Abstract

We demonstrate a single taper-based all-solid photonic bandgap (AS-PBG) fiber modal interferometer that consists of a central tapered fiber region connected to the untapered via two abrupt transitions. Modal interference is given by superimposing the bandgap-guided fundamental core mode with a lower effective index and a specific index-guided cladding supermode with a higher effective index. A series of interferometers with taper diameter of 50μm ~60μm and device length of ~3mm are fabricated and studied in contrast to the conventional counterparts. The temperature coefficient of the interferometer is closely determined by the fraction of the cladding supermode energy localized within the index-raised regions of the fiber. The refractive index (RI) responsivities associated to fiber taper sizes are investigated. The measured maximal RI sensitivity is ~3512.36nm/RIU at the taper diameter of 50μm around RI = 1.423. This research gives a deep understanding to the modal-interferometric AS-PBG structure, which we believe to be valuable for the future application of the related device.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Spectral characteristics and bend response of Bragg gratings inscribed in all-solid bandgap fibers

Long Jin, Zhi Wang, Qiang Fang, Yange Liu, Bo Liu, Guiyun Kai, and Xiaoyi Dong
Opt. Express 15(23) 15555-15565 (2007)

Dispersion design of all-solid photonic bandgap fiber

Qiang Fang, Zhi Wang, Long Jin, Jianguo Liu, Yang Yue, Yange Liu, Guiyun Kai, Shuzhong Yuan, and Xiaoyi Dong
J. Opt. Soc. Am. B 24(11) 2899-2905 (2007)

Highly sensitive gas refractometers based on optical microfiber modal interferometers operating at dispersion turning point

Nancy Meng Ying Zhang, Kaiwei Li, Nan Zhang, Yu Zheng, Ting Zhang, Miao Qi, Ping Shum, and Lei Wei
Opt. Express 26(22) 29148-29158 (2018)

