Abstract

This paper presents a Fabry-Perot fiber tip sensor based on an air-liquid filled cavity. The cavity is sealed off by a thin gold coated membrane of parylene C, between 300 and 350 nm, creating a particularly flexible diaphragm. In order to retrieve and track the cavity of interest from other cavities formed within the sensor tip, a signal processing of the feedback signal is performed by inverse fast Fourier transform. The experimental sensor has been manufactured and tested for temperature, giving cavity length sensitivities of 6.1 nm/°C and 9.6 nm/°C for temperature increase and decrease respectively. The external gas pressure response gives a sensitivity of 15 nm/kPa. The fiber sensor has also been adapted for force sensing after silicone embedment and has shown a sensitivity of about 8.7 nm/mN. Finally, the sensor has been tested on insertion into a human temporal bone, proving that it could be an interesting candidate for insertion force monitoring for robotic cochlear implantation.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Silk fibroin diaphragm-based fiber-tip Fabry-Perot pressure sensor

Linghao Cheng, Cengzhong Wang, Yunyun Huang, Hao Liang, and Bai-Ou Guan
Opt. Express 24(17) 19600-19606 (2016)

Fiber-tip gas pressure sensor based on dual capillaries

Ben Xu, Chao Wang, D. N. Wang, Yaming Liu, and Yi Li
Opt. Express 23(18) 23484-23492 (2015)

References

  • View by:
  • |
  • |
  • |

  1. A. Homsy, E. Laux, L. Jeandupeux, J. Charmet, R. Bitterli, C. Botta, Y. Rebetez, O. Banakh, and H. Keppner, “Solid on liquid deposition, a review of technological solutions,” Microelectron. Eng. 141, 267–279 (2015).
    [Crossref]
  2. T. C. E. Lee and H. F. Taylor, “Interferometric optical fiber sensors using internal mirrors,” Electron. Lett. 24(4), 193–194 (1988).
    [Crossref]
  3. M. S. Ferreira, P. Roriz, S. O. Silva, J. L. Santos, and O. Frazão, “Next generation of Fabry-Perot sensors for high temperature,” Opt. Fiber Technol. 19(6), 833–837 (2013).
    [Crossref]
  4. É. Pinet, “Fabry-Pérot fiber-optic sensors for physical parameters measurement in challenging conditions,” J. Sens. 2009, 720980 (2009).
    [Crossref]
  5. M. Hou, Y. Wang, S. Liu, J. Guo, Z. Li, and P. Lu, “Sensitivity-enhanced pressure sensor with hollow-core photonic crystal fiber,” J. Lightwave Technol. 32(23), 4035–4039 (2014).
  6. C.-L. Lee, H.-J. Chang, Y.-W. You, G.-H. Chen, J.-M. Hsu, and J.-S. Horng, “Fiber Fabry-Pérot interferometers based on air-bubbles/liquid in hollow core fibers,” IEEE Photonics Technol. Lett. 26(8), 749–752 (2014).
    [Crossref]
  7. J. Gong, Z. Li, and A. Wang, “Low-cost interrogator for fiber-optic interferometers and fiber Bragg grating sensors,” Advanced Sensor Systems and Applications IV, Proc. SPIE 7853, 78530S (2010).
    [Crossref]
  8. S. A. Wade, J. B. Fallon, A. K. Wise, R. K. Shepherd, N. L. James, and P. R. Stoddart, “Measurement of forces at the tip of a cochlear implant during insertion,” IEEE Trans. Biomed. Eng. 61(4), 1177–1186 (2014).
    [Crossref] [PubMed]
  9. A. Farinetti, D. Ben Gharbia, J. Mancini, S. Roman, R. Nicollas, and J. M. Triglia, “Cochlear implant complications in 403 patients: Comparative study of adults and children and review of the literature,” Eur. Ann. Otorhinolaryngol. Head Neck Dis. 131(3), 177–182 (2014).
    [Crossref] [PubMed]
  10. Y. Zhu and A. Wang, “Miniature fiber-optic pressure sensor,” IEEE Photonics Technol. Lett. 17(2), 447–449 (2005).
    [Crossref]
  11. B. Yu, A. Wang, and G. R. Pickrell, “Analysis of Fabry-Pérot interferometric sensors using low-coherence light sources,” J. Lightwave Technol. 24(4), 1758–1767 (2005).
  12. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
    [Crossref]
  13. J. Schmit and K. Creath, “Extended averaging technique for derivation of error-compensating algorithms in phase-shifting interferometry,” Appl. Opt. 34(19), 3610–3619 (1995).
    [Crossref] [PubMed]
  14. D. Quéré, “Inertial capillarity,” Europhys. Lett. 39(5), 533–538 (1997).
    [Crossref]
  15. D. Schuster, L. B. Kratchman, and R. F. Labadie, “Characterization of intracochlear rupture forces in fresh human cadaveric cochleae,” Otol. Neurotol. 36(4), 657–661 (2015).
    [Crossref] [PubMed]
  16. C. A. Todd, F. Naghdy, and M. J. Svehla, “Force application during cochlear implant insertion: an analysis for improvement of surgeon technique,” IEEE Trans. Biomed. Eng. 54(7), 1247–1255 (2007).
    [Crossref] [PubMed]

