Abstract

Previous works reported that linear optics could be used to observe sub-wavelength features with a conventional optical microscope. Yet, the ability to reach a sub-200 nm resolution with a visible light remains limited. We present a novel widely-applicable method, where particle trapping is employed to overcome this limit. The combination of the light scattered by the sample and by the trapped particles encodes super-resolution information, which we decode by post image processing, with the trapped particle locations predetermined. As the first proof of concept our method successfully resolved sample characteristic features down to 100 nm. Improved performance is achieved with the fluorescence of the trapped particles employed. Further improvement may be attained with trapped particles of a smaller size.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Linear optics based nanoscopy

Aviram Gur, Dror Fixler, Vicente Micó, Javier Garcia, and Zeev Zalevsky
Opt. Express 18(21) 22222-22231 (2010)

Unconventional structure-assisted optical manipulation of high-index nanowires in liquid crystals

David Engström, Michael C.M. Varney, Martin Persson, Rahul P. Trivedi, Kris A. Bertness, Mattias Goksör, and Ivan I. Smalyukh
Opt. Express 20(7) 7741-7748 (2012)

Superresolved nanoscopy using Brownian motion of fluorescently labeled gold nanoparticles

Tali Ilovitsh, Asaf Ilovitsh, Omer Wagner, and Zeev Zalevsky
Appl. Opt. 56(5) 1365-1369 (2017)

