Abstract

We first study the transmission property of red light in water in terms of extinction coefficient and channel bandwidth via Monte Carlo simulation, with an interesting finding that red light outperforms blue-green light in highly turbid water. We further propose and experimentally demonstrate a broadband underwater wireless optical communication system based on a simple and cost-effective TO56 red-light laser diode. We demonstrate a 1.324-Gb/s transmission at a bit error rate (BER) of 2.02 × 10−3 over a 6-m underwater channel, by using 128-QAM OFDM signals and a low-cost 150-MHz positive-intrinsic-negative photodetector, with a record spectral efficiency higher than 7.32 bits/Hz. By using an avalanche photodetector and 32-QAM OFDM signals, we have achieved a record bit rate of 4.883 Gb/s at a BER of 3.20 × 10−3 over a 6-m underwater channel.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
10-m 9.51-Gb/s RGB laser diodes-based WDM underwater wireless optical communication

Meiwei Kong, Weichao Lv, Tariq Ali, Rohail Sarwar, Chuying Yu, Yang Qiu, Fengzhong Qu, Zhiwei Xu, Jun Han, and Jing Xu
Opt. Express 25(17) 20829-20834 (2017)

4.8 Gbit/s 16-QAM-OFDM transmission based on compact 450-nm laser for underwater wireless optical communication

Hassan M. Oubei, Jose R. Duran, Bilal Janjua, Huai-Yung Wang, Cheng-Ting Tsai, Yu-Cheih Chi, Tien Khee Ng, Hao-Chung Kuo, Jr-Hau He, Mohamed-Slim Alouini, Gong-Ru Lin, and Boon S. Ooi
Opt. Express 23(18) 23302-23309 (2015)

26 m/5.5 Gbps air-water optical wireless communication based on an OFDM-modulated 520-nm laser diode

Yifei Chen, Meiwei Kong, Tariq Ali, Jiongliang Wang, Rohail Sarwar, Jun Han, Chaoyang Guo, Bing Sun, Ning Deng, and Jing Xu
Opt. Express 25(13) 14760-14765 (2017)

References

  • View by:
  • |
  • |
  • |

  1. M. Tivey, P. Fucile, and E. Sichel, “A low power, low cost, underwater optical communication system,” Ridge Events 1, 27–29 (2000).
  2. M. Chitre, S. Shahabudeen, and M. Stojanovic, “Underwater acoustic communications and networking: Recent advances and future challenges,” Mar. Technol. Soc. J. 42(1), 103–116 (2008).
    [Crossref]
  3. T. Oberg, B. Nilsson, N. Olofsson, M. L. Nordenvaad, and E. Sangfelt, “Underwater communication link with iterative equalization,” in Proceeding of the OCEANS Conference (IEEE, 2006), pp. 1–6.
  4. F. Pignieri, F. De Rango, F. Veltri, and S. Marano, “Markovian approach to model underwater acoustic channel: Techniques comparison,” in Proceedings of the Military Communications Conference (IEEE, 2008), pp. 1–7.
    [Crossref]
  5. W. C. Cox, J. A. Simpson, C. P. Domizioli, J. F. Muth, and B. L. Hughes, “An underwater optical communication system implementing Reed-Solomon channel coding,” in Proceedings of the OCEANS Conference (IEEE, 2008), pp. 1–6.
    [Crossref]
  6. B. M. Cochenour, L. J. Mullen, and A. E. Laux, “Characterization of the beam-spread function for underwater wireless optical communications links,” IEEE J. Oceanic Eng. 33(4), 513–521 (2008).
    [Crossref]
  7. D. Fornari, A. Bradley, and S. Humphris, “Inductively Coupled Link(ICL) temperature probes for hot hydrothermal fluid sampling from ROV Jason and DSV Alvin,” Ridge Events 8(1), 26–31 (1997).
  8. K. Nakamura, I. Mizukoshi, and M. Hanawa, “Optical wireless transmission of 405 nm, 1.45 Gbit/s optical IM/DD-OFDM signals through a 4.8 m underwater channel,” Opt. Express 23(2), 1558–1566 (2015).
    [Crossref] [PubMed]
  9. H. M. Oubei, J. R. Duran, B. Janjua, H. Y. Wang, C. T. Tsai, Y. C. Chi, T. K. Ng, H. C. Kuo, J. H. He, M. S. Alouini, G. R. Lin, and B. S. Ooi, “4.8 Gbit/s 16-QAM-OFDM transmission based on compact 450-nm laser for underwater wireless optical communication,” Opt. Express 23(18), 23302–23309 (2015).
    [Crossref] [PubMed]
  10. H. M. Oubei, C. Li, K. H. Park, T. K. Ng, M. S. Alouini, and B. S. Ooi, “2.3 Gbit/s underwater wireless optical communications using directly modulated 520 nm laser diode,” Opt. Express 23(16), 20743–20748 (2015).
    [Crossref] [PubMed]
  11. J. A. Simpson, W. C. Cox, J. R. Krier, B. Cochenour, B. L. Hughes, and J. F. Muth, “5 Mbps optical wireless communication with error correction coding for underwater sensor nodes,” in Proceeding of the OCEANS Conference (IEEE, 2010), pp.1–4.
    [Crossref]
  12. M. Doniec, I. Vasilescu, M. Chitre, C. Detweiler, M. Hoffmann-Kuhnt, and D. Rus, “AquaOptical: a lightweight device for high-rate long-range underwater point-to-point communication,” in Proceeding of the OCEANS Conference (IEEE, 2009), pp.1–6.
  13. F. Hanson and S. Radic, “High bandwidth underwater optical communication,” Appl. Opt. 47(2), 277–283 (2008).
    [Crossref] [PubMed]
  14. T. Tadokoro, W. Kobayashi, T. Fujisawa, T. Yamanaka, and F. Kano, “High-Speed modulation lasers for 100GbE applications,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OWD1.
  15. A. Lin, W. Lu, J. Xu, Y. Song, F. Qu, J. Han, X. Gu, and J. Leng, “Underwater wireless optical communication using a directly modulated semiconductor Laser,” in Proceeding of the OCEANS Conference (IEEE, 2015), pp.1–4.
    [Crossref]
  16. Y. C. Chi, D. H. Hsieh, C. T. Tsai, H. Y. Chen, H. C. Kuo, and G. R. Lin, “450-nm GaN laser diode enables high-speed visible light communication with 9-Gbps QAM-OFDM,” Opt. Express 23(10), 13051–13059 (2015).
    [Crossref] [PubMed]
  17. Y. C. Chi, D. H. Hsieh, C. Y. Lin, H. Y. Chen, C. Y. Huang, J. H. He, B. Ooi, S. P. DenBaars, S. Nakamura, H. C. Kuo, and G. R. Lin, “Phosphorous diffuser diverged blue laser diode for indoor lighting and communication,” Sci. Rep. 5, 18690 (2015).
    [Crossref] [PubMed]
  18. R. Stevenson, “Lasers get the green light,” IEEE Spectr. 47(3), 34–39 (2010).
    [Crossref]
  19. Y. Enya, Y. Yoshizumi, T. Kyono, K. Akita, M. Ueno, M. Adachi, T. Sumitomo, S. Tokuyama, T. Ikegami, K. Katayama, and T. Nakamura, “531 nm green lasing of InGaN based laser diodes on semi-polar {202 −1} free-standing GaN substrates,” Appl. Phys. Express 2(8), 082101 (2009).
    [Crossref]
  20. H. Buiteveld, J. M. H. Hakvoort, and M. Donze, “The optical properties of pure water,” Proc. SPIE 2258, 174–183 (1994).
    [Crossref]
  21. G. D. Ferguson, “Blue-green lasers for underwater applications,” Proc. SPIE 64, 18–22 (1975).
    [Crossref]
  22. J. Xu, M. W. Kong, A. B. Lin, Y. H. Song, X. Y. Yu, F. Z. Qu, J. Han, and N. Deng, “OFDM-based broadband underwater wireless optical communication system using a compact blue LED,” Opt. Commun. 369, 100–105 (2016).
    [Crossref]
  23. J. Xu, J. von Hoyningen-Huene, C. Ruprecht, R. Rath, and W. Rosenkranz, “Robust transmission of 29-Gb/s OFDM signal over 1-km OM1 MMF under center launching,” IEEE Photonics Technol. Lett. 25(2), 206–209 (2013).
    [Crossref]
  24. J. Xu, C. Ruprecht, J. von Hoyningen-Huene, and W. Rosenkranz, “Transmission of 25.5-Gb/s OFDM signal over 200-m G62. 5/125 MMF using mode group diversity multiplexing,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2013), paper OTh4A. 2.
    [Crossref]
  25. J. Lee, F. Breyer, S. Randel, J. Zeng, F. Huijskens, H. P. van den Boom, A. M. Koonen, and N. Hanik, “24Gb/s transmission over 730m of Multimode Fiber by Direct Modulation of an 850nm VCSEL using discrete Mult-tone Modulation,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2007), paper PDP6.
  26. X. Q. Jin, J. L. Wei, R. P. Giddings, T. Quinlan, S. Walker, and J. M. Tang, “Experimental demonstrations and extensive comparisons of end-to-end real-time optical OFDM transceivers with adaptive bit and/or power loading,” IEEE Photonics J. 3(3), 500–511 (2011).
    [Crossref]
  27. J. M. Tang, P. M. Lane, and K. A. Shore, “High-speed transmission of adaptively modulated optical OFDM signals over multimode fibers using directly modulated DFBs,” J. Lightwave Technol. 24(1), 429–441 (2006).
    [Crossref]
  28. L. Prieur and S. Sathyendranath, “An optical classification of coastal and oceanic waters based on the specific spectral absorption curves of phytoplankton pigments, dissolved organic matter, and other particulate materials,” Limnol. Oceanogr. 26(4), 671–689 (1981).
    [Crossref]
  29. D. C. Mobley, Light and Water: Radiative Transfer in Natural Waters (Academic, 1994).
  30. C. Gabriel, M. Khalighi, S. Bourennane, P. Léon, and V. Rigaud, “Monte-Carlo-based channel characterization for underwater optical communication systems,” J. Opt. Commun. Netw. 5(1), 1–12 (2013).
    [Crossref]
  31. C. T. Tsai, Y. C. Chi, and G. R. Lin, “Power fading mitigation of 40-Gbit/s 256-QAM OFDM carried by colorless laser diode under injection-locking,” Opt. Express 23(22), 29065–29078 (2015).
    [Crossref] [PubMed]
  32. Y. C. Chi and G. R. Lin, “A-factor enhanced optoelectronic oscillator for 40-Gbit/s pulsed RZ-OOK transmission,” IEEE Trans. Microw. Theory Tech. 62(12), 3216–3223 (2014).
    [Crossref]
  33. T. M. Schmidl and D. C. Cox, “Robust frequency and timing synchronization for OFDM,” IEEE Trans. Commun. 45(12), 1613–1621 (1997).
    [Crossref]

