Abstract

We report on the first demonstration of absolute frequency comb metrology with an optical parametric oscillator (OPO) frequency comb. The synchronously-pumped OPO operated in the 1.5-µm spectral region and was referenced to an H-maser atomic clock. Using different techniques, we thoroughly characterized the frequency noise power spectral density (PSD) of the repetition rate frep, of the carrier-envelope offset frequency fCEO, and of an optical comb line νN. The comb mode optical linewidth at 1557 nm was determined to be ~70 kHz for an observation time of 1 s from the measured frequency noise PSD, and was limited by the stability of the microwave frequency standard available for the stabilization of the comb repetition rate. We achieved a tight lock of the carrier envelope offset frequency with only ~300 mrad residual integrated phase noise, which makes its contribution to the optical linewidth negligible. The OPO comb was used to measure the absolute optical frequency of a near-infrared laser whose second-harmonic component was locked to the F = 2→3 transition of the 87Rb D2 line at 780 nm, leading to a measured transition frequency of νRb = 384,228,115,346 ± 16 kHz. We performed the same measurement with a commercial fiber-laser comb operating in the 1.5-µm region. Both the OPO comb and the commercial fiber comb achieved similar performance. The measurement accuracy was limited by interferometric noise in the fibered setup of the Rb-stabilized laser.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Atomically referenced 1-GHz optical parametric oscillator frequency comb

Richard A. McCracken, Karolis Balskus, Zhaowei Zhang, and Derryck T. Reid
Opt. Express 23(12) 16466-16472 (2015)

Frequency stability of a femtosecond optical parametric oscillator frequency comb

Teresa I. Ferreiro, Jinghua Sun, and Derryck T. Reid
Opt. Express 19(24) 24159-24164 (2011)

Fully stabilized optical frequency comb with sub-radian CEO phase noise from a SESAM-modelocked 1.5-µm solid-state laser

Stephane Schilt, Nikola Bucalovic, Vladimir Dolgovskiy, Christian Schori, Max C. Stumpf, Gianni Di Domenico, Selina Pekarek, Andreas E. H. Oehler, Thomas Südmeyer, Ursula Keller, and Pierre Thomann
Opt. Express 19(24) 24171-24181 (2011)