References

  • View by:
  • |
  • |
  • |

  1. E. Abbe, “Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung,” Arch. für Mikroskopische Anat. 9(1), 413–418 (1873).
    [Crossref]
  2. G. T. Di Francia, “On Resolving Power and Information,” J. Opt. Soc. Am. 46, 72_1–72 (1956).
  3. W. Lukosz, “Optical Systems with Resolving Powers Exceeding the Classical Limit II,” J. Opt. Soc. Am. 57(7), 932 (1967).
    [Crossref]
  4. J. L. Harris, “Resolving Power and Decision Theory,” J. Opt. Soc. Am. 54(5), 606 (1964).
    [Crossref]
  5. Z. Zalevsky and D. Mendlovic, Optical Superresolution (Springer, 2003).
  6. I. J. Cox and C. J. R. Sheppard, “Information Capacity and Resolution in an Optical System,” J. Opt. Soc. Am. A 3(8), 1152 (1986).
    [Crossref]
  7. L. Shao, B. Isaac, S. Uzawa, D. A. Agard, J. W. Sedat, and M. G. L. Gustafsson, “I5S: Wide-Field Light Microscopy with 100-nm-scale Resolution in Three Dimensions,” Biophys. J. 94(12), 4971–4983 (2008).
    [Crossref] [PubMed]
  8. S. Hell and E. H. K. Stelzer, “Fundamental Improvement of Resolution with a 4Pi-confocal Fluorescence Microscope using Two-photon Excitation,” Opt. Commun. 93(5-6), 277–282 (1992).
    [Crossref]
  9. A. Shemer, Z. Zalevsky, D. Mendlovic, N. Konforti, and E. Marom, “Time Multiplexing Superresolution Based on Interference Grating Projection,” Appl. Opt. 41(35), 7397–7404 (2002).
    [Crossref] [PubMed]
  10. M. G. L. Gustafsson, “Surpassing the Lateral Resolution Limit by a Factor of Two Using Structured Illumination Microscopy,” J. Microsc. 198(2), 82–87 (2000).
    [Crossref] [PubMed]
  11. J. T. Frohn, H. F. Knapp, and A. Stemmer, “True Optical Resolution Beyond the Rayleigh Limit Achieved by Standing Wave Illumination,” Proc. Natl. Acad. Sci. U.S.A. 97(13), 7232–7236 (2000).
    [Crossref] [PubMed]
  12. V. Mico, Z. Zalevsky, P. García-Martínez, and J. García, “Synthetic Aperture Superresolution with Multiple Off-axis Holograms,” J. Opt. Soc. Am. A 23(12), 3162–3170 (2006).
    [Crossref] [PubMed]
  13. S. A. Alexandrov, T. R. Hillman, T. Gutzler, and D. D. Sampson, “Synthetic Aperture Fourier Holographic Optical Microscopy,” Phys. Rev. Lett. 97(16), 168102 (2006).
    [Crossref] [PubMed]
  14. W. Luo, A. Greenbaum, Y. Zhang, and A. Ozcan, “Synthetic Aperture-based On-chip Microscopy,” Light Sci. Appl. 4(3), e261 (2015).
    [Crossref]
  15. S. W. Hell, “Microscopy and its Focal Switch,” Nat. Methods 6(1), 24–32 (2009).
    [Crossref] [PubMed]
  16. S. W. Hell and J. Wichmann, “Breaking the Diffraction Resolution Limit by Stimulated Emission: Stimulated-emission-depletion Fluorescence Microscopy,” Opt. Lett. 19(11), 780–782 (1994).
    [Crossref] [PubMed]
  17. S. W. Hell and M. Kroug, “Ground-state-depletion Fluorscence Microscopy: A Concept for Breaking the Diffraction Resolution Limit,” Appl. Phys. B Lasers Opt. 60(5), 495–497 (1995).
    [Crossref]
  18. R. Heintzmann, T. M. Jovin, and C. Cremer, “Saturated Patterned Excitation Microscopy-a Concept for Optical Resolution Improvement,” J. Opt. Soc. Am. A 19(8), 1599–1609 (2002).
    [Crossref] [PubMed]
  19. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging Intracellular Fluorescent Proteins at Nanometer Resolution,” Science 313(5793), 1642–1645 (2006).
    [Crossref] [PubMed]
  20. M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit Imaging by Stochastic Optical Reconstruction Microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
    [Crossref] [PubMed]
  21. E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “STED Microscopy Reveals Crystal Colour Centres with Nanometric Resolution,” Nat. Photonics 3(3), 144–147 (2009).
    [Crossref]
  22. Z. Zalevsky, E. Saat, S. Orbach, V. Mico, and J. Garcia, “Exceeding the Resolving Imaging Power using Environmental Conditions,” Appl. Opt. 47(4), A1–A6 (2008).
    [Crossref] [PubMed]
  23. Z. Zalevsky, E. Fish, N. Shachar, Y. Vexberg, V. Micó, and J. Garcia, “Super-resolved Imaging with Randomly Distributed, Time- and Size-varied Particles,” J. Opt. A, Pure Appl. Opt. 11(8), 085406 (2009).
    [Crossref]
  24. A. Gur, D. Fixler, V. Micó, J. Garcia, and Z. Zalevsky, “Linear Optics Based Nanoscopy,” Opt. Express 18(21), 22222–22231 (2010).
    [Crossref] [PubMed]
  25. E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the Diffraction Barrier: Optical Microscopy on a Nanometric Scale,” Science 251(5000), 1468–1470 (1991).
    [Crossref] [PubMed]
  26. L. Friedrich and A. Rohrbach, “Surface Imaging Beyond the Diffraction Limit with Optically Trapped Spheres,” Nat. Nanotechnol. 10(12), 1064–1069 (2015).
    [Crossref] [PubMed]
  27. J. P. Staforelli, E. Vera, J. M. Brito, P. Solano, S. Torres, and C. Saavedra, “Superresolution Imaging in Optical Tweezers using High-speed Cameras,” Opt. Express 18(4), 3322–3331 (2010).
    [Crossref] [PubMed]
  28. S. C. Chapin, V. Germain, and E. R. Dufresne, “Automated Trapping, Assembly, and Sorting with Holographic Optical Tweezers,” Opt. Express 14(26), 13095–13100 (2006).
    [PubMed]
  29. P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, “Expanding the Optical Trapping Range of Gold Nanoparticles,” Nano Lett. 5(10), 1937–1942 (2005).
    [Crossref] [PubMed]
  30. A. Ilovitsh, E. Preter, N. Levanon, and Z. Zalevsky, “Time Multiplexing Super Resolution using a Barker-Based Array,” Opt. Lett. 40(2), 163–165 (2015).
    [Crossref] [PubMed]
  31. M. Yevnin, D. Kasimov, Y. Gluckman, Y. Ebenstein, and Y. Roichman, “Independent and Simultaneous Three-dimensional Optical Trapping and Imaging,” Biomed. Opt. Express 4(10), 2087–2094 (2013).
    [Crossref] [PubMed]
  32. H. Shpaisman, D. B. Ruffner, and D. G. Grier, “Light-driven Three-dimensional Rotational Motion of Dandelion-shaped Microparticles,” Appl. Phys. Lett. 102(7), 071103 (2013).
    [Crossref]
  33. V. Emiliani, D. Cojoc, E. Ferrari, V. Garbin, C. Durieux, M. Coppey-Moisan, and E. Di Fabrizio, “Wave Front Engineering for Microscopy of Living Cells,” Opt. Express 13(5), 1395–1405 (2005).
    [Crossref] [PubMed]
  34. D. G. Grier and Y. Roichman, “Holographic Optical Trapping,” Appl. Opt. 45(5), 880–887 (2006).
    [Crossref] [PubMed]
  35. Z. Zalevsky, S. Gaffling, J. Hutter, L. Chen, W. Iff, A. Tobisch, J. Garcia, and V. Mico, “Passive Time-multiplexing Super-resolved Technique For Axially Moving Targets,” Appl. Opt. 52(7), C11–C15 (2013).
    [Crossref] [PubMed]
  36. J. García, Z. Zalevsky, and C. Ferreira, “Superresolved Imaging of Remote Moving Targets,” Opt. Lett. 31(5), 586–588 (2006).
    [Crossref] [PubMed]
  37. P. J. Lu, M. Shutman, E. Sloutskin, and A. V. Butenko, “Locating Particles Accurately in Microscope Images Requires Image-processing Kernels to be Rotationally Symmetric,” Opt. Express 21(25), 30755–30763 (2013).
    [Crossref] [PubMed]
  38. J. C. Crocker and D. G. Grier, “Methods of Digital Video Microscopy for Colloidal Studies,” J. Colloid Interface Sci. 179(1), 298–310 (1996).
    [Crossref]
  39. Y. Beiderman, A. D. Amsel, Y. Tzadka, D. Fixler, V. Mico, J. Garcia, M. Teicher, and Z. Zalevsky, “A Microscope Configuration for Nanometer 3-D Movement Monitoring Accuracy,” Micron 42(4), 366–375 (2011).
    [Crossref] [PubMed]
  40. A. Rohrbach, “Stiffness of Optical Traps: Quantitative Agreement Between Experiment and Electromagnetic Theory,” Phys. Rev. Lett. 95(16), 168102 (2005).
    [Crossref] [PubMed]
  41. K. Svoboda and S. M. Block, “Optical Trapping of Metallic Rayleigh Particles,” Opt. Lett. 19(13), 930–932 (1994).
    [Crossref] [PubMed]
  42. F. Hajizadeh and S. N. S.Reihani, “Optimized Optical Trapping of Gold Nanoparticles,” Opt. Express 18(2), 551–559 (2010).
    [Crossref] [PubMed]
  43. D. G. Grier, “A Revolution in Optical Manipulation,” Nature 424(6950), 810–816 (2003).
    [Crossref] [PubMed]
  44. E. J. G. Peterman, F. Gittes, and C. F. Schmidt, “Laser-Induced Heating in Optical Traps,” Biophys. J. 84(2), 1308–1316 (2003).
    [Crossref] [PubMed]
  45. A. Ilovitsh and Z. Zalevsky, “Super Resolved Passive Imaging of Remote Moving Object on top of Sparse Unknown Background,” Appl. Opt. 53(28), 6340–6343 (2014).
    [Crossref] [PubMed]
  46. T. Ilovitsh, Y. Danan, A. Ilovitsh, A. Meiri, R. Meir, and Z. Zalevsky, “Superresolved Labeling Nanoscopy Based on Temporally Flickering Nanoparticles and the K-factor Image Deshadowing,” Biomed. Opt. Express 6(4), 1262–1272 (2015).
    [Crossref] [PubMed]
  47. L. Zhu, W. Zhang, D. Elnatan, and B. Huang, “Faster STORM using Compressed Sensing,” Nat. Methods 9(7), 721–723 (2012).
    [Crossref] [PubMed]
  48. O. Wagner, A. Schwarz, A. Shemer, C. Ferreira, J. García, and Z. Zalevsky, “Superresolved Imaging Based on Wavelength Multiplexing of Projected Unknown Speckle Patterns,” Appl. Opt. 54(13), D51 (2015).
    [Crossref]
  49. V. G. Shvedov, A. V. Rode, Y. V. Izdebskaya, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, “Selective Trapping of Multiple Particles by Volume Speckle Field,” Opt. Express 18(3), 3137–3142 (2010).
    [Crossref] [PubMed]
  50. G. Volpe, L. Kurz, A. Callegari, G. Volpe, and S. Gigan, “Speckle Optical Tweezers: Micromanipulation with Random Light Fields,” Opt. Express 22(15), 18159–18167 (2014).
    [Crossref] [PubMed]
  51. A. van der Horst and N. R. Forde, “Calibration of Dynamic Holographic Optical Tweezers for Force Measurements on Biomaterials,” Opt. Express 16(25), 20987–21003 (2008).
    [Crossref] [PubMed]
  52. C. Schmitz, J. Spatz, and J. Curtis, “High-precision Steering of Multiple Holographic Optical Traps,” Opt. Express 13(21), 8678–8685 (2005).
    [Crossref] [PubMed]
  53. K. L. Tan, S. T. Warr, I. G. Manolis, T. D. Wilkinson, M. M. Redmond, W. A. Crossland, R. J. Mears, and B. Robertson, “Dynamic Holography for Optical Interconnections. II. Routing Holograms with Predictable Location and Intensity of each Diffraction Order,” J. Opt. Soc. Am. A 18(1), 205–215 (2001).
    [Crossref] [PubMed]
  54. Y. Roichman, A. Waldron, E. Gardel, and D. G. Grier, “Optical Traps with Geometric Aberrations,” Appl. Opt. 45(15), 3425–3429 (2006).
    [Crossref] [PubMed]

2015 (5)

2014 (2)

2013 (4)

2012 (1)

L. Zhu, W. Zhang, D. Elnatan, and B. Huang, “Faster STORM using Compressed Sensing,” Nat. Methods 9(7), 721–723 (2012).
[Crossref] [PubMed]