2016 (1)

J. Xu, M. W. Kong, A. B. Lin, Y. H. Song, X. Y. Yu, F. Z. Qu, J. Han, and N. Deng, “OFDM-based broadband underwater wireless optical communication system using a compact blue LED,” Opt. Commun. 369, 100–105 (2016).
[Crossref]

2015 (6)

K. Nakamura, I. Mizukoshi, and M. Hanawa, “Optical wireless transmission of 405 nm, 1.45 Gbit/s optical IM/DD-OFDM signals through a 4.8 m underwater channel,” Opt. Express 23(2), 1558–1566 (2015).
[Crossref] [PubMed]

H. M. Oubei, J. R. Duran, B. Janjua, H. Y. Wang, C. T. Tsai, Y. C. Chi, T. K. Ng, H. C. Kuo, J. H. He, M. S. Alouini, G. R. Lin, and B. S. Ooi, “4.8 Gbit/s 16-QAM-OFDM transmission based on compact 450-nm laser for underwater wireless optical communication,” Opt. Express 23(18), 23302–23309 (2015).
[Crossref] [PubMed]

H. M. Oubei, C. Li, K. H. Park, T. K. Ng, M. S. Alouini, and B. S. Ooi, “2.3 Gbit/s underwater wireless optical communications using directly modulated 520 nm laser diode,” Opt. Express 23(16), 20743–20748 (2015).
[Crossref] [PubMed]

Y. C. Chi, D. H. Hsieh, C. T. Tsai, H. Y. Chen, H. C. Kuo, and G. R. Lin, “450-nm GaN laser diode enables high-speed visible light communication with 9-Gbps QAM-OFDM,” Opt. Express 23(10), 13051–13059 (2015).
[Crossref] [PubMed]

Y. C. Chi, D. H. Hsieh, C. Y. Lin, H. Y. Chen, C. Y. Huang, J. H. He, B. Ooi, S. P. DenBaars, S. Nakamura, H. C. Kuo, and G. R. Lin, “Phosphorous diffuser diverged blue laser diode for indoor lighting and communication,” Sci. Rep. 5, 18690 (2015).
[Crossref] [PubMed]

C. T. Tsai, Y. C. Chi, and G. R. Lin, “Power fading mitigation of 40-Gbit/s 256-QAM OFDM carried by colorless laser diode under injection-locking,” Opt. Express 23(22), 29065–29078 (2015).
[Crossref] [PubMed]

2014 (1)

Y. C. Chi and G. R. Lin, “A-factor enhanced optoelectronic oscillator for 40-Gbit/s pulsed RZ-OOK transmission,” IEEE Trans. Microw. Theory Tech. 62(12), 3216–3223 (2014).
[Crossref]

2013 (2)

J. Xu, J. von Hoyningen-Huene, C. Ruprecht, R. Rath, and W. Rosenkranz, “Robust transmission of 29-Gb/s OFDM signal over 1-km OM1 MMF under center launching,” IEEE Photonics Technol. Lett. 25(2), 206–209 (2013).
[Crossref]

C. Gabriel, M. Khalighi, S. Bourennane, P. Léon, and V. Rigaud, “Monte-Carlo-based channel characterization for underwater optical communication systems,” J. Opt. Commun. Netw. 5(1), 1–12 (2013).
[Crossref]

2011 (1)