References

  • View by:
  • |
  • |
  • |

  1. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
    [Crossref] [PubMed]
  2. H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, “Carrier-envelope offset phase control: A novel concept for absolute optical frequency measurement and ultrashort pulse generation,” App. Phys. B 69, 327–332 (1999).
  3. T. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, “Absolute optical frequency measurement of the Cesium D1 line with a mode-locked laser,” Phys. Rev. Lett. 82(18), 3568–3571 (1999).
    [Crossref]
  4. S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84(22), 5102–5105 (2000).
    [Crossref] [PubMed]
  5. R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85(11), 2264–2267 (2000).
    [Crossref] [PubMed]
  6. T. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, “Accurate measurement of large optical frequency differences with a mode-locked laser,” Opt. Lett. 24(13), 881–883 (1999).
    [Crossref] [PubMed]
  7. B. R. Washburn, S. A. Diddams, N. R. Newbury, J. W. Nicholson, M. F. Yan, and C. G. Jørgensen, “Phase-locked, erbium-fiber-laser-based frequency comb in the near infrared,” Opt. Lett. 29(3), 250–252 (2004).
    [Crossref] [PubMed]
  8. F. Adler, K. Moutzouris, A. Leitenstorfer, H. Schnatz, B. Lipphardt, G. Grosche, and F. Tauser, “Phase-locked two-branch erbium-doped fiber laser system for long-term precision measurements of optical frequencies,” Opt. Express 12(24), 5872–5880 (2004).
    [Crossref] [PubMed]
  9. J. Jiang, J. E. Bernard, A. A. Madej, A. Czajkowski, S. Drissler, and D. J. Jones, “Measurement of acetylene-d absorption lines with a self-referenced fiber laser frequency comb,” J. Opt. Soc. Am. B 24(10), 2727–2735 (2007).
    [Crossref]
  10. T. R. Schibli, K. Minoshima, F.-L. Hong, H. Inaba, A. Onae, H. Matsumoto, I. Hartl, and M. E. Fermann, “Frequency metrology with a turnkey all-fiber system,” Opt. Lett. 29(21), 2467–2469 (2004).
    [Crossref] [PubMed]
  11. W. Hänsel, M. Giunta, K. Beha, M. Lezius, M. Fischer, and R. Holzwarth, “Ultra-low phase noise all-PM Er:fiber optical frequency comb,” in Advanced Solid State Lasers (2015) (Optical Society of America, 2015), paper ATh4A.2.
  12. J. J. McFerran, W. C. Swann, B. R. Washburn, and N. R. Newbury, “Suppression of pump-induced frequency noise in fiber-laser frequency combs leading to sub-radian fceo phase excursions,” Appl. Phys. B 86(2), 219–227 (2007).
    [Crossref]
  13. F. Quinlan, T. M. Fortier, M. S. Kirchner, J. A. Taylor, M. J. Thorpe, N. Lemke, A. D. Ludlow, Y. Jiang, and S. A. Diddams, “Ultralow phase noise microwave generation with an Er:fiber-based optical frequency divider,” Opt. Lett. 36(16), 3260–3262 (2011).
    [Crossref] [PubMed]
  14. G. Krauss, D. Fehrenbacher, D. Brida, C. Riek, A. Sell, R. Huber, and A. Leitenstorfer, “All-passive phase locking of a compact Er:fiber laser system,” Opt. Lett. 36(4), 540–542 (2011).
    [Crossref] [PubMed]
  15. T. Nakamura, I. Ito, and Y. Kobayashi, “Offset-free broadband Yb:fiber optical frequency comb for optical clocks,” Opt. Express 23(15), 19376–19381 (2015).
    [Crossref] [PubMed]
  16. D. Fehrenbacher, P. Sulzer, A. Liehl, T. Kälberer, C. Riek, D. V. Seletskiy, and A. Leitenstorfer, “Free-running performance and full control of a passively phase-stable Er:fiber frequency comb,” Optica 2(10), 917–923 (2015).
    [Crossref]
  17. K. Kim, B. R. Washburn, G. Wilpers, C. W. Oates, L. Hollberg, N. R. Newbury, S. A. Diddams, J. W. Nicholson, and M. F. Yan, “Stabilized frequency comb with a self-referenced femtosecond Cr:forsterite laser,” Opt. Lett. 30(8), 932–934 (2005).
    [Crossref] [PubMed]
  18. A. Alcock, P. Ma, P. Poole, S. Chepurov, A. Czajkowski, J. Bernard, A. Madej, J. Fraser, I. Mitchell, I. Sorokina, and E. Sorokin, “Ultrashort pulse Cr4+:YAG laser for high precision infrared frequency interval measurements,” Opt. Express 13(22), 8837–8844 (2005).
    [Crossref] [PubMed]
  19. T. I. Ferreiro, J. Sun, and D. T. Reid, “Frequency stability of a femtosecond optical parametric oscillator frequency comb,” Opt. Express 19(24), 24159–24164 (2011).
    [Crossref] [PubMed]
  20. J. H. Sun, B. J. S. Gale, and D. T. Reid, “Composite frequency comb spanning 0.4-2.4 µm from a phase-controlled femtosecond Ti:sapphire laser and synchronously pumped optical parametric oscillator,” Opt. Lett. 32(11), 1414–1416 (2007).
    [Crossref] [PubMed]
  21. K. Balskus, Z. Zhang, R. A. McCracken, and D. T. Reid, “Mid-infrared 333 MHz frequency comb continuously tunable from 1.95 to 4.0 μm,” Opt. Lett. 40(17), 4178–4181 (2015).
    [Crossref] [PubMed]
  22. R. Paschotta, “Timing jitter and phase noiseof mode-locked fiber lasers,” Opt. Express 18(5), 5041–5054 (2010).
    [Crossref] [PubMed]
  23. R. A. McCracken and D. T. Reid, “Few-cycle near-infrared pulses from a degenerate 1 GHz optical parametric oscillator,” Opt. Lett. 40(17), 4102–4105 (2015).
    [Crossref] [PubMed]
  24. K. A. Tillman, R. Thapa, K. Knabe, S. Wu, J. Lim, B. R. Washburn, and K. L. Corwin, “Stabilization of a self-referenced, prism-based, Cr:forsterite laser frequency comb using an intracavity prism,” Appl. Opt. 48(36), 6980–6989 (2009).
    [Crossref] [PubMed]
  25. R. Matthey, F. Gruet, S. Schilt, and G. Mileti, “Compact rubidium-stabilized multi-frequency reference source in the 1.55-μm region,” Opt. Lett. 40(11), 2576–2579 (2015).
    [Crossref] [PubMed]
  26. J. Ye, S. Swartz, P. Jungner, and J. L. Hall, “Hyperfine structure and absolute frequency of the (87)Rb 5P(3/2) state,” Opt. Lett. 21(16), 1280–1282 (1996).
    [Crossref] [PubMed]
  27. G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39(8), 3597–3639 (1968).
    [Crossref]
  28. T. I. Ferreiro, J. Sun, and D. T. Reid, “Locking the carrier-envelope-offset frequency of an optical parametric oscillator without f-2f self-referencing,” Opt. Lett. 35(10), 1668–1670 (2010).
    [Crossref] [PubMed]
  29. S. Schilt, N. Bucalovic, L. Tombez, V. Dolgovskiy, C. Schori, G. Di Domenico, M. Zaffalon, and P. Thomann, “Frequency discriminators for the characterization of narrow-spectrum heterodyne beat signals: application to the measurement of a sub-hertz carrier-envelope-offset beat in an optical frequency comb,” Rev. Sci. Instrum. 82(12), 123116 (2011).
    [Crossref] [PubMed]
  30. V. Dolgovskiy, S. Schilt, N. Bucalovic, G. Domenico, S. Grop, B. Dubois, V. Giordano, and T. Südmeyer, “Ultra-stable microwave generation with a diode-pumped solid-state laser in the 1.5-μm range,” Appl. Phys. B 116(3), 593–601 (2014).
    [Crossref]
  31. G. Di Domenico, S. Schilt, and P. Thomann, “Simple approach to the relation between laser frequency noise and laser line shape,” Appl. Opt. 49(25), 4801–4807 (2010).
    [Crossref] [PubMed]