2015 (2)

A. Homsy, E. Laux, L. Jeandupeux, J. Charmet, R. Bitterli, C. Botta, Y. Rebetez, O. Banakh, and H. Keppner, “Solid on liquid deposition, a review of technological solutions,” Microelectron. Eng. 141, 267–279 (2015).
[Crossref]

D. Schuster, L. B. Kratchman, and R. F. Labadie, “Characterization of intracochlear rupture forces in fresh human cadaveric cochleae,” Otol. Neurotol. 36(4), 657–661 (2015).
[Crossref] [PubMed]

2014 (4)

C.-L. Lee, H.-J. Chang, Y.-W. You, G.-H. Chen, J.-M. Hsu, and J.-S. Horng, “Fiber Fabry-Pérot interferometers based on air-bubbles/liquid in hollow core fibers,” IEEE Photonics Technol. Lett. 26(8), 749–752 (2014).
[Crossref]

M. Hou, Y. Wang, S. Liu, J. Guo, Z. Li, and P. Lu, “Sensitivity-enhanced pressure sensor with hollow-core photonic crystal fiber,” J. Lightwave Technol. 32(23), 4035–4039 (2014).

S. A. Wade, J. B. Fallon, A. K. Wise, R. K. Shepherd, N. L. James, and P. R. Stoddart, “Measurement of forces at the tip of a cochlear implant during insertion,” IEEE Trans. Biomed. Eng. 61(4), 1177–1186 (2014).
[Crossref] [PubMed]

A. Farinetti, D. Ben Gharbia, J. Mancini, S. Roman, R. Nicollas, and J. M. Triglia, “Cochlear implant complications in 403 patients: Comparative study of adults and children and review of the literature,” Eur. Ann. Otorhinolaryngol. Head Neck Dis. 131(3), 177–182 (2014).
[Crossref] [PubMed]

2013 (1)

M. S. Ferreira, P. Roriz, S. O. Silva, J. L. Santos, and O. Frazão, “Next generation of Fabry-Perot sensors for high temperature,” Opt. Fiber Technol. 19(6), 833–837 (2013).
[Crossref]

2010 (1)

J. Gong, Z. Li, and A. Wang, “Low-cost interrogator for fiber-optic interferometers and fiber Bragg grating sensors,” Advanced Sensor Systems and Applications IV, Proc. SPIE 7853, 78530S (2010).
[Crossref]

2009 (1)

É. Pinet, “Fabry-Pérot fiber-optic sensors for physical parameters measurement in challenging conditions,” J. Sens. 2009, 720980 (2009).
[Crossref]

2007 (1)

C. A. Todd, F. Naghdy, and M. J. Svehla, “Force application during cochlear implant insertion: an analysis for improvement of surgeon technique,” IEEE Trans. Biomed. Eng. 54(7), 1247–1255 (2007).
[Crossref] [PubMed]

2005 (2)

2003 (1)

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[Crossref]

1997 (1)

D. Quéré, “Inertial capillarity,” Europhys. Lett. 39(5), 533–538 (1997).
[Crossref]

1995 (1)

1988 (1)

T. C. E. Lee and H. F. Taylor, “Interferometric optical fiber sensors using internal mirrors,” Electron. Lett. 24(4), 193–194 (1988).
[Crossref]

Banakh, O.