X. Q. Jin, J. L. Wei, R. P. Giddings, T. Quinlan, S. Walker, and J. M. Tang, “Experimental demonstrations and extensive comparisons of end-to-end real-time optical OFDM transceivers with adaptive bit and/or power loading,” IEEE Photonics J. 3(3), 500–511 (2011).
[Crossref]

2010 (1)

R. Stevenson, “Lasers get the green light,” IEEE Spectr. 47(3), 34–39 (2010).
[Crossref]

2009 (1)

Y. Enya, Y. Yoshizumi, T. Kyono, K. Akita, M. Ueno, M. Adachi, T. Sumitomo, S. Tokuyama, T. Ikegami, K. Katayama, and T. Nakamura, “531 nm green lasing of InGaN based laser diodes on semi-polar {202 −1} free-standing GaN substrates,” Appl. Phys. Express 2(8), 082101 (2009).
[Crossref]

2008 (3)

F. Hanson and S. Radic, “High bandwidth underwater optical communication,” Appl. Opt. 47(2), 277–283 (2008).
[Crossref] [PubMed]

M. Chitre, S. Shahabudeen, and M. Stojanovic, “Underwater acoustic communications and networking: Recent advances and future challenges,” Mar. Technol. Soc. J. 42(1), 103–116 (2008).
[Crossref]

B. M. Cochenour, L. J. Mullen, and A. E. Laux, “Characterization of the beam-spread function for underwater wireless optical communications links,” IEEE J. Oceanic Eng. 33(4), 513–521 (2008).
[Crossref]

2006 (1)

2000 (1)

M. Tivey, P. Fucile, and E. Sichel, “A low power, low cost, underwater optical communication system,” Ridge Events 1, 27–29 (2000).

1997 (2)

D. Fornari, A. Bradley, and S. Humphris, “Inductively Coupled Link(ICL) temperature probes for hot hydrothermal fluid sampling from ROV Jason and DSV Alvin,” Ridge Events 8(1), 26–31 (1997).

T. M. Schmidl and D. C. Cox, “Robust frequency and timing synchronization for OFDM,” IEEE Trans. Commun. 45(12), 1613–1621 (1997).
[Crossref]

1994 (1)

H. Buiteveld, J. M. H. Hakvoort, and M. Donze, “The optical properties of pure water,” Proc. SPIE 2258, 174–183 (1994).
[Crossref]

1981 (1)

L. Prieur and S. Sathyendranath, “An optical classification of coastal and oceanic waters based on the specific spectral absorption curves of phytoplankton pigments, dissolved organic matter, and other particulate materials,” Limnol. Oceanogr. 26(4), 671–689 (1981).
[Crossref]

1975 (1)

G. D. Ferguson, “Blue-green lasers for underwater applications,” Proc. SPIE 64, 18–22 (1975).
[Crossref]

Adachi, M.

Y. Enya, Y. Yoshizumi, T. Kyono, K. Akita, M. Ueno, M. Adachi, T. Sumitomo, S. Tokuyama, T. Ikegami, K. Katayama, and T. Nakamura, “531 nm green lasing of InGaN based laser diodes on semi-polar {202 −1} free-standing GaN substrates,” Appl. Phys. Express 2(8), 082101 (2009).
[Crossref]

Akita, K.

Y. Enya, Y. Yoshizumi, T. Kyono, K. Akita, M. Ueno, M. Adachi, T. Sumitomo, S. Tokuyama, T. Ikegami, K. Katayama, and T. Nakamura, “531 nm green lasing of InGaN based laser diodes on semi-polar {202 −1} free-standing GaN substrates,” Appl. Phys. Express 2(8), 082101 (2009).
[Crossref]

Alouini, M. S.

Bourennane, S.

Bradley, A.

D. Fornari, A. Bradley, and S. Humphris, “Inductively Coupled Link(ICL) temperature probes for hot hydrothermal fluid sampling from ROV Jason and DSV Alvin,” Ridge Events 8(1), 26–31 (1997).

Buiteveld, H.

H. Buiteveld, J. M. H. Hakvoort, and M. Donze, “The optical properties of pure water,” Proc. SPIE 2258, 174–183 (1994).
[Crossref]

Chen, H. Y.

Y. C. Chi, D. H. Hsieh, C. T. Tsai, H. Y. Chen, H. C. Kuo, and G. R. Lin, “450-nm GaN laser diode enables high-speed visible light communication with 9-Gbps QAM-OFDM,” Opt. Express 23(10), 13051–13059 (2015).
[Crossref] [PubMed]

Y. C. Chi, D. H. Hsieh, C. Y. Lin, H. Y. Chen, C. Y. Huang, J. H. He, B. Ooi, S. P. DenBaars, S. Nakamura, H. C. Kuo, and G. R. Lin, “Phosphorous diffuser diverged blue laser diode for indoor lighting and communication,” Sci. Rep. 5, 18690 (2015).
[Crossref] [PubMed]

Chi, Y. C.

Chitre, M.

M. Chitre, S. Shahabudeen, and M. Stojanovic, “Underwater acoustic communications and networking: Recent advances and future challenges,” Mar. Technol. Soc. J. 42(1), 103–116 (2008).
[Crossref]

M. Doniec, I. Vasilescu, M. Chitre, C. Detweiler, M. Hoffmann-Kuhnt, and D. Rus, “AquaOptical: a lightweight device for high-rate long-range underwater point-to-point communication,” in Proceeding of the OCEANS Conference (IEEE, 2009), pp.1–6.

Cochenour, B.

J. A. Simpson, W. C. Cox, J. R. Krier, B. Cochenour, B. L. Hughes, and J. F. Muth, “5 Mbps optical wireless communication with error correction coding for underwater sensor nodes,” in Proceeding of the OCEANS Conference (IEEE, 2010), pp.1–4.
[Crossref]

Cochenour, B. M.

B. M. Cochenour, L. J. Mullen, and A. E. Laux, “Characterization of the beam-spread function for underwater wireless optical communications links,” IEEE J. Oceanic Eng. 33(4), 513–521 (2008).
[Crossref]

Cox, D. C.

T. M. Schmidl and D. C. Cox, “Robust frequency and timing synchronization for OFDM,” IEEE Trans. Commun. 45(12), 1613–1621 (1997).
[Crossref]

Cox, W. C.

W. C. Cox, J. A. Simpson, C. P. Domizioli, J. F. Muth, and B. L. Hughes, “An underwater optical communication system implementing Reed-Solomon channel coding,” in Proceedings of the OCEANS Conference (IEEE, 2008), pp. 1–6.
[Crossref]

J. A. Simpson, W. C. Cox, J. R. Krier, B. Cochenour, B. L. Hughes, and J. F. Muth, “5 Mbps optical wireless communication with error correction coding for underwater sensor nodes,” in Proceeding of the OCEANS Conference (IEEE, 2010), pp.1–4.
[Crossref]

De Rango, F.

F. Pignieri, F. De Rango, F. Veltri, and S. Marano, “Markovian approach to model underwater acoustic channel: Techniques comparison,” in Proceedings of the Military Communications Conference (IEEE, 2008), pp. 1–7.
[Crossref]

DenBaars, S. P.

