Abstract

Conception of a hybrid type tilted-pulse-front pumping scheme for the generation of high-energy terahertz pulses is presented. The proposed setup is the combination of the conventional setup containing imaging optics and the contact grating. The solution was developed for nonlinear materials requiring large pulse-front-tilt angle, like LiNbO3. Due to the creation of the pulse-front-tilt in two steps the limitations of imaging errors can be significantly reduced. Furthermore the necessary grating constant of the contact grating can be larger compared to the simple contact grating scheme making possible the fabrication of the grating profile with significantly higher precision. A detailed optimization procedure with respect to the diffraction efficiency on the contact grating is given for LiNbO3. Instructions are also given how to construct the geometry of the setup in order to minimize imaging errors. Examples are given for LiNbO3 based practically realizable, optimized schemes with reduced imaging errors and high diffraction efficiency on the contact grating.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Numerical investigation of a scalable setup for efficient terahertz generation using a segmented tilted-pulse-front excitation

László Pálfalvi, György Tóth, Levente Tokodi, Zsuzsanna Márton, József András Fülöp, Gábor Almási, and János Hebling
Opt. Express 25(24) 29560-29573 (2017)

Design of high-energy terahertz sources based on optical rectification

J. A. Fülöp, L. Pálfalvi, G. Almási, and J. Hebling
Opt. Express 18(12) 12311-12327 (2010)

Optical generation of single-cycle 10 MW peak power 100 GHz waves

Xiaojun Wu, Anne-Laure Calendron, Koustuban Ravi, Chun Zhou, Michael Hemmer, Fabian Reichert, Dongfang Zhang, Huseyin Cankaya, Luis E. Zapata, Nicholas H. Matlis, and Franz X. Kärtner
Opt. Express 24(18) 21059-21069 (2016)

References

  • View by:
  • |
  • |
  • |

  1. L. J. Wong, A. Fallahi, and F. X. Kärtner, “Compact electron acceleration and bunch compression in THz waveguides,” Opt. Express 21(8), 9792–9806 (2013).
    [Crossref] [PubMed]
  2. E. A. Nanni, W. R. Huang, K.-H. Hong, K. Ravi, A. Fallahi, G. Moriena, R. J. Miller, and F. X. Kärtner, “Terahertz-driven linear electron acceleration,” Nat. Commun. 6, 8486 (2015).
    [Crossref] [PubMed]
  3. W. R. Huang, E. A. Nanni, K. Ravi, K.-H. Hong, A. Fallahi, L. J. Wong, P. D. Keathley, L. E. Zapata, and F. X. Kärtner, “Toward a terahertz-driven electron gun,” Sci. Rep. 5, 14899 (2015).
    [Crossref] [PubMed]
  4. J. Hebling, J. Fülöp, M. Mechler, L. Pálfalvi, C. Tőke, and G. Almási, “Optical manipulation of relativistic electron beams using THz pulses,” http://arxiv.org/abs/1109.6852 (2011).
  5. L. Pálfalvi, J. A. Fülöp, G. Tóth, and J. Hebling, “Evanescent-wave proton postaccelerator driven by intense THz pulse,” Phys. Rev. Special Top. 17, 031301 (2014).
  6. E. Balogh, K. Kovacs, P. Dombi, J. A. Fulop, G. Farkas, J. Hebling, V. Tosa, and K. Varju, “Single attosecond pulse from terahertz-assisted high-order harmonic generation,” Phys. Rev. A 84(2), 023806 (2011).
    [Crossref]
  7. C. Vicario, A. V. Ovchinnikov, S. I. Ashitkov, M. B. Agranat, V. E. Fortov, and C. P. Hauri, “Generation of 0.9-mJ THz pulses in DSTMS pumped by a Cr:Mg₂SiO₄ laser,” Opt. Lett. 39(23), 6632–6635 (2014).
    [Crossref] [PubMed]
  8. J. Hebling, K. L. Yeh, M. C. Hoffmann, B. Bartal, and K. A. Nelson, “Generation of high-power terahertz pulses by tilted-pulse-front excitation and their application possibilities,” J. Opt. Soc. Am. B 25(7), B6–B19 (2008).
    [Crossref]
  9. J. Hebling, G. Almasi, I. Kozma, and J. Kuhl, “Velocity matching by pulse front tilting for large area THz-pulse generation,” Opt. Express 10(21), 1161–1166 (2002).
    [Crossref] [PubMed]
  10. H. Hirori, A. Doi, F. Blanchard, and K. Tanaka, “Single-cycle terahertz pulses with amplitudes exceeding 1 MV/cm generated by optical rectification in LiNbO3,” Appl. Phys. Lett. 98(9), 091106 (2011).
    [Crossref]
  11. J. A. Fülöp, Z. Ollmann, C. Lombosi, C. Skrobol, S. Klingebiel, L. Pálfalvi, F. Krausz, S. Karsch, and J. Hebling, “Efficient generation of THz pulses with 0.4 mJ energy,” Opt. Express 22(17), 20155–20163 (2014).
    [Crossref] [PubMed]
  12. J. A. Fülöp, L. Pálfalvi, G. Almási, and J. Hebling, “Design of high-energy terahertz sources based on optical rectification,” Opt. Express 18(12), 12311–12327 (2010).
    [Crossref] [PubMed]
  13. J. A. Fülöp, L. Pálfalvi, M. C. Hoffmann, and J. Hebling, “Towards generation of mJ-level ultrashort THz pulses by optical rectification,” Opt. Express 19(16), 15090–15097 (2011).
    [Crossref] [PubMed]
  14. M. Kunitski, M. Richter, M. D. Thomson, A. Vredenborg, J. Wu, T. Jahnke, M. Schöffler, H. Schmidt-Böcking, H. G. Roskos, and R. Dörner, “Optimization of single-cycle terahertz generation in LiNbO3 for sub-50 femtosecond pump pulses,” Opt. Express 21(6), 6826–6836 (2013).
    [Crossref] [PubMed]
  15. L. Pálfalvi, J. A. Fülöp, G. Almási, and J. Hebling, “Novel setups for extremely high power single-cycle terahertz pulse generation by optical rectification,” Appl. Phys. Lett. 92(17), 171107 (2008).
    [Crossref]
  16. N. Keisuke and K. Atsushi, “Design of rectangular transmission gratings fabricated in LiNbO3 for high-power terahertz-wave generation,” Jpn. J. Appl. Phys. 49(12), 122504 (2010).
    [Crossref]
  17. N. Keisuke and K. Atsushi, “Erratum: design of rectangular transmission gratings fabricated in LiNbO3 for high-power terahertz-wave generation,” Jpn. J. Appl. Phys. 51, 119201 (2012).
  18. Z. Ollmann, J. Hebling, and G. Almási, “Design of a contact grating setup for mJ-energy THz pulse generation by optical rectification,” Appl. Phys. B 108(4), 821–826 (2012).
    [Crossref]
  19. M. Tsubouchi, K. Nagashima, F. Yoshida, Y. Ochi, and M. Maruyama, “Contact grating device with Fabry-Perot resonator for effective terahertz light generation,” Opt. Lett. 39(18), 5439–5442 (2014).
    [Crossref] [PubMed]
  20. F. Yoshida, K. Nagashima, M. Tsubouchi, Y. Ochi, M. Maruyama, and A. Sugiyama, “High-efficiency contact grating using a Fabry-Perot type resonator for terahertz wave generation,” Jpn. J. Appl. Phys. 55(1), 012201 (2016).
    [Crossref]
  21. T. Clausnitzer, T. Kämpfe, E.-B. Kley, A. Tünnermann, A. V. Tishchenko, and O. Parriaux, “Highly-dispersive dielectric transmission gratings with 100% diffraction efficiency,” Opt. Express 16(8), 5577–5584 (2008).
    [Crossref] [PubMed]
  22. Z. Ollmann, J. A. Fulop, J. Hebling, and G. Almasi, “Design of a high-energy terahertz pulse source based on ZnTe contact grating,” Opt. Commun. 315, 159–163 (2014).
    [Crossref]
  23. K. Ravi, W. R. Huang, S. Carbajo, E. A. Nanni, D. N. Schimpf, E. P. Ippen, and F. X. Kärtner, “Theory of terahertz generation by optical rectification using tilted-pulse-fronts,” Opt. Express 23(4), 5253–5276 (2015).
    [Crossref] [PubMed]
  24. L. Pálfalvi, J. Hebling, G. Almasi, A. Peter, K. Polgar, K. Lengyel, and R. Szipocs, “Nonlinear refraction and absorption of Mg doped stoichiometric and congruent LiNbO3,” J. Appl. Phys. 95(3), 902–908 (2004).
    [Crossref]
  25. L. Pálfalvi, J. Hebling, J. Kuhl, A. Peter, and K. Polgar, “Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range,” J. Appl. Phys. 97(12), 123505 (2005).
    [Crossref]
  26. S.-W. Huang, E. Granados, W. R. Huang, K.-H. Hong, L. E. Zapata, and F. X. Kärtner, “High conversion efficiency, high energy terahertz pulses by optical rectification in cryogenically cooled lithium niobate,” Opt. Lett. 38(5), 796–798 (2013).
    [Crossref] [PubMed]
  27. M. G. Moharam and T. K. Gaylord, “Diffraction analysis of dielectric surface-relief gratings,” J. Opt. Soc. Am. B 72(10), 1385–1392 (1982).
    [Crossref]
  28. K. Ravi, W. R. Huang, S. Carbajo, X. Wu, and F. Kärtner, “Limitations to THz generation by optical rectification using tilted pulse fronts,” Opt. Express 22(17), 20239–20251 (2014).
    [Crossref] [PubMed]
  29. F. Blanchard, X. Ropagnol, H. Hafez, H. Razavipour, M. Bolduc, R. Morandotti, T. Ozaki, and D. G. Cooke, “Effect of extreme pump pulse reshaping on intense terahertz emission in lithium niobate at multimilliJoule pump energies,” Opt. Lett. 39(15), 4333–4336 (2014).
    [Crossref] [PubMed]
  30. C. Lombosi, G. Polónyi, M. Mechler, Z. Ollmann, J. Hebling, and J. A. Fülöp, “Nonlinear distortion of intense THz beams,” New J. Phys. 17(8), 083041 (2015).
    [Crossref]
  31. J. Hebling, “Derivation of the pulse front tilt caused by angular dispersion,” Opt. Quantum Electron. 28(12), 1759–1763 (1996).
    [Crossref]
  32. J. A. Fülöp, L. Pálfalvi, G. Almási, and J. Hebling, “Erratum: design of high-energy terahertz sources based on optical rectification,” Opt. Express 19(23), 22950 (2011).
    [Crossref]

