A. Parvizi, J. Müller, S. Funken, and C. Koch, “A practical way to resolve ambiguities in wavefront reconstructions by the transport of intensity equation,” Ultramicroscopy 154, 1–6 (2015).

[Crossref]
[PubMed]

A. Kostenko, K. J. Batenburg, H. Suhonen, S. E. Offerman, and L. J. van Vliet, “Phase retrieval in in-line x-ray phase contrast imaging based on total variation minimization,” Opt. Express 21, 710–723 (2013).

[Crossref]
[PubMed]

L. Palatinus, “The charge-flipping algorithm in crystallography,” Acta Crystallogr. Sect. B-Struct. Sci. 69, 1–16 (2013).

[Crossref]

S. Becker, J. Bobin, and E. J. Candès, “Nesta: a fast and accurate first-order method for sparse recovery,” SIAM J. Imaging Sci. 4, 1–39 (2011).

[Crossref]

J. M. Bioucas-Dias and M. A. Figueiredo, “A new twist: two-step iterative shrinkage/thresholding algorithms for image restoration,” IEEE Trans. Image Process. 16, 2992–3004 (2007).

[Crossref]
[PubMed]

G. Oszlányi and A. Süto, “The charge flipping algorithm,” Acta Crystallogr. Sect. A 64, 23–134 (2007).

E. J. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Inf. Theory 52, 489–509 (2006).

[Crossref]

E. J. Candès and T. Tao, “Decoding by linear programming,” IEEE Trans. Inf. Theory 51, 4203–4215 (2005).

[Crossref]

D. Paganin, A. Barty, P. J. McMahon, and K. A. Nugent, “Quantitative phase-amplitude microscopy. III. the effects of noise,” J. Microsc. 214, 51–61 (2004).

[Crossref]
[PubMed]

M. Beleggia, M. A. Schofield, V. V. Volkov, and Y. Zhu, “On the transport of intensity technique for phase retrieval,” Ultramicroscopy 102, 37–49 (2004).

[Crossref]
[PubMed]

V. V. Volkov, Y. Zhu, and M. De Graef, “A new symmetrized solution for phase retrieval using the transport of intensity equation,” Micron 33, 411–416 (2002).

[Crossref]
[PubMed]

T. E. Gureyev and K. A. Nugent, “Rapid quantitative phase imaging using the transport of intensity equation,” Opt. Commun. 133, 339–346 (1997).

[Crossref]

D. Gabay and B. Mercier, “A dual algorithm for the solution of nonlinear variational problems via finite element approximation,” Comput. Math. Appl. 2, 17–40 (1976).

[Crossref]

D. Paganin, A. Barty, P. J. McMahon, and K. A. Nugent, “Quantitative phase-amplitude microscopy. III. the effects of noise,” J. Microsc. 214, 51–61 (2004).

[Crossref]
[PubMed]

S. Becker, J. Bobin, and E. J. Candès, “Nesta: a fast and accurate first-order method for sparse recovery,” SIAM J. Imaging Sci. 4, 1–39 (2011).

[Crossref]

M. Beleggia, M. A. Schofield, V. V. Volkov, and Y. Zhu, “On the transport of intensity technique for phase retrieval,” Ultramicroscopy 102, 37–49 (2004).

[Crossref]
[PubMed]

J. M. Bioucas-Dias and M. A. Figueiredo, “A new twist: two-step iterative shrinkage/thresholding algorithms for image restoration,” IEEE Trans. Image Process. 16, 2992–3004 (2007).

[Crossref]
[PubMed]

S. Becker, J. Bobin, and E. J. Candès, “Nesta: a fast and accurate first-order method for sparse recovery,” SIAM J. Imaging Sci. 4, 1–39 (2011).

[Crossref]

S. Becker, J. Bobin, and E. J. Candès, “Nesta: a fast and accurate first-order method for sparse recovery,” SIAM J. Imaging Sci. 4, 1–39 (2011).

[Crossref]

E. J. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Inf. Theory 52, 489–509 (2006).

[Crossref]

E. J. Candès and T. Tao, “Decoding by linear programming,” IEEE Trans. Inf. Theory 51, 4203–4215 (2005).

[Crossref]

V. V. Volkov, Y. Zhu, and M. De Graef, “A new symmetrized solution for phase retrieval using the transport of intensity equation,” Micron 33, 411–416 (2002).