Y. C. Chi, D. H. Hsieh, C. Y. Lin, H. Y. Chen, C. Y. Huang, J. H. He, B. Ooi, S. P. DenBaars, S. Nakamura, H. C. Kuo, and G. R. Lin, “Phosphorous diffuser diverged blue laser diode for indoor lighting and communication,” Sci. Rep. 5, 18690 (2015).
[Crossref] [PubMed]

Deng, N.

J. Xu, M. W. Kong, A. B. Lin, Y. H. Song, X. Y. Yu, F. Z. Qu, J. Han, and N. Deng, “OFDM-based broadband underwater wireless optical communication system using a compact blue LED,” Opt. Commun. 369, 100–105 (2016).
[Crossref]

Detweiler, C.

M. Doniec, I. Vasilescu, M. Chitre, C. Detweiler, M. Hoffmann-Kuhnt, and D. Rus, “AquaOptical: a lightweight device for high-rate long-range underwater point-to-point communication,” in Proceeding of the OCEANS Conference (IEEE, 2009), pp.1–6.

Domizioli, C. P.

W. C. Cox, J. A. Simpson, C. P. Domizioli, J. F. Muth, and B. L. Hughes, “An underwater optical communication system implementing Reed-Solomon channel coding,” in Proceedings of the OCEANS Conference (IEEE, 2008), pp. 1–6.
[Crossref]

Doniec, M.

M. Doniec, I. Vasilescu, M. Chitre, C. Detweiler, M. Hoffmann-Kuhnt, and D. Rus, “AquaOptical: a lightweight device for high-rate long-range underwater point-to-point communication,” in Proceeding of the OCEANS Conference (IEEE, 2009), pp.1–6.

Donze, M.

H. Buiteveld, J. M. H. Hakvoort, and M. Donze, “The optical properties of pure water,” Proc. SPIE 2258, 174–183 (1994).
[Crossref]

Duran, J. R.

Enya, Y.

Y. Enya, Y. Yoshizumi, T. Kyono, K. Akita, M. Ueno, M. Adachi, T. Sumitomo, S. Tokuyama, T. Ikegami, K. Katayama, and T. Nakamura, “531 nm green lasing of InGaN based laser diodes on semi-polar {202 −1} free-standing GaN substrates,” Appl. Phys. Express 2(8), 082101 (2009).
[Crossref]

Ferguson, G. D.

G. D. Ferguson, “Blue-green lasers for underwater applications,” Proc. SPIE 64, 18–22 (1975).
[Crossref]

Fornari, D.

D. Fornari, A. Bradley, and S. Humphris, “Inductively Coupled Link(ICL) temperature probes for hot hydrothermal fluid sampling from ROV Jason and DSV Alvin,” Ridge Events 8(1), 26–31 (1997).

Fucile, P.

M. Tivey, P. Fucile, and E. Sichel, “A low power, low cost, underwater optical communication system,” Ridge Events 1, 27–29 (2000).

Gabriel, C.

Giddings, R. P.

X. Q. Jin, J. L. Wei, R. P. Giddings, T. Quinlan, S. Walker, and J. M. Tang, “Experimental demonstrations and extensive comparisons of end-to-end real-time optical OFDM transceivers with adaptive bit and/or power loading,” IEEE Photonics J. 3(3), 500–511 (2011).
[Crossref]

Gu, X.

A. Lin, W. Lu, J. Xu, Y. Song, F. Qu, J. Han, X. Gu, and J. Leng, “Underwater wireless optical communication using a directly modulated semiconductor Laser,” in Proceeding of the OCEANS Conference (IEEE, 2015), pp.1–4.
[Crossref]

Hakvoort, J. M. H.

H. Buiteveld, J. M. H. Hakvoort, and M. Donze, “The optical properties of pure water,” Proc. SPIE 2258, 174–183 (1994).
[Crossref]

Han, J.

J. Xu, M. W. Kong, A. B. Lin, Y. H. Song, X. Y. Yu, F. Z. Qu, J. Han, and N. Deng, “OFDM-based broadband underwater wireless optical communication system using a compact blue LED,” Opt. Commun. 369, 100–105 (2016).
[Crossref]

A. Lin, W. Lu, J. Xu, Y. Song, F. Qu, J. Han, X. Gu, and J. Leng, “Underwater wireless optical communication using a directly modulated semiconductor Laser,” in Proceeding of the OCEANS Conference (IEEE, 2015), pp.1–4.
[Crossref]

Hanawa, M.

Hanson, F.

He, J. H.

Y. C. Chi, D. H. Hsieh, C. Y. Lin, H. Y. Chen, C. Y. Huang, J. H. He, B. Ooi, S. P. DenBaars, S. Nakamura, H. C. Kuo, and G. R. Lin, “Phosphorous diffuser diverged blue laser diode for indoor lighting and communication,” Sci. Rep. 5, 18690 (2015).
[Crossref] [PubMed]

H. M. Oubei, J. R. Duran, B. Janjua, H. Y. Wang, C. T. Tsai, Y. C. Chi, T. K. Ng, H. C. Kuo, J. H. He, M. S. Alouini, G. R. Lin, and B. S. Ooi, “4.8 Gbit/s 16-QAM-OFDM transmission based on compact 450-nm laser for underwater wireless optical communication,” Opt. Express 23(18), 23302–23309 (2015).
[Crossref] [PubMed]

Hoffmann-Kuhnt, M.

M. Doniec, I. Vasilescu, M. Chitre, C. Detweiler, M. Hoffmann-Kuhnt, and D. Rus, “AquaOptical: a lightweight device for high-rate long-range underwater point-to-point communication,” in Proceeding of the OCEANS Conference (IEEE, 2009), pp.1–6.

Hsieh, D. H.

Y. C. Chi, D. H. Hsieh, C. T. Tsai, H. Y. Chen, H. C. Kuo, and G. R. Lin, “450-nm GaN laser diode enables high-speed visible light communication with 9-Gbps QAM-OFDM,” Opt. Express 23(10), 13051–13059 (2015).
[Crossref] [PubMed]

Y. C. Chi, D. H. Hsieh, C. Y. Lin, H. Y. Chen, C. Y. Huang, J. H. He, B. Ooi, S. P. DenBaars, S. Nakamura, H. C. Kuo, and G. R. Lin, “Phosphorous diffuser diverged blue laser diode for indoor lighting and communication,” Sci. Rep. 5, 18690 (2015).
[Crossref] [PubMed]

Huang, C. Y.

Y. C. Chi, D. H. Hsieh, C. Y. Lin, H. Y. Chen, C. Y. Huang, J. H. He, B. Ooi, S. P. DenBaars, S. Nakamura, H. C. Kuo, and G. R. Lin, “Phosphorous diffuser diverged blue laser diode for indoor lighting and communication,” Sci. Rep. 5, 18690 (2015).
[Crossref] [PubMed]

Hughes, B. L.

W. C. Cox, J. A. Simpson, C. P. Domizioli, J. F. Muth, and B. L. Hughes, “An underwater optical communication system implementing Reed-Solomon channel coding,” in Proceedings of the OCEANS Conference (IEEE, 2008), pp. 1–6.
[Crossref]

J. A. Simpson, W. C. Cox, J. R. Krier, B. Cochenour, B. L. Hughes, and J. F. Muth, “5 Mbps optical wireless communication with error correction coding for underwater sensor nodes,” in Proceeding of the OCEANS Conference (IEEE, 2010), pp.1–4.
[Crossref]

Humphris, S.

