Abstract

The self-phase locking of a stimulated Brillouin scattering-phase conjugate mirror (SBS-PCM) allows a simple and scalable coherent beam combination of existing lasers. We propose a simple optical system composed of a rotating wedge and a concave mirror to overcome the power limit of the SBS-PCM. Its phase locking ability and the usefulness on the beam-combination laser are demonstrated experimentally. A four-beam combination is demonstrated using this SBS-PCM scheme. The relative phases between the beams were measured to be less than λ/24.7.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High-average-power green laser using Nd:YAG amplifier with stimulated Brillouin scattering phase-conjugate pulse-cleaning mirror

Koji Tsubakimoto, Hidetsugu Yoshida, and Noriaki Miyanaga
Opt. Express 24(12) 12557-12564 (2016)

Rotating off-centered lens in SBS phase conjugation mirror for high-repetition-rate operation

Hongli Wang, Seongwoo Cha, Hong Jin Kong, Yulei Wang, and Zhiwei Lu
Opt. Express 27(7) 9895-9905 (2019)

References

  • View by:
  • |
  • |
  • |

  1. J. Hecht, Understanding Lasers: An Entry-Level Guide, 3rd Edition (John Wiley & Sons, Inc., 2008), Chap. 12.
  2. M. Divoky, P. Sikocinski, J. Pilar, A. Lucianetti, M. Sawicka, O. Slezak, and T. Mocek, “Design of high-energy-class cryogenically cooled Yb3+:YAG multislab laser system with low wavefront distortion,” Opt. Eng. 52(6), 064201 (2013).
    [Crossref]
  3. J.-P. Negel, A. Loescher, A. Voss, D. Bauer, D. Sutter, A. Killi, M. A. Ahmed, and T. Graf, “Ultrafast thin-disk multipass laser amplifier delivering 1.4 kW (4.7 mJ, 1030 nm) average power converted to 820 W at 515 nm and 234 W at 343 nm,” Opt. Express 23(16), 21064–21077 (2015).
    [Crossref] [PubMed]
  4. S. Banerjee, K. Ertel, P. D. Mason, P. J. Phillips, M. Siebold, M. Loeser, C. Hernandez-Gomez, and J. L. Collier, “High-efficiency 10 J diode pumped cryogenic gas cooled Yb:YAG multislab amplifier,” Opt. Lett. 37(12), 2175–2177 (2012).
    [Crossref] [PubMed]
  5. D. Lowenthal and J. M. Eggleston, “ASE effects in small aspect ratio laser oscillators and amplifiers with nonsaturable absorption,” IEEE J. Quantum Electron. 22(8), 1165–1173 (1986).
    [Crossref]
  6. V. Chvykov, J. Nees, and K. Krushelnick, “Transverse amplified spontaneous emission: The limiting factor for output energy of ultra-high power lasers,” Opt. Commun. 312, 216–221 (2014).
    [Crossref]
  7. T. Y. Fan, “Laser beam combining for high-power, high-radiance sources,” IEEE J. Sel. Top. Quantum Electron. 11(3), 567–577 (2005).
    [Crossref]
  8. H. Yoshida, M. Nakatsuka, T. Hatae, S. Kitamura, T. Sakuma, and T. Hamano, “Two-beam-combined 7.4 J, 50 Hz Q-switch pulsed YAG laser system based on SBS phase conjugation mirror for plasma diagnostics,” Jpn. J. Appl. Phys. 43(No. 8A), L1038–L1040 (2004).
    [Crossref]
  9. L. Tong, Z. Zhao, L. Cui, C. Liu, J. Chen, Q. Gao, and C. Tang, “400-Hz pulsed single-longitudinal-mode Nd:YAG laser with more than 100-mJ pulse energy and good beam quality,” Laser Phys. 21(1), 52–56 (2011).
    [Crossref]
  10. R. W. Boyd, K. Rzaewski, and P. Narum, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A 42(9), 5514–5521 (1990).
    [Crossref] [PubMed]
  11. R. H. Moyer, M. Valley, and M. C. Cimolino, “Beam combination through stimulated Brillouin scattering,” J. Opt. Soc. Am. B 5(12), 2473–2489 (1988).
    [Crossref]
  12. H. J. Kong, S. K. Lee, D. W. Lee, and H. Guo, “Phase control of a stimulated Brillouin scattering phase conjugate mirror,” Appl. Phys. Lett. 86(5), 051111 (2005).
    [Crossref]
  13. H. J. Kong, J. S. Shin, J. W. Yoon, and D. H. Beak, “Phase stabilization of the amplitude dividing four-beam combined laser system using stimulated Brillouin scattering phase conjugate mirrors,” Laser Part. Beams 27(01), 179–184 (2009).
    [Crossref]
  14. J. S. Shin, S. Park, H. J. Kong, and J. W. Yoon, “Phase stabilization of a wave-front dividing four-beam combined amplifier with stimulated Brillouin scattering phase conjugate mirrors,” Appl. Phys. Lett. 96(13), 131116 (2010).
    [Crossref]
  15. H. Park, C. Lim, H. Yoshida, and M. Nakatsuka, “Measurement of stimulated brillouin scattering characteristics in heavy fluorocarbon liquids and perfluoropolyether liquids,” Jpn. J. Appl. Phys. 45(6A), 5073–5075 (2006).
    [Crossref]
  16. H. Yoshida, A. Ohkubo, H. Fujita, and M. Nakatsuka, “Thermally induced effects of stimulated Brillouin scattering via phase-conjugation mirror for repetitive laser pulse,” Rev. Laser Eng. 29(2), 109–114 (2001).
    [Crossref]