References

  • View by:
  • |
  • |
  • |

  1. J. C. Knight, “Photonic crystal fibres,” Nature 424(6950), 847–851 (2003).
    [Crossref] [PubMed]
  2. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. Russell, P. J. Roberts, and D. C. Allan, “Singlemode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
    [Crossref] [PubMed]
  3. C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424(6949), 657–659 (2003).
    [Crossref] [PubMed]
  4. F. Luan, A. K. George, T. D. Hedley, G. J. Pearce, D. M. Bird, J. C. Knight, and P. St. J. Russell, “All-solid photonic bandgap fiber,” Opt. Lett. 29(20), 2369–2371 (2004).
    [Crossref] [PubMed]
  5. A. Argyros, T. A. Birks, S. G. Leon-Saval, C. M. B. Cordeiro, and P. St. J. Russell, “Guidance properties of low-contrast photonic bandgap fibres,” Opt. Express 13(7), 2503–2511 (2005).
    [Crossref] [PubMed]
  6. G. Bouwmans, L. Bigot, Y. Quiquempois, F. Lopez, L. Provino, and M. Douay, “Fabrication and characterization of an all-solid 2D photonic bandgap fiber with a low-loss region (< 20 dB/km) around 1550 nm,” Opt. Express 13(21), 8452–8459 (2005).
    [Crossref] [PubMed]
  7. C. R. Liao, Y. Wang, D. N. Wang, and L. Jin, “Femtosecond laser inscribed long-period gratings in all-solid photonic bandgap fibers,” IEEE Photonics Technol. Lett. 22(6), 425–427 (2010).
    [Crossref]
  8. U. Röpke, H. Bartelt, S. Unger, K. Schuster, and J. Kobelke, “Two-dimensional high-precision fiber waveguide arrays for coherent light propagation,” Opt. Express 15(11), 6894–6899 (2007).
    [Crossref] [PubMed]
  9. D. N. Christodoulides, F. Lederer, and Y. Silberberg, “Discretizing light behaviour in linear and nonlinear waveguide lattices,” Nature 424(6950), 817–823 (2003).
    [Crossref] [PubMed]
  10. B. H. Lee and J. Nishii, “Dependence of fringe spacing on the grating separation in a long-period fiber grating pair,” Appl. Opt. 38(16), 3450–3459 (1999).
    [Crossref] [PubMed]
  11. G. Laffont and P. Ferdinand, “Tilted short-period fibre-Bragg-grating-induced coupling to cladding modes for accurate refractometry,” Meas. Sci. Technol. 12(7), 765–770 (2001).
    [Crossref]
  12. B. Li, L. Jiang, S. Wang, L. Zhou, H. Xiao, and H. L. Tsai, “Ultra-abrupt tapered fiber Mach-Zehnder interferometer sensors,” Sensors (Basel) 11(12), 5729–5739 (2011).
    [Crossref] [PubMed]
  13. Z. B. Tian and S. S. Yam, “In-line abrupt taper optical fiber Mach–Zehnder interferometric strain sensor,” IEEE Photonics Technol. Lett. 21(3), 161–163 (2009).
    [Crossref]
  14. T. Wei, X. Lan, and H. Xiao, “Fiber inline core–cladding-mode Mach–Zehnder interferometer fabricated by two-point CO2 laser irradiations,” IEEE Photonics Technol. Lett. 21(10), 669–671 (2009).
    [Crossref]
  15. G. Salceda-Delgado, D. Monzon-Hernandez, A. Martinez-Rios, G. A. Cardenas-Sevilla, and J. Villatoro, “Optical microfiber mode interferometer for temperature-independent refractometric sensing,” Opt. Lett. 37(11), 1974–1976 (2012).
    [Crossref] [PubMed]
  16. L. P. Sun, J. Li, Y. Tan, S. Gao, L. Jin, and B. O. Guan, “Bending effect on modal interference in a fiber taper and sensitivity enhancement for refractive index measurement,” Opt. Express 21(22), 26714–26720 (2013).
    [Crossref] [PubMed]
  17. V. Minkovich, J. Villatoro, D. Monzón-Hernández, S. Calixto, A. Sotsky, and L. Sotskaya, “Holey fiber tapers with resonance transmission for high-resolution refractive index sensing,” Opt. Express 13(19), 7609–7614 (2005).
    [Crossref] [PubMed]
  18. Q. Wang, G. Farrell, and W. Yan, “Investigation on single-mode-multimode-single-mode fiber structure,” J. Lightwave Technol. 26(5), 512–519 (2008).
    [Crossref]
  19. N. M. Litchinitser, A. K. Abeeluck, C. Headley, and B. J. Eggleton, “Antiresonant reflecting photonic crystal optical waveguides,” Opt. Lett. 27(18), 1592–1594 (2002).
    [Crossref] [PubMed]
  20. Z. P. Yu, L. Jin, L. P. Sun, J. Li, Y. Ran, and B. O. Guan, “Highly Sensitive Fiber Taper Interferometric Hydrogen Sensors,” IEEE Photonics J. 8(1), 6800309 (2016).
    [Crossref]
  21. N. Kejalakshmy, B. M. A. Rahman, A. Agrawal, T. Wongcharoen, and K. T. V. Grattan, “Characterization of single-polarization single-mode photonic crystal fiber using full-vectorial finite element method,” Appl. Phys. B 93(1), 223–230 (2008).
    [Crossref]
  22. Y. Miao, X. Ma, J. Wu, B. Song, H. Zhang, K. Zhang, B. Liu, and J. Yao, “Low-temperature cross-talk magnetic-field sensor based on tapered all-solid waveguide-array fiber and magnetic fluids,” Opt. Lett. 40(16), 3905–3908 (2015).
    [Crossref] [PubMed]

2016 (1)

Z. P. Yu, L. Jin, L. P. Sun, J. Li, Y. Ran, and B. O. Guan, “Highly Sensitive Fiber Taper Interferometric Hydrogen Sensors,” IEEE Photonics J. 8(1), 6800309 (2016).
[Crossref]

2015 (1)

2013 (1)

2012 (1)

2011 (1)

B. Li, L. Jiang, S. Wang, L. Zhou, H. Xiao, and H. L. Tsai, “Ultra-abrupt tapered fiber Mach-Zehnder interferometer sensors,” Sensors (Basel) 11(12), 5729–5739 (2011).
[Crossref] [PubMed]

