Abstract

We report on the first ever combination of a thin film of lead zirconate titanate (PZT) with a liquid crystal (LC) layer. Many liquid crystal applications use a transparent conductive oxide to switch the liquid crystal. Our proposed processing does not, instead relying on the extremely high dielectric constant of the ferroelectric layer to extend the electric field from widely spaced electrodes over the liquid crystal. It eliminates almost entirely the fringe field problems that arise in nearly all the liquid crystal devices that use multiple addressing electrodes. We show, both via rigorous simulations as well as experiments, that the addition of a PZT layer over the addressing electrodes leads to a markedly improved LC switching performance at distances of up to 30 μm from the addressing electrodes with the current PZT-layer thickness of 0.84 μm. This improvement in switching is used to tune the focal length of the microlens with electrodes spaced at 30 μm.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Field-induced refractive index variation in the dark conglomerate phase for polarization-independent switchable liquid crystal lenses

H. E. Milton, M. Nagaraj, S. Kaur, J. C. Jones, P. B. Morgan, and H. F. Gleeson
Appl. Opt. 53(31) 7278-7284 (2014)

Reflective liquid crystal hybrid beam-steerer

Oliver Willekens, Xiaoning Jia, Michael Vervaeke, Xiaobing Shang, Tigran Baghdasaryan, Hugo Thienpont, Herbert De Smet, Kristiaan Neyts, and Jeroen Beeckman
Opt. Express 24(19) 21541-21550 (2016)

Tunable liquid crystal microlens array using hole patterned electrode structure with ultrathin glass slab

Zhao Xiangjie, Liu Cangli, Zhang Dayong, and Luo Yongquan
Appl. Opt. 51(15) 3024-3030 (2012)

References

  • View by:
  • |
  • |
  • |

  1. H. Ren, Y.-H. Fan, S. Gauza, and S.-T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84, 4789–4791 (2004).
    [Crossref]
  2. Y. Li and S.-T. Wu, “Polarization independent adaptive microlens with a blue-phase liquid crystal,” Opt. Express 19, 8045–8050 (2011).
    [Crossref] [PubMed]
  3. S.-H. Lin, L.-S. Huang, C.-H. Lin, and C.-T. Kuo, “Polarization-independent and fast tunable microlens array based on blue phase liquid crystals,” Opt. Express 22, 925–930 (2014).
    [Crossref] [PubMed]
  4. T. Nose and S. Sato, “A liquid crystal microlens obtained with a non-uniform electric field,” Liq. Cryst. 5, 1425–1433 (1989).
    [Crossref]
  5. D. Resler, D. Hobbs, R. Sharp, L. Friedman, and T. Dorschner, “High-efficiency liquid-crystal optical phased-array beam steering,” Opt. Lett. 21, 689–691 (1996).
    [Crossref] [PubMed]
  6. B. Apter, U. Efron, and E. Bahat-Treidel, “On the fringing-field effect in liquid-crystal beam-steering devices,” Appl. Opt. 43, 11–19 (2004).
    [Crossref] [PubMed]
  7. P. F. McManamon, P. J. Bos, M. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE 97, 1078–1096 (2009).
    [Crossref]
  8. S. R. Harris, “Polarization effects in nematic liquid crystal optical phased arrays,” Proc. SPIE 5213, 26–39 (2003).
    [Crossref]
  9. L. Li, D. Bryant, T. V. Heugten, and P. J. Bos, “Near-diffraction-limited and low-haze electro-optical tunable liquid crystal lens with floating electrodes,” Opt. Express 21, 8371–8381 (2013).
    [Crossref] [PubMed]
  10. L. Li, D. Bryant, and P. J. Bos, “Liquid crystal lens with concentric electrodes and inter-electrode resistors,” Liq. Cryst. Rev. 2, 130–154 (2014).
    [Crossref]
  11. A. F. Naumov, M. Y. Loktev, I. R. Guralnik, and G. Vdovin, “Liquid-crystal adaptive lenses with modal control,” Opt. Lett. 23, 992–994 (1998).
    [Crossref]
  12. Y. Li, Y. Liu, Q. Li, and S.-T. Wu, “Polarization independent blue-phase liquid crystal cylindrical lens with a resistive film,” Appl. Opt. 51, 2568–2572 (2012).
    [Crossref]
  13. C.-T. Lee, Y. Li, H.-Y. Lin, and S.-T. Wu, “Design of polarization-insensitive multi-electrode grin lens with a blue-phase liquid crystal,” Opt. Express 19, 17402–17407 (2011).
    [Crossref] [PubMed]
  14. J.-F. Blach, S. Saitzek, C. Legrand, L. Dupont, J.-F. Henninot, and M. Warenghem, “Batio3 ferroelectric nanoparticles dispersed in 5cb nematic liquid crystal: Synthesis and electro-optical characterization,” J. Appl. Phys. 107, 074102 (2010).
    [Crossref]
  15. R. Shukla, C. Liebig, D. Evans, and W. Haase, “Electro-optical behaviour and dielectric dynamics of harvested ferroelectric linbo 3 nanoparticle-doped ferroelectric liquid crystal nanocolloids,” RSC Adv. 4, 18529–18536 (2014).
    [Crossref]
  16. E. Mavrona, U. Chodorow, M. Barnes, J. Parka, N. Palka, S. Saitzek, J.-F. Blach, V. Apostolopoulos, and M. Kaczmarek, “Refractive indices and birefringence of hybrid liquid crystal-nanoparticles composite materials in the terahertz region,” AIP Adv. 5, 077143 (2015).
    [Crossref]
  17. N. Izyumskaya, Y.-I. Alivov, S.-J. Cho, H. Morkoc, H. Lee, and Y.-S. Kang, “Processing, structure, properties, and applications of pzt thin films,” Crit. Rev. Solid State Mater. Sci. 32, 111–202 (2007).
    [Crossref]
  18. J. P. George, P. F. Smet, J. Botterman, V. Bliznuk, W. Woestenborghs, D. Van Thourhout, K. Neyts, and J. Beeckman, “Lanthanide-assisted deposition of strongly electro-optic pzt thin films on silicon: Toward integrated active nanophotonic devices,” ACS Appl. Mater. Interfaces 7, 13350–13359 (2015). PMID: .
    [Crossref] [PubMed]
  19. Q. Zou, H. E. Ruda, B. G. Yacobi, K. Saegusa, and M. Farrell, “Dielectric properties of lead zirconate titanate thin films deposited on metal foils,” Appl. Phys. Lett. 77, 1038–1040 (2000).
    [Crossref]
  20. B. P. Zhu, D. D. Li, Q. F. Zhou, J. Shi, and K. K. Shung, “Piezoelectric pzt thick films on lanio 3 buffered stainless steel foils for flexible device applications,” J. Phys. D: Appl. Phys. 42, 025504 (2009).
    [Crossref]
  21. R. Seveno and D. Averty, “Ultra light tunable capacitor based on pzt thin film deposited onto aluminium foil,” J. Sol-Gel Sci. Technol. 68, 175–179 (2013).
    [Crossref]
  22. J. Walenza-Slabe and B. Gibbons, “Processing of rf-sputtered lead zirconate titanate thin films on copper foil substrates,” J. Mater. Sci. 50, 6420–6426 (2015).
    [Crossref]
  23. P. J. Vanbrabant, J. Beeckman, K. Neyts, E. Willman, and F. A. Fernandez, “Diffraction and fringing field effects in small pixel liquid crystal devices with homeotropic alignment,” J. Appl. Phys. 108, 083104 (2010).
    [Crossref]
  24. R. James, E. Willman, F. A. Fernández, and S. E. Day, “Finite-element modeling of liquid-crystal hydrodynamics with a variable degree of order,” IEEE Trans. Electron Dev. 53, 1575–1582 (2006).
    [Crossref]
  25. D.-K. Yang and S.-T. Wu, “Tunable liquid crystal photonic devices,” in Fundamentals of Liquid Crystal Devices (John Wiley & Sons, Ltd, 2006), pp. 347–374.
    [Crossref]

