Abstract

An external cavity diode laser is demonstrated using a Bragg grating written into a novel integrated optical fiber platform as the external cavity. The cavity is fabricated using flame-hydrolysis deposition to bond a photosensitive fiber to a silica-on-silicon wafer, and a grating written using direct UV-writing. The laser operates on a single mode at the acetylene P13 line (1532.83 nm) with 9 mW output power. The noise properties of the laser are characterized demonstrating low linewidth operation (< 14 kHz) and superior relative intensity noise characteristics when compared to a commercial tunable external cavity diode laser.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
OH sensor based on ultraviolet, continuous-wave absorption spectroscopy utilizing a frequency-quadrupled, fiber-amplified external-cavity diode laser

Gustavo J. Ray, Thomas N. Anderson, Jerald A. Caton, Robert P. Lucht, and Thomas Walther
Opt. Lett. 26(23) 1870-1872 (2001)

Passive intrinsic-linewidth narrowing of ultraviolet extended-cavity diode laser by weak optical feedback

Polnop Samutpraphoot, Sophie Weber, Qian Lin, Dorian Gangloff, Alexei Bylinskii, Boris Braverman, Akio Kawasaki, Christoph Raab, Wilhelm Kaenders, and Vladan Vuletić
Opt. Express 22(10) 11592-11599 (2014)

Wavelength tuning and spectral properties of distributed feedback diode lasers with a short external optical cavity

Christian K. Laue, Ralf Knappe, Klaus-Jochen Boller, and Richard Wallenstein
Appl. Opt. 40(18) 3051-3059 (2001)