2010 (1)

C. R. Liao, Y. Wang, D. N. Wang, and L. Jin, “Femtosecond laser inscribed long-period gratings in all-solid photonic bandgap fibers,” IEEE Photonics Technol. Lett. 22(6), 425–427 (2010).
[Crossref]

2009 (2)

Z. B. Tian and S. S. Yam, “In-line abrupt taper optical fiber Mach–Zehnder interferometric strain sensor,” IEEE Photonics Technol. Lett. 21(3), 161–163 (2009).
[Crossref]

T. Wei, X. Lan, and H. Xiao, “Fiber inline core–cladding-mode Mach–Zehnder interferometer fabricated by two-point CO2 laser irradiations,” IEEE Photonics Technol. Lett. 21(10), 669–671 (2009).
[Crossref]

2008 (2)

N. Kejalakshmy, B. M. A. Rahman, A. Agrawal, T. Wongcharoen, and K. T. V. Grattan, “Characterization of single-polarization single-mode photonic crystal fiber using full-vectorial finite element method,” Appl. Phys. B 93(1), 223–230 (2008).
[Crossref]

Q. Wang, G. Farrell, and W. Yan, “Investigation on single-mode-multimode-single-mode fiber structure,” J. Lightwave Technol. 26(5), 512–519 (2008).
[Crossref]

2007 (1)

2005 (3)

2004 (1)

2003 (3)

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424(6949), 657–659 (2003).
[Crossref] [PubMed]

J. C. Knight, “Photonic crystal fibres,” Nature 424(6950), 847–851 (2003).
[Crossref] [PubMed]

D. N. Christodoulides, F. Lederer, and Y. Silberberg, “Discretizing light behaviour in linear and nonlinear waveguide lattices,” Nature 424(6950), 817–823 (2003).
[Crossref] [PubMed]

2002 (1)

2001 (1)

G. Laffont and P. Ferdinand, “Tilted short-period fibre-Bragg-grating-induced coupling to cladding modes for accurate refractometry,” Meas. Sci. Technol. 12(7), 765–770 (2001).
[Crossref]

1999 (2)

B. H. Lee and J. Nishii, “Dependence of fringe spacing on the grating separation in a long-period fiber grating pair,” Appl. Opt. 38(16), 3450–3459 (1999).
[Crossref] [PubMed]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. Russell, P. J. Roberts, and D. C. Allan, “Singlemode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[Crossref] [PubMed]

Abeeluck, A. K.

Agrawal, A.

N. Kejalakshmy, B. M. A. Rahman, A. Agrawal, T. Wongcharoen, and K. T. V. Grattan, “Characterization of single-polarization single-mode photonic crystal fiber using full-vectorial finite element method,” Appl. Phys. B 93(1), 223–230 (2008).
[Crossref]

Allan, D. C.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424(6949), 657–659 (2003).
[Crossref] [PubMed]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. Russell, P. J. Roberts, and D. C. Allan, “Singlemode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[Crossref] [PubMed]

Argyros, A.

Bartelt, H.

Bigot, L.

Bird, D. M.

Birks, T. A.

A. Argyros, T. A. Birks, S. G. Leon-Saval, C. M. B. Cordeiro, and P. St. J. Russell, “Guidance properties of low-contrast photonic bandgap fibres,” Opt. Express 13(7), 2503–2511 (2005).
[Crossref] [PubMed]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. Russell, P. J. Roberts, and D. C. Allan, “Singlemode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[Crossref] [PubMed]

Borrelli, N. F.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424(6949), 657–659 (2003).
[Crossref] [PubMed]

Bouwmans, G.

Calixto, S.

Cardenas-Sevilla, G. A.

Christodoulides, D. N.

D. N. Christodoulides, F. Lederer, and Y. Silberberg, “Discretizing light behaviour in linear and nonlinear waveguide lattices,” Nature 424(6950), 817–823 (2003).
[Crossref] [PubMed]

Cordeiro, C. M. B.