2015 (3)

E. Mavrona, U. Chodorow, M. Barnes, J. Parka, N. Palka, S. Saitzek, J.-F. Blach, V. Apostolopoulos, and M. Kaczmarek, “Refractive indices and birefringence of hybrid liquid crystal-nanoparticles composite materials in the terahertz region,” AIP Adv. 5, 077143 (2015).
[Crossref]

J. P. George, P. F. Smet, J. Botterman, V. Bliznuk, W. Woestenborghs, D. Van Thourhout, K. Neyts, and J. Beeckman, “Lanthanide-assisted deposition of strongly electro-optic pzt thin films on silicon: Toward integrated active nanophotonic devices,” ACS Appl. Mater. Interfaces 7, 13350–13359 (2015). PMID: .
[Crossref] [PubMed]

J. Walenza-Slabe and B. Gibbons, “Processing of rf-sputtered lead zirconate titanate thin films on copper foil substrates,” J. Mater. Sci. 50, 6420–6426 (2015).
[Crossref]

2014 (3)

R. Shukla, C. Liebig, D. Evans, and W. Haase, “Electro-optical behaviour and dielectric dynamics of harvested ferroelectric linbo 3 nanoparticle-doped ferroelectric liquid crystal nanocolloids,” RSC Adv. 4, 18529–18536 (2014).
[Crossref]

L. Li, D. Bryant, and P. J. Bos, “Liquid crystal lens with concentric electrodes and inter-electrode resistors,” Liq. Cryst. Rev. 2, 130–154 (2014).
[Crossref]

S.-H. Lin, L.-S. Huang, C.-H. Lin, and C.-T. Kuo, “Polarization-independent and fast tunable microlens array based on blue phase liquid crystals,” Opt. Express 22, 925–930 (2014).
[Crossref] [PubMed]

2013 (2)

L. Li, D. Bryant, T. V. Heugten, and P. J. Bos, “Near-diffraction-limited and low-haze electro-optical tunable liquid crystal lens with floating electrodes,” Opt. Express 21, 8371–8381 (2013).
[Crossref] [PubMed]

R. Seveno and D. Averty, “Ultra light tunable capacitor based on pzt thin film deposited onto aluminium foil,” J. Sol-Gel Sci. Technol. 68, 175–179 (2013).
[Crossref]

2012 (1)

2011 (2)

2010 (2)

J.-F. Blach, S. Saitzek, C. Legrand, L. Dupont, J.-F. Henninot, and M. Warenghem, “Batio3 ferroelectric nanoparticles dispersed in 5cb nematic liquid crystal: Synthesis and electro-optical characterization,” J. Appl. Phys. 107, 074102 (2010).
[Crossref]

P. J. Vanbrabant, J. Beeckman, K. Neyts, E. Willman, and F. A. Fernandez, “Diffraction and fringing field effects in small pixel liquid crystal devices with homeotropic alignment,” J. Appl. Phys. 108, 083104 (2010).
[Crossref]