References

  • View by:
  • |
  • |
  • |

  1. K. Petermann, “External optical feedback phenomena in semiconductor lasers,” Advanced Networks and Services 1, 480–489 (1995).
  2. R. F. Kazarinov and C. H. Henry, “The relation of line narrowing and chirp reduction resulting from the coupling of a semiconductor laser to passive resonator,” IEEE J. Quantum Electron. 23(9), 1401–1409 (1987).
    [Crossref]
  3. C. J. Hawthorn, K. P. Weber, and R. E. Scholten, “Littrow configuration tunable external cavity diode laser with fixed direction output beam,” Rev. Sci. Instrum. 72(12), 4477 (2001).
    [Crossref]
  4. K. Liu and M. G. Littman, “Novel geometry for single-mode scanning of tunable lasers,” Opt. Lett. 6(3), 117–118 (1981).
    [Crossref] [PubMed]
  5. M. Buric, J. Falk, K. P. Chen, L. Cashdollar, and A. Elyamani, “Piezo-electric tunable fiber Bragg grating diode laser for chemical sensing using wavelength modulation spectroscopy,” Opt. Express 14(6), 2178–2183 (2006).
    [Crossref] [PubMed]
  6. C. A. Park, C. J. Rowe, J. Buus, D. C. J. Reid, A. Carter, and I. Bennion, “Single-mode behaviour of a multimode 1.55 μm laser with a fibre grating external cavity,” Electron. Lett. 22(21), 1132–1134 (1986).
    [Crossref]
  7. S. Huang, H. Zhao, and L. Xue, “Frequency stabilization of FBG external cavity laser diode,” in Asia-Pacific Conference on Circuits and Systems (IEEE, 2002), pp. 565–567.
  8. Y. Sidorin and D. Howe, “Laser-diode wavelength tuning based on butt coupling into an optical fiber,” Opt. Lett. 22(21), 802–804 (1997).
    [Crossref] [PubMed]
  9. E. Luvsandamdin, K. Christian, M. Schiemangk, A. Sahm, A. Wicht, A. Peters, G. Erbert, and G. Tränkle, “Micro-integrated extended cavity diode lasers for precision potassium spectroscopy in space,” Opt. Express 22(7), 7790–7798 (2014).
    [Crossref] [PubMed]
  10. K. Numata, M. Alalusi, L. Stolpner, G. Margaritis, J. Camp, and M. Krainak, “Characteristics of the single-longitudinal-mode planar-waveguide external cavity diode laser at 1064 nm,” Opt. Lett. 39(7), 2101–2104 (2014).
    [Crossref] [PubMed]
  11. K. Numata, J. Camp, M. A. Krainak, and L. Stolpner, “Performance of planar-waveguide external cavity laser for precision measurements,” Opt. Express 18(22), 22781–22788 (2010).
    [Crossref] [PubMed]
  12. S. Rauch and J. Sacher, “Compact Bragg grating stabilized ridge waveguide laser module with a power of 380 mW at 780 nm,” IEEE Photonics Technol. Lett.27(16), 1737–1740 (1739).
  13. C. Sima, J. C. Gates, H. L. Rogers, P. L. Mennea, C. Holmes, M. N. Zervas, and P. G. R. Smith, “Ultra-wide detuning planar Bragg grating fabrication technique based on direct UV grating writing with electro-optic phase modulation,” Opt. Express 21(13), 15747–15754 (2013).
    [Crossref] [PubMed]
  14. C. Holmes, J. C. Gates, L. G. Carpenter, H. L. Rogers, R. M. Parker, P. A. Cooper, S. Chaotan, F. R. Mahamd Adikan, C. B. E. Gawith, and P. G. R. Smith, “Direct UV-written planar Bragg grating sensors,” Meas. Sci. Technol. 26(11), 112001 (2015).
    [Crossref]
  15. C. Holmes, J. C. Gates, and P. G. R. Smith, “Planarised optical fiber composite using flame hydrolysis deposition demonstrating an integrated FBG anemometer,” Opt. Express 22(26), 32150–32157 (2014).
    [Crossref]
  16. J. Martin and F. Ouellette, “Novel writing technique of long and highly reflective in-fibre gratings,” Electron. Lett. 30(10), 811–812 (1994).
    [Crossref]
  17. K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62(10), 1035–1037 (1993).
    [Crossref]
  18. L. G. Carpenter, H. L. Rogers, P. A. Cooper, C. Holmes, J. C. Gates, and P. G. R. Smith, “Low optical-loss facet preparation for silica-on-silicon photonics using the ductile dicing regime,” J. Phys. D: Appl. Phys. 46(47), 475103 (2013).
    [Crossref]
  19. Wavelength References, “C-band wavelength calibrator acetylene gas cell 12C2H2,” http://www.wavelengthreferences.com/pdf/Data%20C2H2.pdf .
  20. S. Camatel and V. Ferrero, “Narrow linewidth CW laser phase noise characterization methods for coherent transmission system applications,” J. Lightwave Technol. 26(17), 3048–3055 (2008).
    [Crossref]
  21. Keysight Technologies, “81480B, 81680/40/72B, 81482B, & 81642B tunable laser modules users guide,” http://www.keysight.com/upload/cmc_upload/All/b_tlsB0402.pdf .
  22. Redfern Integrated Optics, “RIO PLANEXTM external cavity laser,” http://www.rio-inc.com/pdf/Rio_Orion_Planex_Product%20Brief_1.24.14.pdf .

2015 (1)

C. Holmes, J. C. Gates, L. G. Carpenter, H. L. Rogers, R. M. Parker, P. A. Cooper, S. Chaotan, F. R. Mahamd Adikan, C. B. E. Gawith, and P. G. R. Smith, “Direct UV-written planar Bragg grating sensors,” Meas. Sci. Technol. 26(11), 112001 (2015).
[Crossref]

2014 (3)

2013 (2)

C. Sima, J. C. Gates, H. L. Rogers, P. L. Mennea, C. Holmes, M. N. Zervas, and P. G. R. Smith, “Ultra-wide detuning planar Bragg grating fabrication technique based on direct UV grating writing with electro-optic phase modulation,” Opt. Express 21(13), 15747–15754 (2013).
[Crossref] [PubMed]

L. G. Carpenter, H. L. Rogers, P. A. Cooper, C. Holmes, J. C. Gates, and P. G. R. Smith, “Low optical-loss facet preparation for silica-on-silicon photonics using the ductile dicing regime,” J. Phys. D: Appl. Phys. 46(47), 475103 (2013).
[Crossref]

2010 (1)

2008 (1)

2006 (1)

2001 (1)

C. J. Hawthorn, K. P. Weber, and R. E. Scholten, “Littrow configuration tunable external cavity diode laser with fixed direction output beam,” Rev. Sci. Instrum. 72(12), 4477 (2001).
[Crossref]

1997 (1)

1995 (1)

K. Petermann, “External optical feedback phenomena in semiconductor lasers,” Advanced Networks and Services 1, 480–489 (1995).