2016 (1)

F. Yoshida, K. Nagashima, M. Tsubouchi, Y. Ochi, M. Maruyama, and A. Sugiyama, “High-efficiency contact grating using a Fabry-Perot type resonator for terahertz wave generation,” Jpn. J. Appl. Phys. 55(1), 012201 (2016).
[Crossref]

2015 (4)

K. Ravi, W. R. Huang, S. Carbajo, E. A. Nanni, D. N. Schimpf, E. P. Ippen, and F. X. Kärtner, “Theory of terahertz generation by optical rectification using tilted-pulse-fronts,” Opt. Express 23(4), 5253–5276 (2015).
[Crossref] [PubMed]

C. Lombosi, G. Polónyi, M. Mechler, Z. Ollmann, J. Hebling, and J. A. Fülöp, “Nonlinear distortion of intense THz beams,” New J. Phys. 17(8), 083041 (2015).
[Crossref]

E. A. Nanni, W. R. Huang, K.-H. Hong, K. Ravi, A. Fallahi, G. Moriena, R. J. Miller, and F. X. Kärtner, “Terahertz-driven linear electron acceleration,” Nat. Commun. 6, 8486 (2015).
[Crossref] [PubMed]

W. R. Huang, E. A. Nanni, K. Ravi, K.-H. Hong, A. Fallahi, L. J. Wong, P. D. Keathley, L. E. Zapata, and F. X. Kärtner, “Toward a terahertz-driven electron gun,” Sci. Rep. 5, 14899 (2015).
[Crossref] [PubMed]

2014 (7)

L. Pálfalvi, J. A. Fülöp, G. Tóth, and J. Hebling, “Evanescent-wave proton postaccelerator driven by intense THz pulse,” Phys. Rev. Special Top. 17, 031301 (2014).

C. Vicario, A. V. Ovchinnikov, S. I. Ashitkov, M. B. Agranat, V. E. Fortov, and C. P. Hauri, “Generation of 0.9-mJ THz pulses in DSTMS pumped by a Cr:Mg₂SiO₄ laser,” Opt. Lett. 39(23), 6632–6635 (2014).
[Crossref] [PubMed]

J. A. Fülöp, Z. Ollmann, C. Lombosi, C. Skrobol, S. Klingebiel, L. Pálfalvi, F. Krausz, S. Karsch, and J. Hebling, “Efficient generation of THz pulses with 0.4 mJ energy,” Opt. Express 22(17), 20155–20163 (2014).
[Crossref] [PubMed]

K. Ravi, W. R. Huang, S. Carbajo, X. Wu, and F. Kärtner, “Limitations to THz generation by optical rectification using tilted pulse fronts,” Opt. Express 22(17), 20239–20251 (2014).
[Crossref] [PubMed]

F. Blanchard, X. Ropagnol, H. Hafez, H. Razavipour, M. Bolduc, R. Morandotti, T. Ozaki, and D. G. Cooke, “Effect of extreme pump pulse reshaping on intense terahertz emission in lithium niobate at multimilliJoule pump energies,” Opt. Lett. 39(15), 4333–4336 (2014).
[Crossref] [PubMed]

M. Tsubouchi, K. Nagashima, F. Yoshida, Y. Ochi, and M. Maruyama, “Contact grating device with Fabry-Perot resonator for effective terahertz light generation,” Opt. Lett. 39(18), 5439–5442 (2014).
[Crossref] [PubMed]

Z. Ollmann, J. A. Fulop, J. Hebling, and G. Almasi, “Design of a high-energy terahertz pulse source based on ZnTe contact grating,” Opt. Commun. 315, 159–163 (2014).
[Crossref]

2013 (3)

2012 (2)

N. Keisuke and K. Atsushi, “Erratum: design of rectangular transmission gratings fabricated in LiNbO3 for high-power terahertz-wave generation,” Jpn. J. Appl. Phys. 51, 119201 (2012).