2009 (2)

B. P. Zhu, D. D. Li, Q. F. Zhou, J. Shi, and K. K. Shung, “Piezoelectric pzt thick films on lanio 3 buffered stainless steel foils for flexible device applications,” J. Phys. D: Appl. Phys. 42, 025504 (2009).
[Crossref]

P. F. McManamon, P. J. Bos, M. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE 97, 1078–1096 (2009).
[Crossref]

2007 (1)

N. Izyumskaya, Y.-I. Alivov, S.-J. Cho, H. Morkoc, H. Lee, and Y.-S. Kang, “Processing, structure, properties, and applications of pzt thin films,” Crit. Rev. Solid State Mater. Sci. 32, 111–202 (2007).
[Crossref]

2006 (1)

R. James, E. Willman, F. A. Fernández, and S. E. Day, “Finite-element modeling of liquid-crystal hydrodynamics with a variable degree of order,” IEEE Trans. Electron Dev. 53, 1575–1582 (2006).
[Crossref]

2004 (2)

B. Apter, U. Efron, and E. Bahat-Treidel, “On the fringing-field effect in liquid-crystal beam-steering devices,” Appl. Opt. 43, 11–19 (2004).
[Crossref] [PubMed]

H. Ren, Y.-H. Fan, S. Gauza, and S.-T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84, 4789–4791 (2004).
[Crossref]

2003 (1)

S. R. Harris, “Polarization effects in nematic liquid crystal optical phased arrays,” Proc. SPIE 5213, 26–39 (2003).
[Crossref]

2000 (1)

Q. Zou, H. E. Ruda, B. G. Yacobi, K. Saegusa, and M. Farrell, “Dielectric properties of lead zirconate titanate thin films deposited on metal foils,” Appl. Phys. Lett. 77, 1038–1040 (2000).
[Crossref]

1998 (1)

1996 (1)

1989 (1)

T. Nose and S. Sato, “A liquid crystal microlens obtained with a non-uniform electric field,” Liq. Cryst. 5, 1425–1433 (1989).
[Crossref]

Alivov, Y.-I.

N. Izyumskaya, Y.-I. Alivov, S.-J. Cho, H. Morkoc, H. Lee, and Y.-S. Kang, “Processing, structure, properties, and applications of pzt thin films,” Crit. Rev. Solid State Mater. Sci. 32, 111–202 (2007).
[Crossref]

Apostolopoulos, V.

E. Mavrona, U. Chodorow, M. Barnes, J. Parka, N. Palka, S. Saitzek, J.-F. Blach, V. Apostolopoulos, and M. Kaczmarek, “Refractive indices and birefringence of hybrid liquid crystal-nanoparticles composite materials in the terahertz region,” AIP Adv. 5, 077143 (2015).
[Crossref]

Apter, B.

Averty, D.

R. Seveno and D. Averty, “Ultra light tunable capacitor based on pzt thin film deposited onto aluminium foil,” J. Sol-Gel Sci. Technol. 68, 175–179 (2013).
[Crossref]

Bahat-Treidel, E.

Barnes, M.

E. Mavrona, U. Chodorow, M. Barnes, J. Parka, N. Palka, S. Saitzek, J.-F. Blach, V. Apostolopoulos, and M. Kaczmarek, “Refractive indices and birefringence of hybrid liquid crystal-nanoparticles composite materials in the terahertz region,” AIP Adv. 5, 077143 (2015).
[Crossref]

Beeckman, J.

J. P. George, P. F. Smet, J. Botterman, V. Bliznuk, W. Woestenborghs, D. Van Thourhout, K. Neyts, and J. Beeckman, “Lanthanide-assisted deposition of strongly electro-optic pzt thin films on silicon: Toward integrated active nanophotonic devices,” ACS Appl. Mater. Interfaces 7, 13350–13359 (2015). PMID: .
[Crossref] [PubMed]

P. J. Vanbrabant, J. Beeckman, K. Neyts, E. Willman, and F. A. Fernandez, “Diffraction and fringing field effects in small pixel liquid crystal devices with homeotropic alignment,” J. Appl. Phys. 108, 083104 (2010).
[Crossref]

Blach, J.-F.

E. Mavrona, U. Chodorow, M. Barnes, J. Parka, N. Palka, S. Saitzek, J.-F. Blach, V. Apostolopoulos, and M. Kaczmarek, “Refractive indices and birefringence of hybrid liquid crystal-nanoparticles composite materials in the terahertz region,” AIP Adv. 5, 077143 (2015).
[Crossref]

J.-F. Blach, S. Saitzek, C. Legrand, L. Dupont, J.-F. Henninot, and M. Warenghem, “Batio3 ferroelectric nanoparticles dispersed in 5cb nematic liquid crystal: Synthesis and electro-optical characterization,” J. Appl. Phys. 107, 074102 (2010).
[Crossref]

Bliznuk, V.

J. P. George, P. F. Smet, J. Botterman, V. Bliznuk, W. Woestenborghs, D. Van Thourhout, K. Neyts, and J. Beeckman, “Lanthanide-assisted deposition of strongly electro-optic pzt thin films on silicon: Toward integrated active nanophotonic devices,” ACS Appl. Mater. Interfaces 7, 13350–13359 (2015). PMID: .
[Crossref] [PubMed]

Bos, P. J.