Cregan, R. F.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. Russell, P. J. Roberts, and D. C. Allan, “Singlemode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[Crossref] [PubMed]

Douay, M.

Eggleton, B. J.

Farrell, G.

Ferdinand, P.

G. Laffont and P. Ferdinand, “Tilted short-period fibre-Bragg-grating-induced coupling to cladding modes for accurate refractometry,” Meas. Sci. Technol. 12(7), 765–770 (2001).
[Crossref]

Gallagher, M. T.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424(6949), 657–659 (2003).
[Crossref] [PubMed]

Gao, S.

George, A. K.

Grattan, K. T. V.

N. Kejalakshmy, B. M. A. Rahman, A. Agrawal, T. Wongcharoen, and K. T. V. Grattan, “Characterization of single-polarization single-mode photonic crystal fiber using full-vectorial finite element method,” Appl. Phys. B 93(1), 223–230 (2008).
[Crossref]

Guan, B. O.

Z. P. Yu, L. Jin, L. P. Sun, J. Li, Y. Ran, and B. O. Guan, “Highly Sensitive Fiber Taper Interferometric Hydrogen Sensors,” IEEE Photonics J. 8(1), 6800309 (2016).
[Crossref]

L. P. Sun, J. Li, Y. Tan, S. Gao, L. Jin, and B. O. Guan, “Bending effect on modal interference in a fiber taper and sensitivity enhancement for refractive index measurement,” Opt. Express 21(22), 26714–26720 (2013).
[Crossref] [PubMed]

Headley, C.

Hedley, T. D.

Jiang, L.

B. Li, L. Jiang, S. Wang, L. Zhou, H. Xiao, and H. L. Tsai, “Ultra-abrupt tapered fiber Mach-Zehnder interferometer sensors,” Sensors (Basel) 11(12), 5729–5739 (2011).
[Crossref] [PubMed]

Jin, L.

Z. P. Yu, L. Jin, L. P. Sun, J. Li, Y. Ran, and B. O. Guan, “Highly Sensitive Fiber Taper Interferometric Hydrogen Sensors,” IEEE Photonics J. 8(1), 6800309 (2016).
[Crossref]

L. P. Sun, J. Li, Y. Tan, S. Gao, L. Jin, and B. O. Guan, “Bending effect on modal interference in a fiber taper and sensitivity enhancement for refractive index measurement,” Opt. Express 21(22), 26714–26720 (2013).
[Crossref] [PubMed]

C. R. Liao, Y. Wang, D. N. Wang, and L. Jin, “Femtosecond laser inscribed long-period gratings in all-solid photonic bandgap fibers,” IEEE Photonics Technol. Lett. 22(6), 425–427 (2010).
[Crossref]

Kejalakshmy, N.

N. Kejalakshmy, B. M. A. Rahman, A. Agrawal, T. Wongcharoen, and K. T. V. Grattan, “Characterization of single-polarization single-mode photonic crystal fiber using full-vectorial finite element method,” Appl. Phys. B 93(1), 223–230 (2008).
[Crossref]

Knight, J. C.

F. Luan, A. K. George, T. D. Hedley, G. J. Pearce, D. M. Bird, J. C. Knight, and P. St. J. Russell, “All-solid photonic bandgap fiber,” Opt. Lett. 29(20), 2369–2371 (2004).
[Crossref] [PubMed]

J. C. Knight, “Photonic crystal fibres,” Nature 424(6950), 847–851 (2003).
[Crossref] [PubMed]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. Russell, P. J. Roberts, and D. C. Allan, “Singlemode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[Crossref] [PubMed]

Kobelke, J.

Koch, K. W.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424(6949), 657–659 (2003).
[Crossref] [PubMed]

Laffont, G.

G. Laffont and P. Ferdinand, “Tilted short-period fibre-Bragg-grating-induced coupling to cladding modes for accurate refractometry,” Meas. Sci. Technol. 12(7), 765–770 (2001).
[Crossref]

Lan, X.

T. Wei, X. Lan, and H. Xiao, “Fiber inline core–cladding-mode Mach–Zehnder interferometer fabricated by two-point CO2 laser irradiations,” IEEE Photonics Technol. Lett. 21(10), 669–671 (2009).
[Crossref]

Lederer, F.