2015 (1)

2014 (1)

V. Chvykov, J. Nees, and K. Krushelnick, “Transverse amplified spontaneous emission: The limiting factor for output energy of ultra-high power lasers,” Opt. Commun. 312, 216–221 (2014).
[Crossref]

2013 (1)

M. Divoky, P. Sikocinski, J. Pilar, A. Lucianetti, M. Sawicka, O. Slezak, and T. Mocek, “Design of high-energy-class cryogenically cooled Yb3+:YAG multislab laser system with low wavefront distortion,” Opt. Eng. 52(6), 064201 (2013).
[Crossref]

2012 (1)

2011 (1)

L. Tong, Z. Zhao, L. Cui, C. Liu, J. Chen, Q. Gao, and C. Tang, “400-Hz pulsed single-longitudinal-mode Nd:YAG laser with more than 100-mJ pulse energy and good beam quality,” Laser Phys. 21(1), 52–56 (2011).
[Crossref]

2010 (1)

J. S. Shin, S. Park, H. J. Kong, and J. W. Yoon, “Phase stabilization of a wave-front dividing four-beam combined amplifier with stimulated Brillouin scattering phase conjugate mirrors,” Appl. Phys. Lett. 96(13), 131116 (2010).
[Crossref]

2009 (1)

H. J. Kong, J. S. Shin, J. W. Yoon, and D. H. Beak, “Phase stabilization of the amplitude dividing four-beam combined laser system using stimulated Brillouin scattering phase conjugate mirrors,” Laser Part. Beams 27(01), 179–184 (2009).
[Crossref]

2006 (1)

H. Park, C. Lim, H. Yoshida, and M. Nakatsuka, “Measurement of stimulated brillouin scattering characteristics in heavy fluorocarbon liquids and perfluoropolyether liquids,” Jpn. J. Appl. Phys. 45(6A), 5073–5075 (2006).
[Crossref]

2005 (2)

H. J. Kong, S. K. Lee, D. W. Lee, and H. Guo, “Phase control of a stimulated Brillouin scattering phase conjugate mirror,” Appl. Phys. Lett. 86(5), 051111 (2005).
[Crossref]

T. Y. Fan, “Laser beam combining for high-power, high-radiance sources,” IEEE J. Sel. Top. Quantum Electron. 11(3), 567–577 (2005).
[Crossref]

2004 (1)

H. Yoshida, M. Nakatsuka, T. Hatae, S. Kitamura, T. Sakuma, and T. Hamano, “Two-beam-combined 7.4 J, 50 Hz Q-switch pulsed YAG laser system based on SBS phase conjugation mirror for plasma diagnostics,” Jpn. J. Appl. Phys. 43(No. 8A), L1038–L1040 (2004).
[Crossref]

2001 (1)

H. Yoshida, A. Ohkubo, H. Fujita, and M. Nakatsuka, “Thermally induced effects of stimulated Brillouin scattering via phase-conjugation mirror for repetitive laser pulse,” Rev. Laser Eng. 29(2), 109–114 (2001).
[Crossref]

1990 (1)

R. W. Boyd, K. Rzaewski, and P. Narum, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A 42(9), 5514–5521 (1990).
[Crossref] [PubMed]

1988 (1)

1986 (1)

D. Lowenthal and J. M. Eggleston, “ASE effects in small aspect ratio laser oscillators and amplifiers with nonsaturable absorption,” IEEE J. Quantum Electron. 22(8), 1165–1173 (1986).
[Crossref]

Ahmed, M. A.