2011 (1)

Y. Beiderman, A. D. Amsel, Y. Tzadka, D. Fixler, V. Mico, J. Garcia, M. Teicher, and Z. Zalevsky, “A Microscope Configuration for Nanometer 3-D Movement Monitoring Accuracy,” Micron 42(4), 366–375 (2011).
[Crossref] [PubMed]

2010 (4)

2009 (3)

Z. Zalevsky, E. Fish, N. Shachar, Y. Vexberg, V. Micó, and J. Garcia, “Super-resolved Imaging with Randomly Distributed, Time- and Size-varied Particles,” J. Opt. A, Pure Appl. Opt. 11(8), 085406 (2009).
[Crossref]

E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “STED Microscopy Reveals Crystal Colour Centres with Nanometric Resolution,” Nat. Photonics 3(3), 144–147 (2009).
[Crossref]

S. W. Hell, “Microscopy and its Focal Switch,” Nat. Methods 6(1), 24–32 (2009).
[Crossref] [PubMed]

2008 (3)

2006 (8)

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging Intracellular Fluorescent Proteins at Nanometer Resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit Imaging by Stochastic Optical Reconstruction Microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
[Crossref] [PubMed]

S. A. Alexandrov, T. R. Hillman, T. Gutzler, and D. D. Sampson, “Synthetic Aperture Fourier Holographic Optical Microscopy,” Phys. Rev. Lett. 97(16), 168102 (2006).
[Crossref] [PubMed]

D. G. Grier and Y. Roichman, “Holographic Optical Trapping,” Appl. Opt. 45(5), 880–887 (2006).
[Crossref] [PubMed]

J. García, Z. Zalevsky, and C. Ferreira, “Superresolved Imaging of Remote Moving Targets,” Opt. Lett. 31(5), 586–588 (2006).
[Crossref] [PubMed]

Y. Roichman, A. Waldron, E. Gardel, and D. G. Grier, “Optical Traps with Geometric Aberrations,” Appl. Opt. 45(15), 3425–3429 (2006).
[Crossref] [PubMed]

V. Mico, Z. Zalevsky, P. García-Martínez, and J. García, “Synthetic Aperture Superresolution with Multiple Off-axis Holograms,” J. Opt. Soc. Am. A 23(12), 3162–3170 (2006).
[Crossref] [PubMed]

S. C. Chapin, V. Germain, and E. R. Dufresne, “Automated Trapping, Assembly, and Sorting with Holographic Optical Tweezers,” Opt. Express 14(26), 13095–13100 (2006).
[PubMed]

2005 (4)

A. Rohrbach, “Stiffness of Optical Traps: Quantitative Agreement Between Experiment and Electromagnetic Theory,” Phys. Rev. Lett. 95(16), 168102 (2005).
[Crossref] [PubMed]

P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, “Expanding the Optical Trapping Range of Gold Nanoparticles,” Nano Lett. 5(10), 1937–1942 (2005).
[Crossref] [PubMed]

V. Emiliani, D. Cojoc, E. Ferrari, V. Garbin, C. Durieux, M. Coppey-Moisan, and E. Di Fabrizio, “Wave Front Engineering for Microscopy of Living Cells,” Opt. Express 13(5), 1395–1405 (2005).
[Crossref] [PubMed]

C. Schmitz, J. Spatz, and J. Curtis, “High-precision Steering of Multiple Holographic Optical Traps,” Opt. Express 13(21), 8678–8685 (2005).
[Crossref] [PubMed]

2003 (2)

D. G. Grier, “A Revolution in Optical Manipulation,” Nature 424(6950), 810–816 (2003).
[Crossref] [PubMed]

E. J. G. Peterman, F. Gittes, and C. F. Schmidt, “Laser-Induced Heating in Optical Traps,” Biophys. J. 84(2), 1308–1316 (2003).
[Crossref] [PubMed]

2002 (2)

2001 (1)

2000 (2)

M. G. L. Gustafsson, “Surpassing the Lateral Resolution Limit by a Factor of Two Using Structured Illumination Microscopy,” J. Microsc. 198(2), 82–87 (2000).
[Crossref] [PubMed]

J. T. Frohn, H. F. Knapp, and A. Stemmer, “True Optical Resolution Beyond the Rayleigh Limit Achieved by Standing Wave Illumination,” Proc. Natl. Acad. Sci. U.S.A. 97(13), 7232–7236 (2000).
[Crossref] [PubMed]

1996 (1)

J. C. Crocker and D. G. Grier, “Methods of Digital Video Microscopy for Colloidal Studies,” J. Colloid Interface Sci. 179(1), 298–310 (1996).
[Crossref]

1995 (1)

S. W. Hell and M. Kroug, “Ground-state-depletion Fluorscence Microscopy: A Concept for Breaking the Diffraction Resolution Limit,” Appl. Phys. B Lasers Opt. 60(5), 495–497 (1995).
[Crossref]

1994 (2)

1992 (1)

S. Hell and E. H. K. Stelzer, “Fundamental Improvement of Resolution with a 4Pi-confocal Fluorescence Microscope using Two-photon Excitation,” Opt. Commun. 93(5-6), 277–282 (1992).
[Crossref]

1991 (1)

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the Diffraction Barrier: Optical Microscopy on a Nanometric Scale,” Science 251(5000), 1468–1470 (1991).
[Crossref] [PubMed]

1986 (1)

1967 (1)

1964 (1)

1956 (1)

1873 (1)

E. Abbe, “Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung,” Arch. für Mikroskopische Anat. 9(1), 413–418 (1873).
[Crossref]

Abbe, E.

E. Abbe, “Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung,” Arch. für Mikroskopische Anat. 9(1), 413–418 (1873).
[Crossref]

Agard, D. A.

L. Shao, B. Isaac, S. Uzawa, D. A. Agard, J. W. Sedat, and M. G. L. Gustafsson, “I5S: Wide-Field Light Microscopy with 100-nm-scale Resolution in Three Dimensions,” Biophys. J. 94(12), 4971–4983 (2008).
[Crossref] [PubMed]

Alexandrov, S. A.

S. A. Alexandrov, T. R. Hillman, T. Gutzler, and D. D. Sampson, “Synthetic Aperture Fourier Holographic Optical Microscopy,” Phys. Rev. Lett. 97(16), 168102 (2006).
[Crossref] [PubMed]

Amsel, A. D.

Y. Beiderman, A. D. Amsel, Y. Tzadka, D. Fixler, V. Mico, J. Garcia, M. Teicher, and Z. Zalevsky, “A Microscope Configuration for Nanometer 3-D Movement Monitoring Accuracy,” Micron 42(4), 366–375 (2011).
[Crossref] [PubMed]

Bates, M.

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit Imaging by Stochastic Optical Reconstruction Microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
[Crossref] [PubMed]

Beiderman, Y.

Y. Beiderman, A. D. Amsel, Y. Tzadka, D. Fixler, V. Mico, J. Garcia, M. Teicher, and Z. Zalevsky, “A Microscope Configuration for Nanometer 3-D Movement Monitoring Accuracy,” Micron 42(4), 366–375 (2011).
[Crossref] [PubMed]

Betzig, E.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging Intracellular Fluorescent Proteins at Nanometer Resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the Diffraction Barrier: Optical Microscopy on a Nanometric Scale,” Science 251(5000), 1468–1470 (1991).
[Crossref] [PubMed]

Bhatia, V. K.