L. Li, D. Bryant, and P. J. Bos, “Liquid crystal lens with concentric electrodes and inter-electrode resistors,” Liq. Cryst. Rev. 2, 130–154 (2014).
[Crossref]

L. Li, D. Bryant, T. V. Heugten, and P. J. Bos, “Near-diffraction-limited and low-haze electro-optical tunable liquid crystal lens with floating electrodes,” Opt. Express 21, 8371–8381 (2013).
[Crossref] [PubMed]

P. F. McManamon, P. J. Bos, M. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE 97, 1078–1096 (2009).
[Crossref]

Botterman, J.

J. P. George, P. F. Smet, J. Botterman, V. Bliznuk, W. Woestenborghs, D. Van Thourhout, K. Neyts, and J. Beeckman, “Lanthanide-assisted deposition of strongly electro-optic pzt thin films on silicon: Toward integrated active nanophotonic devices,” ACS Appl. Mater. Interfaces 7, 13350–13359 (2015). PMID: .
[Crossref] [PubMed]

Bryant, D.

L. Li, D. Bryant, and P. J. Bos, “Liquid crystal lens with concentric electrodes and inter-electrode resistors,” Liq. Cryst. Rev. 2, 130–154 (2014).
[Crossref]

L. Li, D. Bryant, T. V. Heugten, and P. J. Bos, “Near-diffraction-limited and low-haze electro-optical tunable liquid crystal lens with floating electrodes,” Opt. Express 21, 8371–8381 (2013).
[Crossref] [PubMed]

Cho, S.-J.

N. Izyumskaya, Y.-I. Alivov, S.-J. Cho, H. Morkoc, H. Lee, and Y.-S. Kang, “Processing, structure, properties, and applications of pzt thin films,” Crit. Rev. Solid State Mater. Sci. 32, 111–202 (2007).
[Crossref]

Chodorow, U.

E. Mavrona, U. Chodorow, M. Barnes, J. Parka, N. Palka, S. Saitzek, J.-F. Blach, V. Apostolopoulos, and M. Kaczmarek, “Refractive indices and birefringence of hybrid liquid crystal-nanoparticles composite materials in the terahertz region,” AIP Adv. 5, 077143 (2015).
[Crossref]

Day, S. E.

R. James, E. Willman, F. A. Fernández, and S. E. Day, “Finite-element modeling of liquid-crystal hydrodynamics with a variable degree of order,” IEEE Trans. Electron Dev. 53, 1575–1582 (2006).
[Crossref]

Dorschner, T.

Dupont, L.

J.-F. Blach, S. Saitzek, C. Legrand, L. Dupont, J.-F. Henninot, and M. Warenghem, “Batio3 ferroelectric nanoparticles dispersed in 5cb nematic liquid crystal: Synthesis and electro-optical characterization,” J. Appl. Phys. 107, 074102 (2010).
[Crossref]

Efron, U.

Escuti, M.

P. F. McManamon, P. J. Bos, M. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE 97, 1078–1096 (2009).
[Crossref]

Evans, D.

R. Shukla, C. Liebig, D. Evans, and W. Haase, “Electro-optical behaviour and dielectric dynamics of harvested ferroelectric linbo 3 nanoparticle-doped ferroelectric liquid crystal nanocolloids,” RSC Adv. 4, 18529–18536 (2014).
[Crossref]

Fan, Y.-H.

H. Ren, Y.-H. Fan, S. Gauza, and S.-T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84, 4789–4791 (2004).
[Crossref]

Farrell, M.

Q. Zou, H. E. Ruda, B. G. Yacobi, K. Saegusa, and M. Farrell, “Dielectric properties of lead zirconate titanate thin films deposited on metal foils,” Appl. Phys. Lett. 77, 1038–1040 (2000).
[Crossref]

Fernandez, F. A.

P. J. Vanbrabant, J. Beeckman, K. Neyts, E. Willman, and F. A. Fernandez, “Diffraction and fringing field effects in small pixel liquid crystal devices with homeotropic alignment,” J. Appl. Phys. 108, 083104 (2010).
[Crossref]

Fernández, F. A.

R. James, E. Willman, F. A. Fernández, and S. E. Day, “Finite-element modeling of liquid-crystal hydrodynamics with a variable degree of order,” IEEE Trans. Electron Dev. 53, 1575–1582 (2006).
[Crossref]

Friedman, L.

Gauza, S.

H. Ren, Y.-H. Fan, S. Gauza, and S.-T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84, 4789–4791 (2004).
[Crossref]

George, J. P.

J. P. George, P. F. Smet, J. Botterman, V. Bliznuk, W. Woestenborghs, D. Van Thourhout, K. Neyts, and J. Beeckman, “Lanthanide-assisted deposition of strongly electro-optic pzt thin films on silicon: Toward integrated active nanophotonic devices,” ACS Appl. Mater. Interfaces 7, 13350–13359 (2015). PMID: .
[Crossref] [PubMed]

Gibbons, B.

J. Walenza-Slabe and B. Gibbons, “Processing of rf-sputtered lead zirconate titanate thin films on copper foil substrates,” J. Mater. Sci. 50, 6420–6426 (2015).
[Crossref]

Guralnik, I. R.

Haase, W.

R. Shukla, C. Liebig, D. Evans, and W. Haase, “Electro-optical behaviour and dielectric dynamics of harvested ferroelectric linbo 3 nanoparticle-doped ferroelectric liquid crystal nanocolloids,” RSC Adv. 4, 18529–18536 (2014).
[Crossref]

Harris, S. R.