Banerjee, S.

Bauer, D.

Beak, D. H.

H. J. Kong, J. S. Shin, J. W. Yoon, and D. H. Beak, “Phase stabilization of the amplitude dividing four-beam combined laser system using stimulated Brillouin scattering phase conjugate mirrors,” Laser Part. Beams 27(01), 179–184 (2009).
[Crossref]

Boyd, R. W.

R. W. Boyd, K. Rzaewski, and P. Narum, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A 42(9), 5514–5521 (1990).
[Crossref] [PubMed]

Chen, J.

L. Tong, Z. Zhao, L. Cui, C. Liu, J. Chen, Q. Gao, and C. Tang, “400-Hz pulsed single-longitudinal-mode Nd:YAG laser with more than 100-mJ pulse energy and good beam quality,” Laser Phys. 21(1), 52–56 (2011).
[Crossref]

Chvykov, V.

V. Chvykov, J. Nees, and K. Krushelnick, “Transverse amplified spontaneous emission: The limiting factor for output energy of ultra-high power lasers,” Opt. Commun. 312, 216–221 (2014).
[Crossref]

Cimolino, M. C.

Collier, J. L.

Cui, L.

L. Tong, Z. Zhao, L. Cui, C. Liu, J. Chen, Q. Gao, and C. Tang, “400-Hz pulsed single-longitudinal-mode Nd:YAG laser with more than 100-mJ pulse energy and good beam quality,” Laser Phys. 21(1), 52–56 (2011).
[Crossref]

Divoky, M.

M. Divoky, P. Sikocinski, J. Pilar, A. Lucianetti, M. Sawicka, O. Slezak, and T. Mocek, “Design of high-energy-class cryogenically cooled Yb3+:YAG multislab laser system with low wavefront distortion,” Opt. Eng. 52(6), 064201 (2013).
[Crossref]

Eggleston, J. M.

D. Lowenthal and J. M. Eggleston, “ASE effects in small aspect ratio laser oscillators and amplifiers with nonsaturable absorption,” IEEE J. Quantum Electron. 22(8), 1165–1173 (1986).
[Crossref]

Ertel, K.

Fan, T. Y.

T. Y. Fan, “Laser beam combining for high-power, high-radiance sources,” IEEE J. Sel. Top. Quantum Electron. 11(3), 567–577 (2005).
[Crossref]

Fujita, H.

H. Yoshida, A. Ohkubo, H. Fujita, and M. Nakatsuka, “Thermally induced effects of stimulated Brillouin scattering via phase-conjugation mirror for repetitive laser pulse,” Rev. Laser Eng. 29(2), 109–114 (2001).
[Crossref]

Gao, Q.

L. Tong, Z. Zhao, L. Cui, C. Liu, J. Chen, Q. Gao, and C. Tang, “400-Hz pulsed single-longitudinal-mode Nd:YAG laser with more than 100-mJ pulse energy and good beam quality,” Laser Phys. 21(1), 52–56 (2011).
[Crossref]

Graf, T.

Guo, H.

H. J. Kong, S. K. Lee, D. W. Lee, and H. Guo, “Phase control of a stimulated Brillouin scattering phase conjugate mirror,” Appl. Phys. Lett. 86(5), 051111 (2005).
[Crossref]

Hamano, T.

H. Yoshida, M. Nakatsuka, T. Hatae, S. Kitamura, T. Sakuma, and T. Hamano, “Two-beam-combined 7.4 J, 50 Hz Q-switch pulsed YAG laser system based on SBS phase conjugation mirror for plasma diagnostics,” Jpn. J. Appl. Phys. 43(No. 8A), L1038–L1040 (2004).
[Crossref]

Hatae, T.