P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, “Expanding the Optical Trapping Range of Gold Nanoparticles,” Nano Lett. 5(10), 1937–1942 (2005).
[Crossref] [PubMed]

Block, S. M.

Bonifacino, J. S.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging Intracellular Fluorescent Proteins at Nanometer Resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Brito, J. M.

Butenko, A. V.

Callegari, A.

Chapin, S. C.

Chen, L.

Cojoc, D.

Coppey-Moisan, M.

Cox, I. J.

Cremer, C.

Crocker, J. C.

J. C. Crocker and D. G. Grier, “Methods of Digital Video Microscopy for Colloidal Studies,” J. Colloid Interface Sci. 179(1), 298–310 (1996).
[Crossref]

Crossland, W. A.

Curtis, J.

Danan, Y.

Davidson, M. W.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging Intracellular Fluorescent Proteins at Nanometer Resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Desyatnikov, A. S.

Di Fabrizio, E.

Dufresne, E. R.

Durieux, C.

Ebenstein, Y.

Eggeling, C.

E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “STED Microscopy Reveals Crystal Colour Centres with Nanometric Resolution,” Nat. Photonics 3(3), 144–147 (2009).
[Crossref]

Elnatan, D.

L. Zhu, W. Zhang, D. Elnatan, and B. Huang, “Faster STORM using Compressed Sensing,” Nat. Methods 9(7), 721–723 (2012).
[Crossref] [PubMed]

Emiliani, V.

Ferrari, E.

Ferreira, C.

Fish, E.

Z. Zalevsky, E. Fish, N. Shachar, Y. Vexberg, V. Micó, and J. Garcia, “Super-resolved Imaging with Randomly Distributed, Time- and Size-varied Particles,” J. Opt. A, Pure Appl. Opt. 11(8), 085406 (2009).
[Crossref]

Fixler, D.

Y. Beiderman, A. D. Amsel, Y. Tzadka, D. Fixler, V. Mico, J. Garcia, M. Teicher, and Z. Zalevsky, “A Microscope Configuration for Nanometer 3-D Movement Monitoring Accuracy,” Micron 42(4), 366–375 (2011).
[Crossref] [PubMed]

A. Gur, D. Fixler, V. Micó, J. Garcia, and Z. Zalevsky, “Linear Optics Based Nanoscopy,” Opt. Express 18(21), 22222–22231 (2010).
[Crossref] [PubMed]

Forde, N. R.

Friedrich, L.

L. Friedrich and A. Rohrbach, “Surface Imaging Beyond the Diffraction Limit with Optically Trapped Spheres,” Nat. Nanotechnol. 10(12), 1064–1069 (2015).
[Crossref] [PubMed]

Frohn, J. T.

J. T. Frohn, H. F. Knapp, and A. Stemmer, “True Optical Resolution Beyond the Rayleigh Limit Achieved by Standing Wave Illumination,” Proc. Natl. Acad. Sci. U.S.A. 97(13), 7232–7236 (2000).
[Crossref] [PubMed]

Gaffling, S.

Garbin, V.

Garcia, J.

Z. Zalevsky, S. Gaffling, J. Hutter, L. Chen, W. Iff, A. Tobisch, J. Garcia, and V. Mico, “Passive Time-multiplexing Super-resolved Technique For Axially Moving Targets,” Appl. Opt. 52(7), C11–C15 (2013).
[Crossref] [PubMed]

Y. Beiderman, A. D. Amsel, Y. Tzadka, D. Fixler, V. Mico, J. Garcia, M. Teicher, and Z. Zalevsky, “A Microscope Configuration for Nanometer 3-D Movement Monitoring Accuracy,” Micron 42(4), 366–375 (2011).
[Crossref] [PubMed]

A. Gur, D. Fixler, V. Micó, J. Garcia, and Z. Zalevsky, “Linear Optics Based Nanoscopy,” Opt. Express 18(21), 22222–22231 (2010).
[Crossref] [PubMed]

Z. Zalevsky, E. Fish, N. Shachar, Y. Vexberg, V. Micó, and J. Garcia, “Super-resolved Imaging with Randomly Distributed, Time- and Size-varied Particles,” J. Opt. A, Pure Appl. Opt. 11(8), 085406 (2009).
[Crossref]

Z. Zalevsky, E. Saat, S. Orbach, V. Mico, and J. Garcia, “Exceeding the Resolving Imaging Power using Environmental Conditions,” Appl. Opt. 47(4), A1–A6 (2008).
[Crossref] [PubMed]

García, J.

García-Martínez, P.

Gardel, E.

Germain, V.

Gigan, S.

Gittes, F.

E. J. G. Peterman, F. Gittes, and C. F. Schmidt, “Laser-Induced Heating in Optical Traps,” Biophys. J. 84(2), 1308–1316 (2003).
[Crossref] [PubMed]

Gluckman, Y.

Greenbaum, A.

W. Luo, A. Greenbaum, Y. Zhang, and A. Ozcan, “Synthetic Aperture-based On-chip Microscopy,” Light Sci. Appl. 4(3), e261 (2015).
[Crossref]

Grier, D. G.

H. Shpaisman, D. B. Ruffner, and D. G. Grier, “Light-driven Three-dimensional Rotational Motion of Dandelion-shaped Microparticles,” Appl. Phys. Lett. 102(7), 071103 (2013).
[Crossref]

Y. Roichman, A. Waldron, E. Gardel, and D. G. Grier, “Optical Traps with Geometric Aberrations,” Appl. Opt. 45(15), 3425–3429 (2006).
[Crossref] [PubMed]

D. G. Grier and Y. Roichman, “Holographic Optical Trapping,” Appl. Opt. 45(5), 880–887 (2006).
[Crossref] [PubMed]

D. G. Grier, “A Revolution in Optical Manipulation,” Nature 424(6950), 810–816 (2003).
[Crossref] [PubMed]

J. C. Crocker and D. G. Grier, “Methods of Digital Video Microscopy for Colloidal Studies,” J. Colloid Interface Sci. 179(1), 298–310 (1996).
[Crossref]

Gur, A.

Gustafsson, M. G. L.

L. Shao, B. Isaac, S. Uzawa, D. A. Agard, J. W. Sedat, and M. G. L. Gustafsson, “I5S: Wide-Field Light Microscopy with 100-nm-scale Resolution in Three Dimensions,” Biophys. J. 94(12), 4971–4983 (2008).
[Crossref] [PubMed]

M. G. L. Gustafsson, “Surpassing the Lateral Resolution Limit by a Factor of Two Using Structured Illumination Microscopy,” J. Microsc. 198(2), 82–87 (2000).
[Crossref] [PubMed]

Gutzler, T.

S. A. Alexandrov, T. R. Hillman, T. Gutzler, and D. D. Sampson, “Synthetic Aperture Fourier Holographic Optical Microscopy,” Phys. Rev. Lett. 97(16), 168102 (2006).
[Crossref] [PubMed]

Hajizadeh, F.

Han, K. Y.