1994 (1)

J. Martin and F. Ouellette, “Novel writing technique of long and highly reflective in-fibre gratings,” Electron. Lett. 30(10), 811–812 (1994).
[Crossref]

1993 (1)

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62(10), 1035–1037 (1993).
[Crossref]

1987 (1)

R. F. Kazarinov and C. H. Henry, “The relation of line narrowing and chirp reduction resulting from the coupling of a semiconductor laser to passive resonator,” IEEE J. Quantum Electron. 23(9), 1401–1409 (1987).
[Crossref]

1986 (1)

C. A. Park, C. J. Rowe, J. Buus, D. C. J. Reid, A. Carter, and I. Bennion, “Single-mode behaviour of a multimode 1.55 μm laser with a fibre grating external cavity,” Electron. Lett. 22(21), 1132–1134 (1986).
[Crossref]

1981 (1)

Alalusi, M.

Albert, J.

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62(10), 1035–1037 (1993).
[Crossref]

Bennion, I.

C. A. Park, C. J. Rowe, J. Buus, D. C. J. Reid, A. Carter, and I. Bennion, “Single-mode behaviour of a multimode 1.55 μm laser with a fibre grating external cavity,” Electron. Lett. 22(21), 1132–1134 (1986).
[Crossref]

Bilodeau, F.

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62(10), 1035–1037 (1993).
[Crossref]

Buric, M.

Buus, J.

C. A. Park, C. J. Rowe, J. Buus, D. C. J. Reid, A. Carter, and I. Bennion, “Single-mode behaviour of a multimode 1.55 μm laser with a fibre grating external cavity,” Electron. Lett. 22(21), 1132–1134 (1986).
[Crossref]

Camatel, S.

Camp, J.

Carpenter, L. G.

C. Holmes, J. C. Gates, L. G. Carpenter, H. L. Rogers, R. M. Parker, P. A. Cooper, S. Chaotan, F. R. Mahamd Adikan, C. B. E. Gawith, and P. G. R. Smith, “Direct UV-written planar Bragg grating sensors,” Meas. Sci. Technol. 26(11), 112001 (2015).
[Crossref]

L. G. Carpenter, H. L. Rogers, P. A. Cooper, C. Holmes, J. C. Gates, and P. G. R. Smith, “Low optical-loss facet preparation for silica-on-silicon photonics using the ductile dicing regime,” J. Phys. D: Appl. Phys. 46(47), 475103 (2013).
[Crossref]

Carter, A.

C. A. Park, C. J. Rowe, J. Buus, D. C. J. Reid, A. Carter, and I. Bennion, “Single-mode behaviour of a multimode 1.55 μm laser with a fibre grating external cavity,” Electron. Lett. 22(21), 1132–1134 (1986).
[Crossref]

Cashdollar, L.

Chaotan, S.

C. Holmes, J. C. Gates, L. G. Carpenter, H. L. Rogers, R. M. Parker, P. A. Cooper, S. Chaotan, F. R. Mahamd Adikan, C. B. E. Gawith, and P. G. R. Smith, “Direct UV-written planar Bragg grating sensors,” Meas. Sci. Technol. 26(11), 112001 (2015).
[Crossref]

Chen, K. P.

Christian, K.

Cooper, P. A.

C. Holmes, J. C. Gates, L. G. Carpenter, H. L. Rogers, R. M. Parker, P. A. Cooper, S. Chaotan, F. R. Mahamd Adikan, C. B. E. Gawith, and P. G. R. Smith, “Direct UV-written planar Bragg grating sensors,” Meas. Sci. Technol. 26(11), 112001 (2015).
[Crossref]

L. G. Carpenter, H. L. Rogers, P. A. Cooper, C. Holmes, J. C. Gates, and P. G. R. Smith, “Low optical-loss facet preparation for silica-on-silicon photonics using the ductile dicing regime,” J. Phys. D: Appl. Phys. 46(47), 475103 (2013).
[Crossref]

Elyamani, A.