Z. Ollmann, J. Hebling, and G. Almási, “Design of a contact grating setup for mJ-energy THz pulse generation by optical rectification,” Appl. Phys. B 108(4), 821–826 (2012).
[Crossref]

2011 (4)

J. A. Fülöp, L. Pálfalvi, M. C. Hoffmann, and J. Hebling, “Towards generation of mJ-level ultrashort THz pulses by optical rectification,” Opt. Express 19(16), 15090–15097 (2011).
[Crossref] [PubMed]

H. Hirori, A. Doi, F. Blanchard, and K. Tanaka, “Single-cycle terahertz pulses with amplitudes exceeding 1 MV/cm generated by optical rectification in LiNbO3,” Appl. Phys. Lett. 98(9), 091106 (2011).
[Crossref]

E. Balogh, K. Kovacs, P. Dombi, J. A. Fulop, G. Farkas, J. Hebling, V. Tosa, and K. Varju, “Single attosecond pulse from terahertz-assisted high-order harmonic generation,” Phys. Rev. A 84(2), 023806 (2011).
[Crossref]

J. A. Fülöp, L. Pálfalvi, G. Almási, and J. Hebling, “Erratum: design of high-energy terahertz sources based on optical rectification,” Opt. Express 19(23), 22950 (2011).
[Crossref]

2010 (2)

N. Keisuke and K. Atsushi, “Design of rectangular transmission gratings fabricated in LiNbO3 for high-power terahertz-wave generation,” Jpn. J. Appl. Phys. 49(12), 122504 (2010).
[Crossref]

J. A. Fülöp, L. Pálfalvi, G. Almási, and J. Hebling, “Design of high-energy terahertz sources based on optical rectification,” Opt. Express 18(12), 12311–12327 (2010).
[Crossref] [PubMed]

2008 (3)

2005 (1)

L. Pálfalvi, J. Hebling, J. Kuhl, A. Peter, and K. Polgar, “Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range,” J. Appl. Phys. 97(12), 123505 (2005).
[Crossref]

2004 (1)

L. Pálfalvi, J. Hebling, G. Almasi, A. Peter, K. Polgar, K. Lengyel, and R. Szipocs, “Nonlinear refraction and absorption of Mg doped stoichiometric and congruent LiNbO3,” J. Appl. Phys. 95(3), 902–908 (2004).
[Crossref]

2002 (1)

1996 (1)

J. Hebling, “Derivation of the pulse front tilt caused by angular dispersion,” Opt. Quantum Electron. 28(12), 1759–1763 (1996).
[Crossref]

1982 (1)

M. G. Moharam and T. K. Gaylord, “Diffraction analysis of dielectric surface-relief gratings,” J. Opt. Soc. Am. B 72(10), 1385–1392 (1982).
[Crossref]

Agranat, M. B.

Almasi, G.

Z. Ollmann, J. A. Fulop, J. Hebling, and G. Almasi, “Design of a high-energy terahertz pulse source based on ZnTe contact grating,” Opt. Commun. 315, 159–163 (2014).
[Crossref]

L. Pálfalvi, J. Hebling, G. Almasi, A. Peter, K. Polgar, K. Lengyel, and R. Szipocs, “Nonlinear refraction and absorption of Mg doped stoichiometric and congruent LiNbO3,” J. Appl. Phys. 95(3), 902–908 (2004).
[Crossref]

J. Hebling, G. Almasi, I. Kozma, and J. Kuhl, “Velocity matching by pulse front tilting for large area THz-pulse generation,” Opt. Express 10(21), 1161–1166 (2002).
[Crossref] [PubMed]

Almási, G.

Z. Ollmann, J. Hebling, and G. Almási, “Design of a contact grating setup for mJ-energy THz pulse generation by optical rectification,” Appl. Phys. B 108(4), 821–826 (2012).
[Crossref]

J. A. Fülöp, L. Pálfalvi, G. Almási, and J. Hebling, “Erratum: design of high-energy terahertz sources based on optical rectification,” Opt. Express 19(23), 22950 (2011).
[Crossref]

J. A. Fülöp, L. Pálfalvi, G. Almási, and J. Hebling, “Design of high-energy terahertz sources based on optical rectification,” Opt. Express 18(12), 12311–12327 (2010).
[Crossref] [PubMed]

L. Pálfalvi, J. A. Fülöp, G. Almási, and J. Hebling, “Novel setups for extremely high power single-cycle terahertz pulse generation by optical rectification,” Appl. Phys. Lett. 92(17), 171107 (2008).
[Crossref]

Ashitkov, S. I.

Atsushi, K.

N. Keisuke and K. Atsushi, “Erratum: design of rectangular transmission gratings fabricated in LiNbO3 for high-power terahertz-wave generation,” Jpn. J. Appl. Phys. 51, 119201 (2012).

N. Keisuke and K. Atsushi, “Design of rectangular transmission gratings fabricated in LiNbO3 for high-power terahertz-wave generation,” Jpn. J. Appl. Phys. 49(12), 122504 (2010).
[Crossref]

Balogh, E.

E. Balogh, K. Kovacs, P. Dombi, J. A. Fulop, G. Farkas, J. Hebling, V. Tosa, and K. Varju, “Single attosecond pulse from terahertz-assisted high-order harmonic generation,” Phys. Rev. A 84(2), 023806 (2011).
[Crossref]

Bartal, B.

Blanchard, F.

F. Blanchard, X. Ropagnol, H. Hafez, H. Razavipour, M. Bolduc, R. Morandotti, T. Ozaki, and D. G. Cooke, “Effect of extreme pump pulse reshaping on intense terahertz emission in lithium niobate at multimilliJoule pump energies,” Opt. Lett. 39(15), 4333–4336 (2014).
[Crossref] [PubMed]

H. Hirori, A. Doi, F. Blanchard, and K. Tanaka, “Single-cycle terahertz pulses with amplitudes exceeding 1 MV/cm generated by optical rectification in LiNbO3,” Appl. Phys. Lett. 98(9), 091106 (2011).
[Crossref]

Bolduc, M.

Carbajo, S.

Clausnitzer, T.

Cooke, D. G.

Doi, A.

H. Hirori, A. Doi, F. Blanchard, and K. Tanaka, “Single-cycle terahertz pulses with amplitudes exceeding 1 MV/cm generated by optical rectification in LiNbO3,” Appl. Phys. Lett. 98(9), 091106 (2011).
[Crossref]

Dombi, P.

E. Balogh, K. Kovacs, P. Dombi, J. A. Fulop, G. Farkas, J. Hebling, V. Tosa, and K. Varju, “Single attosecond pulse from terahertz-assisted high-order harmonic generation,” Phys. Rev. A 84(2), 023806 (2011).
[Crossref]

Dörner, R.