S. R. Harris, “Polarization effects in nematic liquid crystal optical phased arrays,” Proc. SPIE 5213, 26–39 (2003).
[Crossref]

Heikenfeld, J.

P. F. McManamon, P. J. Bos, M. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE 97, 1078–1096 (2009).
[Crossref]

Henninot, J.-F.

J.-F. Blach, S. Saitzek, C. Legrand, L. Dupont, J.-F. Henninot, and M. Warenghem, “Batio3 ferroelectric nanoparticles dispersed in 5cb nematic liquid crystal: Synthesis and electro-optical characterization,” J. Appl. Phys. 107, 074102 (2010).
[Crossref]

Heugten, T. V.

Hobbs, D.

Huang, L.-S.

Izyumskaya, N.

N. Izyumskaya, Y.-I. Alivov, S.-J. Cho, H. Morkoc, H. Lee, and Y.-S. Kang, “Processing, structure, properties, and applications of pzt thin films,” Crit. Rev. Solid State Mater. Sci. 32, 111–202 (2007).
[Crossref]

James, R.

R. James, E. Willman, F. A. Fernández, and S. E. Day, “Finite-element modeling of liquid-crystal hydrodynamics with a variable degree of order,” IEEE Trans. Electron Dev. 53, 1575–1582 (2006).
[Crossref]

Kaczmarek, M.

E. Mavrona, U. Chodorow, M. Barnes, J. Parka, N. Palka, S. Saitzek, J.-F. Blach, V. Apostolopoulos, and M. Kaczmarek, “Refractive indices and birefringence of hybrid liquid crystal-nanoparticles composite materials in the terahertz region,” AIP Adv. 5, 077143 (2015).
[Crossref]

Kang, Y.-S.

N. Izyumskaya, Y.-I. Alivov, S.-J. Cho, H. Morkoc, H. Lee, and Y.-S. Kang, “Processing, structure, properties, and applications of pzt thin films,” Crit. Rev. Solid State Mater. Sci. 32, 111–202 (2007).
[Crossref]

Kuo, C.-T.

Lee, C.-T.

Lee, H.

N. Izyumskaya, Y.-I. Alivov, S.-J. Cho, H. Morkoc, H. Lee, and Y.-S. Kang, “Processing, structure, properties, and applications of pzt thin films,” Crit. Rev. Solid State Mater. Sci. 32, 111–202 (2007).
[Crossref]

Legrand, C.

J.-F. Blach, S. Saitzek, C. Legrand, L. Dupont, J.-F. Henninot, and M. Warenghem, “Batio3 ferroelectric nanoparticles dispersed in 5cb nematic liquid crystal: Synthesis and electro-optical characterization,” J. Appl. Phys. 107, 074102 (2010).
[Crossref]

Li, D. D.

B. P. Zhu, D. D. Li, Q. F. Zhou, J. Shi, and K. K. Shung, “Piezoelectric pzt thick films on lanio 3 buffered stainless steel foils for flexible device applications,” J. Phys. D: Appl. Phys. 42, 025504 (2009).
[Crossref]

Li, L.

L. Li, D. Bryant, and P. J. Bos, “Liquid crystal lens with concentric electrodes and inter-electrode resistors,” Liq. Cryst. Rev. 2, 130–154 (2014).
[Crossref]

L. Li, D. Bryant, T. V. Heugten, and P. J. Bos, “Near-diffraction-limited and low-haze electro-optical tunable liquid crystal lens with floating electrodes,” Opt. Express 21, 8371–8381 (2013).
[Crossref] [PubMed]

Li, Q.

Li, Y.

Liebig, C.

R. Shukla, C. Liebig, D. Evans, and W. Haase, “Electro-optical behaviour and dielectric dynamics of harvested ferroelectric linbo 3 nanoparticle-doped ferroelectric liquid crystal nanocolloids,” RSC Adv. 4, 18529–18536 (2014).
[Crossref]

Lin, C.-H.

Lin, H.-Y.

Lin, S.-H.

Liu, Y.

Loktev, M. Y.

Mavrona, E.

E. Mavrona, U. Chodorow, M. Barnes, J. Parka, N. Palka, S. Saitzek, J.-F. Blach, V. Apostolopoulos, and M. Kaczmarek, “Refractive indices and birefringence of hybrid liquid crystal-nanoparticles composite materials in the terahertz region,” AIP Adv. 5, 077143 (2015).
[Crossref]

McManamon, P. F.

P. F. McManamon, P. J. Bos, M. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE 97, 1078–1096 (2009).
[Crossref]

Morkoc, H.

N. Izyumskaya, Y.-I. Alivov, S.-J. Cho, H. Morkoc, H. Lee, and Y.-S. Kang, “Processing, structure, properties, and applications of pzt thin films,” Crit. Rev. Solid State Mater. Sci. 32, 111–202 (2007).
[Crossref]

Naumov, A. F.

Neyts, K.

J. P. George, P. F. Smet, J. Botterman, V. Bliznuk, W. Woestenborghs, D. Van Thourhout, K. Neyts, and J. Beeckman, “Lanthanide-assisted deposition of strongly electro-optic pzt thin films on silicon: Toward integrated active nanophotonic devices,” ACS Appl. Mater. Interfaces 7, 13350–13359 (2015). PMID: .
[Crossref] [PubMed]

P. J. Vanbrabant, J. Beeckman, K. Neyts, E. Willman, and F. A. Fernandez, “Diffraction and fringing field effects in small pixel liquid crystal devices with homeotropic alignment,” J. Appl. Phys. 108, 083104 (2010).
[Crossref]

Nose, T.