Erbert, G.

Falk, J.

Ferrero, V.

Gates, J. C.

C. Holmes, J. C. Gates, L. G. Carpenter, H. L. Rogers, R. M. Parker, P. A. Cooper, S. Chaotan, F. R. Mahamd Adikan, C. B. E. Gawith, and P. G. R. Smith, “Direct UV-written planar Bragg grating sensors,” Meas. Sci. Technol. 26(11), 112001 (2015).
[Crossref]

C. Holmes, J. C. Gates, and P. G. R. Smith, “Planarised optical fiber composite using flame hydrolysis deposition demonstrating an integrated FBG anemometer,” Opt. Express 22(26), 32150–32157 (2014).
[Crossref]

C. Sima, J. C. Gates, H. L. Rogers, P. L. Mennea, C. Holmes, M. N. Zervas, and P. G. R. Smith, “Ultra-wide detuning planar Bragg grating fabrication technique based on direct UV grating writing with electro-optic phase modulation,” Opt. Express 21(13), 15747–15754 (2013).
[Crossref] [PubMed]

L. G. Carpenter, H. L. Rogers, P. A. Cooper, C. Holmes, J. C. Gates, and P. G. R. Smith, “Low optical-loss facet preparation for silica-on-silicon photonics using the ductile dicing regime,” J. Phys. D: Appl. Phys. 46(47), 475103 (2013).
[Crossref]

Gawith, C. B. E.

C. Holmes, J. C. Gates, L. G. Carpenter, H. L. Rogers, R. M. Parker, P. A. Cooper, S. Chaotan, F. R. Mahamd Adikan, C. B. E. Gawith, and P. G. R. Smith, “Direct UV-written planar Bragg grating sensors,” Meas. Sci. Technol. 26(11), 112001 (2015).
[Crossref]

Hawthorn, C. J.

C. J. Hawthorn, K. P. Weber, and R. E. Scholten, “Littrow configuration tunable external cavity diode laser with fixed direction output beam,” Rev. Sci. Instrum. 72(12), 4477 (2001).
[Crossref]

Henry, C. H.

R. F. Kazarinov and C. H. Henry, “The relation of line narrowing and chirp reduction resulting from the coupling of a semiconductor laser to passive resonator,” IEEE J. Quantum Electron. 23(9), 1401–1409 (1987).
[Crossref]

Hill, K. O.

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62(10), 1035–1037 (1993).
[Crossref]

Holmes, C.

C. Holmes, J. C. Gates, L. G. Carpenter, H. L. Rogers, R. M. Parker, P. A. Cooper, S. Chaotan, F. R. Mahamd Adikan, C. B. E. Gawith, and P. G. R. Smith, “Direct UV-written planar Bragg grating sensors,” Meas. Sci. Technol. 26(11), 112001 (2015).
[Crossref]

C. Holmes, J. C. Gates, and P. G. R. Smith, “Planarised optical fiber composite using flame hydrolysis deposition demonstrating an integrated FBG anemometer,” Opt. Express 22(26), 32150–32157 (2014).
[Crossref]

C. Sima, J. C. Gates, H. L. Rogers, P. L. Mennea, C. Holmes, M. N. Zervas, and P. G. R. Smith, “Ultra-wide detuning planar Bragg grating fabrication technique based on direct UV grating writing with electro-optic phase modulation,” Opt. Express 21(13), 15747–15754 (2013).
[Crossref] [PubMed]

L. G. Carpenter, H. L. Rogers, P. A. Cooper, C. Holmes, J. C. Gates, and P. G. R. Smith, “Low optical-loss facet preparation for silica-on-silicon photonics using the ductile dicing regime,” J. Phys. D: Appl. Phys. 46(47), 475103 (2013).
[Crossref]

Howe, D.

Huang, S.

S. Huang, H. Zhao, and L. Xue, “Frequency stabilization of FBG external cavity laser diode,” in Asia-Pacific Conference on Circuits and Systems (IEEE, 2002), pp. 565–567.