Fallahi, A.

E. A. Nanni, W. R. Huang, K.-H. Hong, K. Ravi, A. Fallahi, G. Moriena, R. J. Miller, and F. X. Kärtner, “Terahertz-driven linear electron acceleration,” Nat. Commun. 6, 8486 (2015).
[Crossref] [PubMed]

W. R. Huang, E. A. Nanni, K. Ravi, K.-H. Hong, A. Fallahi, L. J. Wong, P. D. Keathley, L. E. Zapata, and F. X. Kärtner, “Toward a terahertz-driven electron gun,” Sci. Rep. 5, 14899 (2015).
[Crossref] [PubMed]

L. J. Wong, A. Fallahi, and F. X. Kärtner, “Compact electron acceleration and bunch compression in THz waveguides,” Opt. Express 21(8), 9792–9806 (2013).
[Crossref] [PubMed]

Farkas, G.

E. Balogh, K. Kovacs, P. Dombi, J. A. Fulop, G. Farkas, J. Hebling, V. Tosa, and K. Varju, “Single attosecond pulse from terahertz-assisted high-order harmonic generation,” Phys. Rev. A 84(2), 023806 (2011).
[Crossref]

Fortov, V. E.

Fulop, J. A.

Z. Ollmann, J. A. Fulop, J. Hebling, and G. Almasi, “Design of a high-energy terahertz pulse source based on ZnTe contact grating,” Opt. Commun. 315, 159–163 (2014).
[Crossref]

E. Balogh, K. Kovacs, P. Dombi, J. A. Fulop, G. Farkas, J. Hebling, V. Tosa, and K. Varju, “Single attosecond pulse from terahertz-assisted high-order harmonic generation,” Phys. Rev. A 84(2), 023806 (2011).
[Crossref]

Fülöp, J. A.

Gaylord, T. K.

M. G. Moharam and T. K. Gaylord, “Diffraction analysis of dielectric surface-relief gratings,” J. Opt. Soc. Am. B 72(10), 1385–1392 (1982).
[Crossref]

Granados, E.

Hafez, H.

Hauri, C. P.

Hebling, J.

C. Lombosi, G. Polónyi, M. Mechler, Z. Ollmann, J. Hebling, and J. A. Fülöp, “Nonlinear distortion of intense THz beams,” New J. Phys. 17(8), 083041 (2015).
[Crossref]

J. A. Fülöp, Z. Ollmann, C. Lombosi, C. Skrobol, S. Klingebiel, L. Pálfalvi, F. Krausz, S. Karsch, and J. Hebling, “Efficient generation of THz pulses with 0.4 mJ energy,” Opt. Express 22(17), 20155–20163 (2014).
[Crossref] [PubMed]

Z. Ollmann, J. A. Fulop, J. Hebling, and G. Almasi, “Design of a high-energy terahertz pulse source based on ZnTe contact grating,” Opt. Commun. 315, 159–163 (2014).
[Crossref]

L. Pálfalvi, J. A. Fülöp, G. Tóth, and J. Hebling, “Evanescent-wave proton postaccelerator driven by intense THz pulse,” Phys. Rev. Special Top. 17, 031301 (2014).

Z. Ollmann, J. Hebling, and G. Almási, “Design of a contact grating setup for mJ-energy THz pulse generation by optical rectification,” Appl. Phys. B 108(4), 821–826 (2012).
[Crossref]

E. Balogh, K. Kovacs, P. Dombi, J. A. Fulop, G. Farkas, J. Hebling, V. Tosa, and K. Varju, “Single attosecond pulse from terahertz-assisted high-order harmonic generation,” Phys. Rev. A 84(2), 023806 (2011).
[Crossref]

J. A. Fülöp, L. Pálfalvi, M. C. Hoffmann, and J. Hebling, “Towards generation of mJ-level ultrashort THz pulses by optical rectification,” Opt. Express 19(16), 15090–15097 (2011).
[Crossref] [PubMed]

J. A. Fülöp, L. Pálfalvi, G. Almási, and J. Hebling, “Erratum: design of high-energy terahertz sources based on optical rectification,” Opt. Express 19(23), 22950 (2011).
[Crossref]

J. A. Fülöp, L. Pálfalvi, G. Almási, and J. Hebling, “Design of high-energy terahertz sources based on optical rectification,” Opt. Express 18(12), 12311–12327 (2010).
[Crossref] [PubMed]

J. Hebling, K. L. Yeh, M. C. Hoffmann, B. Bartal, and K. A. Nelson, “Generation of high-power terahertz pulses by tilted-pulse-front excitation and their application possibilities,” J. Opt. Soc. Am. B 25(7), B6–B19 (2008).
[Crossref]

L. Pálfalvi, J. A. Fülöp, G. Almási, and J. Hebling, “Novel setups for extremely high power single-cycle terahertz pulse generation by optical rectification,” Appl. Phys. Lett. 92(17), 171107 (2008).
[Crossref]

L. Pálfalvi, J. Hebling, J. Kuhl, A. Peter, and K. Polgar, “Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range,” J. Appl. Phys. 97(12), 123505 (2005).
[Crossref]

L. Pálfalvi, J. Hebling, G. Almasi, A. Peter, K. Polgar, K. Lengyel, and R. Szipocs, “Nonlinear refraction and absorption of Mg doped stoichiometric and congruent LiNbO3,” J. Appl. Phys. 95(3), 902–908 (2004).
[Crossref]

J. Hebling, G. Almasi, I. Kozma, and J. Kuhl, “Velocity matching by pulse front tilting for large area THz-pulse generation,” Opt. Express 10(21), 1161–1166 (2002).
[Crossref] [PubMed]

J. Hebling, “Derivation of the pulse front tilt caused by angular dispersion,” Opt. Quantum Electron. 28(12), 1759–1763 (1996).
[Crossref]

Hirori, H.

H. Hirori, A. Doi, F. Blanchard, and K. Tanaka, “Single-cycle terahertz pulses with amplitudes exceeding 1 MV/cm generated by optical rectification in LiNbO3,” Appl. Phys. Lett. 98(9), 091106 (2011).
[Crossref]

Hoffmann, M. C.

Hong, K.-H.

W. R. Huang, E. A. Nanni, K. Ravi, K.-H. Hong, A. Fallahi, L. J. Wong, P. D. Keathley, L. E. Zapata, and F. X. Kärtner, “Toward a terahertz-driven electron gun,” Sci. Rep. 5, 14899 (2015).
[Crossref] [PubMed]

E. A. Nanni, W. R. Huang, K.-H. Hong, K. Ravi, A. Fallahi, G. Moriena, R. J. Miller, and F. X. Kärtner, “Terahertz-driven linear electron acceleration,” Nat. Commun. 6, 8486 (2015).
[Crossref] [PubMed]

S.-W. Huang, E. Granados, W. R. Huang, K.-H. Hong, L. E. Zapata, and F. X. Kärtner, “High conversion efficiency, high energy terahertz pulses by optical rectification in cryogenically cooled lithium niobate,” Opt. Lett. 38(5), 796–798 (2013).
[Crossref] [PubMed]

Huang, S.-W.

Huang, W. R.