2015 (5)

2014 (1)

V. Dolgovskiy, S. Schilt, N. Bucalovic, G. Domenico, S. Grop, B. Dubois, V. Giordano, and T. Südmeyer, “Ultra-stable microwave generation with a diode-pumped solid-state laser in the 1.5-μm range,” Appl. Phys. B 116(3), 593–601 (2014).
[Crossref]

2011 (4)

2010 (3)

2009 (1)

2007 (3)

2005 (2)

2004 (3)

2000 (3)

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[Crossref] [PubMed]

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84(22), 5102–5105 (2000).
[Crossref] [PubMed]

R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85(11), 2264–2267 (2000).
[Crossref] [PubMed]

1999 (3)

T. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, “Accurate measurement of large optical frequency differences with a mode-locked laser,” Opt. Lett. 24(13), 881–883 (1999).
[Crossref] [PubMed]

H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, “Carrier-envelope offset phase control: A novel concept for absolute optical frequency measurement and ultrashort pulse generation,” App. Phys. B 69, 327–332 (1999).

T. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, “Absolute optical frequency measurement of the Cesium D1 line with a mode-locked laser,” Phys. Rev. Lett. 82(18), 3568–3571 (1999).
[Crossref]

1996 (1)

1968 (1)

G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39(8), 3597–3639 (1968).
[Crossref]

Adler, F.

Alcock, A.

Balskus, K.

Bernard, J.

Bernard, J. E.

Boyd, G. D.

G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39(8), 3597–3639 (1968).
[Crossref]

Brida, D.

Bucalovic, N.

V. Dolgovskiy, S. Schilt, N. Bucalovic, G. Domenico, S. Grop, B. Dubois, V. Giordano, and T. Südmeyer, “Ultra-stable microwave generation with a diode-pumped solid-state laser in the 1.5-μm range,” Appl. Phys. B 116(3), 593–601 (2014).
[Crossref]

S. Schilt, N. Bucalovic, L. Tombez, V. Dolgovskiy, C. Schori, G. Di Domenico, M. Zaffalon, and P. Thomann, “Frequency discriminators for the characterization of narrow-spectrum heterodyne beat signals: application to the measurement of a sub-hertz carrier-envelope-offset beat in an optical frequency comb,” Rev. Sci. Instrum. 82(12), 123116 (2011).
[Crossref] [PubMed]

Chepurov, S.

Corwin, K. L.

Cundiff, S. T.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[Crossref] [PubMed]

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84(22), 5102–5105 (2000).
[Crossref] [PubMed]

Czajkowski, A.

Di Domenico, G.