[Crossref]
[PubMed]

A. Parvizi, W. V. den Broek, and C.T. Koch, “Recovering low spatial frequencies in wavefront sensing based on intensity measurements,” Adv. Struct. Chem. Imag. (in press).

J. M. Bioucas-Dias and M. A. Figueiredo, “A new twist: two-step iterative shrinkage/thresholding algorithms for image restoration,” IEEE Trans. Image Process. 16, 2992–3004 (2007).

[Crossref]
[PubMed]

A. Parvizi, J. Müller, S. Funken, and C. Koch, “A practical way to resolve ambiguities in wavefront reconstructions by the transport of intensity equation,” Ultramicroscopy 154, 1–6 (2015).

[Crossref]
[PubMed]

D. Gabay and B. Mercier, “A dual algorithm for the solution of nonlinear variational problems via finite element approximation,” Comput. Math. Appl. 2, 17–40 (1976).

[Crossref]

A. Parvizi, J. Müller, S. Funken, and C. Koch, “A practical way to resolve ambiguities in wavefront reconstructions by the transport of intensity equation,” Ultramicroscopy 154, 1–6 (2015).

[Crossref]
[PubMed]

A. Parvizi, W. V. den Broek, and C.T. Koch, “Recovering low spatial frequencies in wavefront sensing based on intensity measurements,” Adv. Struct. Chem. Imag. (in press).

C. Li, An Efficient Algorithm for Total Variation Regularization with Applications to the Single Pixel Camera and Compressive Sensing (Rice University, 2009).

C. Li, CCompressive Sensing for 3D Data Processing Tasks: Applications, Models and Algorithms (Rice University, 2011).

D. Paganin, A. Barty, P. J. McMahon, and K. A. Nugent, “Quantitative phase-amplitude microscopy. III. the effects of noise,” J. Microsc. 214, 51–61 (2004).

[Crossref]
[PubMed]

D. Gabay and B. Mercier, “A dual algorithm for the solution of nonlinear variational problems via finite element approximation,” Comput. Math. Appl. 2, 17–40 (1976).

[Crossref]

A. Parvizi, J. Müller, S. Funken, and C. Koch, “A practical way to resolve ambiguities in wavefront reconstructions by the transport of intensity equation,” Ultramicroscopy 154, 1–6 (2015).

[Crossref]
[PubMed]

J. Nocedal and S. Wright, Numerical Optimization (Springer Science and Business Media, 2006).

D. Paganin, A. Barty, P. J. McMahon, and K. A. Nugent, “Quantitative phase-amplitude microscopy. III. the effects of noise,” J. Microsc. 214, 51–61 (2004).

[Crossref]
[PubMed]

T. E. Gureyev and K. A. Nugent, “Rapid quantitative phase imaging using the transport of intensity equation,” Opt. Commun. 133, 339–346 (1997).

[Crossref]

T. E. Gureyev, A. Roberts, and K. A. Nugent, “Phase retrieval with the transport-of-intensity equation: matrix solution with use of zernike polynomials,” J. Opt. Soc. Am. A 12, 1932–1941 (1995).

[Crossref]

G. Oszlányi and A. Süto, “The charge flipping algorithm,” Acta Crystallogr. Sect. A 64, 23–134 (2007).

D. Paganin, A. Barty, P. J. McMahon, and K. A. Nugent, “Quantitative phase-amplitude microscopy. III. the effects of noise,” J. Microsc. 214, 51–61 (2004).

[Crossref]
[PubMed]

L. Palatinus, “The charge-flipping algorithm in crystallography,” Acta Crystallogr. Sect. B-Struct. Sci. 69, 1–16 (2013).

[Crossref]

A. Parvizi, J. Müller, S. Funken, and C. Koch, “A practical way to resolve ambiguities in wavefront reconstructions by the transport of intensity equation,” Ultramicroscopy 154, 1–6 (2015).

[Crossref]
[PubMed]

A. Parvizi, W. V. den Broek, and C.T. Koch, “Recovering low spatial frequencies in wavefront sensing based on intensity measurements,” Adv. Struct. Chem. Imag. (in press).

E. J. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Inf. Theory 52, 489–509 (2006).

[Crossref]

M. Beleggia, M. A. Schofield, V. V. Volkov, and Y. Zhu, “On the transport of intensity technique for phase retrieval,” Ultramicroscopy 102, 37–49 (2004).