Ippen, E. P.

Jahnke, T.

Kämpfe, T.

Karsch, S.

Kärtner, F.

Kärtner, F. X.

Keathley, P. D.

W. R. Huang, E. A. Nanni, K. Ravi, K.-H. Hong, A. Fallahi, L. J. Wong, P. D. Keathley, L. E. Zapata, and F. X. Kärtner, “Toward a terahertz-driven electron gun,” Sci. Rep. 5, 14899 (2015).
[Crossref] [PubMed]

Keisuke, N.

N. Keisuke and K. Atsushi, “Erratum: design of rectangular transmission gratings fabricated in LiNbO3 for high-power terahertz-wave generation,” Jpn. J. Appl. Phys. 51, 119201 (2012).

N. Keisuke and K. Atsushi, “Design of rectangular transmission gratings fabricated in LiNbO3 for high-power terahertz-wave generation,” Jpn. J. Appl. Phys. 49(12), 122504 (2010).
[Crossref]

Kley, E.-B.

Klingebiel, S.

Kovacs, K.

E. Balogh, K. Kovacs, P. Dombi, J. A. Fulop, G. Farkas, J. Hebling, V. Tosa, and K. Varju, “Single attosecond pulse from terahertz-assisted high-order harmonic generation,” Phys. Rev. A 84(2), 023806 (2011).
[Crossref]

Kozma, I.

Krausz, F.

Kuhl, J.

L. Pálfalvi, J. Hebling, J. Kuhl, A. Peter, and K. Polgar, “Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range,” J. Appl. Phys. 97(12), 123505 (2005).
[Crossref]

J. Hebling, G. Almasi, I. Kozma, and J. Kuhl, “Velocity matching by pulse front tilting for large area THz-pulse generation,” Opt. Express 10(21), 1161–1166 (2002).
[Crossref] [PubMed]

Kunitski, M.

Lengyel, K.

L. Pálfalvi, J. Hebling, G. Almasi, A. Peter, K. Polgar, K. Lengyel, and R. Szipocs, “Nonlinear refraction and absorption of Mg doped stoichiometric and congruent LiNbO3,” J. Appl. Phys. 95(3), 902–908 (2004).
[Crossref]

Lombosi, C.

Maruyama, M.

F. Yoshida, K. Nagashima, M. Tsubouchi, Y. Ochi, M. Maruyama, and A. Sugiyama, “High-efficiency contact grating using a Fabry-Perot type resonator for terahertz wave generation,” Jpn. J. Appl. Phys. 55(1), 012201 (2016).
[Crossref]

M. Tsubouchi, K. Nagashima, F. Yoshida, Y. Ochi, and M. Maruyama, “Contact grating device with Fabry-Perot resonator for effective terahertz light generation,” Opt. Lett. 39(18), 5439–5442 (2014).
[Crossref] [PubMed]

Mechler, M.

C. Lombosi, G. Polónyi, M. Mechler, Z. Ollmann, J. Hebling, and J. A. Fülöp, “Nonlinear distortion of intense THz beams,” New J. Phys. 17(8), 083041 (2015).
[Crossref]

Miller, R. J.

E. A. Nanni, W. R. Huang, K.-H. Hong, K. Ravi, A. Fallahi, G. Moriena, R. J. Miller, and F. X. Kärtner, “Terahertz-driven linear electron acceleration,” Nat. Commun. 6, 8486 (2015).
[Crossref] [PubMed]

Moharam, M. G.

M. G. Moharam and T. K. Gaylord, “Diffraction analysis of dielectric surface-relief gratings,” J. Opt. Soc. Am. B 72(10), 1385–1392 (1982).
[Crossref]

Morandotti, R.

Moriena, G.

E. A. Nanni, W. R. Huang, K.-H. Hong, K. Ravi, A. Fallahi, G. Moriena, R. J. Miller, and F. X. Kärtner, “Terahertz-driven linear electron acceleration,” Nat. Commun. 6, 8486 (2015).
[Crossref] [PubMed]

Nagashima, K.

F. Yoshida, K. Nagashima, M. Tsubouchi, Y. Ochi, M. Maruyama, and A. Sugiyama, “High-efficiency contact grating using a Fabry-Perot type resonator for terahertz wave generation,” Jpn. J. Appl. Phys. 55(1), 012201 (2016).
[Crossref]

M. Tsubouchi, K. Nagashima, F. Yoshida, Y. Ochi, and M. Maruyama, “Contact grating device with Fabry-Perot resonator for effective terahertz light generation,” Opt. Lett. 39(18), 5439–5442 (2014).
[Crossref] [PubMed]

Nanni, E. A.

K. Ravi, W. R. Huang, S. Carbajo, E. A. Nanni, D. N. Schimpf, E. P. Ippen, and F. X. Kärtner, “Theory of terahertz generation by optical rectification using tilted-pulse-fronts,” Opt. Express 23(4), 5253–5276 (2015).
[Crossref] [PubMed]

E. A. Nanni, W. R. Huang, K.-H. Hong, K. Ravi, A. Fallahi, G. Moriena, R. J. Miller, and F. X. Kärtner, “Terahertz-driven linear electron acceleration,” Nat. Commun. 6, 8486 (2015).
[Crossref] [PubMed]

W. R. Huang, E. A. Nanni, K. Ravi, K.-H. Hong, A. Fallahi, L. J. Wong, P. D. Keathley, L. E. Zapata, and F. X. Kärtner, “Toward a terahertz-driven electron gun,” Sci. Rep. 5, 14899 (2015).
[Crossref] [PubMed]

Nelson, K. A.

Ochi, Y.

F. Yoshida, K. Nagashima, M. Tsubouchi, Y. Ochi, M. Maruyama, and A. Sugiyama, “High-efficiency contact grating using a Fabry-Perot type resonator for terahertz wave generation,” Jpn. J. Appl. Phys. 55(1), 012201 (2016).
[Crossref]

M. Tsubouchi, K. Nagashima, F. Yoshida, Y. Ochi, and M. Maruyama, “Contact grating device with Fabry-Perot resonator for effective terahertz light generation,” Opt. Lett. 39(18), 5439–5442 (2014).
[Crossref] [PubMed]

Ollmann, Z.

C. Lombosi, G. Polónyi, M. Mechler, Z. Ollmann, J. Hebling, and J. A. Fülöp, “Nonlinear distortion of intense THz beams,” New J. Phys. 17(8), 083041 (2015).
[Crossref]

J. A. Fülöp, Z. Ollmann, C. Lombosi, C. Skrobol, S. Klingebiel, L. Pálfalvi, F. Krausz, S. Karsch, and J. Hebling, “Efficient generation of THz pulses with 0.4 mJ energy,” Opt. Express 22(17), 20155–20163 (2014).
[Crossref] [PubMed]

Z. Ollmann, J. A. Fulop, J. Hebling, and G. Almasi, “Design of a high-energy terahertz pulse source based on ZnTe contact grating,” Opt. Commun. 315, 159–163 (2014).
[Crossref]

Z. Ollmann, J. Hebling, and G. Almási, “Design of a contact grating setup for mJ-energy THz pulse generation by optical rectification,” Appl. Phys. B 108(4), 821–826 (2012).
[Crossref]

Ovchinnikov, A. V.