D. Fornari, A. Bradley, and S. Humphris, “Inductively Coupled Link(ICL) temperature probes for hot hydrothermal fluid sampling from ROV Jason and DSV Alvin,” Ridge Events 8(1), 26–31 (1997).

Ikegami, T.

Y. Enya, Y. Yoshizumi, T. Kyono, K. Akita, M. Ueno, M. Adachi, T. Sumitomo, S. Tokuyama, T. Ikegami, K. Katayama, and T. Nakamura, “531 nm green lasing of InGaN based laser diodes on semi-polar {202 −1} free-standing GaN substrates,” Appl. Phys. Express 2(8), 082101 (2009).
[Crossref]

Janjua, B.

Jin, X. Q.

X. Q. Jin, J. L. Wei, R. P. Giddings, T. Quinlan, S. Walker, and J. M. Tang, “Experimental demonstrations and extensive comparisons of end-to-end real-time optical OFDM transceivers with adaptive bit and/or power loading,” IEEE Photonics J. 3(3), 500–511 (2011).
[Crossref]

Katayama, K.

Y. Enya, Y. Yoshizumi, T. Kyono, K. Akita, M. Ueno, M. Adachi, T. Sumitomo, S. Tokuyama, T. Ikegami, K. Katayama, and T. Nakamura, “531 nm green lasing of InGaN based laser diodes on semi-polar {202 −1} free-standing GaN substrates,” Appl. Phys. Express 2(8), 082101 (2009).
[Crossref]

Khalighi, M.

Kong, M. W.

J. Xu, M. W. Kong, A. B. Lin, Y. H. Song, X. Y. Yu, F. Z. Qu, J. Han, and N. Deng, “OFDM-based broadband underwater wireless optical communication system using a compact blue LED,” Opt. Commun. 369, 100–105 (2016).
[Crossref]

Krier, J. R.

J. A. Simpson, W. C. Cox, J. R. Krier, B. Cochenour, B. L. Hughes, and J. F. Muth, “5 Mbps optical wireless communication with error correction coding for underwater sensor nodes,” in Proceeding of the OCEANS Conference (IEEE, 2010), pp.1–4.
[Crossref]

Kuo, H. C.

Kyono, T.

Y. Enya, Y. Yoshizumi, T. Kyono, K. Akita, M. Ueno, M. Adachi, T. Sumitomo, S. Tokuyama, T. Ikegami, K. Katayama, and T. Nakamura, “531 nm green lasing of InGaN based laser diodes on semi-polar {202 −1} free-standing GaN substrates,” Appl. Phys. Express 2(8), 082101 (2009).
[Crossref]

Lane, P. M.

Laux, A. E.

B. M. Cochenour, L. J. Mullen, and A. E. Laux, “Characterization of the beam-spread function for underwater wireless optical communications links,” IEEE J. Oceanic Eng. 33(4), 513–521 (2008).
[Crossref]

Leng, J.

A. Lin, W. Lu, J. Xu, Y. Song, F. Qu, J. Han, X. Gu, and J. Leng, “Underwater wireless optical communication using a directly modulated semiconductor Laser,” in Proceeding of the OCEANS Conference (IEEE, 2015), pp.1–4.
[Crossref]

Léon, P.

Li, C.

Lin, A.

A. Lin, W. Lu, J. Xu, Y. Song, F. Qu, J. Han, X. Gu, and J. Leng, “Underwater wireless optical communication using a directly modulated semiconductor Laser,” in Proceeding of the OCEANS Conference (IEEE, 2015), pp.1–4.
[Crossref]

Lin, A. B.

J. Xu, M. W. Kong, A. B. Lin, Y. H. Song, X. Y. Yu, F. Z. Qu, J. Han, and N. Deng, “OFDM-based broadband underwater wireless optical communication system using a compact blue LED,” Opt. Commun. 369, 100–105 (2016).
[Crossref]

Lin, C. Y.

Y. C. Chi, D. H. Hsieh, C. Y. Lin, H. Y. Chen, C. Y. Huang, J. H. He, B. Ooi, S. P. DenBaars, S. Nakamura, H. C. Kuo, and G. R. Lin, “Phosphorous diffuser diverged blue laser diode for indoor lighting and communication,” Sci. Rep. 5, 18690 (2015).
[Crossref] [PubMed]

Lin, G. R.

Lu, W.

A. Lin, W. Lu, J. Xu, Y. Song, F. Qu, J. Han, X. Gu, and J. Leng, “Underwater wireless optical communication using a directly modulated semiconductor Laser,” in Proceeding of the OCEANS Conference (IEEE, 2015), pp.1–4.
[Crossref]

Marano, S.

F. Pignieri, F. De Rango, F. Veltri, and S. Marano, “Markovian approach to model underwater acoustic channel: Techniques comparison,” in Proceedings of the Military Communications Conference (IEEE, 2008), pp. 1–7.
[Crossref]

Mizukoshi, I.

Mullen, L. J.

B. M. Cochenour, L. J. Mullen, and A. E. Laux, “Characterization of the beam-spread function for underwater wireless optical communications links,” IEEE J. Oceanic Eng. 33(4), 513–521 (2008).
[Crossref]

Muth, J. F.

W. C. Cox, J. A. Simpson, C. P. Domizioli, J. F. Muth, and B. L. Hughes, “An underwater optical communication system implementing Reed-Solomon channel coding,” in Proceedings of the OCEANS Conference (IEEE, 2008), pp. 1–6.
[Crossref]

J. A. Simpson, W. C. Cox, J. R. Krier, B. Cochenour, B. L. Hughes, and J. F. Muth, “5 Mbps optical wireless communication with error correction coding for underwater sensor nodes,” in Proceeding of the OCEANS Conference (IEEE, 2010), pp.1–4.
[Crossref]

Nakamura, K.

Nakamura, S.

Y. C. Chi, D. H. Hsieh, C. Y. Lin, H. Y. Chen, C. Y. Huang, J. H. He, B. Ooi, S. P. DenBaars, S. Nakamura, H. C. Kuo, and G. R. Lin, “Phosphorous diffuser diverged blue laser diode for indoor lighting and communication,” Sci. Rep. 5, 18690 (2015).
[Crossref] [PubMed]

Nakamura, T.

Y. Enya, Y. Yoshizumi, T. Kyono, K. Akita, M. Ueno, M. Adachi, T. Sumitomo, S. Tokuyama, T. Ikegami, K. Katayama, and T. Nakamura, “531 nm green lasing of InGaN based laser diodes on semi-polar {202 −1} free-standing GaN substrates,” Appl. Phys. Express 2(8), 082101 (2009).
[Crossref]

Ng, T. K.

Nilsson, B.

T. Oberg, B. Nilsson, N. Olofsson, M. L. Nordenvaad, and E. Sangfelt, “Underwater communication link with iterative equalization,” in Proceeding of the OCEANS Conference (IEEE, 2006), pp. 1–6.