Johnson, D. C.

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62(10), 1035–1037 (1993).
[Crossref]

Kazarinov, R. F.

R. F. Kazarinov and C. H. Henry, “The relation of line narrowing and chirp reduction resulting from the coupling of a semiconductor laser to passive resonator,” IEEE J. Quantum Electron. 23(9), 1401–1409 (1987).
[Crossref]

Krainak, M.

Krainak, M. A.

Littman, M. G.

Liu, K.

Luvsandamdin, E.

Mahamd Adikan, F. R.

C. Holmes, J. C. Gates, L. G. Carpenter, H. L. Rogers, R. M. Parker, P. A. Cooper, S. Chaotan, F. R. Mahamd Adikan, C. B. E. Gawith, and P. G. R. Smith, “Direct UV-written planar Bragg grating sensors,” Meas. Sci. Technol. 26(11), 112001 (2015).
[Crossref]

Malo, B.

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62(10), 1035–1037 (1993).
[Crossref]

Margaritis, G.

Martin, J.

J. Martin and F. Ouellette, “Novel writing technique of long and highly reflective in-fibre gratings,” Electron. Lett. 30(10), 811–812 (1994).
[Crossref]

Mennea, P. L.

Numata, K.

Ouellette, F.

J. Martin and F. Ouellette, “Novel writing technique of long and highly reflective in-fibre gratings,” Electron. Lett. 30(10), 811–812 (1994).
[Crossref]

Park, C. A.

C. A. Park, C. J. Rowe, J. Buus, D. C. J. Reid, A. Carter, and I. Bennion, “Single-mode behaviour of a multimode 1.55 μm laser with a fibre grating external cavity,” Electron. Lett. 22(21), 1132–1134 (1986).
[Crossref]

Parker, R. M.

C. Holmes, J. C. Gates, L. G. Carpenter, H. L. Rogers, R. M. Parker, P. A. Cooper, S. Chaotan, F. R. Mahamd Adikan, C. B. E. Gawith, and P. G. R. Smith, “Direct UV-written planar Bragg grating sensors,” Meas. Sci. Technol. 26(11), 112001 (2015).
[Crossref]

Petermann, K.

K. Petermann, “External optical feedback phenomena in semiconductor lasers,” Advanced Networks and Services 1, 480–489 (1995).

Peters, A.

Rauch, S.

S. Rauch and J. Sacher, “Compact Bragg grating stabilized ridge waveguide laser module with a power of 380 mW at 780 nm,” IEEE Photonics Technol. Lett.27(16), 1737–1740 (1739).

Reid, D. C. J.

C. A. Park, C. J. Rowe, J. Buus, D. C. J. Reid, A. Carter, and I. Bennion, “Single-mode behaviour of a multimode 1.55 μm laser with a fibre grating external cavity,” Electron. Lett. 22(21), 1132–1134 (1986).
[Crossref]

Rogers, H. L.

C. Holmes, J. C. Gates, L. G. Carpenter, H. L. Rogers, R. M. Parker, P. A. Cooper, S. Chaotan, F. R. Mahamd Adikan, C. B. E. Gawith, and P. G. R. Smith, “Direct UV-written planar Bragg grating sensors,” Meas. Sci. Technol. 26(11), 112001 (2015).
[Crossref]

C. Sima, J. C. Gates, H. L. Rogers, P. L. Mennea, C. Holmes, M. N. Zervas, and P. G. R. Smith, “Ultra-wide detuning planar Bragg grating fabrication technique based on direct UV grating writing with electro-optic phase modulation,” Opt. Express 21(13), 15747–15754 (2013).
[Crossref] [PubMed]

L. G. Carpenter, H. L. Rogers, P. A. Cooper, C. Holmes, J. C. Gates, and P. G. R. Smith, “Low optical-loss facet preparation for silica-on-silicon photonics using the ductile dicing regime,” J. Phys. D: Appl. Phys. 46(47), 475103 (2013).
[Crossref]

Rowe, C. J.