Ozaki, T.

Pálfalvi, L.

J. A. Fülöp, Z. Ollmann, C. Lombosi, C. Skrobol, S. Klingebiel, L. Pálfalvi, F. Krausz, S. Karsch, and J. Hebling, “Efficient generation of THz pulses with 0.4 mJ energy,” Opt. Express 22(17), 20155–20163 (2014).
[Crossref] [PubMed]

L. Pálfalvi, J. A. Fülöp, G. Tóth, and J. Hebling, “Evanescent-wave proton postaccelerator driven by intense THz pulse,” Phys. Rev. Special Top. 17, 031301 (2014).

J. A. Fülöp, L. Pálfalvi, G. Almási, and J. Hebling, “Erratum: design of high-energy terahertz sources based on optical rectification,” Opt. Express 19(23), 22950 (2011).
[Crossref]

J. A. Fülöp, L. Pálfalvi, M. C. Hoffmann, and J. Hebling, “Towards generation of mJ-level ultrashort THz pulses by optical rectification,” Opt. Express 19(16), 15090–15097 (2011).
[Crossref] [PubMed]

J. A. Fülöp, L. Pálfalvi, G. Almási, and J. Hebling, “Design of high-energy terahertz sources based on optical rectification,” Opt. Express 18(12), 12311–12327 (2010).
[Crossref] [PubMed]

L. Pálfalvi, J. A. Fülöp, G. Almási, and J. Hebling, “Novel setups for extremely high power single-cycle terahertz pulse generation by optical rectification,” Appl. Phys. Lett. 92(17), 171107 (2008).
[Crossref]

L. Pálfalvi, J. Hebling, J. Kuhl, A. Peter, and K. Polgar, “Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range,” J. Appl. Phys. 97(12), 123505 (2005).
[Crossref]

L. Pálfalvi, J. Hebling, G. Almasi, A. Peter, K. Polgar, K. Lengyel, and R. Szipocs, “Nonlinear refraction and absorption of Mg doped stoichiometric and congruent LiNbO3,” J. Appl. Phys. 95(3), 902–908 (2004).
[Crossref]

Parriaux, O.

Peter, A.

L. Pálfalvi, J. Hebling, J. Kuhl, A. Peter, and K. Polgar, “Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range,” J. Appl. Phys. 97(12), 123505 (2005).
[Crossref]

L. Pálfalvi, J. Hebling, G. Almasi, A. Peter, K. Polgar, K. Lengyel, and R. Szipocs, “Nonlinear refraction and absorption of Mg doped stoichiometric and congruent LiNbO3,” J. Appl. Phys. 95(3), 902–908 (2004).
[Crossref]

Polgar, K.

L. Pálfalvi, J. Hebling, J. Kuhl, A. Peter, and K. Polgar, “Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range,” J. Appl. Phys. 97(12), 123505 (2005).
[Crossref]

L. Pálfalvi, J. Hebling, G. Almasi, A. Peter, K. Polgar, K. Lengyel, and R. Szipocs, “Nonlinear refraction and absorption of Mg doped stoichiometric and congruent LiNbO3,” J. Appl. Phys. 95(3), 902–908 (2004).
[Crossref]

Polónyi, G.

C. Lombosi, G. Polónyi, M. Mechler, Z. Ollmann, J. Hebling, and J. A. Fülöp, “Nonlinear distortion of intense THz beams,” New J. Phys. 17(8), 083041 (2015).
[Crossref]

Ravi, K.

W. R. Huang, E. A. Nanni, K. Ravi, K.-H. Hong, A. Fallahi, L. J. Wong, P. D. Keathley, L. E. Zapata, and F. X. Kärtner, “Toward a terahertz-driven electron gun,” Sci. Rep. 5, 14899 (2015).
[Crossref] [PubMed]

E. A. Nanni, W. R. Huang, K.-H. Hong, K. Ravi, A. Fallahi, G. Moriena, R. J. Miller, and F. X. Kärtner, “Terahertz-driven linear electron acceleration,” Nat. Commun. 6, 8486 (2015).
[Crossref] [PubMed]

K. Ravi, W. R. Huang, S. Carbajo, E. A. Nanni, D. N. Schimpf, E. P. Ippen, and F. X. Kärtner, “Theory of terahertz generation by optical rectification using tilted-pulse-fronts,” Opt. Express 23(4), 5253–5276 (2015).
[Crossref] [PubMed]

K. Ravi, W. R. Huang, S. Carbajo, X. Wu, and F. Kärtner, “Limitations to THz generation by optical rectification using tilted pulse fronts,” Opt. Express 22(17), 20239–20251 (2014).
[Crossref] [PubMed]

Razavipour, H.

Richter, M.

Ropagnol, X.

Roskos, H. G.

Schimpf, D. N.

Schmidt-Böcking, H.

Schöffler, M.

Skrobol, C.

Sugiyama, A.

F. Yoshida, K. Nagashima, M. Tsubouchi, Y. Ochi, M. Maruyama, and A. Sugiyama, “High-efficiency contact grating using a Fabry-Perot type resonator for terahertz wave generation,” Jpn. J. Appl. Phys. 55(1), 012201 (2016).
[Crossref]

Szipocs, R.

L. Pálfalvi, J. Hebling, G. Almasi, A. Peter, K. Polgar, K. Lengyel, and R. Szipocs, “Nonlinear refraction and absorption of Mg doped stoichiometric and congruent LiNbO3,” J. Appl. Phys. 95(3), 902–908 (2004).
[Crossref]

Tanaka, K.

H. Hirori, A. Doi, F. Blanchard, and K. Tanaka, “Single-cycle terahertz pulses with amplitudes exceeding 1 MV/cm generated by optical rectification in LiNbO3,” Appl. Phys. Lett. 98(9), 091106 (2011).
[Crossref]

Thomson, M. D.

Tishchenko, A. V.

Tosa, V.

E. Balogh, K. Kovacs, P. Dombi, J. A. Fulop, G. Farkas, J. Hebling, V. Tosa, and K. Varju, “Single attosecond pulse from terahertz-assisted high-order harmonic generation,” Phys. Rev. A 84(2), 023806 (2011).
[Crossref]

Tóth, G.

L. Pálfalvi, J. A. Fülöp, G. Tóth, and J. Hebling, “Evanescent-wave proton postaccelerator driven by intense THz pulse,” Phys. Rev. Special Top. 17, 031301 (2014).

Tsubouchi, M.

F. Yoshida, K. Nagashima, M. Tsubouchi, Y. Ochi, M. Maruyama, and A. Sugiyama, “High-efficiency contact grating using a Fabry-Perot type resonator for terahertz wave generation,” Jpn. J. Appl. Phys. 55(1), 012201 (2016).
[Crossref]

M. Tsubouchi, K. Nagashima, F. Yoshida, Y. Ochi, and M. Maruyama, “Contact grating device with Fabry-Perot resonator for effective terahertz light generation,” Opt. Lett. 39(18), 5439–5442 (2014).
[Crossref] [PubMed]

Tünnermann, A.