S. Schilt, N. Bucalovic, L. Tombez, V. Dolgovskiy, C. Schori, G. Di Domenico, M. Zaffalon, and P. Thomann, “Frequency discriminators for the characterization of narrow-spectrum heterodyne beat signals: application to the measurement of a sub-hertz carrier-envelope-offset beat in an optical frequency comb,” Rev. Sci. Instrum. 82(12), 123116 (2011).
[Crossref] [PubMed]

G. Di Domenico, S. Schilt, and P. Thomann, “Simple approach to the relation between laser frequency noise and laser line shape,” Appl. Opt. 49(25), 4801–4807 (2010).
[Crossref] [PubMed]

Diddams, S. A.

Dolgovskiy, V.

V. Dolgovskiy, S. Schilt, N. Bucalovic, G. Domenico, S. Grop, B. Dubois, V. Giordano, and T. Südmeyer, “Ultra-stable microwave generation with a diode-pumped solid-state laser in the 1.5-μm range,” Appl. Phys. B 116(3), 593–601 (2014).
[Crossref]

S. Schilt, N. Bucalovic, L. Tombez, V. Dolgovskiy, C. Schori, G. Di Domenico, M. Zaffalon, and P. Thomann, “Frequency discriminators for the characterization of narrow-spectrum heterodyne beat signals: application to the measurement of a sub-hertz carrier-envelope-offset beat in an optical frequency comb,” Rev. Sci. Instrum. 82(12), 123116 (2011).
[Crossref] [PubMed]

Domenico, G.

V. Dolgovskiy, S. Schilt, N. Bucalovic, G. Domenico, S. Grop, B. Dubois, V. Giordano, and T. Südmeyer, “Ultra-stable microwave generation with a diode-pumped solid-state laser in the 1.5-μm range,” Appl. Phys. B 116(3), 593–601 (2014).
[Crossref]

Drissler, S.

Dubois, B.

V. Dolgovskiy, S. Schilt, N. Bucalovic, G. Domenico, S. Grop, B. Dubois, V. Giordano, and T. Südmeyer, “Ultra-stable microwave generation with a diode-pumped solid-state laser in the 1.5-μm range,” Appl. Phys. B 116(3), 593–601 (2014).
[Crossref]

Dunlop, A. E.

H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, “Carrier-envelope offset phase control: A novel concept for absolute optical frequency measurement and ultrashort pulse generation,” App. Phys. B 69, 327–332 (1999).

Fehrenbacher, D.

Fermann, M. E.

Ferreiro, T. I.

Fortier, T. M.

Fraser, J.

Gale, B. J. S.

Giordano, V.

V. Dolgovskiy, S. Schilt, N. Bucalovic, G. Domenico, S. Grop, B. Dubois, V. Giordano, and T. Südmeyer, “Ultra-stable microwave generation with a diode-pumped solid-state laser in the 1.5-μm range,” Appl. Phys. B 116(3), 593–601 (2014).
[Crossref]

Grop, S.

V. Dolgovskiy, S. Schilt, N. Bucalovic, G. Domenico, S. Grop, B. Dubois, V. Giordano, and T. Südmeyer, “Ultra-stable microwave generation with a diode-pumped solid-state laser in the 1.5-μm range,” Appl. Phys. B 116(3), 593–601 (2014).
[Crossref]

Grosche, G.

Gruet, F.

Hall, J. L.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[Crossref] [PubMed]

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84(22), 5102–5105 (2000).
[Crossref] [PubMed]

J. Ye, S. Swartz, P. Jungner, and J. L. Hall, “Hyperfine structure and absolute frequency of the (87)Rb 5P(3/2) state,” Opt. Lett. 21(16), 1280–1282 (1996).
[Crossref] [PubMed]

Hänsch, T. W.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84(22), 5102–5105 (2000).
[Crossref] [PubMed]

R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85(11), 2264–2267 (2000).
[Crossref] [PubMed]

T. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, “Absolute optical frequency measurement of the Cesium D1 line with a mode-locked laser,” Phys. Rev. Lett. 82(18), 3568–3571 (1999).
[Crossref]

T. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, “Accurate measurement of large optical frequency differences with a mode-locked laser,” Opt. Lett. 24(13), 881–883 (1999).
[Crossref] [PubMed]

Hartl, I.

Hollberg, L.

Holzwarth, R.

R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85(11), 2264–2267 (2000).
[Crossref] [PubMed]

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84(22), 5102–5105 (2000).
[Crossref] [PubMed]

T. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, “Accurate measurement of large optical frequency differences with a mode-locked laser,” Opt. Lett. 24(13), 881–883 (1999).
[Crossref] [PubMed]

T. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, “Absolute optical frequency measurement of the Cesium D1 line with a mode-locked laser,” Phys. Rev. Lett. 82(18), 3568–3571 (1999).
[Crossref]

Hong, F.-L.

