Abstract

We report the first measurement of the direct stress optic coefficient for yttria-partially stabilized zirconia (YTZP) ceramic, using illumination between 260 and 380 GHz with applied stresses up to 27 MPa. YTZP exhibited a linear change in refractive index as a function of stress across the entire applied stress domain. A direct stress optic coefficient was also measured for polytetrafluoroethylene (PTFE). PTFE showed viscoelastic behavior at stress values above 4.5 MPa. These results open the way for quantitative sub-surface stress measurements in structural ceramics and ceramic coating systems at GHz and THz frequencies.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Measurement of direct strain optic coefficient of YSZ thermal barrier coatings at GHz frequencies

Peter Schemmel, Gilles Diederich, and Andrew J. Moore
Opt. Express 25(17) 19968-19980 (2017)

Monitoring stress changes in carbon fiber reinforced polymer composites with GHz radiation

Peter Schemmel and Andrew J. Moore
Appl. Opt. 56(22) 6405-6409 (2017)

Active modulation of refractive index by stress in the terahertz frequency range

Lin’an Li, Wei Song, Zhiyong Wang, Shibin Wang, Mingxia He, Jiaguang Han, and Longqing Cong
Appl. Opt. 52(25) 6364-6368 (2013)

References

  • View by:
  • |
  • |
  • |

  1. K. Ramesh, Digital Photoelasticity: Advanced Techniques and Applications (Springer, 2000).
  2. M. Ramji and K. Ramesh, “Whole field evaluation of stress components in digital photoelasticity: Issues, implementation and application,” Opt. Lasers Eng. 46(3), 257–271 (2008).
    [Crossref]
  3. J. T. Oh and S. W. Kim, “Polarization-sensitive optical coherence tomography for photoelasticity testing of glass/epoxy composites,” Opt. Express 11(14), 1669–1676 (2003).
    [Crossref] [PubMed]
  4. Y. Niitsu, K. Ichinose, and K. Ikegami, “Stress measurement of transparent materials by polarized laser,” JSME Int. J. A 38, 68–72 (1995).
  5. C. W. Chang, P. H. Chen, and H. S. Lien, “Evaluation of residual stress in pre-stressed concrete material by digital image processing photoelastic coating and hole drilling method,” Measurement 42(4), 552–558 (2009).
    [Crossref]
  6. T. D. Nguyen, J. D. R. Valera, and A. J. Moore, “Optical thickness measurement with multi-wavelength THz interferometry,” Opt. Lasers Eng. 61, 19–22 (2014).
    [Crossref]
  7. J. White, G. Fichter, A. Chernovsky, J. F. Whitaker, D. Das, T. M. Pollock, D. Zimdars, D. O. Thompson, and D. E. Chimenti, “Time domain terahertz non-destructive evaluation of aeroturbine blade thermal barrier coatings,” AIP Conf. Proc. 1096, 434–439 (2009).
    [Crossref]
  8. C. C. Chen, D. J. Lee, T. Pollock, and J. F. Whitaker, “Pulsed-terahertz reflectometry for health monitoring of ceramic thermal barrier coatings,” Opt. Express 18(4), 3477–3486 (2010).
    [Crossref] [PubMed]
  9. C. D. Stoik, M. J. Bohn, and J. L. Blackshire, “Nondestructive evaluation of aircraft composites using transmissive terahertz time domain spectroscopy,” Opt. Express 16(21), 17039–17051 (2008).
    [Crossref] [PubMed]
  10. M. Pendola, G. Feuer, N. Maloof, and S. Saha, “Evaluation of contraction of packable dental composites using photoelasticity,” Bioengineering Conference (NEBEC), 2014 40th Annual Northeast pp. 25–27 (2014).
    [Crossref]
  11. S. Ebara, Y. Hirota, M. Tani, and M. Hangyo, “Highly sensitive birefringence measurement in THz frequency region and its application to stress measurement,” Joint 32nd International Conference on Infrared and Millimeter Waves and the 15th International Conference on Terahertz Electronics (2007).
    [Crossref]
  12. R. D. Mindlin, “A mathematical theory of photo-viscoelasticity,” J. Appl. Phys. 20(2), 206–216 (1949).
    [Crossref]
  13. T. Hirano, Y. Imai, and Y. Hayashi, “Photovisco-elasto-plastic analysis tested on polyester by the scattered-light method,” Exp. Mech. 37(2), 159–164 (1997).
    [Crossref]
  14. K. Stetson, “Strain field measurement by transverse digital holography,” Appl. Opt. 54, 2–7 (2015).
  15. S. Katletz, M. Pfleger, H. Pühringer, M. Mikulics, N. Vieweg, O. Peters, B. Scherger, M. Scheller, M. Koch, and K. Wiesauer, “Polarization sensitive terahertz imaging: detection of birefringence and optical axis,” Opt. Express 20(21), 23025–23035 (2012).
    [Crossref] [PubMed]
  16. W. Song, L. Li, Z. Wang, S. Wang, M. He, J. Han, L. Cong, and Y. Deng, “Experimental verification of the uniaxial stress-optic law in the terahertz frequency regime,” Opt. Lasers Eng. 52, 174–177 (2014).
    [Crossref]
  17. L. Li, W. Song, Z. Wang, S. Wang, M. He, J. Han, and L. Cong, “Active modulation of refractive index by stress in the terahertz frequency range,” Appl. Opt. 52(25), 6364–6368 (2013).
    [Crossref] [PubMed]
  18. CoorsTek, “ http://www.coorstek.com ,” (2015).
  19. J. F. Lodenquai, “Determination of absorption coefficients of thin films,” Sol. Energy 53, 209–210 (1994).
    [Crossref]
  20. E. Hecht, Optics, 4th ed. (Addison Wesley, 2001).
  21. S. Lütze, “Confocal laser scanning photoelasticity: Improvement of precision for quantitative photoelastic studies on model composite materials,” Scanning 23(4), 273–278 (2001).
    [Crossref]
  22. M. Wijerathne, K. Oguni, and M. Hori, “Tensor field tomography based on 3D photoelasticity,” Mech. Mater. 34(9), 533–545 (2002).
    [Crossref]
  23. M. Wijerathne, K. Oguni, and M. Hori, “Stress field tomography based on 3D photoelasticity,” J. Mech. Phys. Solids 56(3), 1065–1085 (2008).
    [Crossref]

