Abstract

A monolithically integrated low linewidth optical comb is demonstrated by gain switching of a three-section laser device. The device consists of a slave and master section separated by a shared slotted mirror section. Wavelength tunability has been demonstrated by varying the electrical bias of each section. The number of comb lines is shown to almost double with the addition of optical injection from the master section into the slave. The unmodulated device has a full width half max linewidth of ∼ 500 kHz, while the comb line set were measured to be ∼ 600 kHz, with little degradation as a result of gain switching. The FSR (free spectral range) of the demonstrated comb is 4 GHz, which is tunable within the bandwidth of the device, with a central wavelength of 1580.3 nm.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
On-chip optical phase locking of single growth monolithically integrated slotted fabry perot lasers

P. E. Morrissey, W. Cotter, D. Goulding, B. Kelleher, S. Osborne, H. Yang, J. O’Callaghan, B. Roycroft, B. Corbett, and F. H. Peters
Opt. Express 21(14) 17315-17323 (2013)

Software reconfigurable highly flexible gain switched optical frequency comb source

M. Deseada Gutierrez Pascual, Rui Zhou, Frank Smyth, Prince M. Anandarajah, and Liam P. Barry
Opt. Express 23(18) 23225-23235 (2015)

40nm wavelength tunable gain-switched optical comb source

Rui Zhou, Sylwester Latkowski, John O’Carroll, Richard Phelan, Liam P. Barry, and Prince Anandarajah
Opt. Express 19(26) B415-B420 (2011)