Huber, R.

Inaba, H.

Ito, I.

Jiang, J.

Jiang, Y.

Jones, D. J.

J. Jiang, J. E. Bernard, A. A. Madej, A. Czajkowski, S. Drissler, and D. J. Jones, “Measurement of acetylene-d absorption lines with a self-referenced fiber laser frequency comb,” J. Opt. Soc. Am. B 24(10), 2727–2735 (2007).
[Crossref]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[Crossref] [PubMed]

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84(22), 5102–5105 (2000).
[Crossref] [PubMed]

Jørgensen, C. G.

Jungner, P.

Kälberer, T.

Keller, U.

H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, “Carrier-envelope offset phase control: A novel concept for absolute optical frequency measurement and ultrashort pulse generation,” App. Phys. B 69, 327–332 (1999).

Kim, K.

Kirchner, M. S.

Kleinman, D. A.

G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39(8), 3597–3639 (1968).
[Crossref]

Knabe, K.

Knight, J. C.

R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85(11), 2264–2267 (2000).
[Crossref] [PubMed]

Kobayashi, Y.

Krauss, G.

Leitenstorfer, A.

Lemke, N.

Liehl, A.

Lim, J.

Lipphardt, B.

Ludlow, A. D.

Ma, P.

Madej, A.

Madej, A. A.

Matsumoto, H.

Matthey, R.

McCracken, R. A.

McFerran, J. J.

J. J. McFerran, W. C. Swann, B. R. Washburn, and N. R. Newbury, “Suppression of pump-induced frequency noise in fiber-laser frequency combs leading to sub-radian fceo phase excursions,” Appl. Phys. B 86(2), 219–227 (2007).
[Crossref]

Mileti, G.

Minoshima, K.

Mitchell, I.

Moutzouris, K.

Nakamura, T.

Newbury, N. R.

Nicholson, J. W.

Oates, C. W.

Onae, A.

Paschotta, R.

Poole, P.

Quinlan, F.

Ranka, J. K.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84(22), 5102–5105 (2000).
[Crossref] [PubMed]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[Crossref] [PubMed]

Reichert, J.

T. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, “Absolute optical frequency measurement of the Cesium D1 line with a mode-locked laser,” Phys. Rev. Lett. 82(18), 3568–3571 (1999).
[Crossref]

T. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, “Accurate measurement of large optical frequency differences with a mode-locked laser,” Opt. Lett. 24(13), 881–883 (1999).
[Crossref] [PubMed]

Reid, D. T.

Riek, C.

Russell, P. S. J.

R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85(11), 2264–2267 (2000).
[Crossref] [PubMed]

Schibli, T. R.

Schilt, S.

R. Matthey, F. Gruet, S. Schilt, and G. Mileti, “Compact rubidium-stabilized multi-frequency reference source in the 1.55-μm region,” Opt. Lett. 40(11), 2576–2579 (2015).
[Crossref] [PubMed]

V. Dolgovskiy, S. Schilt, N. Bucalovic, G. Domenico, S. Grop, B. Dubois, V. Giordano, and T. Südmeyer, “Ultra-stable microwave generation with a diode-pumped solid-state laser in the 1.5-μm range,” Appl. Phys. B 116(3), 593–601 (2014).
[Crossref]

S. Schilt, N. Bucalovic, L. Tombez, V. Dolgovskiy, C. Schori, G. Di Domenico, M. Zaffalon, and P. Thomann, “Frequency discriminators for the characterization of narrow-spectrum heterodyne beat signals: application to the measurement of a sub-hertz carrier-envelope-offset beat in an optical frequency comb,” Rev. Sci. Instrum. 82(12), 123116 (2011).
[Crossref] [PubMed]

G. Di Domenico, S. Schilt, and P. Thomann, “Simple approach to the relation between laser frequency noise and laser line shape,” Appl. Opt. 49(25), 4801–4807 (2010).
[Crossref] [PubMed]

Schnatz, H.

Schori, C.

S. Schilt, N. Bucalovic, L. Tombez, V. Dolgovskiy, C. Schori, G. Di Domenico, M. Zaffalon, and P. Thomann, “Frequency discriminators for the characterization of narrow-spectrum heterodyne beat signals: application to the measurement of a sub-hertz carrier-envelope-offset beat in an optical frequency comb,” Rev. Sci. Instrum. 82(12), 123116 (2011).
[Crossref] [PubMed]

Seletskiy, D. V.