2015 (1)

K. Stetson, “Strain field measurement by transverse digital holography,” Appl. Opt. 54, 2–7 (2015).

2014 (2)

W. Song, L. Li, Z. Wang, S. Wang, M. He, J. Han, L. Cong, and Y. Deng, “Experimental verification of the uniaxial stress-optic law in the terahertz frequency regime,” Opt. Lasers Eng. 52, 174–177 (2014).
[Crossref]

T. D. Nguyen, J. D. R. Valera, and A. J. Moore, “Optical thickness measurement with multi-wavelength THz interferometry,” Opt. Lasers Eng. 61, 19–22 (2014).
[Crossref]

2013 (1)

2012 (1)

2010 (1)

2009 (2)

C. W. Chang, P. H. Chen, and H. S. Lien, “Evaluation of residual stress in pre-stressed concrete material by digital image processing photoelastic coating and hole drilling method,” Measurement 42(4), 552–558 (2009).
[Crossref]

J. White, G. Fichter, A. Chernovsky, J. F. Whitaker, D. Das, T. M. Pollock, D. Zimdars, D. O. Thompson, and D. E. Chimenti, “Time domain terahertz non-destructive evaluation of aeroturbine blade thermal barrier coatings,” AIP Conf. Proc. 1096, 434–439 (2009).
[Crossref]

2008 (3)

M. Ramji and K. Ramesh, “Whole field evaluation of stress components in digital photoelasticity: Issues, implementation and application,” Opt. Lasers Eng. 46(3), 257–271 (2008).
[Crossref]

C. D. Stoik, M. J. Bohn, and J. L. Blackshire, “Nondestructive evaluation of aircraft composites using transmissive terahertz time domain spectroscopy,” Opt. Express 16(21), 17039–17051 (2008).
[Crossref] [PubMed]

M. Wijerathne, K. Oguni, and M. Hori, “Stress field tomography based on 3D photoelasticity,” J. Mech. Phys. Solids 56(3), 1065–1085 (2008).
[Crossref]