Nordenvaad, M. L.

T. Oberg, B. Nilsson, N. Olofsson, M. L. Nordenvaad, and E. Sangfelt, “Underwater communication link with iterative equalization,” in Proceeding of the OCEANS Conference (IEEE, 2006), pp. 1–6.

Oberg, T.

T. Oberg, B. Nilsson, N. Olofsson, M. L. Nordenvaad, and E. Sangfelt, “Underwater communication link with iterative equalization,” in Proceeding of the OCEANS Conference (IEEE, 2006), pp. 1–6.

Olofsson, N.

T. Oberg, B. Nilsson, N. Olofsson, M. L. Nordenvaad, and E. Sangfelt, “Underwater communication link with iterative equalization,” in Proceeding of the OCEANS Conference (IEEE, 2006), pp. 1–6.

Ooi, B.

Y. C. Chi, D. H. Hsieh, C. Y. Lin, H. Y. Chen, C. Y. Huang, J. H. He, B. Ooi, S. P. DenBaars, S. Nakamura, H. C. Kuo, and G. R. Lin, “Phosphorous diffuser diverged blue laser diode for indoor lighting and communication,” Sci. Rep. 5, 18690 (2015).
[Crossref] [PubMed]

Ooi, B. S.

Oubei, H. M.

Park, K. H.

Pignieri, F.

F. Pignieri, F. De Rango, F. Veltri, and S. Marano, “Markovian approach to model underwater acoustic channel: Techniques comparison,” in Proceedings of the Military Communications Conference (IEEE, 2008), pp. 1–7.
[Crossref]

Prieur, L.

L. Prieur and S. Sathyendranath, “An optical classification of coastal and oceanic waters based on the specific spectral absorption curves of phytoplankton pigments, dissolved organic matter, and other particulate materials,” Limnol. Oceanogr. 26(4), 671–689 (1981).
[Crossref]

Qu, F.

A. Lin, W. Lu, J. Xu, Y. Song, F. Qu, J. Han, X. Gu, and J. Leng, “Underwater wireless optical communication using a directly modulated semiconductor Laser,” in Proceeding of the OCEANS Conference (IEEE, 2015), pp.1–4.
[Crossref]

Qu, F. Z.

J. Xu, M. W. Kong, A. B. Lin, Y. H. Song, X. Y. Yu, F. Z. Qu, J. Han, and N. Deng, “OFDM-based broadband underwater wireless optical communication system using a compact blue LED,” Opt. Commun. 369, 100–105 (2016).
[Crossref]

Quinlan, T.

X. Q. Jin, J. L. Wei, R. P. Giddings, T. Quinlan, S. Walker, and J. M. Tang, “Experimental demonstrations and extensive comparisons of end-to-end real-time optical OFDM transceivers with adaptive bit and/or power loading,” IEEE Photonics J. 3(3), 500–511 (2011).
[Crossref]

Radic, S.

Rath, R.

J. Xu, J. von Hoyningen-Huene, C. Ruprecht, R. Rath, and W. Rosenkranz, “Robust transmission of 29-Gb/s OFDM signal over 1-km OM1 MMF under center launching,” IEEE Photonics Technol. Lett. 25(2), 206–209 (2013).
[Crossref]

Rigaud, V.

Rosenkranz, W.

J. Xu, J. von Hoyningen-Huene, C. Ruprecht, R. Rath, and W. Rosenkranz, “Robust transmission of 29-Gb/s OFDM signal over 1-km OM1 MMF under center launching,” IEEE Photonics Technol. Lett. 25(2), 206–209 (2013).
[Crossref]

Ruprecht, C.

J. Xu, J. von Hoyningen-Huene, C. Ruprecht, R. Rath, and W. Rosenkranz, “Robust transmission of 29-Gb/s OFDM signal over 1-km OM1 MMF under center launching,” IEEE Photonics Technol. Lett. 25(2), 206–209 (2013).
[Crossref]

Rus, D.

M. Doniec, I. Vasilescu, M. Chitre, C. Detweiler, M. Hoffmann-Kuhnt, and D. Rus, “AquaOptical: a lightweight device for high-rate long-range underwater point-to-point communication,” in Proceeding of the OCEANS Conference (IEEE, 2009), pp.1–6.

Sangfelt, E.

T. Oberg, B. Nilsson, N. Olofsson, M. L. Nordenvaad, and E. Sangfelt, “Underwater communication link with iterative equalization,” in Proceeding of the OCEANS Conference (IEEE, 2006), pp. 1–6.

Sathyendranath, S.

L. Prieur and S. Sathyendranath, “An optical classification of coastal and oceanic waters based on the specific spectral absorption curves of phytoplankton pigments, dissolved organic matter, and other particulate materials,” Limnol. Oceanogr. 26(4), 671–689 (1981).
[Crossref]

Schmidl, T. M.

T. M. Schmidl and D. C. Cox, “Robust frequency and timing synchronization for OFDM,” IEEE Trans. Commun. 45(12), 1613–1621 (1997).
[Crossref]

Shahabudeen, S.

M. Chitre, S. Shahabudeen, and M. Stojanovic, “Underwater acoustic communications and networking: Recent advances and future challenges,” Mar. Technol. Soc. J. 42(1), 103–116 (2008).
[Crossref]

Shore, K. A.

Sichel, E.

M. Tivey, P. Fucile, and E. Sichel, “A low power, low cost, underwater optical communication system,” Ridge Events 1, 27–29 (2000).

Simpson, J. A.

J. A. Simpson, W. C. Cox, J. R. Krier, B. Cochenour, B. L. Hughes, and J. F. Muth, “5 Mbps optical wireless communication with error correction coding for underwater sensor nodes,” in Proceeding of the OCEANS Conference (IEEE, 2010), pp.1–4.
[Crossref]

W. C. Cox, J. A. Simpson, C. P. Domizioli, J. F. Muth, and B. L. Hughes, “An underwater optical communication system implementing Reed-Solomon channel coding,” in Proceedings of the OCEANS Conference (IEEE, 2008), pp. 1–6.
[Crossref]

Song, Y.

A. Lin, W. Lu, J. Xu, Y. Song, F. Qu, J. Han, X. Gu, and J. Leng, “Underwater wireless optical communication using a directly modulated semiconductor Laser,” in Proceeding of the OCEANS Conference (IEEE, 2015), pp.1–4.
[Crossref]

Song, Y. H.

J. Xu, M. W. Kong, A. B. Lin, Y. H. Song, X. Y. Yu, F. Z. Qu, J. Han, and N. Deng, “OFDM-based broadband underwater wireless optical communication system using a compact blue LED,” Opt. Commun. 369, 100–105 (2016).
[Crossref]

Stevenson, R.

R. Stevenson, “Lasers get the green light,” IEEE Spectr. 47(3), 34–39 (2010).
[Crossref]

Stojanovic, M.

M. Chitre, S. Shahabudeen, and M. Stojanovic, “Underwater acoustic communications and networking: Recent advances and future challenges,” Mar. Technol. Soc. J. 42(1), 103–116 (2008).
[Crossref]

Sumitomo, T.