H. Yoshida, M. Nakatsuka, T. Hatae, S. Kitamura, T. Sakuma, and T. Hamano, “Two-beam-combined 7.4 J, 50 Hz Q-switch pulsed YAG laser system based on SBS phase conjugation mirror for plasma diagnostics,” Jpn. J. Appl. Phys. 43(No. 8A), L1038–L1040 (2004).
[Crossref]

Hernandez-Gomez, C.

Killi, A.

Kitamura, S.

H. Yoshida, M. Nakatsuka, T. Hatae, S. Kitamura, T. Sakuma, and T. Hamano, “Two-beam-combined 7.4 J, 50 Hz Q-switch pulsed YAG laser system based on SBS phase conjugation mirror for plasma diagnostics,” Jpn. J. Appl. Phys. 43(No. 8A), L1038–L1040 (2004).
[Crossref]

Kong, H. J.

J. S. Shin, S. Park, H. J. Kong, and J. W. Yoon, “Phase stabilization of a wave-front dividing four-beam combined amplifier with stimulated Brillouin scattering phase conjugate mirrors,” Appl. Phys. Lett. 96(13), 131116 (2010).
[Crossref]

H. J. Kong, J. S. Shin, J. W. Yoon, and D. H. Beak, “Phase stabilization of the amplitude dividing four-beam combined laser system using stimulated Brillouin scattering phase conjugate mirrors,” Laser Part. Beams 27(01), 179–184 (2009).
[Crossref]

H. J. Kong, S. K. Lee, D. W. Lee, and H. Guo, “Phase control of a stimulated Brillouin scattering phase conjugate mirror,” Appl. Phys. Lett. 86(5), 051111 (2005).
[Crossref]

Krushelnick, K.

V. Chvykov, J. Nees, and K. Krushelnick, “Transverse amplified spontaneous emission: The limiting factor for output energy of ultra-high power lasers,” Opt. Commun. 312, 216–221 (2014).
[Crossref]

Lee, D. W.

H. J. Kong, S. K. Lee, D. W. Lee, and H. Guo, “Phase control of a stimulated Brillouin scattering phase conjugate mirror,” Appl. Phys. Lett. 86(5), 051111 (2005).
[Crossref]

Lee, S. K.

H. J. Kong, S. K. Lee, D. W. Lee, and H. Guo, “Phase control of a stimulated Brillouin scattering phase conjugate mirror,” Appl. Phys. Lett. 86(5), 051111 (2005).
[Crossref]

Lim, C.

H. Park, C. Lim, H. Yoshida, and M. Nakatsuka, “Measurement of stimulated brillouin scattering characteristics in heavy fluorocarbon liquids and perfluoropolyether liquids,” Jpn. J. Appl. Phys. 45(6A), 5073–5075 (2006).
[Crossref]

Liu, C.

L. Tong, Z. Zhao, L. Cui, C. Liu, J. Chen, Q. Gao, and C. Tang, “400-Hz pulsed single-longitudinal-mode Nd:YAG laser with more than 100-mJ pulse energy and good beam quality,” Laser Phys. 21(1), 52–56 (2011).
[Crossref]

Loescher, A.

Loeser, M.

Lowenthal, D.

D. Lowenthal and J. M. Eggleston, “ASE effects in small aspect ratio laser oscillators and amplifiers with nonsaturable absorption,” IEEE J. Quantum Electron. 22(8), 1165–1173 (1986).
[Crossref]

Lucianetti, A.

M. Divoky, P. Sikocinski, J. Pilar, A. Lucianetti, M. Sawicka, O. Slezak, and T. Mocek, “Design of high-energy-class cryogenically cooled Yb3+:YAG multislab laser system with low wavefront distortion,” Opt. Eng. 52(6), 064201 (2013).
[Crossref]

Mason, P. D.

Mocek, T.

M. Divoky, P. Sikocinski, J. Pilar, A. Lucianetti, M. Sawicka, O. Slezak, and T. Mocek, “Design of high-energy-class cryogenically cooled Yb3+:YAG multislab laser system with low wavefront distortion,” Opt. Eng. 52(6), 064201 (2013).
[Crossref]

Moyer, R. H.

Nakatsuka, M.