2003 (1)

2002 (1)

M. Wijerathne, K. Oguni, and M. Hori, “Tensor field tomography based on 3D photoelasticity,” Mech. Mater. 34(9), 533–545 (2002).
[Crossref]

2001 (1)

S. Lütze, “Confocal laser scanning photoelasticity: Improvement of precision for quantitative photoelastic studies on model composite materials,” Scanning 23(4), 273–278 (2001).
[Crossref]

1997 (1)

T. Hirano, Y. Imai, and Y. Hayashi, “Photovisco-elasto-plastic analysis tested on polyester by the scattered-light method,” Exp. Mech. 37(2), 159–164 (1997).
[Crossref]

1995 (1)

Y. Niitsu, K. Ichinose, and K. Ikegami, “Stress measurement of transparent materials by polarized laser,” JSME Int. J. A 38, 68–72 (1995).

1994 (1)

J. F. Lodenquai, “Determination of absorption coefficients of thin films,” Sol. Energy 53, 209–210 (1994).
[Crossref]

1949 (1)

R. D. Mindlin, “A mathematical theory of photo-viscoelasticity,” J. Appl. Phys. 20(2), 206–216 (1949).
[Crossref]

Blackshire, J. L.

Bohn, M. J.

Chang, C. W.

C. W. Chang, P. H. Chen, and H. S. Lien, “Evaluation of residual stress in pre-stressed concrete material by digital image processing photoelastic coating and hole drilling method,” Measurement 42(4), 552–558 (2009).
[Crossref]

Chen, C. C.

Chen, P. H.

C. W. Chang, P. H. Chen, and H. S. Lien, “Evaluation of residual stress in pre-stressed concrete material by digital image processing photoelastic coating and hole drilling method,” Measurement 42(4), 552–558 (2009).
[Crossref]

Chernovsky, A.

J. White, G. Fichter, A. Chernovsky, J. F. Whitaker, D. Das, T. M. Pollock, D. Zimdars, D. O. Thompson, and D. E. Chimenti, “Time domain terahertz non-destructive evaluation of aeroturbine blade thermal barrier coatings,” AIP Conf. Proc. 1096, 434–439 (2009).
[Crossref]

Chimenti, D. E.

J. White, G. Fichter, A. Chernovsky, J. F. Whitaker, D. Das, T. M. Pollock, D. Zimdars, D. O. Thompson, and D. E. Chimenti, “Time domain terahertz non-destructive evaluation of aeroturbine blade thermal barrier coatings,” AIP Conf. Proc. 1096, 434–439 (2009).
[Crossref]

Cong, L.

W. Song, L. Li, Z. Wang, S. Wang, M. He, J. Han, L. Cong, and Y. Deng, “Experimental verification of the uniaxial stress-optic law in the terahertz frequency regime,” Opt. Lasers Eng. 52, 174–177 (2014).
[Crossref]

L. Li, W. Song, Z. Wang, S. Wang, M. He, J. Han, and L. Cong, “Active modulation of refractive index by stress in the terahertz frequency range,” Appl. Opt. 52(25), 6364–6368 (2013).
[Crossref] [PubMed]

Das, D.

J. White, G. Fichter, A. Chernovsky, J. F. Whitaker, D. Das, T. M. Pollock, D. Zimdars, D. O. Thompson, and D. E. Chimenti, “Time domain terahertz non-destructive evaluation of aeroturbine blade thermal barrier coatings,” AIP Conf. Proc. 1096, 434–439 (2009).
[Crossref]

Deng, Y.

W. Song, L. Li, Z. Wang, S. Wang, M. He, J. Han, L. Cong, and Y. Deng, “Experimental verification of the uniaxial stress-optic law in the terahertz frequency regime,” Opt. Lasers Eng. 52, 174–177 (2014).
[Crossref]

Fichter, G.

J. White, G. Fichter, A. Chernovsky, J. F. Whitaker, D. Das, T. M. Pollock, D. Zimdars, D. O. Thompson, and D. E. Chimenti, “Time domain terahertz non-destructive evaluation of aeroturbine blade thermal barrier coatings,” AIP Conf. Proc. 1096, 434–439 (2009).
[Crossref]

Han, J.