Sell, A.

Sorokin, E.

Sorokina, I.

Steinmeyer, G.

H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, “Carrier-envelope offset phase control: A novel concept for absolute optical frequency measurement and ultrashort pulse generation,” App. Phys. B 69, 327–332 (1999).

Stenger, J.

H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, “Carrier-envelope offset phase control: A novel concept for absolute optical frequency measurement and ultrashort pulse generation,” App. Phys. B 69, 327–332 (1999).

Stentz, A.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[Crossref] [PubMed]

Südmeyer, T.

V. Dolgovskiy, S. Schilt, N. Bucalovic, G. Domenico, S. Grop, B. Dubois, V. Giordano, and T. Südmeyer, “Ultra-stable microwave generation with a diode-pumped solid-state laser in the 1.5-μm range,” Appl. Phys. B 116(3), 593–601 (2014).
[Crossref]

Sulzer, P.

Sun, J.

Sun, J. H.

Sutter, D. H.

H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, “Carrier-envelope offset phase control: A novel concept for absolute optical frequency measurement and ultrashort pulse generation,” App. Phys. B 69, 327–332 (1999).

Swann, W. C.

J. J. McFerran, W. C. Swann, B. R. Washburn, and N. R. Newbury, “Suppression of pump-induced frequency noise in fiber-laser frequency combs leading to sub-radian fceo phase excursions,” Appl. Phys. B 86(2), 219–227 (2007).
[Crossref]

Swartz, S.

Tauser, F.

Taylor, J. A.

Telle, H. R.

H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, “Carrier-envelope offset phase control: A novel concept for absolute optical frequency measurement and ultrashort pulse generation,” App. Phys. B 69, 327–332 (1999).

Thapa, R.

Thomann, P.

S. Schilt, N. Bucalovic, L. Tombez, V. Dolgovskiy, C. Schori, G. Di Domenico, M. Zaffalon, and P. Thomann, “Frequency discriminators for the characterization of narrow-spectrum heterodyne beat signals: application to the measurement of a sub-hertz carrier-envelope-offset beat in an optical frequency comb,” Rev. Sci. Instrum. 82(12), 123116 (2011).
[Crossref] [PubMed]

G. Di Domenico, S. Schilt, and P. Thomann, “Simple approach to the relation between laser frequency noise and laser line shape,” Appl. Opt. 49(25), 4801–4807 (2010).
[Crossref] [PubMed]

Thorpe, M. J.

Tillman, K. A.

Tombez, L.

S. Schilt, N. Bucalovic, L. Tombez, V. Dolgovskiy, C. Schori, G. Di Domenico, M. Zaffalon, and P. Thomann, “Frequency discriminators for the characterization of narrow-spectrum heterodyne beat signals: application to the measurement of a sub-hertz carrier-envelope-offset beat in an optical frequency comb,” Rev. Sci. Instrum. 82(12), 123116 (2011).
[Crossref] [PubMed]

Udem, T.

R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85(11), 2264–2267 (2000).
[Crossref] [PubMed]

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84(22), 5102–5105 (2000).
[Crossref] [PubMed]

T. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, “Accurate measurement of large optical frequency differences with a mode-locked laser,” Opt. Lett. 24(13), 881–883 (1999).
[Crossref] [PubMed]

T. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, “Absolute optical frequency measurement of the Cesium D1 line with a mode-locked laser,” Phys. Rev. Lett. 82(18), 3568–3571 (1999).
[Crossref]

Wadsworth, W. J.

R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85(11), 2264–2267 (2000).
[Crossref] [PubMed]

Washburn, B. R.

Wilpers, G.

Windeler, R. S.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84(22), 5102–5105 (2000).
[Crossref] [PubMed]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[Crossref] [PubMed]

Wu, S.

Yan, M. F.

Ye, J.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84(22), 5102–5105 (2000).
[Crossref] [PubMed]

J. Ye, S. Swartz, P. Jungner, and J. L. Hall, “Hyperfine structure and absolute frequency of the (87)Rb 5P(3/2) state,” Opt. Lett. 21(16), 1280–1282 (1996).
[Crossref] [PubMed]

Zaffalon, M.