H. Park, C. Lim, H. Yoshida, and M. Nakatsuka, “Measurement of stimulated brillouin scattering characteristics in heavy fluorocarbon liquids and perfluoropolyether liquids,” Jpn. J. Appl. Phys. 45(6A), 5073–5075 (2006).
[Crossref]

H. Yoshida, M. Nakatsuka, T. Hatae, S. Kitamura, T. Sakuma, and T. Hamano, “Two-beam-combined 7.4 J, 50 Hz Q-switch pulsed YAG laser system based on SBS phase conjugation mirror for plasma diagnostics,” Jpn. J. Appl. Phys. 43(No. 8A), L1038–L1040 (2004).
[Crossref]

H. Yoshida, A. Ohkubo, H. Fujita, and M. Nakatsuka, “Thermally induced effects of stimulated Brillouin scattering via phase-conjugation mirror for repetitive laser pulse,” Rev. Laser Eng. 29(2), 109–114 (2001).
[Crossref]

Narum, P.

R. W. Boyd, K. Rzaewski, and P. Narum, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A 42(9), 5514–5521 (1990).
[Crossref] [PubMed]

Nees, J.

V. Chvykov, J. Nees, and K. Krushelnick, “Transverse amplified spontaneous emission: The limiting factor for output energy of ultra-high power lasers,” Opt. Commun. 312, 216–221 (2014).
[Crossref]

Negel, J.-P.

Ohkubo, A.

H. Yoshida, A. Ohkubo, H. Fujita, and M. Nakatsuka, “Thermally induced effects of stimulated Brillouin scattering via phase-conjugation mirror for repetitive laser pulse,” Rev. Laser Eng. 29(2), 109–114 (2001).
[Crossref]

Park, H.

H. Park, C. Lim, H. Yoshida, and M. Nakatsuka, “Measurement of stimulated brillouin scattering characteristics in heavy fluorocarbon liquids and perfluoropolyether liquids,” Jpn. J. Appl. Phys. 45(6A), 5073–5075 (2006).
[Crossref]

Park, S.

J. S. Shin, S. Park, H. J. Kong, and J. W. Yoon, “Phase stabilization of a wave-front dividing four-beam combined amplifier with stimulated Brillouin scattering phase conjugate mirrors,” Appl. Phys. Lett. 96(13), 131116 (2010).
[Crossref]

Phillips, P. J.

Pilar, J.

M. Divoky, P. Sikocinski, J. Pilar, A. Lucianetti, M. Sawicka, O. Slezak, and T. Mocek, “Design of high-energy-class cryogenically cooled Yb3+:YAG multislab laser system with low wavefront distortion,” Opt. Eng. 52(6), 064201 (2013).
[Crossref]

Rzaewski, K.

R. W. Boyd, K. Rzaewski, and P. Narum, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A 42(9), 5514–5521 (1990).
[Crossref] [PubMed]

Sakuma, T.

H. Yoshida, M. Nakatsuka, T. Hatae, S. Kitamura, T. Sakuma, and T. Hamano, “Two-beam-combined 7.4 J, 50 Hz Q-switch pulsed YAG laser system based on SBS phase conjugation mirror for plasma diagnostics,” Jpn. J. Appl. Phys. 43(No. 8A), L1038–L1040 (2004).
[Crossref]

Sawicka, M.

M. Divoky, P. Sikocinski, J. Pilar, A. Lucianetti, M. Sawicka, O. Slezak, and T. Mocek, “Design of high-energy-class cryogenically cooled Yb3+:YAG multislab laser system with low wavefront distortion,” Opt. Eng. 52(6), 064201 (2013).
[Crossref]

Shin, J. S.

J. S. Shin, S. Park, H. J. Kong, and J. W. Yoon, “Phase stabilization of a wave-front dividing four-beam combined amplifier with stimulated Brillouin scattering phase conjugate mirrors,” Appl. Phys. Lett. 96(13), 131116 (2010).
[Crossref]

H. J. Kong, J. S. Shin, J. W. Yoon, and D. H. Beak, “Phase stabilization of the amplitude dividing four-beam combined laser system using stimulated Brillouin scattering phase conjugate mirrors,” Laser Part. Beams 27(01), 179–184 (2009).
[Crossref]

Siebold, M.

Sikocinski, P.