A. Homsy, E. Laux, L. Jeandupeux, J. Charmet, R. Bitterli, C. Botta, Y. Rebetez, O. Banakh, and H. Keppner, “Solid on liquid deposition, a review of technological solutions,” Microelectron. Eng. 141, 267–279 (2015).
[Crossref]

Ben Gharbia, D.

A. Farinetti, D. Ben Gharbia, J. Mancini, S. Roman, R. Nicollas, and J. M. Triglia, “Cochlear implant complications in 403 patients: Comparative study of adults and children and review of the literature,” Eur. Ann. Otorhinolaryngol. Head Neck Dis. 131(3), 177–182 (2014).
[Crossref] [PubMed]

Bitterli, R.

A. Homsy, E. Laux, L. Jeandupeux, J. Charmet, R. Bitterli, C. Botta, Y. Rebetez, O. Banakh, and H. Keppner, “Solid on liquid deposition, a review of technological solutions,” Microelectron. Eng. 141, 267–279 (2015).
[Crossref]

Botta, C.

A. Homsy, E. Laux, L. Jeandupeux, J. Charmet, R. Bitterli, C. Botta, Y. Rebetez, O. Banakh, and H. Keppner, “Solid on liquid deposition, a review of technological solutions,” Microelectron. Eng. 141, 267–279 (2015).
[Crossref]

Chang, H.-J.

C.-L. Lee, H.-J. Chang, Y.-W. You, G.-H. Chen, J.-M. Hsu, and J.-S. Horng, “Fiber Fabry-Pérot interferometers based on air-bubbles/liquid in hollow core fibers,” IEEE Photonics Technol. Lett. 26(8), 749–752 (2014).
[Crossref]

Charmet, J.

A. Homsy, E. Laux, L. Jeandupeux, J. Charmet, R. Bitterli, C. Botta, Y. Rebetez, O. Banakh, and H. Keppner, “Solid on liquid deposition, a review of technological solutions,” Microelectron. Eng. 141, 267–279 (2015).
[Crossref]

Chen, G.-H.

C.-L. Lee, H.-J. Chang, Y.-W. You, G.-H. Chen, J.-M. Hsu, and J.-S. Horng, “Fiber Fabry-Pérot interferometers based on air-bubbles/liquid in hollow core fibers,” IEEE Photonics Technol. Lett. 26(8), 749–752 (2014).
[Crossref]

Creath, K.

Drexler, W.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[Crossref]

Fallon, J. B.

S. A. Wade, J. B. Fallon, A. K. Wise, R. K. Shepherd, N. L. James, and P. R. Stoddart, “Measurement of forces at the tip of a cochlear implant during insertion,” IEEE Trans. Biomed. Eng. 61(4), 1177–1186 (2014).
[Crossref] [PubMed]

Farinetti, A.

A. Farinetti, D. Ben Gharbia, J. Mancini, S. Roman, R. Nicollas, and J. M. Triglia, “Cochlear implant complications in 403 patients: Comparative study of adults and children and review of the literature,” Eur. Ann. Otorhinolaryngol. Head Neck Dis. 131(3), 177–182 (2014).
[Crossref] [PubMed]

Fercher, A. F.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[Crossref]

Ferreira, M. S.

M. S. Ferreira, P. Roriz, S. O. Silva, J. L. Santos, and O. Frazão, “Next generation of Fabry-Perot sensors for high temperature,” Opt. Fiber Technol. 19(6), 833–837 (2013).
[Crossref]

Frazão, O.

M. S. Ferreira, P. Roriz, S. O. Silva, J. L. Santos, and O. Frazão, “Next generation of Fabry-Perot sensors for high temperature,” Opt. Fiber Technol. 19(6), 833–837 (2013).
[Crossref]

Gong, J.

J. Gong, Z. Li, and A. Wang, “Low-cost interrogator for fiber-optic interferometers and fiber Bragg grating sensors,” Advanced Sensor Systems and Applications IV, Proc. SPIE 7853, 78530S (2010).
[Crossref]

Guo, J.