[Crossref]
[PubMed]

G. Oszlányi and A. Süto, “The charge flipping algorithm,” Acta Crystallogr. Sect. A 64, 23–134 (2007).

E. J. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Inf. Theory 52, 489–509 (2006).

[Crossref]

E. J. Candès and T. Tao, “Decoding by linear programming,” IEEE Trans. Inf. Theory 51, 4203–4215 (2005).

[Crossref]

M. Beleggia, M. A. Schofield, V. V. Volkov, and Y. Zhu, “On the transport of intensity technique for phase retrieval,” Ultramicroscopy 102, 37–49 (2004).

[Crossref]
[PubMed]

V. V. Volkov, Y. Zhu, and M. De Graef, “A new symmetrized solution for phase retrieval using the transport of intensity equation,” Micron 33, 411–416 (2002).

[Crossref]
[PubMed]

J. Nocedal and S. Wright, Numerical Optimization (Springer Science and Business Media, 2006).

M. Beleggia, M. A. Schofield, V. V. Volkov, and Y. Zhu, “On the transport of intensity technique for phase retrieval,” Ultramicroscopy 102, 37–49 (2004).

[Crossref]
[PubMed]

V. V. Volkov, Y. Zhu, and M. De Graef, “A new symmetrized solution for phase retrieval using the transport of intensity equation,” Micron 33, 411–416 (2002).

[Crossref]
[PubMed]

G. Oszlányi and A. Süto, “The charge flipping algorithm,” Acta Crystallogr. Sect. A 64, 23–134 (2007).

L. Palatinus, “The charge-flipping algorithm in crystallography,” Acta Crystallogr. Sect. B-Struct. Sci. 69, 1–16 (2013).

[Crossref]

D. Gabay and B. Mercier, “A dual algorithm for the solution of nonlinear variational problems via finite element approximation,” Comput. Math. Appl. 2, 17–40 (1976).

[Crossref]

J. M. Bioucas-Dias and M. A. Figueiredo, “A new twist: two-step iterative shrinkage/thresholding algorithms for image restoration,” IEEE Trans. Image Process. 16, 2992–3004 (2007).

[Crossref]
[PubMed]

E. J. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Inf. Theory 52, 489–509 (2006).

[Crossref]

E. J. Candès and T. Tao, “Decoding by linear programming,” IEEE Trans. Inf. Theory 51, 4203–4215 (2005).

[Crossref]

D. Paganin, A. Barty, P. J. McMahon, and K. A. Nugent, “Quantitative phase-amplitude microscopy. III. the effects of noise,” J. Microsc. 214, 51–61 (2004).

[Crossref]
[PubMed]

V. V. Volkov, Y. Zhu, and M. De Graef, “A new symmetrized solution for phase retrieval using the transport of intensity equation,” Micron 33, 411–416 (2002).

[Crossref]
[PubMed]

T. E. Gureyev and K. A. Nugent, “Rapid quantitative phase imaging using the transport of intensity equation,” Opt. Commun. 133, 339–346 (1997).

[Crossref]

S. Becker, J. Bobin, and E. J. Candès, “Nesta: a fast and accurate first-order method for sparse recovery,” SIAM J. Imaging Sci. 4, 1–39 (2011).

[Crossref]

A. Parvizi, J. Müller, S. Funken, and C. Koch, “A practical way to resolve ambiguities in wavefront reconstructions by the transport of intensity equation,” Ultramicroscopy 154, 1–6 (2015).

[Crossref]
[PubMed]

M. Beleggia, M. A. Schofield, V. V. Volkov, and Y. Zhu, “On the transport of intensity technique for phase retrieval,” Ultramicroscopy 102, 37–49 (2004).

[Crossref]
[PubMed]

A. Parvizi, W. V. den Broek, and C.T. Koch, “Recovering low spatial frequencies in wavefront sensing based on intensity measurements,” Adv. Struct. Chem. Imag. (in press).

C. Li, An Efficient Algorithm for Total Variation Regularization with Applications to the Single Pixel Camera and Compressive Sensing (Rice University, 2009).

C. Li, CCompressive Sensing for 3D Data Processing Tasks: Applications, Models and Algorithms (Rice University, 2011).

J. Nocedal and S. Wright, Numerical Optimization (Springer Science and Business Media, 2006).