D. N. Christodoulides, F. Lederer, and Y. Silberberg, “Discretizing light behaviour in linear and nonlinear waveguide lattices,” Nature 424(6950), 817–823 (2003).
[Crossref] [PubMed]

Lee, B. H.

Leon-Saval, S. G.

Li, B.

B. Li, L. Jiang, S. Wang, L. Zhou, H. Xiao, and H. L. Tsai, “Ultra-abrupt tapered fiber Mach-Zehnder interferometer sensors,” Sensors (Basel) 11(12), 5729–5739 (2011).
[Crossref] [PubMed]

Li, J.

Z. P. Yu, L. Jin, L. P. Sun, J. Li, Y. Ran, and B. O. Guan, “Highly Sensitive Fiber Taper Interferometric Hydrogen Sensors,” IEEE Photonics J. 8(1), 6800309 (2016).
[Crossref]

L. P. Sun, J. Li, Y. Tan, S. Gao, L. Jin, and B. O. Guan, “Bending effect on modal interference in a fiber taper and sensitivity enhancement for refractive index measurement,” Opt. Express 21(22), 26714–26720 (2013).
[Crossref] [PubMed]

Liao, C. R.

C. R. Liao, Y. Wang, D. N. Wang, and L. Jin, “Femtosecond laser inscribed long-period gratings in all-solid photonic bandgap fibers,” IEEE Photonics Technol. Lett. 22(6), 425–427 (2010).
[Crossref]

Litchinitser, N. M.

Liu, B.

Lopez, F.

Luan, F.

Ma, X.

Mangan, B. J.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. Russell, P. J. Roberts, and D. C. Allan, “Singlemode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[Crossref] [PubMed]

Martinez-Rios, A.

Miao, Y.

Minkovich, V.

Monzon-Hernandez, D.

Monzón-Hernández, D.

Müller, D.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424(6949), 657–659 (2003).
[Crossref] [PubMed]

Nishii, J.

Pearce, G. J.

Provino, L.

Quiquempois, Y.

Rahman, B. M. A.

N. Kejalakshmy, B. M. A. Rahman, A. Agrawal, T. Wongcharoen, and K. T. V. Grattan, “Characterization of single-polarization single-mode photonic crystal fiber using full-vectorial finite element method,” Appl. Phys. B 93(1), 223–230 (2008).
[Crossref]

Ran, Y.

Z. P. Yu, L. Jin, L. P. Sun, J. Li, Y. Ran, and B. O. Guan, “Highly Sensitive Fiber Taper Interferometric Hydrogen Sensors,” IEEE Photonics J. 8(1), 6800309 (2016).
[Crossref]

Roberts, P. J.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. Russell, P. J. Roberts, and D. C. Allan, “Singlemode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[Crossref] [PubMed]

Röpke, U.

Russell, P. S.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. Russell, P. J. Roberts, and D. C. Allan, “Singlemode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[Crossref] [PubMed]

Russell, P. St. J.

Salceda-Delgado, G.

Schuster, K.

Silberberg, Y.

D. N. Christodoulides, F. Lederer, and Y. Silberberg, “Discretizing light behaviour in linear and nonlinear waveguide lattices,” Nature 424(6950), 817–823 (2003).
[Crossref] [PubMed]

Smith, C. M.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424(6949), 657–659 (2003).
[Crossref] [PubMed]

Song, B.

Sotskaya, L.

Sotsky, A.

St. J. Russell, P.

Sun, L. P.

Z. P. Yu, L. Jin, L. P. Sun, J. Li, Y. Ran, and B. O. Guan, “Highly Sensitive Fiber Taper Interferometric Hydrogen Sensors,” IEEE Photonics J. 8(1), 6800309 (2016).
[Crossref]

L. P. Sun, J. Li, Y. Tan, S. Gao, L. Jin, and B. O. Guan, “Bending effect on modal interference in a fiber taper and sensitivity enhancement for refractive index measurement,” Opt. Express 21(22), 26714–26720 (2013).
[Crossref] [PubMed]

Tan, Y.