Y. Enya, Y. Yoshizumi, T. Kyono, K. Akita, M. Ueno, M. Adachi, T. Sumitomo, S. Tokuyama, T. Ikegami, K. Katayama, and T. Nakamura, “531 nm green lasing of InGaN based laser diodes on semi-polar {202 −1} free-standing GaN substrates,” Appl. Phys. Express 2(8), 082101 (2009).
[Crossref]

Tang, J. M.

X. Q. Jin, J. L. Wei, R. P. Giddings, T. Quinlan, S. Walker, and J. M. Tang, “Experimental demonstrations and extensive comparisons of end-to-end real-time optical OFDM transceivers with adaptive bit and/or power loading,” IEEE Photonics J. 3(3), 500–511 (2011).
[Crossref]

J. M. Tang, P. M. Lane, and K. A. Shore, “High-speed transmission of adaptively modulated optical OFDM signals over multimode fibers using directly modulated DFBs,” J. Lightwave Technol. 24(1), 429–441 (2006).
[Crossref]

Tivey, M.

M. Tivey, P. Fucile, and E. Sichel, “A low power, low cost, underwater optical communication system,” Ridge Events 1, 27–29 (2000).

Tokuyama, S.

Y. Enya, Y. Yoshizumi, T. Kyono, K. Akita, M. Ueno, M. Adachi, T. Sumitomo, S. Tokuyama, T. Ikegami, K. Katayama, and T. Nakamura, “531 nm green lasing of InGaN based laser diodes on semi-polar {202 −1} free-standing GaN substrates,” Appl. Phys. Express 2(8), 082101 (2009).
[Crossref]

Tsai, C. T.

Ueno, M.

Y. Enya, Y. Yoshizumi, T. Kyono, K. Akita, M. Ueno, M. Adachi, T. Sumitomo, S. Tokuyama, T. Ikegami, K. Katayama, and T. Nakamura, “531 nm green lasing of InGaN based laser diodes on semi-polar {202 −1} free-standing GaN substrates,” Appl. Phys. Express 2(8), 082101 (2009).
[Crossref]

Vasilescu, I.

M. Doniec, I. Vasilescu, M. Chitre, C. Detweiler, M. Hoffmann-Kuhnt, and D. Rus, “AquaOptical: a lightweight device for high-rate long-range underwater point-to-point communication,” in Proceeding of the OCEANS Conference (IEEE, 2009), pp.1–6.

Veltri, F.

F. Pignieri, F. De Rango, F. Veltri, and S. Marano, “Markovian approach to model underwater acoustic channel: Techniques comparison,” in Proceedings of the Military Communications Conference (IEEE, 2008), pp. 1–7.
[Crossref]

von Hoyningen-Huene, J.

J. Xu, J. von Hoyningen-Huene, C. Ruprecht, R. Rath, and W. Rosenkranz, “Robust transmission of 29-Gb/s OFDM signal over 1-km OM1 MMF under center launching,” IEEE Photonics Technol. Lett. 25(2), 206–209 (2013).
[Crossref]

Walker, S.

X. Q. Jin, J. L. Wei, R. P. Giddings, T. Quinlan, S. Walker, and J. M. Tang, “Experimental demonstrations and extensive comparisons of end-to-end real-time optical OFDM transceivers with adaptive bit and/or power loading,” IEEE Photonics J. 3(3), 500–511 (2011).
[Crossref]

Wang, H. Y.

Wei, J. L.

X. Q. Jin, J. L. Wei, R. P. Giddings, T. Quinlan, S. Walker, and J. M. Tang, “Experimental demonstrations and extensive comparisons of end-to-end real-time optical OFDM transceivers with adaptive bit and/or power loading,” IEEE Photonics J. 3(3), 500–511 (2011).
[Crossref]

Xu, J.

J. Xu, M. W. Kong, A. B. Lin, Y. H. Song, X. Y. Yu, F. Z. Qu, J. Han, and N. Deng, “OFDM-based broadband underwater wireless optical communication system using a compact blue LED,” Opt. Commun. 369, 100–105 (2016).
[Crossref]

J. Xu, J. von Hoyningen-Huene, C. Ruprecht, R. Rath, and W. Rosenkranz, “Robust transmission of 29-Gb/s OFDM signal over 1-km OM1 MMF under center launching,” IEEE Photonics Technol. Lett. 25(2), 206–209 (2013).
[Crossref]

A. Lin, W. Lu, J. Xu, Y. Song, F. Qu, J. Han, X. Gu, and J. Leng, “Underwater wireless optical communication using a directly modulated semiconductor Laser,” in Proceeding of the OCEANS Conference (IEEE, 2015), pp.1–4.
[Crossref]

Yoshizumi, Y.

Y. Enya, Y. Yoshizumi, T. Kyono, K. Akita, M. Ueno, M. Adachi, T. Sumitomo, S. Tokuyama, T. Ikegami, K. Katayama, and T. Nakamura, “531 nm green lasing of InGaN based laser diodes on semi-polar {202 −1} free-standing GaN substrates,” Appl. Phys. Express 2(8), 082101 (2009).
[Crossref]

Yu, X. Y.

J. Xu, M. W. Kong, A. B. Lin, Y. H. Song, X. Y. Yu, F. Z. Qu, J. Han, and N. Deng, “OFDM-based broadband underwater wireless optical communication system using a compact blue LED,” Opt. Commun. 369, 100–105 (2016).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Express (1)

Y. Enya, Y. Yoshizumi, T. Kyono, K. Akita, M. Ueno, M. Adachi, T. Sumitomo, S. Tokuyama, T. Ikegami, K. Katayama, and T. Nakamura, “531 nm green lasing of InGaN based laser diodes on semi-polar {202 −1} free-standing GaN substrates,” Appl. Phys. Express 2(8), 082101 (2009).
[Crossref]

IEEE J. Oceanic Eng. (1)

B. M. Cochenour, L. J. Mullen, and A. E. Laux, “Characterization of the beam-spread function for underwater wireless optical communications links,” IEEE J. Oceanic Eng. 33(4), 513–521 (2008).
[Crossref]

IEEE Photonics J. (1)

X. Q. Jin, J. L. Wei, R. P. Giddings, T. Quinlan, S. Walker, and J. M. Tang, “Experimental demonstrations and extensive comparisons of end-to-end real-time optical OFDM transceivers with adaptive bit and/or power loading,” IEEE Photonics J. 3(3), 500–511 (2011).
[Crossref]

IEEE Photonics Technol. Lett. (1)

J. Xu, J. von Hoyningen-Huene, C. Ruprecht, R. Rath, and W. Rosenkranz, “Robust transmission of 29-Gb/s OFDM signal over 1-km OM1 MMF under center launching,” IEEE Photonics Technol. Lett. 25(2), 206–209 (2013).
[Crossref]

IEEE Spectr. (1)

R. Stevenson, “Lasers get the green light,” IEEE Spectr. 47(3), 34–39 (2010).
[Crossref]

IEEE Trans. Commun. (1)

T. M. Schmidl and D. C. Cox, “Robust frequency and timing synchronization for OFDM,” IEEE Trans. Commun. 45(12), 1613–1621 (1997).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