S. Schilt, N. Bucalovic, L. Tombez, V. Dolgovskiy, C. Schori, G. Di Domenico, M. Zaffalon, and P. Thomann, “Frequency discriminators for the characterization of narrow-spectrum heterodyne beat signals: application to the measurement of a sub-hertz carrier-envelope-offset beat in an optical frequency comb,” Rev. Sci. Instrum. 82(12), 123116 (2011).
[Crossref] [PubMed]

Zhang, Z.

App. Phys. B (1)

H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, “Carrier-envelope offset phase control: A novel concept for absolute optical frequency measurement and ultrashort pulse generation,” App. Phys. B 69, 327–332 (1999).

Appl. Opt. (2)

Appl. Phys. B (2)

V. Dolgovskiy, S. Schilt, N. Bucalovic, G. Domenico, S. Grop, B. Dubois, V. Giordano, and T. Südmeyer, “Ultra-stable microwave generation with a diode-pumped solid-state laser in the 1.5-μm range,” Appl. Phys. B 116(3), 593–601 (2014).
[Crossref]

J. J. McFerran, W. C. Swann, B. R. Washburn, and N. R. Newbury, “Suppression of pump-induced frequency noise in fiber-laser frequency combs leading to sub-radian fceo phase excursions,” Appl. Phys. B 86(2), 219–227 (2007).
[Crossref]

J. Appl. Phys. (1)

G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39(8), 3597–3639 (1968).
[Crossref]

J. Opt. Soc. Am. B (1)

Opt. Express (5)

Opt. Lett. (12)

R. A. McCracken and D. T. Reid, “Few-cycle near-infrared pulses from a degenerate 1 GHz optical parametric oscillator,” Opt. Lett. 40(17), 4102–4105 (2015).
[Crossref] [PubMed]

T. I. Ferreiro, J. Sun, and D. T. Reid, “Locking the carrier-envelope-offset frequency of an optical parametric oscillator without f-2f self-referencing,” Opt. Lett. 35(10), 1668–1670 (2010).
[Crossref] [PubMed]

R. Matthey, F. Gruet, S. Schilt, and G. Mileti, “Compact rubidium-stabilized multi-frequency reference source in the 1.55-μm region,” Opt. Lett. 40(11), 2576–2579 (2015).
[Crossref] [PubMed]

J. Ye, S. Swartz, P. Jungner, and J. L. Hall, “Hyperfine structure and absolute frequency of the (87)Rb 5P(3/2) state,” Opt. Lett. 21(16), 1280–1282 (1996).
[Crossref] [PubMed]

K. Kim, B. R. Washburn, G. Wilpers, C. W. Oates, L. Hollberg, N. R. Newbury, S. A. Diddams, J. W. Nicholson, and M. F. Yan, “Stabilized frequency comb with a self-referenced femtosecond Cr:forsterite laser,” Opt. Lett. 30(8), 932–934 (2005).
[Crossref] [PubMed]

T. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, “Accurate measurement of large optical frequency differences with a mode-locked laser,” Opt. Lett. 24(13), 881–883 (1999).
[Crossref] [PubMed]

B. R. Washburn, S. A. Diddams, N. R. Newbury, J. W. Nicholson, M. F. Yan, and C. G. Jørgensen, “Phase-locked, erbium-fiber-laser-based frequency comb in the near infrared,” Opt. Lett. 29(3), 250–252 (2004).
[Crossref] [PubMed]

J. H. Sun, B. J. S. Gale, and D. T. Reid, “Composite frequency comb spanning 0.4-2.4 µm from a phase-controlled femtosecond Ti:sapphire laser and synchronously pumped optical parametric oscillator,” Opt. Lett. 32(11), 1414–1416 (2007).
[Crossref] [PubMed]

K. Balskus, Z. Zhang, R. A. McCracken, and D. T. Reid, “Mid-infrared 333 MHz frequency comb continuously tunable from 1.95 to 4.0 μm,” Opt. Lett. 40(17), 4178–4181 (2015).
[Crossref] [PubMed]

T. R. Schibli, K. Minoshima, F.-L. Hong, H. Inaba, A. Onae, H. Matsumoto, I. Hartl, and M. E. Fermann, “Frequency metrology with a turnkey all-fiber system,” Opt. Lett. 29(21), 2467–2469 (2004).
[Crossref] [PubMed]

F. Quinlan, T. M. Fortier, M. S. Kirchner, J. A. Taylor, M. J. Thorpe, N. Lemke, A. D. Ludlow, Y. Jiang, and S. A. Diddams, “Ultralow phase noise microwave generation with an Er:fiber-based optical frequency divider,” Opt. Lett. 36(16), 3260–3262 (2011).
[Crossref] [PubMed]