Tian, Z. B.

Z. B. Tian and S. S. Yam, “In-line abrupt taper optical fiber Mach–Zehnder interferometric strain sensor,” IEEE Photonics Technol. Lett. 21(3), 161–163 (2009).
[Crossref]

Tsai, H. L.

B. Li, L. Jiang, S. Wang, L. Zhou, H. Xiao, and H. L. Tsai, “Ultra-abrupt tapered fiber Mach-Zehnder interferometer sensors,” Sensors (Basel) 11(12), 5729–5739 (2011).
[Crossref] [PubMed]

Unger, S.

Venkataraman, N.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424(6949), 657–659 (2003).
[Crossref] [PubMed]

Villatoro, J.

Wang, D. N.

C. R. Liao, Y. Wang, D. N. Wang, and L. Jin, “Femtosecond laser inscribed long-period gratings in all-solid photonic bandgap fibers,” IEEE Photonics Technol. Lett. 22(6), 425–427 (2010).
[Crossref]

Wang, Q.

Wang, S.

B. Li, L. Jiang, S. Wang, L. Zhou, H. Xiao, and H. L. Tsai, “Ultra-abrupt tapered fiber Mach-Zehnder interferometer sensors,” Sensors (Basel) 11(12), 5729–5739 (2011).
[Crossref] [PubMed]

Wang, Y.

C. R. Liao, Y. Wang, D. N. Wang, and L. Jin, “Femtosecond laser inscribed long-period gratings in all-solid photonic bandgap fibers,” IEEE Photonics Technol. Lett. 22(6), 425–427 (2010).
[Crossref]

Wei, T.

T. Wei, X. Lan, and H. Xiao, “Fiber inline core–cladding-mode Mach–Zehnder interferometer fabricated by two-point CO2 laser irradiations,” IEEE Photonics Technol. Lett. 21(10), 669–671 (2009).
[Crossref]

West, J. A.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424(6949), 657–659 (2003).
[Crossref] [PubMed]

Wongcharoen, T.

N. Kejalakshmy, B. M. A. Rahman, A. Agrawal, T. Wongcharoen, and K. T. V. Grattan, “Characterization of single-polarization single-mode photonic crystal fiber using full-vectorial finite element method,” Appl. Phys. B 93(1), 223–230 (2008).
[Crossref]

Wu, J.

Xiao, H.

B. Li, L. Jiang, S. Wang, L. Zhou, H. Xiao, and H. L. Tsai, “Ultra-abrupt tapered fiber Mach-Zehnder interferometer sensors,” Sensors (Basel) 11(12), 5729–5739 (2011).
[Crossref] [PubMed]

T. Wei, X. Lan, and H. Xiao, “Fiber inline core–cladding-mode Mach–Zehnder interferometer fabricated by two-point CO2 laser irradiations,” IEEE Photonics Technol. Lett. 21(10), 669–671 (2009).
[Crossref]

Yam, S. S.

Z. B. Tian and S. S. Yam, “In-line abrupt taper optical fiber Mach–Zehnder interferometric strain sensor,” IEEE Photonics Technol. Lett. 21(3), 161–163 (2009).
[Crossref]

Yan, W.

Yao, J.

Yu, Z. P.

Z. P. Yu, L. Jin, L. P. Sun, J. Li, Y. Ran, and B. O. Guan, “Highly Sensitive Fiber Taper Interferometric Hydrogen Sensors,” IEEE Photonics J. 8(1), 6800309 (2016).
[Crossref]

Zhang, H.

Zhang, K.

Zhou, L.