T. Nose and S. Sato, “A liquid crystal microlens obtained with a non-uniform electric field,” Liq. Cryst. 5, 1425–1433 (1989).
[Crossref]

Palka, N.

E. Mavrona, U. Chodorow, M. Barnes, J. Parka, N. Palka, S. Saitzek, J.-F. Blach, V. Apostolopoulos, and M. Kaczmarek, “Refractive indices and birefringence of hybrid liquid crystal-nanoparticles composite materials in the terahertz region,” AIP Adv. 5, 077143 (2015).
[Crossref]

Parka, J.

E. Mavrona, U. Chodorow, M. Barnes, J. Parka, N. Palka, S. Saitzek, J.-F. Blach, V. Apostolopoulos, and M. Kaczmarek, “Refractive indices and birefringence of hybrid liquid crystal-nanoparticles composite materials in the terahertz region,” AIP Adv. 5, 077143 (2015).
[Crossref]

Ren, H.

H. Ren, Y.-H. Fan, S. Gauza, and S.-T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84, 4789–4791 (2004).
[Crossref]

Resler, D.

Ruda, H. E.

Q. Zou, H. E. Ruda, B. G. Yacobi, K. Saegusa, and M. Farrell, “Dielectric properties of lead zirconate titanate thin films deposited on metal foils,” Appl. Phys. Lett. 77, 1038–1040 (2000).
[Crossref]

Saegusa, K.

Q. Zou, H. E. Ruda, B. G. Yacobi, K. Saegusa, and M. Farrell, “Dielectric properties of lead zirconate titanate thin films deposited on metal foils,” Appl. Phys. Lett. 77, 1038–1040 (2000).
[Crossref]

Saitzek, S.

E. Mavrona, U. Chodorow, M. Barnes, J. Parka, N. Palka, S. Saitzek, J.-F. Blach, V. Apostolopoulos, and M. Kaczmarek, “Refractive indices and birefringence of hybrid liquid crystal-nanoparticles composite materials in the terahertz region,” AIP Adv. 5, 077143 (2015).
[Crossref]

J.-F. Blach, S. Saitzek, C. Legrand, L. Dupont, J.-F. Henninot, and M. Warenghem, “Batio3 ferroelectric nanoparticles dispersed in 5cb nematic liquid crystal: Synthesis and electro-optical characterization,” J. Appl. Phys. 107, 074102 (2010).
[Crossref]

Sato, S.

T. Nose and S. Sato, “A liquid crystal microlens obtained with a non-uniform electric field,” Liq. Cryst. 5, 1425–1433 (1989).
[Crossref]

Serati, S.

P. F. McManamon, P. J. Bos, M. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE 97, 1078–1096 (2009).
[Crossref]

Seveno, R.

R. Seveno and D. Averty, “Ultra light tunable capacitor based on pzt thin film deposited onto aluminium foil,” J. Sol-Gel Sci. Technol. 68, 175–179 (2013).
[Crossref]

Sharp, R.

Shi, J.

B. P. Zhu, D. D. Li, Q. F. Zhou, J. Shi, and K. K. Shung, “Piezoelectric pzt thick films on lanio 3 buffered stainless steel foils for flexible device applications,” J. Phys. D: Appl. Phys. 42, 025504 (2009).
[Crossref]

Shukla, R.

R. Shukla, C. Liebig, D. Evans, and W. Haase, “Electro-optical behaviour and dielectric dynamics of harvested ferroelectric linbo 3 nanoparticle-doped ferroelectric liquid crystal nanocolloids,” RSC Adv. 4, 18529–18536 (2014).
[Crossref]

Shung, K. K.

B. P. Zhu, D. D. Li, Q. F. Zhou, J. Shi, and K. K. Shung, “Piezoelectric pzt thick films on lanio 3 buffered stainless steel foils for flexible device applications,” J. Phys. D: Appl. Phys. 42, 025504 (2009).
[Crossref]

Smet, P. F.

J. P. George, P. F. Smet, J. Botterman, V. Bliznuk, W. Woestenborghs, D. Van Thourhout, K. Neyts, and J. Beeckman, “Lanthanide-assisted deposition of strongly electro-optic pzt thin films on silicon: Toward integrated active nanophotonic devices,” ACS Appl. Mater. Interfaces 7, 13350–13359 (2015). PMID: .
[Crossref] [PubMed]

Van Thourhout, D.

J. P. George, P. F. Smet, J. Botterman, V. Bliznuk, W. Woestenborghs, D. Van Thourhout, K. Neyts, and J. Beeckman, “Lanthanide-assisted deposition of strongly electro-optic pzt thin films on silicon: Toward integrated active nanophotonic devices,” ACS Appl. Mater. Interfaces 7, 13350–13359 (2015). PMID: .
[Crossref] [PubMed]

Vanbrabant, P. J.

P. J. Vanbrabant, J. Beeckman, K. Neyts, E. Willman, and F. A. Fernandez, “Diffraction and fringing field effects in small pixel liquid crystal devices with homeotropic alignment,” J. Appl. Phys. 108, 083104 (2010).
[Crossref]

Vdovin, G.

Walenza-Slabe, J.

J. Walenza-Slabe and B. Gibbons, “Processing of rf-sputtered lead zirconate titanate thin films on copper foil substrates,” J. Mater. Sci. 50, 6420–6426 (2015).
[Crossref]

Warenghem, M.