Varju, K.

E. Balogh, K. Kovacs, P. Dombi, J. A. Fulop, G. Farkas, J. Hebling, V. Tosa, and K. Varju, “Single attosecond pulse from terahertz-assisted high-order harmonic generation,” Phys. Rev. A 84(2), 023806 (2011).
[Crossref]

Vicario, C.

Vredenborg, A.

Wong, L. J.

W. R. Huang, E. A. Nanni, K. Ravi, K.-H. Hong, A. Fallahi, L. J. Wong, P. D. Keathley, L. E. Zapata, and F. X. Kärtner, “Toward a terahertz-driven electron gun,” Sci. Rep. 5, 14899 (2015).
[Crossref] [PubMed]

L. J. Wong, A. Fallahi, and F. X. Kärtner, “Compact electron acceleration and bunch compression in THz waveguides,” Opt. Express 21(8), 9792–9806 (2013).
[Crossref] [PubMed]

Wu, J.

Wu, X.

Yeh, K. L.

Yoshida, F.

F. Yoshida, K. Nagashima, M. Tsubouchi, Y. Ochi, M. Maruyama, and A. Sugiyama, “High-efficiency contact grating using a Fabry-Perot type resonator for terahertz wave generation,” Jpn. J. Appl. Phys. 55(1), 012201 (2016).
[Crossref]

M. Tsubouchi, K. Nagashima, F. Yoshida, Y. Ochi, and M. Maruyama, “Contact grating device with Fabry-Perot resonator for effective terahertz light generation,” Opt. Lett. 39(18), 5439–5442 (2014).
[Crossref] [PubMed]

Zapata, L. E.

W. R. Huang, E. A. Nanni, K. Ravi, K.-H. Hong, A. Fallahi, L. J. Wong, P. D. Keathley, L. E. Zapata, and F. X. Kärtner, “Toward a terahertz-driven electron gun,” Sci. Rep. 5, 14899 (2015).
[Crossref] [PubMed]

S.-W. Huang, E. Granados, W. R. Huang, K.-H. Hong, L. E. Zapata, and F. X. Kärtner, “High conversion efficiency, high energy terahertz pulses by optical rectification in cryogenically cooled lithium niobate,” Opt. Lett. 38(5), 796–798 (2013).
[Crossref] [PubMed]

Appl. Phys. B (1)

Z. Ollmann, J. Hebling, and G. Almási, “Design of a contact grating setup for mJ-energy THz pulse generation by optical rectification,” Appl. Phys. B 108(4), 821–826 (2012).
[Crossref]

Appl. Phys. Lett. (2)

L. Pálfalvi, J. A. Fülöp, G. Almási, and J. Hebling, “Novel setups for extremely high power single-cycle terahertz pulse generation by optical rectification,” Appl. Phys. Lett. 92(17), 171107 (2008).
[Crossref]

H. Hirori, A. Doi, F. Blanchard, and K. Tanaka, “Single-cycle terahertz pulses with amplitudes exceeding 1 MV/cm generated by optical rectification in LiNbO3,” Appl. Phys. Lett. 98(9), 091106 (2011).
[Crossref]

J. Appl. Phys. (2)

L. Pálfalvi, J. Hebling, G. Almasi, A. Peter, K. Polgar, K. Lengyel, and R. Szipocs, “Nonlinear refraction and absorption of Mg doped stoichiometric and congruent LiNbO3,” J. Appl. Phys. 95(3), 902–908 (2004).
[Crossref]

L. Pálfalvi, J. Hebling, J. Kuhl, A. Peter, and K. Polgar, “Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range,” J. Appl. Phys. 97(12), 123505 (2005).
[Crossref]

J. Opt. Soc. Am. B (2)

Jpn. J. Appl. Phys. (3)

N. Keisuke and K. Atsushi, “Design of rectangular transmission gratings fabricated in LiNbO3 for high-power terahertz-wave generation,” Jpn. J. Appl. Phys. 49(12), 122504 (2010).
[Crossref]

N. Keisuke and K. Atsushi, “Erratum: design of rectangular transmission gratings fabricated in LiNbO3 for high-power terahertz-wave generation,” Jpn. J. Appl. Phys. 51, 119201 (2012).

F. Yoshida, K. Nagashima, M. Tsubouchi, Y. Ochi, M. Maruyama, and A. Sugiyama, “High-efficiency contact grating using a Fabry-Perot type resonator for terahertz wave generation,” Jpn. J. Appl. Phys. 55(1), 012201 (2016).
[Crossref]

Nat. Commun. (1)

E. A. Nanni, W. R. Huang, K.-H. Hong, K. Ravi, A. Fallahi, G. Moriena, R. J. Miller, and F. X. Kärtner, “Terahertz-driven linear electron acceleration,” Nat. Commun. 6, 8486 (2015).
[Crossref] [PubMed]

New J. Phys. (1)

C. Lombosi, G. Polónyi, M. Mechler, Z. Ollmann, J. Hebling, and J. A. Fülöp, “Nonlinear distortion of intense THz beams,” New J. Phys. 17(8), 083041 (2015).
[Crossref]

Opt. Commun. (1)

Z. Ollmann, J. A. Fulop, J. Hebling, and G. Almasi, “Design of a high-energy terahertz pulse source based on ZnTe contact grating,” Opt. Commun. 315, 159–163 (2014).
[Crossref]

Opt. Express (10)

K. Ravi, W. R. Huang, S. Carbajo, E. A. Nanni, D. N. Schimpf, E. P. Ippen, and F. X. Kärtner, “Theory of terahertz generation by optical rectification using tilted-pulse-fronts,” Opt. Express 23(4), 5253–5276 (2015).
[Crossref] [PubMed]

T. Clausnitzer, T. Kämpfe, E.-B. Kley, A. Tünnermann, A. V. Tishchenko, and O. Parriaux, “Highly-dispersive dielectric transmission gratings with 100% diffraction efficiency,” Opt. Express 16(8), 5577–5584 (2008).
[Crossref] [PubMed]

K. Ravi, W. R. Huang, S. Carbajo, X. Wu, and F. Kärtner, “Limitations to THz generation by optical rectification using tilted pulse fronts,” Opt. Express 22(17), 20239–20251 (2014).
[Crossref] [PubMed]

J. A. Fülöp, L. Pálfalvi, G. Almási, and J. Hebling, “Erratum: design of high-energy terahertz sources based on optical rectification,” Opt. Express 19(23), 22950 (2011).
[Crossref]

L. J. Wong, A. Fallahi, and F. X. Kärtner, “Compact electron acceleration and bunch compression in THz waveguides,” Opt. Express 21(8), 9792–9806 (2013).
[Crossref] [PubMed]

J. Hebling, G. Almasi, I. Kozma, and J. Kuhl, “Velocity matching by pulse front tilting for large area THz-pulse generation,” Opt. Express 10(21), 1161–1166 (2002).
[Crossref] [PubMed]

J. A. Fülöp, Z. Ollmann, C. Lombosi, C. Skrobol, S. Klingebiel, L. Pálfalvi, F. Krausz, S. Karsch, and J. Hebling, “Efficient generation of THz pulses with 0.4 mJ energy,” Opt. Express 22(17), 20155–20163 (2014).
[Crossref] [PubMed]