Hitzenberger, C. K.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[Crossref]

Homsy, A.

A. Homsy, E. Laux, L. Jeandupeux, J. Charmet, R. Bitterli, C. Botta, Y. Rebetez, O. Banakh, and H. Keppner, “Solid on liquid deposition, a review of technological solutions,” Microelectron. Eng. 141, 267–279 (2015).
[Crossref]

Horng, J.-S.

C.-L. Lee, H.-J. Chang, Y.-W. You, G.-H. Chen, J.-M. Hsu, and J.-S. Horng, “Fiber Fabry-Pérot interferometers based on air-bubbles/liquid in hollow core fibers,” IEEE Photonics Technol. Lett. 26(8), 749–752 (2014).
[Crossref]

Hou, M.

Hsu, J.-M.

C.-L. Lee, H.-J. Chang, Y.-W. You, G.-H. Chen, J.-M. Hsu, and J.-S. Horng, “Fiber Fabry-Pérot interferometers based on air-bubbles/liquid in hollow core fibers,” IEEE Photonics Technol. Lett. 26(8), 749–752 (2014).
[Crossref]

James, N. L.

S. A. Wade, J. B. Fallon, A. K. Wise, R. K. Shepherd, N. L. James, and P. R. Stoddart, “Measurement of forces at the tip of a cochlear implant during insertion,” IEEE Trans. Biomed. Eng. 61(4), 1177–1186 (2014).
[Crossref] [PubMed]

Jeandupeux, L.

A. Homsy, E. Laux, L. Jeandupeux, J. Charmet, R. Bitterli, C. Botta, Y. Rebetez, O. Banakh, and H. Keppner, “Solid on liquid deposition, a review of technological solutions,” Microelectron. Eng. 141, 267–279 (2015).
[Crossref]

Keppner, H.

A. Homsy, E. Laux, L. Jeandupeux, J. Charmet, R. Bitterli, C. Botta, Y. Rebetez, O. Banakh, and H. Keppner, “Solid on liquid deposition, a review of technological solutions,” Microelectron. Eng. 141, 267–279 (2015).
[Crossref]

Kratchman, L. B.

D. Schuster, L. B. Kratchman, and R. F. Labadie, “Characterization of intracochlear rupture forces in fresh human cadaveric cochleae,” Otol. Neurotol. 36(4), 657–661 (2015).
[Crossref] [PubMed]

Labadie, R. F.

D. Schuster, L. B. Kratchman, and R. F. Labadie, “Characterization of intracochlear rupture forces in fresh human cadaveric cochleae,” Otol. Neurotol. 36(4), 657–661 (2015).
[Crossref] [PubMed]

Lasser, T.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[Crossref]

Laux, E.

A. Homsy, E. Laux, L. Jeandupeux, J. Charmet, R. Bitterli, C. Botta, Y. Rebetez, O. Banakh, and H. Keppner, “Solid on liquid deposition, a review of technological solutions,” Microelectron. Eng. 141, 267–279 (2015).
[Crossref]

Lee, C.-L.

C.-L. Lee, H.-J. Chang, Y.-W. You, G.-H. Chen, J.-M. Hsu, and J.-S. Horng, “Fiber Fabry-Pérot interferometers based on air-bubbles/liquid in hollow core fibers,” IEEE Photonics Technol. Lett. 26(8), 749–752 (2014).
[Crossref]

Lee, T. C. E.

T. C. E. Lee and H. F. Taylor, “Interferometric optical fiber sensors using internal mirrors,” Electron. Lett. 24(4), 193–194 (1988).
[Crossref]

Li, Z.

M. Hou, Y. Wang, S. Liu, J. Guo, Z. Li, and P. Lu, “Sensitivity-enhanced pressure sensor with hollow-core photonic crystal fiber,” J. Lightwave Technol. 32(23), 4035–4039 (2014).

J. Gong, Z. Li, and A. Wang, “Low-cost interrogator for fiber-optic interferometers and fiber Bragg grating sensors,” Advanced Sensor Systems and Applications IV, Proc. SPIE 7853, 78530S (2010).
[Crossref]

Liu, S.

Lu, P.

Mancini, J.