C. A. Park, C. J. Rowe, J. Buus, D. C. J. Reid, A. Carter, and I. Bennion, “Single-mode behaviour of a multimode 1.55 μm laser with a fibre grating external cavity,” Electron. Lett. 22(21), 1132–1134 (1986).
[Crossref]

Sacher, J.

S. Rauch and J. Sacher, “Compact Bragg grating stabilized ridge waveguide laser module with a power of 380 mW at 780 nm,” IEEE Photonics Technol. Lett.27(16), 1737–1740 (1739).

Sahm, A.

Schiemangk, M.

Scholten, R. E.

C. J. Hawthorn, K. P. Weber, and R. E. Scholten, “Littrow configuration tunable external cavity diode laser with fixed direction output beam,” Rev. Sci. Instrum. 72(12), 4477 (2001).
[Crossref]

Sidorin, Y.

Sima, C.

Smith, P. G. R.

C. Holmes, J. C. Gates, L. G. Carpenter, H. L. Rogers, R. M. Parker, P. A. Cooper, S. Chaotan, F. R. Mahamd Adikan, C. B. E. Gawith, and P. G. R. Smith, “Direct UV-written planar Bragg grating sensors,” Meas. Sci. Technol. 26(11), 112001 (2015).
[Crossref]

C. Holmes, J. C. Gates, and P. G. R. Smith, “Planarised optical fiber composite using flame hydrolysis deposition demonstrating an integrated FBG anemometer,” Opt. Express 22(26), 32150–32157 (2014).
[Crossref]

C. Sima, J. C. Gates, H. L. Rogers, P. L. Mennea, C. Holmes, M. N. Zervas, and P. G. R. Smith, “Ultra-wide detuning planar Bragg grating fabrication technique based on direct UV grating writing with electro-optic phase modulation,” Opt. Express 21(13), 15747–15754 (2013).
[Crossref] [PubMed]

L. G. Carpenter, H. L. Rogers, P. A. Cooper, C. Holmes, J. C. Gates, and P. G. R. Smith, “Low optical-loss facet preparation for silica-on-silicon photonics using the ductile dicing regime,” J. Phys. D: Appl. Phys. 46(47), 475103 (2013).
[Crossref]

Stolpner, L.

Tränkle, G.

Weber, K. P.

C. J. Hawthorn, K. P. Weber, and R. E. Scholten, “Littrow configuration tunable external cavity diode laser with fixed direction output beam,” Rev. Sci. Instrum. 72(12), 4477 (2001).
[Crossref]

Wicht, A.

Xue, L.

S. Huang, H. Zhao, and L. Xue, “Frequency stabilization of FBG external cavity laser diode,” in Asia-Pacific Conference on Circuits and Systems (IEEE, 2002), pp. 565–567.

Zervas, M. N.

Zhao, H.

S. Huang, H. Zhao, and L. Xue, “Frequency stabilization of FBG external cavity laser diode,” in Asia-Pacific Conference on Circuits and Systems (IEEE, 2002), pp. 565–567.

Advanced Networks and Services (1)

K. Petermann, “External optical feedback phenomena in semiconductor lasers,” Advanced Networks and Services 1, 480–489 (1995).

Appl. Phys. Lett. (1)

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62(10), 1035–1037 (1993).
[Crossref]

Electron. Lett. (2)

C. A. Park, C. J. Rowe, J. Buus, D. C. J. Reid, A. Carter, and I. Bennion, “Single-mode behaviour of a multimode 1.55 μm laser with a fibre grating external cavity,” Electron. Lett. 22(21), 1132–1134 (1986).
[Crossref]

J. Martin and F. Ouellette, “Novel writing technique of long and highly reflective in-fibre gratings,” Electron. Lett. 30(10), 811–812 (1994).
[Crossref]

IEEE J. Quantum Electron. (1)

R. F. Kazarinov and C. H. Henry, “The relation of line narrowing and chirp reduction resulting from the coupling of a semiconductor laser to passive resonator,” IEEE J. Quantum Electron. 23(9), 1401–1409 (1987).
[Crossref]