E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “STED Microscopy Reveals Crystal Colour Centres with Nanometric Resolution,” Nat. Photonics 3(3), 144–147 (2009).
[Crossref]

Hansen, P. M.

P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, “Expanding the Optical Trapping Range of Gold Nanoparticles,” Nano Lett. 5(10), 1937–1942 (2005).
[Crossref] [PubMed]

Harris, J. L.

Harris, T. D.

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the Diffraction Barrier: Optical Microscopy on a Nanometric Scale,” Science 251(5000), 1468–1470 (1991).
[Crossref] [PubMed]

Harrit, N.

P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, “Expanding the Optical Trapping Range of Gold Nanoparticles,” Nano Lett. 5(10), 1937–1942 (2005).
[Crossref] [PubMed]

Heintzmann, R.

Hell, S.

S. Hell and E. H. K. Stelzer, “Fundamental Improvement of Resolution with a 4Pi-confocal Fluorescence Microscope using Two-photon Excitation,” Opt. Commun. 93(5-6), 277–282 (1992).
[Crossref]

Hell, S. W.

S. W. Hell, “Microscopy and its Focal Switch,” Nat. Methods 6(1), 24–32 (2009).
[Crossref] [PubMed]

E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “STED Microscopy Reveals Crystal Colour Centres with Nanometric Resolution,” Nat. Photonics 3(3), 144–147 (2009).
[Crossref]

S. W. Hell and M. Kroug, “Ground-state-depletion Fluorscence Microscopy: A Concept for Breaking the Diffraction Resolution Limit,” Appl. Phys. B Lasers Opt. 60(5), 495–497 (1995).
[Crossref]

S. W. Hell and J. Wichmann, “Breaking the Diffraction Resolution Limit by Stimulated Emission: Stimulated-emission-depletion Fluorescence Microscopy,” Opt. Lett. 19(11), 780–782 (1994).
[Crossref] [PubMed]

Hess, H. F.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging Intracellular Fluorescent Proteins at Nanometer Resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Hillman, T. R.

S. A. Alexandrov, T. R. Hillman, T. Gutzler, and D. D. Sampson, “Synthetic Aperture Fourier Holographic Optical Microscopy,” Phys. Rev. Lett. 97(16), 168102 (2006).
[Crossref] [PubMed]

Huang, B.

L. Zhu, W. Zhang, D. Elnatan, and B. Huang, “Faster STORM using Compressed Sensing,” Nat. Methods 9(7), 721–723 (2012).
[Crossref] [PubMed]

Hutter, J.

Iff, W.

Ilovitsh, A.

Ilovitsh, T.

Irvine, S. E.

E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “STED Microscopy Reveals Crystal Colour Centres with Nanometric Resolution,” Nat. Photonics 3(3), 144–147 (2009).
[Crossref]

Isaac, B.

L. Shao, B. Isaac, S. Uzawa, D. A. Agard, J. W. Sedat, and M. G. L. Gustafsson, “I5S: Wide-Field Light Microscopy with 100-nm-scale Resolution in Three Dimensions,” Biophys. J. 94(12), 4971–4983 (2008).
[Crossref] [PubMed]

Izdebskaya, Y. V.

Jovin, T. M.

Kasimov, D.

Kivshar, Y. S.

Knapp, H. F.

J. T. Frohn, H. F. Knapp, and A. Stemmer, “True Optical Resolution Beyond the Rayleigh Limit Achieved by Standing Wave Illumination,” Proc. Natl. Acad. Sci. U.S.A. 97(13), 7232–7236 (2000).
[Crossref] [PubMed]

Konforti, N.

Kostelak, R. L.

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the Diffraction Barrier: Optical Microscopy on a Nanometric Scale,” Science 251(5000), 1468–1470 (1991).
[Crossref] [PubMed]

Krolikowski, W.

Kroug, M.

S. W. Hell and M. Kroug, “Ground-state-depletion Fluorscence Microscopy: A Concept for Breaking the Diffraction Resolution Limit,” Appl. Phys. B Lasers Opt. 60(5), 495–497 (1995).
[Crossref]

Kurz, L.

Levanon, N.

Lindwasser, O. W.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging Intracellular Fluorescent Proteins at Nanometer Resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Lippincott-Schwartz, J.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging Intracellular Fluorescent Proteins at Nanometer Resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Lu, P. J.

Lukosz, W.

Luo, W.

W. Luo, A. Greenbaum, Y. Zhang, and A. Ozcan, “Synthetic Aperture-based On-chip Microscopy,” Light Sci. Appl. 4(3), e261 (2015).
[Crossref]

Manolis, I. G.

Marom, E.

Mears, R. J.

Meir, R.

Meiri, A.

Mendlovic, D.

Mico, V.

Micó, V.

A. Gur, D. Fixler, V. Micó, J. Garcia, and Z. Zalevsky, “Linear Optics Based Nanoscopy,” Opt. Express 18(21), 22222–22231 (2010).
[Crossref] [PubMed]

Z. Zalevsky, E. Fish, N. Shachar, Y. Vexberg, V. Micó, and J. Garcia, “Super-resolved Imaging with Randomly Distributed, Time- and Size-varied Particles,” J. Opt. A, Pure Appl. Opt. 11(8), 085406 (2009).
[Crossref]

Oddershede, L.

P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, “Expanding the Optical Trapping Range of Gold Nanoparticles,” Nano Lett. 5(10), 1937–1942 (2005).
[Crossref] [PubMed]

Olenych, S.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging Intracellular Fluorescent Proteins at Nanometer Resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Orbach, S.

Ozcan, A.

W. Luo, A. Greenbaum, Y. Zhang, and A. Ozcan, “Synthetic Aperture-based On-chip Microscopy,” Light Sci. Appl. 4(3), e261 (2015).
[Crossref]

Patterson, G. H.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging Intracellular Fluorescent Proteins at Nanometer Resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Peterman, E. J. G.

E. J. G. Peterman, F. Gittes, and C. F. Schmidt, “Laser-Induced Heating in Optical Traps,” Biophys. J. 84(2), 1308–1316 (2003).
[Crossref] [PubMed]

Preter, E.

Redmond, M. M.

Rittweger, E.

E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “STED Microscopy Reveals Crystal Colour Centres with Nanometric Resolution,” Nat. Photonics 3(3), 144–147 (2009).
[Crossref]

Robertson, B.

Rode, A. V.

Rohrbach, A.

L. Friedrich and A. Rohrbach, “Surface Imaging Beyond the Diffraction Limit with Optically Trapped Spheres,” Nat. Nanotechnol. 10(12), 1064–1069 (2015).
[Crossref] [PubMed]

A. Rohrbach, “Stiffness of Optical Traps: Quantitative Agreement Between Experiment and Electromagnetic Theory,” Phys. Rev. Lett. 95(16), 168102 (2005).
[Crossref] [PubMed]

Roichman, Y.

Ruffner, D. B.

H. Shpaisman, D. B. Ruffner, and D. G. Grier, “Light-driven Three-dimensional Rotational Motion of Dandelion-shaped Microparticles,” Appl. Phys. Lett. 102(7), 071103 (2013).
[Crossref]

Rust, M. J.

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit Imaging by Stochastic Optical Reconstruction Microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
[Crossref] [PubMed]

S.Reihani, S. N.

Saat, E.

Saavedra, C.