W. Song, L. Li, Z. Wang, S. Wang, M. He, J. Han, L. Cong, and Y. Deng, “Experimental verification of the uniaxial stress-optic law in the terahertz frequency regime,” Opt. Lasers Eng. 52, 174–177 (2014).
[Crossref]

L. Li, W. Song, Z. Wang, S. Wang, M. He, J. Han, and L. Cong, “Active modulation of refractive index by stress in the terahertz frequency range,” Appl. Opt. 52(25), 6364–6368 (2013).
[Crossref] [PubMed]

Hayashi, Y.

T. Hirano, Y. Imai, and Y. Hayashi, “Photovisco-elasto-plastic analysis tested on polyester by the scattered-light method,” Exp. Mech. 37(2), 159–164 (1997).
[Crossref]

He, M.

W. Song, L. Li, Z. Wang, S. Wang, M. He, J. Han, L. Cong, and Y. Deng, “Experimental verification of the uniaxial stress-optic law in the terahertz frequency regime,” Opt. Lasers Eng. 52, 174–177 (2014).
[Crossref]

L. Li, W. Song, Z. Wang, S. Wang, M. He, J. Han, and L. Cong, “Active modulation of refractive index by stress in the terahertz frequency range,” Appl. Opt. 52(25), 6364–6368 (2013).
[Crossref] [PubMed]

Hirano, T.

T. Hirano, Y. Imai, and Y. Hayashi, “Photovisco-elasto-plastic analysis tested on polyester by the scattered-light method,” Exp. Mech. 37(2), 159–164 (1997).
[Crossref]

Hori, M.

M. Wijerathne, K. Oguni, and M. Hori, “Stress field tomography based on 3D photoelasticity,” J. Mech. Phys. Solids 56(3), 1065–1085 (2008).
[Crossref]

M. Wijerathne, K. Oguni, and M. Hori, “Tensor field tomography based on 3D photoelasticity,” Mech. Mater. 34(9), 533–545 (2002).
[Crossref]

Ichinose, K.

Y. Niitsu, K. Ichinose, and K. Ikegami, “Stress measurement of transparent materials by polarized laser,” JSME Int. J. A 38, 68–72 (1995).

Ikegami, K.

Y. Niitsu, K. Ichinose, and K. Ikegami, “Stress measurement of transparent materials by polarized laser,” JSME Int. J. A 38, 68–72 (1995).

Imai, Y.

T. Hirano, Y. Imai, and Y. Hayashi, “Photovisco-elasto-plastic analysis tested on polyester by the scattered-light method,” Exp. Mech. 37(2), 159–164 (1997).
[Crossref]

Katletz, S.

Kim, S. W.

Koch, M.

Lee, D. J.

Li, L.

W. Song, L. Li, Z. Wang, S. Wang, M. He, J. Han, L. Cong, and Y. Deng, “Experimental verification of the uniaxial stress-optic law in the terahertz frequency regime,” Opt. Lasers Eng. 52, 174–177 (2014).
[Crossref]

L. Li, W. Song, Z. Wang, S. Wang, M. He, J. Han, and L. Cong, “Active modulation of refractive index by stress in the terahertz frequency range,” Appl. Opt. 52(25), 6364–6368 (2013).
[Crossref] [PubMed]

Lien, H. S.

C. W. Chang, P. H. Chen, and H. S. Lien, “Evaluation of residual stress in pre-stressed concrete material by digital image processing photoelastic coating and hole drilling method,” Measurement 42(4), 552–558 (2009).
[Crossref]

Lodenquai, J. F.

J. F. Lodenquai, “Determination of absorption coefficients of thin films,” Sol. Energy 53, 209–210 (1994).
[Crossref]

Lütze, S.

S. Lütze, “Confocal laser scanning photoelasticity: Improvement of precision for quantitative photoelastic studies on model composite materials,” Scanning 23(4), 273–278 (2001).
[Crossref]

Mikulics, M.

Mindlin, R. D.

R. D. Mindlin, “A mathematical theory of photo-viscoelasticity,” J. Appl. Phys. 20(2), 206–216 (1949).
[Crossref]

Moore, A. J.