J. Lightwave Technol. (1)

J. Phys. D: Appl. Phys. (1)

L. G. Carpenter, H. L. Rogers, P. A. Cooper, C. Holmes, J. C. Gates, and P. G. R. Smith, “Low optical-loss facet preparation for silica-on-silicon photonics using the ductile dicing regime,” J. Phys. D: Appl. Phys. 46(47), 475103 (2013).
[Crossref]

Meas. Sci. Technol. (1)

C. Holmes, J. C. Gates, L. G. Carpenter, H. L. Rogers, R. M. Parker, P. A. Cooper, S. Chaotan, F. R. Mahamd Adikan, C. B. E. Gawith, and P. G. R. Smith, “Direct UV-written planar Bragg grating sensors,” Meas. Sci. Technol. 26(11), 112001 (2015).
[Crossref]

Opt. Express (5)

Opt. Lett. (3)

Rev. Sci. Instrum. (1)

C. J. Hawthorn, K. P. Weber, and R. E. Scholten, “Littrow configuration tunable external cavity diode laser with fixed direction output beam,” Rev. Sci. Instrum. 72(12), 4477 (2001).
[Crossref]

Other (5)

S. Huang, H. Zhao, and L. Xue, “Frequency stabilization of FBG external cavity laser diode,” in Asia-Pacific Conference on Circuits and Systems (IEEE, 2002), pp. 565–567.

S. Rauch and J. Sacher, “Compact Bragg grating stabilized ridge waveguide laser module with a power of 380 mW at 780 nm,” IEEE Photonics Technol. Lett.27(16), 1737–1740 (1739).

Keysight Technologies, “81480B, 81680/40/72B, 81482B, & 81642B tunable laser modules users guide,” http://www.keysight.com/upload/cmc_upload/All/b_tlsB0402.pdf .

Redfern Integrated Optics, “RIO PLANEXTM external cavity laser,” http://www.rio-inc.com/pdf/Rio_Orion_Planex_Product%20Brief_1.24.14.pdf .

Wavelength References, “C-band wavelength calibrator acetylene gas cell 12C2H2,” http://www.wavelengthreferences.com/pdf/Data%20C2H2.pdf .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(Top Left) Cross section of IOF chip. (Top Right) Schematic of ECDL with IOF (Bottom Left) Photograph of external cavity taken through a microscope. The tip of the IOF chip is diced to triangular shape to facilitate alignment with the gain-chip. Reflections along the length of the fiber are chipping of the FHD glass - the fiber remains fully intact. (Bottom Right) Photograph of prototype system.

Fig. 2
Fig. 2

Grating reflection spectrum for an unapodized grating used in the laser external cavity with −3 dB bandwidth of 18 pm. The acetylene absorption spectrum has been overlaid for comparison with lines of the P-branch labeled and uses the same log scaling but arbitrary offset. The acetylene spectrum shown was obtained from the internal acetylene cell in the OSA used for calibration.

Fig. 3
Fig. 3

(Left) Power current curve of laser. Threshold was measured at 50 mA. A mode hop occurs at 233 mA. (Right) Spectrum of laser taken on OSA with 20 pm resolution bandwidth. The spectrum indicates a ∼ 60 dB SMSR.

Fig. 4
Fig. 4

Scan of the P13 Acetylene line. Acetylene gas cell is held at a pressure of 20 Torr (2.67 kPa).

Fig. 5
Fig. 5

(Left) RIN of the the IOF laser measured for 10 s compared with a tunable Agilent 81640B measured for 1 s. Peaks can be seen at 50 Hz and its harmonics. Much of the low frequency noise is dominated by acoustics. The current prototype setup is susceptible to vibrations and thermal fluctuations in the environment. This measurement was taken at 1532.86 nm, with an injection current of 320 mA, and the optical power attenuated down to ∼ 0.5 mW. (Right) The phase noise plot derived from the beat note of the an Agilent 81640B laser and the IOF laser measured for 5 ms. The plot is fitted to noise parameters as specified by [20]. The Lorentzian linewidth is given as 14.2 kHz - this linewidth is the sum of linewidths of the Agilent and IOF lasers. This measurement was taken at 1532.86 nm, with an injection current of 320 mA and an optical power of 5 mW.

Metrics