A. Farinetti, D. Ben Gharbia, J. Mancini, S. Roman, R. Nicollas, and J. M. Triglia, “Cochlear implant complications in 403 patients: Comparative study of adults and children and review of the literature,” Eur. Ann. Otorhinolaryngol. Head Neck Dis. 131(3), 177–182 (2014).
[Crossref] [PubMed]

Naghdy, F.

C. A. Todd, F. Naghdy, and M. J. Svehla, “Force application during cochlear implant insertion: an analysis for improvement of surgeon technique,” IEEE Trans. Biomed. Eng. 54(7), 1247–1255 (2007).
[Crossref] [PubMed]

Nicollas, R.

A. Farinetti, D. Ben Gharbia, J. Mancini, S. Roman, R. Nicollas, and J. M. Triglia, “Cochlear implant complications in 403 patients: Comparative study of adults and children and review of the literature,” Eur. Ann. Otorhinolaryngol. Head Neck Dis. 131(3), 177–182 (2014).
[Crossref] [PubMed]

Pickrell, G. R.

Pinet, É.

É. Pinet, “Fabry-Pérot fiber-optic sensors for physical parameters measurement in challenging conditions,” J. Sens. 2009, 720980 (2009).
[Crossref]

Quéré, D.

D. Quéré, “Inertial capillarity,” Europhys. Lett. 39(5), 533–538 (1997).
[Crossref]

Rebetez, Y.

A. Homsy, E. Laux, L. Jeandupeux, J. Charmet, R. Bitterli, C. Botta, Y. Rebetez, O. Banakh, and H. Keppner, “Solid on liquid deposition, a review of technological solutions,” Microelectron. Eng. 141, 267–279 (2015).
[Crossref]

Roman, S.

A. Farinetti, D. Ben Gharbia, J. Mancini, S. Roman, R. Nicollas, and J. M. Triglia, “Cochlear implant complications in 403 patients: Comparative study of adults and children and review of the literature,” Eur. Ann. Otorhinolaryngol. Head Neck Dis. 131(3), 177–182 (2014).
[Crossref] [PubMed]

Roriz, P.

M. S. Ferreira, P. Roriz, S. O. Silva, J. L. Santos, and O. Frazão, “Next generation of Fabry-Perot sensors for high temperature,” Opt. Fiber Technol. 19(6), 833–837 (2013).
[Crossref]

Santos, J. L.

M. S. Ferreira, P. Roriz, S. O. Silva, J. L. Santos, and O. Frazão, “Next generation of Fabry-Perot sensors for high temperature,” Opt. Fiber Technol. 19(6), 833–837 (2013).
[Crossref]

Schmit, J.

Schuster, D.

D. Schuster, L. B. Kratchman, and R. F. Labadie, “Characterization of intracochlear rupture forces in fresh human cadaveric cochleae,” Otol. Neurotol. 36(4), 657–661 (2015).
[Crossref] [PubMed]

Shepherd, R. K.

S. A. Wade, J. B. Fallon, A. K. Wise, R. K. Shepherd, N. L. James, and P. R. Stoddart, “Measurement of forces at the tip of a cochlear implant during insertion,” IEEE Trans. Biomed. Eng. 61(4), 1177–1186 (2014).
[Crossref] [PubMed]

Silva, S. O.

M. S. Ferreira, P. Roriz, S. O. Silva, J. L. Santos, and O. Frazão, “Next generation of Fabry-Perot sensors for high temperature,” Opt. Fiber Technol. 19(6), 833–837 (2013).
[Crossref]

Stoddart, P. R.

S. A. Wade, J. B. Fallon, A. K. Wise, R. K. Shepherd, N. L. James, and P. R. Stoddart, “Measurement of forces at the tip of a cochlear implant during insertion,” IEEE Trans. Biomed. Eng. 61(4), 1177–1186 (2014).
[Crossref] [PubMed]

Svehla, M. J.

C. A. Todd, F. Naghdy, and M. J. Svehla, “Force application during cochlear implant insertion: an analysis for improvement of surgeon technique,” IEEE Trans. Biomed. Eng. 54(7), 1247–1255 (2007).
[Crossref] [PubMed]

Taylor, H. F.