T. D. Nguyen, J. D. R. Valera, and A. J. Moore, “Optical thickness measurement with multi-wavelength THz interferometry,” Opt. Lasers Eng. 61, 19–22 (2014).
[Crossref]

Nguyen, T. D.

T. D. Nguyen, J. D. R. Valera, and A. J. Moore, “Optical thickness measurement with multi-wavelength THz interferometry,” Opt. Lasers Eng. 61, 19–22 (2014).
[Crossref]

Niitsu, Y.

Y. Niitsu, K. Ichinose, and K. Ikegami, “Stress measurement of transparent materials by polarized laser,” JSME Int. J. A 38, 68–72 (1995).

Oguni, K.

M. Wijerathne, K. Oguni, and M. Hori, “Stress field tomography based on 3D photoelasticity,” J. Mech. Phys. Solids 56(3), 1065–1085 (2008).
[Crossref]

M. Wijerathne, K. Oguni, and M. Hori, “Tensor field tomography based on 3D photoelasticity,” Mech. Mater. 34(9), 533–545 (2002).
[Crossref]

Oh, J. T.

Peters, O.

Pfleger, M.

Pollock, T.

Pollock, T. M.

J. White, G. Fichter, A. Chernovsky, J. F. Whitaker, D. Das, T. M. Pollock, D. Zimdars, D. O. Thompson, and D. E. Chimenti, “Time domain terahertz non-destructive evaluation of aeroturbine blade thermal barrier coatings,” AIP Conf. Proc. 1096, 434–439 (2009).
[Crossref]

Pühringer, H.

Ramesh, K.

M. Ramji and K. Ramesh, “Whole field evaluation of stress components in digital photoelasticity: Issues, implementation and application,” Opt. Lasers Eng. 46(3), 257–271 (2008).
[Crossref]

Ramji, M.

M. Ramji and K. Ramesh, “Whole field evaluation of stress components in digital photoelasticity: Issues, implementation and application,” Opt. Lasers Eng. 46(3), 257–271 (2008).
[Crossref]

Scheller, M.

Scherger, B.

Song, W.

W. Song, L. Li, Z. Wang, S. Wang, M. He, J. Han, L. Cong, and Y. Deng, “Experimental verification of the uniaxial stress-optic law in the terahertz frequency regime,” Opt. Lasers Eng. 52, 174–177 (2014).
[Crossref]

L. Li, W. Song, Z. Wang, S. Wang, M. He, J. Han, and L. Cong, “Active modulation of refractive index by stress in the terahertz frequency range,” Appl. Opt. 52(25), 6364–6368 (2013).
[Crossref] [PubMed]

Stetson, K.

K. Stetson, “Strain field measurement by transverse digital holography,” Appl. Opt. 54, 2–7 (2015).

Stoik, C. D.

Thompson, D. O.

J. White, G. Fichter, A. Chernovsky, J. F. Whitaker, D. Das, T. M. Pollock, D. Zimdars, D. O. Thompson, and D. E. Chimenti, “Time domain terahertz non-destructive evaluation of aeroturbine blade thermal barrier coatings,” AIP Conf. Proc. 1096, 434–439 (2009).
[Crossref]

Valera, J. D. R.

T. D. Nguyen, J. D. R. Valera, and A. J. Moore, “Optical thickness measurement with multi-wavelength THz interferometry,” Opt. Lasers Eng. 61, 19–22 (2014).
[Crossref]

Vieweg, N.

Wang, S.

W. Song, L. Li, Z. Wang, S. Wang, M. He, J. Han, L. Cong, and Y. Deng, “Experimental verification of the uniaxial stress-optic law in the terahertz frequency regime,” Opt. Lasers Eng. 52, 174–177 (2014).
[Crossref]

L. Li, W. Song, Z. Wang, S. Wang, M. He, J. Han, and L. Cong, “Active modulation of refractive index by stress in the terahertz frequency range,” Appl. Opt. 52(25), 6364–6368 (2013).
[Crossref] [PubMed]

Wang, Z.