Y. C. Chi and G. R. Lin, “A-factor enhanced optoelectronic oscillator for 40-Gbit/s pulsed RZ-OOK transmission,” IEEE Trans. Microw. Theory Tech. 62(12), 3216–3223 (2014).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Commun. Netw. (1)

Limnol. Oceanogr. (1)

L. Prieur and S. Sathyendranath, “An optical classification of coastal and oceanic waters based on the specific spectral absorption curves of phytoplankton pigments, dissolved organic matter, and other particulate materials,” Limnol. Oceanogr. 26(4), 671–689 (1981).
[Crossref]

Mar. Technol. Soc. J. (1)

M. Chitre, S. Shahabudeen, and M. Stojanovic, “Underwater acoustic communications and networking: Recent advances and future challenges,” Mar. Technol. Soc. J. 42(1), 103–116 (2008).
[Crossref]

Opt. Commun. (1)

J. Xu, M. W. Kong, A. B. Lin, Y. H. Song, X. Y. Yu, F. Z. Qu, J. Han, and N. Deng, “OFDM-based broadband underwater wireless optical communication system using a compact blue LED,” Opt. Commun. 369, 100–105 (2016).
[Crossref]

Opt. Express (5)

Proc. SPIE (2)

H. Buiteveld, J. M. H. Hakvoort, and M. Donze, “The optical properties of pure water,” Proc. SPIE 2258, 174–183 (1994).
[Crossref]

G. D. Ferguson, “Blue-green lasers for underwater applications,” Proc. SPIE 64, 18–22 (1975).
[Crossref]

Ridge Events (2)

M. Tivey, P. Fucile, and E. Sichel, “A low power, low cost, underwater optical communication system,” Ridge Events 1, 27–29 (2000).

D. Fornari, A. Bradley, and S. Humphris, “Inductively Coupled Link(ICL) temperature probes for hot hydrothermal fluid sampling from ROV Jason and DSV Alvin,” Ridge Events 8(1), 26–31 (1997).

Sci. Rep. (1)

Y. C. Chi, D. H. Hsieh, C. Y. Lin, H. Y. Chen, C. Y. Huang, J. H. He, B. Ooi, S. P. DenBaars, S. Nakamura, H. C. Kuo, and G. R. Lin, “Phosphorous diffuser diverged blue laser diode for indoor lighting and communication,” Sci. Rep. 5, 18690 (2015).
[Crossref] [PubMed]

Other (10)

T. Tadokoro, W. Kobayashi, T. Fujisawa, T. Yamanaka, and F. Kano, “High-Speed modulation lasers for 100GbE applications,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OWD1.

A. Lin, W. Lu, J. Xu, Y. Song, F. Qu, J. Han, X. Gu, and J. Leng, “Underwater wireless optical communication using a directly modulated semiconductor Laser,” in Proceeding of the OCEANS Conference (IEEE, 2015), pp.1–4.
[Crossref]

J. A. Simpson, W. C. Cox, J. R. Krier, B. Cochenour, B. L. Hughes, and J. F. Muth, “5 Mbps optical wireless communication with error correction coding for underwater sensor nodes,” in Proceeding of the OCEANS Conference (IEEE, 2010), pp.1–4.
[Crossref]

M. Doniec, I. Vasilescu, M. Chitre, C. Detweiler, M. Hoffmann-Kuhnt, and D. Rus, “AquaOptical: a lightweight device for high-rate long-range underwater point-to-point communication,” in Proceeding of the OCEANS Conference (IEEE, 2009), pp.1–6.

T. Oberg, B. Nilsson, N. Olofsson, M. L. Nordenvaad, and E. Sangfelt, “Underwater communication link with iterative equalization,” in Proceeding of the OCEANS Conference (IEEE, 2006), pp. 1–6.

F. Pignieri, F. De Rango, F. Veltri, and S. Marano, “Markovian approach to model underwater acoustic channel: Techniques comparison,” in Proceedings of the Military Communications Conference (IEEE, 2008), pp. 1–7.
[Crossref]

W. C. Cox, J. A. Simpson, C. P. Domizioli, J. F. Muth, and B. L. Hughes, “An underwater optical communication system implementing Reed-Solomon channel coding,” in Proceedings of the OCEANS Conference (IEEE, 2008), pp. 1–6.
[Crossref]

J. Xu, C. Ruprecht, J. von Hoyningen-Huene, and W. Rosenkranz, “Transmission of 25.5-Gb/s OFDM signal over 200-m G62. 5/125 MMF using mode group diversity multiplexing,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2013), paper OTh4A. 2.
[Crossref]

J. Lee, F. Breyer, S. Randel, J. Zeng, F. Huijskens, H. P. van den Boom, A. M. Koonen, and N. Hanik, “24Gb/s transmission over 730m of Multimode Fiber by Direct Modulation of an 850nm VCSEL using discrete Mult-tone Modulation,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2007), paper PDP6.

D. C. Mobley, Light and Water: Radiative Transfer in Natural Waters (Academic, 1994).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1 a, b, and c as a function of λ for coastal water and harbor water.
Fig. 2
Fig. 2 Impulse response in harbor water with different wavelengths, the link distance is 8m.
Fig. 3
Fig. 3 Frequency response in 8-m harbor water with different wavelengths.
Fig. 4
Fig. 4 The experimental setup of the proposed UWOC system using a red-light LD. AWG: arbitrary waveform generator, AMP: amplifier, ATT: attenuator, Bias-T: bias-tee, LD: laser diode, PIN: positive-intrinsic-negative photodetector, APD: avalanche photo detector, MSO: mixed signal oscilloscope. Inset (a) OFDM transmitter module, (b) OFDM receiver module.
Fig. 5
Fig. 5 The back-to-back frequency response of the proposed UWOC system in the case of using PIN detector.
Fig. 6
Fig. 6 The EVMs for the different subcarriers in the case of using PIN detector after 6-m underwater transmission.
Fig. 7
Fig. 7 The BERs for the different subcarriers in the case of using PIN detector after 6-m underwater transmission.
Fig. 8
Fig. 8 Constellation maps of 128-QAM OFDM signals (a) over a 2-m underwater channel, and (b) over a 6-m underwater channel.
Fig. 9
Fig. 9 (a) the waveform of the captured 128-QAM OFDM signal with PL, (b) the spectrum of the 128-QAM OFDM signal with PL, (c) The spectrum of the 128-QAM OFDM signal without PL.
Fig. 10
Fig. 10 The EVMs for the different subcarriers in the case of using APD.
Fig. 11
Fig. 11 The BERs for the different subcarriers in the case of using APD.
Fig. 12
Fig. 12 The constellation map of the 32-QAM OFDM signal (a) without PL, and (b) with PL, over a 6-m underwater channel in the case of using APD.
Fig. 13
Fig. 13 The spectrums of the captured 32-QAM OFDM signal (a) with PL, and (b) without PL.
Fig. 14
Fig. 14 BER curves versus average received optical power for both the PIN and APD detectors.

Tables (1)

Tables Icon

Table 1 Optical Parameters of Turbid Harbor Water at 520 nm and 660 nm

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

c=a+b
a(λ)=[ a w (λ)+0.06 a c (λ) C 0.65 ][1+0.2exp(0.014(λ440))]
b(λ)=0.30 550 λ C 0.62

Metrics