T. C. E. Lee and H. F. Taylor, “Interferometric optical fiber sensors using internal mirrors,” Electron. Lett. 24(4), 193–194 (1988).
[Crossref]

Todd, C. A.

C. A. Todd, F. Naghdy, and M. J. Svehla, “Force application during cochlear implant insertion: an analysis for improvement of surgeon technique,” IEEE Trans. Biomed. Eng. 54(7), 1247–1255 (2007).
[Crossref] [PubMed]

Triglia, J. M.

A. Farinetti, D. Ben Gharbia, J. Mancini, S. Roman, R. Nicollas, and J. M. Triglia, “Cochlear implant complications in 403 patients: Comparative study of adults and children and review of the literature,” Eur. Ann. Otorhinolaryngol. Head Neck Dis. 131(3), 177–182 (2014).
[Crossref] [PubMed]

Wade, S. A.

S. A. Wade, J. B. Fallon, A. K. Wise, R. K. Shepherd, N. L. James, and P. R. Stoddart, “Measurement of forces at the tip of a cochlear implant during insertion,” IEEE Trans. Biomed. Eng. 61(4), 1177–1186 (2014).
[Crossref] [PubMed]

Wang, A.

J. Gong, Z. Li, and A. Wang, “Low-cost interrogator for fiber-optic interferometers and fiber Bragg grating sensors,” Advanced Sensor Systems and Applications IV, Proc. SPIE 7853, 78530S (2010).
[Crossref]

Y. Zhu and A. Wang, “Miniature fiber-optic pressure sensor,” IEEE Photonics Technol. Lett. 17(2), 447–449 (2005).
[Crossref]

B. Yu, A. Wang, and G. R. Pickrell, “Analysis of Fabry-Pérot interferometric sensors using low-coherence light sources,” J. Lightwave Technol. 24(4), 1758–1767 (2005).

Wang, Y.

Wise, A. K.

S. A. Wade, J. B. Fallon, A. K. Wise, R. K. Shepherd, N. L. James, and P. R. Stoddart, “Measurement of forces at the tip of a cochlear implant during insertion,” IEEE Trans. Biomed. Eng. 61(4), 1177–1186 (2014).
[Crossref] [PubMed]

You, Y.-W.

C.-L. Lee, H.-J. Chang, Y.-W. You, G.-H. Chen, J.-M. Hsu, and J.-S. Horng, “Fiber Fabry-Pérot interferometers based on air-bubbles/liquid in hollow core fibers,” IEEE Photonics Technol. Lett. 26(8), 749–752 (2014).
[Crossref]

Yu, B.

Zhu, Y.

Y. Zhu and A. Wang, “Miniature fiber-optic pressure sensor,” IEEE Photonics Technol. Lett. 17(2), 447–449 (2005).
[Crossref]

Advanced Sensor Systems and Applications IV, Proc. SPIE (1)

J. Gong, Z. Li, and A. Wang, “Low-cost interrogator for fiber-optic interferometers and fiber Bragg grating sensors,” Advanced Sensor Systems and Applications IV, Proc. SPIE 7853, 78530S (2010).
[Crossref]

Appl. Opt. (1)

Electron. Lett. (1)

T. C. E. Lee and H. F. Taylor, “Interferometric optical fiber sensors using internal mirrors,” Electron. Lett. 24(4), 193–194 (1988).
[Crossref]

Eur. Ann. Otorhinolaryngol. Head Neck Dis. (1)

A. Farinetti, D. Ben Gharbia, J. Mancini, S. Roman, R. Nicollas, and J. M. Triglia, “Cochlear implant complications in 403 patients: Comparative study of adults and children and review of the literature,” Eur. Ann. Otorhinolaryngol. Head Neck Dis. 131(3), 177–182 (2014).
[Crossref] [PubMed]

Europhys. Lett. (1)

D. Quéré, “Inertial capillarity,” Europhys. Lett. 39(5), 533–538 (1997).
[Crossref]

IEEE Photonics Technol. Lett. (2)

C.-L. Lee, H.-J. Chang, Y.-W. You, G.-H. Chen, J.-M. Hsu, and J.-S. Horng, “Fiber Fabry-Pérot interferometers based on air-bubbles/liquid in hollow core fibers,” IEEE Photonics Technol. Lett. 26(8), 749–752 (2014).
[Crossref]