W. Song, L. Li, Z. Wang, S. Wang, M. He, J. Han, L. Cong, and Y. Deng, “Experimental verification of the uniaxial stress-optic law in the terahertz frequency regime,” Opt. Lasers Eng. 52, 174–177 (2014).
[Crossref]

L. Li, W. Song, Z. Wang, S. Wang, M. He, J. Han, and L. Cong, “Active modulation of refractive index by stress in the terahertz frequency range,” Appl. Opt. 52(25), 6364–6368 (2013).
[Crossref] [PubMed]

Whitaker, J. F.

C. C. Chen, D. J. Lee, T. Pollock, and J. F. Whitaker, “Pulsed-terahertz reflectometry for health monitoring of ceramic thermal barrier coatings,” Opt. Express 18(4), 3477–3486 (2010).
[Crossref] [PubMed]

J. White, G. Fichter, A. Chernovsky, J. F. Whitaker, D. Das, T. M. Pollock, D. Zimdars, D. O. Thompson, and D. E. Chimenti, “Time domain terahertz non-destructive evaluation of aeroturbine blade thermal barrier coatings,” AIP Conf. Proc. 1096, 434–439 (2009).
[Crossref]

White, J.

J. White, G. Fichter, A. Chernovsky, J. F. Whitaker, D. Das, T. M. Pollock, D. Zimdars, D. O. Thompson, and D. E. Chimenti, “Time domain terahertz non-destructive evaluation of aeroturbine blade thermal barrier coatings,” AIP Conf. Proc. 1096, 434–439 (2009).
[Crossref]

Wiesauer, K.

Wijerathne, M.

M. Wijerathne, K. Oguni, and M. Hori, “Stress field tomography based on 3D photoelasticity,” J. Mech. Phys. Solids 56(3), 1065–1085 (2008).
[Crossref]

M. Wijerathne, K. Oguni, and M. Hori, “Tensor field tomography based on 3D photoelasticity,” Mech. Mater. 34(9), 533–545 (2002).
[Crossref]

Zimdars, D.

J. White, G. Fichter, A. Chernovsky, J. F. Whitaker, D. Das, T. M. Pollock, D. Zimdars, D. O. Thompson, and D. E. Chimenti, “Time domain terahertz non-destructive evaluation of aeroturbine blade thermal barrier coatings,” AIP Conf. Proc. 1096, 434–439 (2009).
[Crossref]

AIP Conf. Proc. (1)

J. White, G. Fichter, A. Chernovsky, J. F. Whitaker, D. Das, T. M. Pollock, D. Zimdars, D. O. Thompson, and D. E. Chimenti, “Time domain terahertz non-destructive evaluation of aeroturbine blade thermal barrier coatings,” AIP Conf. Proc. 1096, 434–439 (2009).
[Crossref]

Appl. Opt. (2)

Exp. Mech. (1)

T. Hirano, Y. Imai, and Y. Hayashi, “Photovisco-elasto-plastic analysis tested on polyester by the scattered-light method,” Exp. Mech. 37(2), 159–164 (1997).
[Crossref]

J. Appl. Phys. (1)

R. D. Mindlin, “A mathematical theory of photo-viscoelasticity,” J. Appl. Phys. 20(2), 206–216 (1949).
[Crossref]

J. Mech. Phys. Solids (1)

M. Wijerathne, K. Oguni, and M. Hori, “Stress field tomography based on 3D photoelasticity,” J. Mech. Phys. Solids 56(3), 1065–1085 (2008).
[Crossref]

JSME Int. J. A (1)

Y. Niitsu, K. Ichinose, and K. Ikegami, “Stress measurement of transparent materials by polarized laser,” JSME Int. J. A 38, 68–72 (1995).

Measurement (1)

C. W. Chang, P. H. Chen, and H. S. Lien, “Evaluation of residual stress in pre-stressed concrete material by digital image processing photoelastic coating and hole drilling method,” Measurement 42(4), 552–558 (2009).
[Crossref]

Mech. Mater. (1)

M. Wijerathne, K. Oguni, and M. Hori, “Tensor field tomography based on 3D photoelasticity,” Mech. Mater. 34(9), 533–545 (2002).
[Crossref]

Opt. Express (4)

Opt. Lasers Eng. (3)

W. Song, L. Li, Z. Wang, S. Wang, M. He, J. Han, L. Cong, and Y. Deng, “Experimental verification of the uniaxial stress-optic law in the terahertz frequency regime,” Opt. Lasers Eng. 52, 174–177 (2014).
[Crossref]