B. Li, L. Jiang, S. Wang, L. Zhou, H. Xiao, and H. L. Tsai, “Ultra-abrupt tapered fiber Mach-Zehnder interferometer sensors,” Sensors (Basel) 11(12), 5729–5739 (2011).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. B (1)

N. Kejalakshmy, B. M. A. Rahman, A. Agrawal, T. Wongcharoen, and K. T. V. Grattan, “Characterization of single-polarization single-mode photonic crystal fiber using full-vectorial finite element method,” Appl. Phys. B 93(1), 223–230 (2008).
[Crossref]

IEEE Photonics J. (1)

Z. P. Yu, L. Jin, L. P. Sun, J. Li, Y. Ran, and B. O. Guan, “Highly Sensitive Fiber Taper Interferometric Hydrogen Sensors,” IEEE Photonics J. 8(1), 6800309 (2016).
[Crossref]

IEEE Photonics Technol. Lett. (3)

Z. B. Tian and S. S. Yam, “In-line abrupt taper optical fiber Mach–Zehnder interferometric strain sensor,” IEEE Photonics Technol. Lett. 21(3), 161–163 (2009).
[Crossref]

T. Wei, X. Lan, and H. Xiao, “Fiber inline core–cladding-mode Mach–Zehnder interferometer fabricated by two-point CO2 laser irradiations,” IEEE Photonics Technol. Lett. 21(10), 669–671 (2009).
[Crossref]

C. R. Liao, Y. Wang, D. N. Wang, and L. Jin, “Femtosecond laser inscribed long-period gratings in all-solid photonic bandgap fibers,” IEEE Photonics Technol. Lett. 22(6), 425–427 (2010).
[Crossref]

J. Lightwave Technol. (1)

Meas. Sci. Technol. (1)

G. Laffont and P. Ferdinand, “Tilted short-period fibre-Bragg-grating-induced coupling to cladding modes for accurate refractometry,” Meas. Sci. Technol. 12(7), 765–770 (2001).
[Crossref]

Nature (3)

J. C. Knight, “Photonic crystal fibres,” Nature 424(6950), 847–851 (2003).
[Crossref] [PubMed]

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424(6949), 657–659 (2003).
[Crossref] [PubMed]

D. N. Christodoulides, F. Lederer, and Y. Silberberg, “Discretizing light behaviour in linear and nonlinear waveguide lattices,” Nature 424(6950), 817–823 (2003).
[Crossref] [PubMed]

Opt. Express (5)

Opt. Lett. (4)

Science (1)

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. Russell, P. J. Roberts, and D. C. Allan, “Singlemode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[Crossref] [PubMed]

Sensors (Basel) (1)

B. Li, L. Jiang, S. Wang, L. Zhou, H. Xiao, and H. L. Tsai, “Ultra-abrupt tapered fiber Mach-Zehnder interferometer sensors,” Sensors (Basel) 11(12), 5729–5739 (2011).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic of the single taper-based AS-PBG fiber modal interferometer. Insets are the electron micrographs of the cross sections for both untapered and tapered AS-PBG fibers, respectively.
Fig. 2
Fig. 2 (a) Modal dispersion diagrams for the AS-PBG fiber with diameters of 125μm and 60μm, respectively. (b) Electric field distributions for some typical supermodes and the fundamental mode of the AS-PBG fiber with relation to the diagrams of (a).
Fig. 3
Fig. 3 (a) Transmission spectra of the single taper-based AS-PBG fiber modal interferometers with L 1 = 0.628mm, L 2 = 0.61mm, L 0 = 1.85mm, d = 60μm and L 1 = L 2 = 0.5mm, L 0 = 2.0mm, d = 50μm, respectively. (b) Near-field images of transmitted power at wavelengths of 1534nm (point A) and 1544nm (point B), respectively.
Fig. 4
Fig. 4 (a) Dip wavelength shifts as functions of temperature corresponding to d = 50μm and 60μm, respectively, with L 1 = L 2 = 0.5mm and L 0 = 2.0mm. (b) Transmission spectra with respect to different temperatures at d = 50μm. (c) Transmission spectra with respect to different temperatures at d = 60 μm.
Fig. 5
Fig. 5 (a) Dip wavelength shift as a function of external RI for d = 50μm and 60μm, respectively, where L 1 = L 2 = 0.5mm and L 0 = 2.0mm. (b) Transmission spectra with respect to different RIs at d = 50μm. (c) Transmission spectra with respect to different RIs at d = 60μm.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

κ = ω 4 Δ ε ( x , y ) E f ( x , y ) E s * ( x , y ) d x d y
Φ = ( 2 π / λ ) Δ n L

Metrics