Sampson, D. D.

S. A. Alexandrov, T. R. Hillman, T. Gutzler, and D. D. Sampson, “Synthetic Aperture Fourier Holographic Optical Microscopy,” Phys. Rev. Lett. 97(16), 168102 (2006).
[Crossref] [PubMed]

Schmidt, C. F.

E. J. G. Peterman, F. Gittes, and C. F. Schmidt, “Laser-Induced Heating in Optical Traps,” Biophys. J. 84(2), 1308–1316 (2003).
[Crossref] [PubMed]

Schmitz, C.

Schwarz, A.

Sedat, J. W.

L. Shao, B. Isaac, S. Uzawa, D. A. Agard, J. W. Sedat, and M. G. L. Gustafsson, “I5S: Wide-Field Light Microscopy with 100-nm-scale Resolution in Three Dimensions,” Biophys. J. 94(12), 4971–4983 (2008).
[Crossref] [PubMed]

Shachar, N.

Z. Zalevsky, E. Fish, N. Shachar, Y. Vexberg, V. Micó, and J. Garcia, “Super-resolved Imaging with Randomly Distributed, Time- and Size-varied Particles,” J. Opt. A, Pure Appl. Opt. 11(8), 085406 (2009).
[Crossref]

Shao, L.

L. Shao, B. Isaac, S. Uzawa, D. A. Agard, J. W. Sedat, and M. G. L. Gustafsson, “I5S: Wide-Field Light Microscopy with 100-nm-scale Resolution in Three Dimensions,” Biophys. J. 94(12), 4971–4983 (2008).
[Crossref] [PubMed]

Shemer, A.

Sheppard, C. J. R.

Shpaisman, H.

H. Shpaisman, D. B. Ruffner, and D. G. Grier, “Light-driven Three-dimensional Rotational Motion of Dandelion-shaped Microparticles,” Appl. Phys. Lett. 102(7), 071103 (2013).
[Crossref]

Shutman, M.

Shvedov, V. G.

Sloutskin, E.

Solano, P.

Sougrat, R.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging Intracellular Fluorescent Proteins at Nanometer Resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Spatz, J.

Staforelli, J. P.

Stelzer, E. H. K.

S. Hell and E. H. K. Stelzer, “Fundamental Improvement of Resolution with a 4Pi-confocal Fluorescence Microscope using Two-photon Excitation,” Opt. Commun. 93(5-6), 277–282 (1992).
[Crossref]

Stemmer, A.

J. T. Frohn, H. F. Knapp, and A. Stemmer, “True Optical Resolution Beyond the Rayleigh Limit Achieved by Standing Wave Illumination,” Proc. Natl. Acad. Sci. U.S.A. 97(13), 7232–7236 (2000).
[Crossref] [PubMed]

Svoboda, K.

Tan, K. L.

Teicher, M.

Y. Beiderman, A. D. Amsel, Y. Tzadka, D. Fixler, V. Mico, J. Garcia, M. Teicher, and Z. Zalevsky, “A Microscope Configuration for Nanometer 3-D Movement Monitoring Accuracy,” Micron 42(4), 366–375 (2011).
[Crossref] [PubMed]

Tobisch, A.

Torres, S.

Trautman, J. K.

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the Diffraction Barrier: Optical Microscopy on a Nanometric Scale,” Science 251(5000), 1468–1470 (1991).
[Crossref] [PubMed]

Tzadka, Y.

Y. Beiderman, A. D. Amsel, Y. Tzadka, D. Fixler, V. Mico, J. Garcia, M. Teicher, and Z. Zalevsky, “A Microscope Configuration for Nanometer 3-D Movement Monitoring Accuracy,” Micron 42(4), 366–375 (2011).
[Crossref] [PubMed]

Uzawa, S.

L. Shao, B. Isaac, S. Uzawa, D. A. Agard, J. W. Sedat, and M. G. L. Gustafsson, “I5S: Wide-Field Light Microscopy with 100-nm-scale Resolution in Three Dimensions,” Biophys. J. 94(12), 4971–4983 (2008).
[Crossref] [PubMed]

van der Horst, A.

Vera, E.

Vexberg, Y.

Z. Zalevsky, E. Fish, N. Shachar, Y. Vexberg, V. Micó, and J. Garcia, “Super-resolved Imaging with Randomly Distributed, Time- and Size-varied Particles,” J. Opt. A, Pure Appl. Opt. 11(8), 085406 (2009).
[Crossref]

Volpe, G.

Wagner, O.

Waldron, A.

Warr, S. T.

Weiner, J. S.

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the Diffraction Barrier: Optical Microscopy on a Nanometric Scale,” Science 251(5000), 1468–1470 (1991).
[Crossref] [PubMed]

Wichmann, J.

Wilkinson, T. D.

Yevnin, M.

Zalevsky, Z.

T. Ilovitsh, Y. Danan, A. Ilovitsh, A. Meiri, R. Meir, and Z. Zalevsky, “Superresolved Labeling Nanoscopy Based on Temporally Flickering Nanoparticles and the K-factor Image Deshadowing,” Biomed. Opt. Express 6(4), 1262–1272 (2015).
[Crossref] [PubMed]

A. Ilovitsh, E. Preter, N. Levanon, and Z. Zalevsky, “Time Multiplexing Super Resolution using a Barker-Based Array,” Opt. Lett. 40(2), 163–165 (2015).
[Crossref] [PubMed]

O. Wagner, A. Schwarz, A. Shemer, C. Ferreira, J. García, and Z. Zalevsky, “Superresolved Imaging Based on Wavelength Multiplexing of Projected Unknown Speckle Patterns,” Appl. Opt. 54(13), D51 (2015).
[Crossref]

A. Ilovitsh and Z. Zalevsky, “Super Resolved Passive Imaging of Remote Moving Object on top of Sparse Unknown Background,” Appl. Opt. 53(28), 6340–6343 (2014).
[Crossref] [PubMed]

Z. Zalevsky, S. Gaffling, J. Hutter, L. Chen, W. Iff, A. Tobisch, J. Garcia, and V. Mico, “Passive Time-multiplexing Super-resolved Technique For Axially Moving Targets,” Appl. Opt. 52(7), C11–C15 (2013).
[Crossref] [PubMed]

Y. Beiderman, A. D. Amsel, Y. Tzadka, D. Fixler, V. Mico, J. Garcia, M. Teicher, and Z. Zalevsky, “A Microscope Configuration for Nanometer 3-D Movement Monitoring Accuracy,” Micron 42(4), 366–375 (2011).
[Crossref] [PubMed]

A. Gur, D. Fixler, V. Micó, J. Garcia, and Z. Zalevsky, “Linear Optics Based Nanoscopy,” Opt. Express 18(21), 22222–22231 (2010).
[Crossref] [PubMed]

Z. Zalevsky, E. Fish, N. Shachar, Y. Vexberg, V. Micó, and J. Garcia, “Super-resolved Imaging with Randomly Distributed, Time- and Size-varied Particles,” J. Opt. A, Pure Appl. Opt. 11(8), 085406 (2009).
[Crossref]

Z. Zalevsky, E. Saat, S. Orbach, V. Mico, and J. Garcia, “Exceeding the Resolving Imaging Power using Environmental Conditions,” Appl. Opt. 47(4), A1–A6 (2008).
[Crossref] [PubMed]

J. García, Z. Zalevsky, and C. Ferreira, “Superresolved Imaging of Remote Moving Targets,” Opt. Lett. 31(5), 586–588 (2006).
[Crossref] [PubMed]

V. Mico, Z. Zalevsky, P. García-Martínez, and J. García, “Synthetic Aperture Superresolution with Multiple Off-axis Holograms,” J. Opt. Soc. Am. A 23(12), 3162–3170 (2006).
[Crossref] [PubMed]

A. Shemer, Z. Zalevsky, D. Mendlovic, N. Konforti, and E. Marom, “Time Multiplexing Superresolution Based on Interference Grating Projection,” Appl. Opt. 41(35), 7397–7404 (2002).
[Crossref] [PubMed]

Zhang, W.