T. D. Nguyen, J. D. R. Valera, and A. J. Moore, “Optical thickness measurement with multi-wavelength THz interferometry,” Opt. Lasers Eng. 61, 19–22 (2014).
[Crossref]

M. Ramji and K. Ramesh, “Whole field evaluation of stress components in digital photoelasticity: Issues, implementation and application,” Opt. Lasers Eng. 46(3), 257–271 (2008).
[Crossref]

Scanning (1)

S. Lütze, “Confocal laser scanning photoelasticity: Improvement of precision for quantitative photoelastic studies on model composite materials,” Scanning 23(4), 273–278 (2001).
[Crossref]

Sol. Energy (1)

J. F. Lodenquai, “Determination of absorption coefficients of thin films,” Sol. Energy 53, 209–210 (1994).
[Crossref]

Other (5)

E. Hecht, Optics, 4th ed. (Addison Wesley, 2001).

CoorsTek, “ http://www.coorstek.com ,” (2015).

K. Ramesh, Digital Photoelasticity: Advanced Techniques and Applications (Springer, 2000).

M. Pendola, G. Feuer, N. Maloof, and S. Saha, “Evaluation of contraction of packable dental composites using photoelasticity,” Bioengineering Conference (NEBEC), 2014 40th Annual Northeast pp. 25–27 (2014).
[Crossref]

S. Ebara, Y. Hirota, M. Tani, and M. Hangyo, “Highly sensitive birefringence measurement in THz frequency region and its application to stress measurement,” Joint 32nd International Conference on Infrared and Millimeter Waves and the 15th International Conference on Terahertz Electronics (2007).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic of the experimental arrangement used to measure the stress optic coefficient. Source (S), detector (D), plano-convex lens (L), polarizer (P) and analyser (A).
Fig. 2
Fig. 2 Specimen used for tensile tests. (a) Specimen in Deben tensile stage with polariser and analyser visible, tilted with respect to the optical axis to reduce standing wave interference. (b) Specimen dimensions, in millimeters, with inner dowel pin holes 3.1 mm diameter and outer M4 clearance holes 4.2 mm in diameter.
Fig. 3
Fig. 3 Typical measurements. (a) Normalized extension of YTZP and PTFE specimens during application of sequential constant loads. YTZP extension is approximately 30 times smaller than PTFE. (b) Transmission through a YTZP specimen recorded during a scan of the source frequency from 260−380 GHz (points) at 50 N constant load and the subsequent fit of the Fresnel equation (line).
Fig. 4
Fig. 4 Refractive index plotted against applied stress for YTZP. (a) Two repeated measurements for three samples (numbered). (b) Removal of offset in refractive index between samples due to thickness measurement uncertainty. Both (a) and (b) assume constant specimen thickness in the analysis. (c) Comparison between analyses assuming constant or variable specimen thickness.
Fig. 5
Fig. 5 Results of a simulation of the change in refractive index as a function of thickness, dn/dl for YTZP and PTFE.
Fig. 6
Fig. 6 Refractive index plotted against applied stress for PTFE. (a) Repeated measurements for six samples (numbered). (b) Removal of offset in refractive index between samples due to thickness measurement uncertainty. Both (a) and (b) assume constant specimen thickness in the analysis. (c) Comparison between analyses assuming constant or variable specimen thickness. Plots (a), (b) and (c) are for specimens cut perpendicular to the bulk PTFE extrusion direction. (d) Comparison between analyses assuming constant or variable specimen thickness for specimens cut parallel to the PTFE extrusion direction.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

n 1 n= c 1 σ 1 c 2 σ 2 n 2 n= c 1 σ 2 c 2 σ 1
( n 1 n 2 )=C( σ 1 σ 2 )
Δ n 1 = c 1 Δ σ 1
T= τ 1 τ 2 e ikl 1+ ρ 1 ρ 2 e 2ikl
ρ 1 = 1 n ˜ 1+ n ˜ ρ 2 = n ˜ 1 n ˜ +1 τ 1 = ρ 1 +1 τ 2 = ρ 2 +1
f( σ )=a σ 3 +b σ 2 +cσ+d
Δd= dνP AE

Metrics