G. Krauss, D. Fehrenbacher, D. Brida, C. Riek, A. Sell, R. Huber, and A. Leitenstorfer, “All-passive phase locking of a compact Er:fiber laser system,” Opt. Lett. 36(4), 540–542 (2011).
[Crossref] [PubMed]

Optica (1)

Phys. Rev. Lett. (3)

T. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, “Absolute optical frequency measurement of the Cesium D1 line with a mode-locked laser,” Phys. Rev. Lett. 82(18), 3568–3571 (1999).
[Crossref]

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84(22), 5102–5105 (2000).
[Crossref] [PubMed]

R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85(11), 2264–2267 (2000).
[Crossref] [PubMed]

Rev. Sci. Instrum. (1)

S. Schilt, N. Bucalovic, L. Tombez, V. Dolgovskiy, C. Schori, G. Di Domenico, M. Zaffalon, and P. Thomann, “Frequency discriminators for the characterization of narrow-spectrum heterodyne beat signals: application to the measurement of a sub-hertz carrier-envelope-offset beat in an optical frequency comb,” Rev. Sci. Instrum. 82(12), 123116 (2011).
[Crossref] [PubMed]

Science (1)

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[Crossref] [PubMed]

Other (1)

W. Hänsel, M. Giunta, K. Beha, M. Lezius, M. Fischer, and R. Holzwarth, “Ultra-low phase noise all-PM Er:fiber optical frequency comb,” in Advanced Solid State Lasers (2015) (Optical Society of America, 2015), paper ATh4A.2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Layout of the PPKTP crystal-based OPO; M1-M11: mirrors; OC: output coupler; PD: photodiode; PBS: polarizing beam splitter; DG: diffraction grating; APD: avalanche photodiode; PCF: photonic crystal fiber; BS: beam splitter; BPF: band-pass filter; LPF: low-pass filter; HVA: high-voltage amplifier; DBM: double-balanced mixer. The comb frequencies frep and fCEO are stabilized by two separated control loops to the same 10-MHz reference signal from an H-maser.

Fig. 2
Fig. 2

Scheme of the set-up used to measure the optical frequency of a 1560-nm DFB laser, whose second harmonic frequency was stabilized to the 87Rb D2 F = 2→3 transition. SHG: second-harmonic generation; FRU: frequency reference unit; PD: photodiode.

Fig. 3
Fig. 3

Frequency noise PSD of frep measured in-loop (at 3frep ≈1 GHz) and out-of-loop (at 45frep ≈15 GHz) in the RF domain, and assessed from the optical beat between the OPO and a cw laser after CEO subtraction (at (fbeatfCEO) = N·frepνlaser). All frequency noise PSDs have been down-scaled to the repetition rate frequency (~333 MHz).

Fig. 4
Fig. 4

Transfer function of frep in amplitude (left) and phase (right) measured for a modulation of PZT1.

Fig. 5
Fig. 5

Frequency noise PSD of fCEO measured in-loop and corresponding integrated phase noise. The β-separation line that is important to determine the linewidth of the signal [31] is also shown by the dashed grey line. The inset shows the coherent peak in the CEO RF beat (500-Hz span with 1-Hz resolution bandwidth).

Fig. 6
Fig. 6

Frequency noise PSD of an optical line of the OPO at 1557 nm ( S ν N ) and corresponding contribution of fCEO and N·frep. The optical linewidth retrieved from the frequency noise PSD using the approximation of Di Domenico et al. [31] is also shown on the right vertical axis as a function of the low-frequency cut-off (inverse of the observation time).

Fig. 7
Fig. 7

Determination of the absolute frequency of a 1560-nm DFB laser, frequency-doubled and stabilized to the 87Rb F = 2→3 D2 transition, determined from the heterodyne beat with the fully-stabilized OPO. (a, c) Recorded time series of frep and fCEO, respectively. (b, d) Corresponding Allan deviation (relative to the optical frequency νcw in the case of fCEO). (e, f) Time series and corresponding Allan deviation of the 1560-nm cw laser (blue curves) and contribution of the OPO instability in the measurement (red curves).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

S beat = S ν N = N 2 S f rep + S f CEO .
ν cw =N f rep ± f CEO ± f beat ,
N= ( ν Rb 2 f beat f CEO ) / f rep .

Metrics