Y. Zhu and A. Wang, “Miniature fiber-optic pressure sensor,” IEEE Photonics Technol. Lett. 17(2), 447–449 (2005).
[Crossref]

IEEE Trans. Biomed. Eng. (2)

S. A. Wade, J. B. Fallon, A. K. Wise, R. K. Shepherd, N. L. James, and P. R. Stoddart, “Measurement of forces at the tip of a cochlear implant during insertion,” IEEE Trans. Biomed. Eng. 61(4), 1177–1186 (2014).
[Crossref] [PubMed]

C. A. Todd, F. Naghdy, and M. J. Svehla, “Force application during cochlear implant insertion: an analysis for improvement of surgeon technique,” IEEE Trans. Biomed. Eng. 54(7), 1247–1255 (2007).
[Crossref] [PubMed]

J. Lightwave Technol. (2)

J. Sens. (1)

É. Pinet, “Fabry-Pérot fiber-optic sensors for physical parameters measurement in challenging conditions,” J. Sens. 2009, 720980 (2009).
[Crossref]

Microelectron. Eng. (1)

A. Homsy, E. Laux, L. Jeandupeux, J. Charmet, R. Bitterli, C. Botta, Y. Rebetez, O. Banakh, and H. Keppner, “Solid on liquid deposition, a review of technological solutions,” Microelectron. Eng. 141, 267–279 (2015).
[Crossref]

Opt. Fiber Technol. (1)

M. S. Ferreira, P. Roriz, S. O. Silva, J. L. Santos, and O. Frazão, “Next generation of Fabry-Perot sensors for high temperature,” Opt. Fiber Technol. 19(6), 833–837 (2013).
[Crossref]

Otol. Neurotol. (1)

D. Schuster, L. B. Kratchman, and R. F. Labadie, “Characterization of intracochlear rupture forces in fresh human cadaveric cochleae,” Otol. Neurotol. 36(4), 657–661 (2015).
[Crossref] [PubMed]

Rep. Prog. Phys. (1)

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Multistep manufacturing process

Fig. 2
Fig. 2

Parylene coated fiber sensor tip based on FC cavity

Fig. 3
Fig. 3

Optical spectrum at the output of the FPI cavity

Fig. 4
Fig. 4

Interferogram obtained by an inverse Fourier transform of the spectrum.

Fig. 5
Fig. 5

Fringe pattern in the vicinity of the main correlation peak.

Fig. 6
Fig. 6

Experimental setup for pressure measurements. ASE (Amplified Spontaneous Emission); OSA (Optical Spectrum Analyzer)

Fig. 7
Fig. 7

Pressure response of a FC based sensor compared to a reference measurement

Fig. 8
Fig. 8

Temperature increase response of a HCF based sensor compared to a reference measurement

Fig. 9
Fig. 9

Temperature decrease response of a HCF based sensor compared to a reference measurement

Fig. 10
Fig. 10

Force increase response of a HCF based sensor

Fig. 11
Fig. 11

Optical phase vs applied force for the force increase response of a HCF based sensor

Fig. 12
Fig. 12

Optical sensor introduction through the cochlear’s round window. View through the opened mastoid cavity and through a posterior tympanotomy (standard surgical view for cochlear implantation).

Fig. 13
Fig. 13

Cochlear implant insertion measurements

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I( λ )= | A 1 A 2 exp( j4π L air λ )+ A 3 exp( j4π( L air + n liquid L liquid ) λ ) | 2 = A 1 2 + A 2 2 + A 3 2 2 A 1 A 2 cos( 4π L air λ ) 2 A 2 A 3 cos( 4π n liquid L liquid λ ) +2 A 3 A 1 cos( 4π( L air + n liquid L liquid ) λ )
I 0 ( λ )= I 0 f( λ )= I 0 2π Δλ exp[ ( λ λ 0 ) 2 2Δ λ 2 ]
I FPI ( λ )= I 0 ( λ )I( λ )
ϕ= tan 1 ( 2( I 2 I 4 ) I 1 + I 5 2 I 3 )

Metrics