L. Zhu, W. Zhang, D. Elnatan, and B. Huang, “Faster STORM using Compressed Sensing,” Nat. Methods 9(7), 721–723 (2012).
[Crossref] [PubMed]

Zhang, Y.

W. Luo, A. Greenbaum, Y. Zhang, and A. Ozcan, “Synthetic Aperture-based On-chip Microscopy,” Light Sci. Appl. 4(3), e261 (2015).
[Crossref]

Zhu, L.

L. Zhu, W. Zhang, D. Elnatan, and B. Huang, “Faster STORM using Compressed Sensing,” Nat. Methods 9(7), 721–723 (2012).
[Crossref] [PubMed]

Zhuang, X.

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit Imaging by Stochastic Optical Reconstruction Microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
[Crossref] [PubMed]

Appl. Opt. (7)

Appl. Phys. B Lasers Opt. (1)

S. W. Hell and M. Kroug, “Ground-state-depletion Fluorscence Microscopy: A Concept for Breaking the Diffraction Resolution Limit,” Appl. Phys. B Lasers Opt. 60(5), 495–497 (1995).
[Crossref]

Appl. Phys. Lett. (1)

H. Shpaisman, D. B. Ruffner, and D. G. Grier, “Light-driven Three-dimensional Rotational Motion of Dandelion-shaped Microparticles,” Appl. Phys. Lett. 102(7), 071103 (2013).
[Crossref]

Arch. für Mikroskopische Anat. (1)

E. Abbe, “Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung,” Arch. für Mikroskopische Anat. 9(1), 413–418 (1873).
[Crossref]

Biomed. Opt. Express (2)

Biophys. J. (2)

E. J. G. Peterman, F. Gittes, and C. F. Schmidt, “Laser-Induced Heating in Optical Traps,” Biophys. J. 84(2), 1308–1316 (2003).
[Crossref] [PubMed]

L. Shao, B. Isaac, S. Uzawa, D. A. Agard, J. W. Sedat, and M. G. L. Gustafsson, “I5S: Wide-Field Light Microscopy with 100-nm-scale Resolution in Three Dimensions,” Biophys. J. 94(12), 4971–4983 (2008).
[Crossref] [PubMed]

J. Colloid Interface Sci. (1)

J. C. Crocker and D. G. Grier, “Methods of Digital Video Microscopy for Colloidal Studies,” J. Colloid Interface Sci. 179(1), 298–310 (1996).
[Crossref]

J. Microsc. (1)

M. G. L. Gustafsson, “Surpassing the Lateral Resolution Limit by a Factor of Two Using Structured Illumination Microscopy,” J. Microsc. 198(2), 82–87 (2000).
[Crossref] [PubMed]

J. Opt. A, Pure Appl. Opt. (1)

Z. Zalevsky, E. Fish, N. Shachar, Y. Vexberg, V. Micó, and J. Garcia, “Super-resolved Imaging with Randomly Distributed, Time- and Size-varied Particles,” J. Opt. A, Pure Appl. Opt. 11(8), 085406 (2009).
[Crossref]

J. Opt. Soc. Am. (3)

J. Opt. Soc. Am. A (4)

Light Sci. Appl. (1)

W. Luo, A. Greenbaum, Y. Zhang, and A. Ozcan, “Synthetic Aperture-based On-chip Microscopy,” Light Sci. Appl. 4(3), e261 (2015).
[Crossref]

Micron (1)

Y. Beiderman, A. D. Amsel, Y. Tzadka, D. Fixler, V. Mico, J. Garcia, M. Teicher, and Z. Zalevsky, “A Microscope Configuration for Nanometer 3-D Movement Monitoring Accuracy,” Micron 42(4), 366–375 (2011).
[Crossref] [PubMed]

Nano Lett. (1)

P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, “Expanding the Optical Trapping Range of Gold Nanoparticles,” Nano Lett. 5(10), 1937–1942 (2005).
[Crossref] [PubMed]

Nat. Methods (3)

S. W. Hell, “Microscopy and its Focal Switch,” Nat. Methods 6(1), 24–32 (2009).
[Crossref] [PubMed]

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit Imaging by Stochastic Optical Reconstruction Microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
[Crossref] [PubMed]

L. Zhu, W. Zhang, D. Elnatan, and B. Huang, “Faster STORM using Compressed Sensing,” Nat. Methods 9(7), 721–723 (2012).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

L. Friedrich and A. Rohrbach, “Surface Imaging Beyond the Diffraction Limit with Optically Trapped Spheres,” Nat. Nanotechnol. 10(12), 1064–1069 (2015).
[Crossref] [PubMed]

Nat. Photonics (1)

E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “STED Microscopy Reveals Crystal Colour Centres with Nanometric Resolution,” Nat. Photonics 3(3), 144–147 (2009).
[Crossref]

Nature (1)

D. G. Grier, “A Revolution in Optical Manipulation,” Nature 424(6950), 810–816 (2003).
[Crossref] [PubMed]

Opt. Commun. (1)

S. Hell and E. H. K. Stelzer, “Fundamental Improvement of Resolution with a 4Pi-confocal Fluorescence Microscope using Two-photon Excitation,” Opt. Commun. 93(5-6), 277–282 (1992).
[Crossref]

Opt. Express (10)

J. P. Staforelli, E. Vera, J. M. Brito, P. Solano, S. Torres, and C. Saavedra, “Superresolution Imaging in Optical Tweezers using High-speed Cameras,” Opt. Express 18(4), 3322–3331 (2010).
[Crossref] [PubMed]

S. C. Chapin, V. Germain, and E. R. Dufresne, “Automated Trapping, Assembly, and Sorting with Holographic Optical Tweezers,” Opt. Express 14(26), 13095–13100 (2006).
[PubMed]

A. Gur, D. Fixler, V. Micó, J. Garcia, and Z. Zalevsky, “Linear Optics Based Nanoscopy,” Opt. Express 18(21), 22222–22231 (2010).
[Crossref] [PubMed]

V. Emiliani, D. Cojoc, E. Ferrari, V. Garbin, C. Durieux, M. Coppey-Moisan, and E. Di Fabrizio, “Wave Front Engineering for Microscopy of Living Cells,” Opt. Express 13(5), 1395–1405 (2005).
[Crossref] [PubMed]

F. Hajizadeh and S. N. S.Reihani, “Optimized Optical Trapping of Gold Nanoparticles,” Opt. Express 18(2), 551–559 (2010).
[Crossref] [PubMed]