M. Divoky, P. Sikocinski, J. Pilar, A. Lucianetti, M. Sawicka, O. Slezak, and T. Mocek, “Design of high-energy-class cryogenically cooled Yb3+:YAG multislab laser system with low wavefront distortion,” Opt. Eng. 52(6), 064201 (2013).
[Crossref]

Slezak, O.

M. Divoky, P. Sikocinski, J. Pilar, A. Lucianetti, M. Sawicka, O. Slezak, and T. Mocek, “Design of high-energy-class cryogenically cooled Yb3+:YAG multislab laser system with low wavefront distortion,” Opt. Eng. 52(6), 064201 (2013).
[Crossref]

Sutter, D.

Tang, C.

L. Tong, Z. Zhao, L. Cui, C. Liu, J. Chen, Q. Gao, and C. Tang, “400-Hz pulsed single-longitudinal-mode Nd:YAG laser with more than 100-mJ pulse energy and good beam quality,” Laser Phys. 21(1), 52–56 (2011).
[Crossref]

Tong, L.

L. Tong, Z. Zhao, L. Cui, C. Liu, J. Chen, Q. Gao, and C. Tang, “400-Hz pulsed single-longitudinal-mode Nd:YAG laser with more than 100-mJ pulse energy and good beam quality,” Laser Phys. 21(1), 52–56 (2011).
[Crossref]

Valley, M.

Voss, A.

Yoon, J. W.

J. S. Shin, S. Park, H. J. Kong, and J. W. Yoon, “Phase stabilization of a wave-front dividing four-beam combined amplifier with stimulated Brillouin scattering phase conjugate mirrors,” Appl. Phys. Lett. 96(13), 131116 (2010).
[Crossref]

H. J. Kong, J. S. Shin, J. W. Yoon, and D. H. Beak, “Phase stabilization of the amplitude dividing four-beam combined laser system using stimulated Brillouin scattering phase conjugate mirrors,” Laser Part. Beams 27(01), 179–184 (2009).
[Crossref]

Yoshida, H.

H. Park, C. Lim, H. Yoshida, and M. Nakatsuka, “Measurement of stimulated brillouin scattering characteristics in heavy fluorocarbon liquids and perfluoropolyether liquids,” Jpn. J. Appl. Phys. 45(6A), 5073–5075 (2006).
[Crossref]

H. Yoshida, M. Nakatsuka, T. Hatae, S. Kitamura, T. Sakuma, and T. Hamano, “Two-beam-combined 7.4 J, 50 Hz Q-switch pulsed YAG laser system based on SBS phase conjugation mirror for plasma diagnostics,” Jpn. J. Appl. Phys. 43(No. 8A), L1038–L1040 (2004).
[Crossref]

H. Yoshida, A. Ohkubo, H. Fujita, and M. Nakatsuka, “Thermally induced effects of stimulated Brillouin scattering via phase-conjugation mirror for repetitive laser pulse,” Rev. Laser Eng. 29(2), 109–114 (2001).
[Crossref]

Zhao, Z.

L. Tong, Z. Zhao, L. Cui, C. Liu, J. Chen, Q. Gao, and C. Tang, “400-Hz pulsed single-longitudinal-mode Nd:YAG laser with more than 100-mJ pulse energy and good beam quality,” Laser Phys. 21(1), 52–56 (2011).
[Crossref]

Appl. Phys. Lett. (2)

H. J. Kong, S. K. Lee, D. W. Lee, and H. Guo, “Phase control of a stimulated Brillouin scattering phase conjugate mirror,” Appl. Phys. Lett. 86(5), 051111 (2005).
[Crossref]

J. S. Shin, S. Park, H. J. Kong, and J. W. Yoon, “Phase stabilization of a wave-front dividing four-beam combined amplifier with stimulated Brillouin scattering phase conjugate mirrors,” Appl. Phys. Lett. 96(13), 131116 (2010).
[Crossref]

IEEE J. Quantum Electron. (1)

D. Lowenthal and J. M. Eggleston, “ASE effects in small aspect ratio laser oscillators and amplifiers with nonsaturable absorption,” IEEE J. Quantum Electron. 22(8), 1165–1173 (1986).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

T. Y. Fan, “Laser beam combining for high-power, high-radiance sources,” IEEE J. Sel. Top. Quantum Electron. 11(3), 567–577 (2005).
[Crossref]

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. (2)