J.-F. Blach, S. Saitzek, C. Legrand, L. Dupont, J.-F. Henninot, and M. Warenghem, “Batio3 ferroelectric nanoparticles dispersed in 5cb nematic liquid crystal: Synthesis and electro-optical characterization,” J. Appl. Phys. 107, 074102 (2010).
[Crossref]

Watson, E.

P. F. McManamon, P. J. Bos, M. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE 97, 1078–1096 (2009).
[Crossref]

Willman, E.

P. J. Vanbrabant, J. Beeckman, K. Neyts, E. Willman, and F. A. Fernandez, “Diffraction and fringing field effects in small pixel liquid crystal devices with homeotropic alignment,” J. Appl. Phys. 108, 083104 (2010).
[Crossref]

R. James, E. Willman, F. A. Fernández, and S. E. Day, “Finite-element modeling of liquid-crystal hydrodynamics with a variable degree of order,” IEEE Trans. Electron Dev. 53, 1575–1582 (2006).
[Crossref]

Woestenborghs, W.

J. P. George, P. F. Smet, J. Botterman, V. Bliznuk, W. Woestenborghs, D. Van Thourhout, K. Neyts, and J. Beeckman, “Lanthanide-assisted deposition of strongly electro-optic pzt thin films on silicon: Toward integrated active nanophotonic devices,” ACS Appl. Mater. Interfaces 7, 13350–13359 (2015). PMID: .
[Crossref] [PubMed]

Wu, S.-T.

Xie, H.

P. F. McManamon, P. J. Bos, M. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE 97, 1078–1096 (2009).
[Crossref]

Yacobi, B. G.

Q. Zou, H. E. Ruda, B. G. Yacobi, K. Saegusa, and M. Farrell, “Dielectric properties of lead zirconate titanate thin films deposited on metal foils,” Appl. Phys. Lett. 77, 1038–1040 (2000).
[Crossref]

Yang, D.-K.

D.-K. Yang and S.-T. Wu, “Tunable liquid crystal photonic devices,” in Fundamentals of Liquid Crystal Devices (John Wiley & Sons, Ltd, 2006), pp. 347–374.
[Crossref]

Zhou, Q. F.

B. P. Zhu, D. D. Li, Q. F. Zhou, J. Shi, and K. K. Shung, “Piezoelectric pzt thick films on lanio 3 buffered stainless steel foils for flexible device applications,” J. Phys. D: Appl. Phys. 42, 025504 (2009).
[Crossref]

Zhu, B. P.

B. P. Zhu, D. D. Li, Q. F. Zhou, J. Shi, and K. K. Shung, “Piezoelectric pzt thick films on lanio 3 buffered stainless steel foils for flexible device applications,” J. Phys. D: Appl. Phys. 42, 025504 (2009).
[Crossref]

Zou, Q.

Q. Zou, H. E. Ruda, B. G. Yacobi, K. Saegusa, and M. Farrell, “Dielectric properties of lead zirconate titanate thin films deposited on metal foils,” Appl. Phys. Lett. 77, 1038–1040 (2000).
[Crossref]

ACS Appl. Mater. Interfaces (1)

J. P. George, P. F. Smet, J. Botterman, V. Bliznuk, W. Woestenborghs, D. Van Thourhout, K. Neyts, and J. Beeckman, “Lanthanide-assisted deposition of strongly electro-optic pzt thin films on silicon: Toward integrated active nanophotonic devices,” ACS Appl. Mater. Interfaces 7, 13350–13359 (2015). PMID: .
[Crossref] [PubMed]

AIP Adv. (1)

E. Mavrona, U. Chodorow, M. Barnes, J. Parka, N. Palka, S. Saitzek, J.-F. Blach, V. Apostolopoulos, and M. Kaczmarek, “Refractive indices and birefringence of hybrid liquid crystal-nanoparticles composite materials in the terahertz region,” AIP Adv. 5, 077143 (2015).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (2)

H. Ren, Y.-H. Fan, S. Gauza, and S.-T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84, 4789–4791 (2004).
[Crossref]

Q. Zou, H. E. Ruda, B. G. Yacobi, K. Saegusa, and M. Farrell, “Dielectric properties of lead zirconate titanate thin films deposited on metal foils,” Appl. Phys. Lett. 77, 1038–1040 (2000).
[Crossref]

Crit. Rev. Solid State Mater. Sci. (1)

N. Izyumskaya, Y.-I. Alivov, S.-J. Cho, H. Morkoc, H. Lee, and Y.-S. Kang, “Processing, structure, properties, and applications of pzt thin films,” Crit. Rev. Solid State Mater. Sci. 32, 111–202 (2007).
[Crossref]

IEEE Trans. Electron Dev. (1)

R. James, E. Willman, F. A. Fernández, and S. E. Day, “Finite-element modeling of liquid-crystal hydrodynamics with a variable degree of order,” IEEE Trans. Electron Dev. 53, 1575–1582 (2006).
[Crossref]

J. Appl. Phys. (2)

P. J. Vanbrabant, J. Beeckman, K. Neyts, E. Willman, and F. A. Fernandez, “Diffraction and fringing field effects in small pixel liquid crystal devices with homeotropic alignment,” J. Appl. Phys. 108, 083104 (2010).
[Crossref]