J. A. Fülöp, L. Pálfalvi, G. Almási, and J. Hebling, “Design of high-energy terahertz sources based on optical rectification,” Opt. Express 18(12), 12311–12327 (2010).
[Crossref] [PubMed]

J. A. Fülöp, L. Pálfalvi, M. C. Hoffmann, and J. Hebling, “Towards generation of mJ-level ultrashort THz pulses by optical rectification,” Opt. Express 19(16), 15090–15097 (2011).
[Crossref] [PubMed]

M. Kunitski, M. Richter, M. D. Thomson, A. Vredenborg, J. Wu, T. Jahnke, M. Schöffler, H. Schmidt-Böcking, H. G. Roskos, and R. Dörner, “Optimization of single-cycle terahertz generation in LiNbO3 for sub-50 femtosecond pump pulses,” Opt. Express 21(6), 6826–6836 (2013).
[Crossref] [PubMed]

Opt. Lett. (4)

Opt. Quantum Electron. (1)

J. Hebling, “Derivation of the pulse front tilt caused by angular dispersion,” Opt. Quantum Electron. 28(12), 1759–1763 (1996).
[Crossref]

Phys. Rev. A (1)

E. Balogh, K. Kovacs, P. Dombi, J. A. Fulop, G. Farkas, J. Hebling, V. Tosa, and K. Varju, “Single attosecond pulse from terahertz-assisted high-order harmonic generation,” Phys. Rev. A 84(2), 023806 (2011).
[Crossref]

Phys. Rev. Special Top. (1)

L. Pálfalvi, J. A. Fülöp, G. Tóth, and J. Hebling, “Evanescent-wave proton postaccelerator driven by intense THz pulse,” Phys. Rev. Special Top. 17, 031301 (2014).

Sci. Rep. (1)

W. R. Huang, E. A. Nanni, K. Ravi, K.-H. Hong, A. Fallahi, L. J. Wong, P. D. Keathley, L. E. Zapata, and F. X. Kärtner, “Toward a terahertz-driven electron gun,” Sci. Rep. 5, 14899 (2015).
[Crossref] [PubMed]

Other (1)

J. Hebling, J. Fülöp, M. Mechler, L. Pálfalvi, C. Tőke, and G. Almási, “Optical manipulation of relativistic electron beams using THz pulses,” http://arxiv.org/abs/1109.6852 (2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 The scheme of the HTPF THz source. The four short green lines on the ray symbolize the pulse front.
Fig. 2
Fig. 2 Angle of incidence on the CG and the wedge angle versus the grating period for initial tilt angle of γ 0 =66° .
Fig. 3
Fig. 3 A schematic figure showing the binary grating profile (a). Diffraction efficiency of the CG versus the filling factor and the groove depth for γ 0 =66° , θ i2 =28° , and p 2 =0.63 μm (b).
Fig. 4
Fig. 4 Diffraction efficiency of the CG versus the angle of incidence and initial pulse-front-tilt angle (a). The grating period and wedge angle versus the initial pulse front tilt angle (b). The geometrical parameters belonging to a few different γ 0 are shown in Table 2.
Fig. 5
Fig. 5 Comparison of the conventional TPF and the HTPF setups based on the pump pulse length changes along the diameter (x) of the pump beam in the plane of angular dispersion.
Fig. 6
Fig. 6 Formation of the pulse front tilt in course of the diffraction at the CG.
Fig. 7
Fig. 7 Imaging with the lens into the crystal.

Tables (2)

Tables Icon

Table 1 Notations and acronyms used in the text and in the figures.

Tables Icon

Table 2 Geometrical parameters belonging to the optimized HTPF, conventional TPF, and the simple CG setups. For HTPF setups parameter values belonging to efficiency maximum are given for initial tilt angles of γ 0 =60, 63, 66 and 70° . The groove density of G1 (HTPF setups) and of the optical grating in the conventional setup is 1400/mm. The focal length of the lens is 200 mm in the setups containing imaging. The notation can be clarified by Table 1. Note that the simple CG setup (last line in Table 2) contains RIML.

Equations (34)

Equations on this page are rendered with MathJax. Learn more.

v g p cosγ= v ph THz
sin( θ i2 )+nsin( θ d2 )= λ 0 p 2 .
tan γ 0 =( tan( γ )tan( θ d2 ) 1 n g sin( θ i2 ) cos( θ d2 ) ) cos( θ d2 ) cos( θ i2 ) n g
sin( θ i )= λ 0 p 1 ( 1 a k n n g ),
s 1 =f( a +1 ),
s 2 = f s 1 s 1 f s n cos 2 ( θ i2 ) cos 2 ( θ d2 ) ,
a= p 1 n 2 n g 2 2 λ 0 k 2 λ 0 2 p 1 2 tan 4 γ 0 + 4 k 2 n 2 n g 2 n 2 n g 2 2 tan 2 γ 0 k 2 ,
k= cos( θ i2 ) cos( θ d2 ) tanγ tan γ 0 n g .
BC+CD c + DB' c n g = AA' c n g
BC=ADcos( θ i2 )tan γ 0 ,
CD=ADsin( θ i2 ),
DB'=ADsin( θ d2 ),
AA'=ADcos( θ d2 )tanγ.
tan γ 0 =( tan( γ )tan( θ d2 ) 1 n g sin( θ i2 ) cos( θ d2 ) ) cos( θ d2 ) cos( θ i2 ) n g
Δ θ d2 = cos( θ i2 ) ncos( θ d2 ) Δ θ i2 .
Δ θ i2 =Δ ε 2 ,
Δ ε 2 = s 1 f f Δ ε 1 .
M A = s 1 f n f cos( θ i2 ) cos( θ d2 ) .
tan( θ )= 1 M A tan( θ d ).
tan( θ )= n f s 1 f cos( θ d2 ) cos( θ i2 ) tan( θ d ).
b s 1 Δ ε 1 + s 2 Δ ε 2 cos( θ i2 ) ,
bcos( θ d2 )sΔ θ d2 .
s 2 = f s 1 s 1 f s n cos 2 ( θ i2 ) cos 2 ( θ d2 ) ,
sin( θ i )+sin( θ d )= λ 0 p 1 ,
d ε 1 dλ = 1 p 1 cos( θ d ) ,
d ε 2 dλ = 1 p 1 cos( θ d ) s 1 f f .
tan γ 0 = λ 0 d ε 2 dλ .
tan γ 0 = λ 0 p 1 cos( θ d ) s 1 f f ,
θ=γ
sin( θ d )=a λ 0 p 1 n n g k,
sin( θ i )= λ 0 p 1 ( 1 a k n n g ),
a= p 1 n 2 n g 2 2 λ 0 k 2 λ 0 2 p 1 2 tan 4 γ 0 + 4 k 2 n 2 n g 2 n 2 n g 2 2 tan 2 γ 0 k 2 ,
k= cos( θ i2 ) cos( θ d2 ) tanγ tan γ 0 n g
s 1 =f( a +1 ),

Metrics