = η ex η em l a +( l 0 l a ).

Metrics