J.-F. Blach, S. Saitzek, C. Legrand, L. Dupont, J.-F. Henninot, and M. Warenghem, “Batio3 ferroelectric nanoparticles dispersed in 5cb nematic liquid crystal: Synthesis and electro-optical characterization,” J. Appl. Phys. 107, 074102 (2010).
[Crossref]

J. Mater. Sci. (1)

J. Walenza-Slabe and B. Gibbons, “Processing of rf-sputtered lead zirconate titanate thin films on copper foil substrates,” J. Mater. Sci. 50, 6420–6426 (2015).
[Crossref]

J. Phys. D: Appl. Phys. (1)

B. P. Zhu, D. D. Li, Q. F. Zhou, J. Shi, and K. K. Shung, “Piezoelectric pzt thick films on lanio 3 buffered stainless steel foils for flexible device applications,” J. Phys. D: Appl. Phys. 42, 025504 (2009).
[Crossref]

J. Sol-Gel Sci. Technol. (1)

R. Seveno and D. Averty, “Ultra light tunable capacitor based on pzt thin film deposited onto aluminium foil,” J. Sol-Gel Sci. Technol. 68, 175–179 (2013).
[Crossref]

Liq. Cryst. (1)

T. Nose and S. Sato, “A liquid crystal microlens obtained with a non-uniform electric field,” Liq. Cryst. 5, 1425–1433 (1989).
[Crossref]

Liq. Cryst. Rev. (1)

L. Li, D. Bryant, and P. J. Bos, “Liquid crystal lens with concentric electrodes and inter-electrode resistors,” Liq. Cryst. Rev. 2, 130–154 (2014).
[Crossref]

Opt. Express (4)

Opt. Lett. (2)

Proc. IEEE (1)

P. F. McManamon, P. J. Bos, M. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE 97, 1078–1096 (2009).
[Crossref]

Proc. SPIE (1)

S. R. Harris, “Polarization effects in nematic liquid crystal optical phased arrays,” Proc. SPIE 5213, 26–39 (2003).
[Crossref]

RSC Adv. (1)

R. Shukla, C. Liebig, D. Evans, and W. Haase, “Electro-optical behaviour and dielectric dynamics of harvested ferroelectric linbo 3 nanoparticle-doped ferroelectric liquid crystal nanocolloids,” RSC Adv. 4, 18529–18536 (2014).
[Crossref]

Other (1)

D.-K. Yang and S.-T. Wu, “Tunable liquid crystal photonic devices,” in Fundamentals of Liquid Crystal Devices (John Wiley & Sons, Ltd, 2006), pp. 347–374.
[Crossref]

Supplementary Material (1)

NameDescription
» Visualization 1: MP4 (346 KB)      Comparison of the switching behaviour of the liquid crystal in a reference device and one where PZT is over the addressing electrodes.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Characteristics of the PZT layer: (a) Scanning electron microscope image of a single PZT layer imaged from the side showing the polycrystalline nature of the deposited layer. Each single crystal grain has a diameter of ∼70 nm. (b) Measured relative dielectric constant of the PZT-layer, sandwiched between two ITO electrodes.
Fig. 2
Fig. 2 (a) Schematic of the cross-sectional buildup of the liquid crystal lens with added PZT layer. Note that the thickness of each layer is not to scale. (b) A fabricated LC cell with PZT layer, containing 3 microlenses.
Fig. 3
Fig. 3 Microscope images of a reference device (left) and a device with electrodes covered by 0.84 μm PZT (right), where the device is between crossed polarizers. The electrodes are 6 μm wide and spaced 60 μm apart; a 1 kHz square wave is connected to the electrodes, forming a potential difference of 2.0 V between the circular electrodes and the common electrode. The bottom right corner of the PZT-enhanced device shows the situation for the same lens when the amplitude is 0.1 V.
Fig. 4
Fig. 4 Cross-sections of the simulated director profile corresponding to the microscope images in Fig. 3. The position of these cross-sectional slices in the microscope images is indicated by a white dashed line. The addressing electrodes are not shown, but are located at the edges of the slice at a height of 0 μm in the reference lens and at −0.84 μm in the enhanced device.
Fig. 5
Fig. 5 The intensity profile maps, (a) and (b), show the relative transmission of the device between crossed polarizers as a function of the potential difference between the circular electrodes and the common electrode. (a) corresponds to the reference lens, (b) to the PZT-enhanced lens. The insets, (c) and (d), show the position along which the intensity profile is taken and the rubbing direction (see Visualization 1 for an overview of the intensity changes along different directions). These inset pictures reflect the situation at 5.1 V. The graph in (e) shows the intensity profiles halfway between the two electrodes. The oscillations in the intensity profile when a PZT layer is present (red dotted line) show that the liquid crystal director at 30 μm from the electrodes reorients at much lower voltages than those that would be required had the PZT layer not been present.
Fig. 6
Fig. 6 Image set of a PZT-enhanced lens with 30 μm inter-electrode spacing. These images were taken with a 10X microscope objective in front of the camera sensor. (a) Transmission image of the microlens illuminated by the laser when no voltages are applied. The image plane of pictures (b), (e) and (c), (f) is 4.4 cm and 7.4 cm away from the lens electrode plane respectively. The upper row shows the intensity distribution when no potential is applied to the lens electrodes, whereas in the bottom row an appropriate set of voltages was applied to obtain a small, intense focused spot. The graph (d) shows the radial intensity profile of the focused spot of subfigure (e).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

C = ε 0 ε r A d
T = sin 2 ( 2 ϕ ) sin 2 ( Γ 2 )

Metrics