H. Park, C. Lim, H. Yoshida, and M. Nakatsuka, “Measurement of stimulated brillouin scattering characteristics in heavy fluorocarbon liquids and perfluoropolyether liquids,” Jpn. J. Appl. Phys. 45(6A), 5073–5075 (2006).
[Crossref]

H. Yoshida, M. Nakatsuka, T. Hatae, S. Kitamura, T. Sakuma, and T. Hamano, “Two-beam-combined 7.4 J, 50 Hz Q-switch pulsed YAG laser system based on SBS phase conjugation mirror for plasma diagnostics,” Jpn. J. Appl. Phys. 43(No. 8A), L1038–L1040 (2004).
[Crossref]

Laser Part. Beams (1)

H. J. Kong, J. S. Shin, J. W. Yoon, and D. H. Beak, “Phase stabilization of the amplitude dividing four-beam combined laser system using stimulated Brillouin scattering phase conjugate mirrors,” Laser Part. Beams 27(01), 179–184 (2009).
[Crossref]

Laser Phys. (1)

L. Tong, Z. Zhao, L. Cui, C. Liu, J. Chen, Q. Gao, and C. Tang, “400-Hz pulsed single-longitudinal-mode Nd:YAG laser with more than 100-mJ pulse energy and good beam quality,” Laser Phys. 21(1), 52–56 (2011).
[Crossref]

Opt. Commun. (1)

V. Chvykov, J. Nees, and K. Krushelnick, “Transverse amplified spontaneous emission: The limiting factor for output energy of ultra-high power lasers,” Opt. Commun. 312, 216–221 (2014).
[Crossref]

Opt. Eng. (1)

M. Divoky, P. Sikocinski, J. Pilar, A. Lucianetti, M. Sawicka, O. Slezak, and T. Mocek, “Design of high-energy-class cryogenically cooled Yb3+:YAG multislab laser system with low wavefront distortion,” Opt. Eng. 52(6), 064201 (2013).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. A (1)

R. W. Boyd, K. Rzaewski, and P. Narum, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A 42(9), 5514–5521 (1990).
[Crossref] [PubMed]

Rev. Laser Eng. (1)

H. Yoshida, A. Ohkubo, H. Fujita, and M. Nakatsuka, “Thermally induced effects of stimulated Brillouin scattering via phase-conjugation mirror for repetitive laser pulse,” Rev. Laser Eng. 29(2), 109–114 (2001).
[Crossref]

Other (1)

J. Hecht, Understanding Lasers: An Entry-Level Guide, 3rd Edition (John Wiley & Sons, Inc., 2008), Chap. 12.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Rotating wedge SPL-SBS-PCM; (a) a schematic diagram of the optical design principle, (b) a picture of the rotating wedge SPL-SBS-PCM. A wedge is driven by a servo motor.
Fig. 2
Fig. 2 Simulation result for the path length fluctuation (peak to peak); the wedge is translated by 0.3 mm and 0.5 mm in the x and y directions, respectively, when z-axis is the optic axis; the rotation axis of the wedge is tilted by 0.015 deg. in the y direction; and the front glass of the cell is tilted by −0.03 deg. and 0.02 deg. in the x and y directions, respectively.
Fig. 3
Fig. 3 Experimental setup of the four-beam combination experiment using the RW-SSP; ISO, optical isolator; HWP, half wave plate; PBS, polarizing beam splitter; W, wedge; PZT, 45 degree mirror attached piezoelectric transducer; RW, rotating wedge device; Cell, SBS cell; QWP, quarter wave plate; and EM, energymeter.
Fig. 4
Fig. 4 Experimental results of two beam combination; (a) the rms values of relative phase with different values of C; (b), (c), and (d), typical phase measurement signals during 120 s when C is 0.05, 0.2, and 0.5, respectively.
Fig. 5
Fig. 5 Experimental results of a four-beam combination; (a) the relative phases between combining beams during 10 min shows an rms fluctuation of λ/26.7 (beam 1 & 2), λ/28.8 (beam 3 & 4), and λ/24.7 (beam 12 & 34), and (b) detailed results during the first minute.
Fig. 6
Fig. 6 Applied voltages of 3 PZTs during the four-beam combination experiment.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ V 1 [ V ]=C [ V/rad ]*Δ Φ 12 [ rad ],

Metrics