P. J. Lu, M. Shutman, E. Sloutskin, and A. V. Butenko, “Locating Particles Accurately in Microscope Images Requires Image-processing Kernels to be Rotationally Symmetric,” Opt. Express 21(25), 30755–30763 (2013).
[Crossref] [PubMed]

V. G. Shvedov, A. V. Rode, Y. V. Izdebskaya, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, “Selective Trapping of Multiple Particles by Volume Speckle Field,” Opt. Express 18(3), 3137–3142 (2010).
[Crossref] [PubMed]

G. Volpe, L. Kurz, A. Callegari, G. Volpe, and S. Gigan, “Speckle Optical Tweezers: Micromanipulation with Random Light Fields,” Opt. Express 22(15), 18159–18167 (2014).
[Crossref] [PubMed]

A. van der Horst and N. R. Forde, “Calibration of Dynamic Holographic Optical Tweezers for Force Measurements on Biomaterials,” Opt. Express 16(25), 20987–21003 (2008).
[Crossref] [PubMed]

C. Schmitz, J. Spatz, and J. Curtis, “High-precision Steering of Multiple Holographic Optical Traps,” Opt. Express 13(21), 8678–8685 (2005).
[Crossref] [PubMed]

Opt. Lett. (4)

Phys. Rev. Lett. (2)

S. A. Alexandrov, T. R. Hillman, T. Gutzler, and D. D. Sampson, “Synthetic Aperture Fourier Holographic Optical Microscopy,” Phys. Rev. Lett. 97(16), 168102 (2006).
[Crossref] [PubMed]

A. Rohrbach, “Stiffness of Optical Traps: Quantitative Agreement Between Experiment and Electromagnetic Theory,” Phys. Rev. Lett. 95(16), 168102 (2005).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

J. T. Frohn, H. F. Knapp, and A. Stemmer, “True Optical Resolution Beyond the Rayleigh Limit Achieved by Standing Wave Illumination,” Proc. Natl. Acad. Sci. U.S.A. 97(13), 7232–7236 (2000).
[Crossref] [PubMed]

Science (2)

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging Intracellular Fluorescent Proteins at Nanometer Resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the Diffraction Barrier: Optical Microscopy on a Nanometric Scale,” Science 251(5000), 1468–1470 (1991).
[Crossref] [PubMed]

Other (1)

Z. Zalevsky and D. Mendlovic, Optical Superresolution (Springer, 2003).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Experimental system. Imaging is done from the upper side using a confocal microscope. OT is done from below using a1064 nm laser, an SLM and an inverted objective.
Fig. 2
Fig. 2 An AFM image of a typical gold nanolines sample. (a) A wide area AFM scan. (b) A height line profile of the zoomed area [marked by a red rectangle in section (a)], taken along the nanolines normal (shown by a horizontal line in the inset). The measured nanoline width was 190 nm from edge to edge, and the spacing between the lines was 105 nm (from edge to edge), as marked by the vertical red lines.
Fig. 3
Fig. 3 Simulation test images preparation. High resolution binary images of 50 nm lines spaced 140 nm apart (a) are prepared. Binary nanoparticles are added to the high resolution images, and the results are filtered and pixellated (b), to mimic the appearance of these images under the typical low resolution conditions of the confocal imaging system. A scanning nanoparticle is shown as well, near the center of the image.
Fig. 4
Fig. 4 a) Low resolution image of the region of interest scanned by a simulated nanoparticle. b) A reconstruction, employing our super resolution algorithm. c) A reconstruction of the same sample with random vibrations, of 120 nanometer in an amplitude, introduced. The scanned area is marked by a yellow rectangle.
Fig. 5
Fig. 5 An enhancement of resolution, as obtained for a nanowire, in a non-fluorescent mode. (a) A reconstructed SR image of the nanowire, as obtained from the confocal LR images, The regions where the SR resolution scanning was carried out appear as white blobs. (b) The average of all confocal images, employed for the SR reconstruction. Section (c) demonstrates the distribution of intensity I(x) along the dashed lines in (a) and (b). Note, I(x) is an average over all the 7 dashed lines in (a-b). Gaussian fits to I(x) are shown in solid lines.
Fig. 6
Fig. 6 Our SR algorithm significantly improves the visibility of closely-separated nanolines, fabricated by e-beam lithography. The wide LR confocal image of the sample is shown in (a), with the red square marking the actual area where we apply our algorithm. The SR image is demonstrated in (b). Note the separate nanolines clearly resolved, while being smeared by the resolution in a conventional confocal LR [shown in (c)]. The corresponding intensity profiles [along the dashed lines in (b) and (c)] are shown in (d), where red dashes are the result of SR imaging.
Fig. 7
Fig. 7 Fluorescent imaging of scanning nanoparticles leads to a further resolution enhancement for the nanowires. Two different nanowires are shown in (a-c) and (d-f). Sections (b) and (e) show the conventional confocal images of the samples. The regions where the SR resolution scanning was carried out appear as white blobs in (a) and as slightly darker blobs in (d). Note the dramatic enhancement of resolution in (d), where the nanowire appears much thinner in the SR-scanned region. The corresponding intensity profiles for the two nanowires are shown in (c) and (f), where the intensity profiles were averaged over the dashed lines in (a,b) and (d,e), respectively.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

s 1 ={ 1s( x )>0 0otherwise
HR( x,ε )=s( x )+g( x, ε n ) s 1 ( x )g( x, ε n )
LR( x, ε n )=HR( x, ε n )P( x )
r( x )= LR( x, ε n ) g ^ ( x, ε n )d ε n = { [ s( x' )+g( x', ε n ) s 1 ( x' )g( x', ε n ) ]P( xx' )dx' } g ^ ( x, ε n )d ε n
[ [ s( x' )+g( x', ε n ) s 1 ( x' )g( x', ε n ) ] g ^ ( x, ε n )d ε n ]P( xx' )dx' = ν( x ) s( x' )P( xx' )dx' + [ g( x', ε n ) g ^ ( x, ε n )d ε n ]P( xx' )dx' [ g( x', ε n ) g ^ ( x, ε n )d ε n ] s 1 ( x' )P( xx' )dx'
s ¯ 1 ( x' )[ g( x', ε n ) g ^ ( x, ε n )d ε n ]P( xx' )dx'
s ¯ 1 ( x' )[ g( x'+z( ε n +x ), ε n ) g ^ ( z ε n , ε n )dz ]P( xx' )dx' = s ¯ 1 ( x' )[ g( z+x'x,0 ) g ^ ( z,0 )dz ]P( xx' )dx' = s ¯ 1 ( x' )D( xx' )P( xx' )dx' = s ¯ 1 ( x )[ D( x )P( x ) ]
k( x )p( 0 )k( x )p( 0 ) s 1 ( x )
r( x )=k( x )p( 0 )k( x )p( 0 ) s 1 ( x )+ν( x )LR
r( x )=[ LR( x, ε n ) g ^ ( x, ε n )J( x )d ε n ]
η= sin c 2 ( q 1 )sin c 2 ( Λ 1 ) sin c 2 ( lcm [ q,Λ ] 1 ) ,
R η = λ f obj 2mpixelpitch ,
α min 2πλ f obj D N pix q ,

Metrics