References

  • View by:
  • |
  • |
  • |

  1. I. Coddington, W. Swann, and N. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
    [Crossref] [PubMed]
  2. X. Wang, S. Takahashi, K. Takamasu, and H. Matsumoto, “Space position measurement using long-path hetero-dyne interferometer with optical frequency comb,” Opt. Express 20(3), 2725–2732 (2012).
    [Crossref] [PubMed]
  3. T. Healy, F. C. GarciaGunning, A. D. Ellis, and J. D. Bull, “Multi-wavelength source using low drive-voltage amplitude modulators for optical communications,” Opt. Express 15(6), 2981–2986 (2007).
    [Crossref] [PubMed]
  4. A. Ellis and F. Gunning, “Spectral density enhancement using coherent WDM,” IEEE Photon. Technol. Lett. 17(2), 504–506 (2005).
    [Crossref]
  5. I. Tomkos, S. Azodolmolky, J. Sole-Pareta, D. Careglio, and E. Palkopoulou, “A tutorial on the flexible optical networking paradigm: State of the art, trends, and research challenges,” Proc. IEEE 102(9), 1317–1337 (2014).
    [Crossref]
  6. R. Zhou, S. Latkowski, J. O’Carroll, R. Phelan, L. P. Barry, and P. Anandarajah, “40nm wavelength tunable gain-switched optical comb source,” in 37th European Conference and Exhibition on Optical Communication19(26), 1–3 (2011).
  7. C. C. Renaud, M. Pantouvaki, S. Gregoire, I. Lealman, P. Cannard, S. Cole, R. Moore, R. Gwilliam, and A. J. Seeds, “A monolithic MQW InP - InGaAsP-based optical comb generator,” IEEE J. Quantum Electron. 43(11), 998–1005 (2007).
    [Crossref]
  8. Z. Liu, Y. Chen, Z. Li, B. Kelly, R. Phelan, J. O. Carroll, T. Bradley, J. P. Wooler, N. V. Wheeler, A. M. Heidt, T. Richter, C. Schubert, M. Becker, F. Poletti, M. N. Petrovich, S. Alam, and D. J. Richardson, “High-capacity directly modulated optical transmitter for 2 μm spectral region,” J. Lightwave Technol. 33(7), 1373–1379 (2015).
    [Crossref]
  9. L. P. Barry, P. Anandarajah, and A. Kaszubowska, “Optical pulse generation at frequencies up to 20 GHz using external-injection seeding of a gain-switched commercial Fabry-Perot laser,” IEEE Photon. Technol. Lett. 13(9), 1014–1016 (2001).
    [Crossref]
  10. R. Zhou, P. M. Anandarajah, D. G. Pascual, J. O’Carroll, R. Phelan, B. Kelly, and L. P. Barry, “Monolithically integrated 2-section lasers for injection locked gain switched comb generation,” Optical Fiber Communications Conference and Exhibition (2014).
  11. P. Stolarz, C. N. Ironside, M. Sorel, and C. Bryce, “High temperature and wide range 40-GHz passive modelocking operation of an AlGaInAs 1.55-mm strained quantum well laser,” 21st Annual Meeting of the IEEE Lasers and Electro-Optics Society, 679–680 (2008).
  12. F. Lucchi, D. Janner, M. Belmonte, S. Balsamo, M. Villa, S. Giurgiola, P. Vergani, and V. Pruneri, “Very low voltage single drive domain inverted linbo3 integrated electro-optic modulator,” Opt. Express 15, 10739–10743 (2007).
    [Crossref] [PubMed]
  13. D. Byrne, Q. Lu, W. H. Guo, J. F. Donegan, B. Corbett, B. Roycroft, P. Lambkin, J. P. Engelstaedter, and F. Peters, “A facetless laser suitable for monolithic integration,” Optical Fiber Communication/National Fiber Optic Engineers Conference (2008).
  14. P. E. Morrissey, W. Cotter, D. Goulding, B. Kelleher, S. Osborne, H. Yang, J. O’Callaghan, B. Roycroft, B. Corbett, and F. H. Peters, “On-chip optical phase locking of single growth monolithically integrated slotted fabry perot lasers,” Opt. Express 21, 17315–17323 (2013).
    [Crossref] [PubMed]
  15. A. Tauke-Pedretti, G. A. Vawter, E. J. Skogen, G. Peake, M. Overberg, C. Alford, W. W. Chow, Z. S. Yang, D. Torres, and F. Cajas, “Mutual injection locking of monolithically integrated coupled-cavity DBR lasers,” IEEE Photon. Technol. Lett. 23(13), 908–910 (2011).
    [Crossref]
  16. D. C. Byrne, J. P. Engelstaedter, W. H. Guo, Q. Y. Lu, B. Corbett, B. Roycroft, J. O’Callaghan, F. H. Peters, and J. F. Donegan, “Discretely tunable semiconductor lasers suitable for photonic integration,” IEEE J. Sel. Topics Quantum Electron. 15(3), 482–487 (2009).
    [Crossref]
  17. T. Tanigawa, T. Onishi, S. Nagai, and T. Ueda, “High-speed 850nm AlGaAs / GaAs vertical cavity surface emitting laser with low parasitic capacitance fabricated using BCB planarization technique,” Conference on Lasers and Electro-Optics (2005).
  18. H. Tsuchida, “Simple technique for improving the resolution of the delayed self-heterodyne method,” Opt. letters 15(11), 640–642 (1990).
    [Crossref]
  19. T. Pfau, S. Hoffman, and R. Noé, “Hardware-efficient coherent digital receiver concept with feedforward carrier recovery for M-QAM constellations,” J. Lightwave Technol. 27(8), 989–999 (2009).
    [Crossref]

2015 (1)

2014 (1)

I. Tomkos, S. Azodolmolky, J. Sole-Pareta, D. Careglio, and E. Palkopoulou, “A tutorial on the flexible optical networking paradigm: State of the art, trends, and research challenges,” Proc. IEEE 102(9), 1317–1337 (2014).
[Crossref]

2013 (1)

2012 (1)

2011 (1)

A. Tauke-Pedretti, G. A. Vawter, E. J. Skogen, G. Peake, M. Overberg, C. Alford, W. W. Chow, Z. S. Yang, D. Torres, and F. Cajas, “Mutual injection locking of monolithically integrated coupled-cavity DBR lasers,” IEEE Photon. Technol. Lett. 23(13), 908–910 (2011).
[Crossref]

2009 (2)

D. C. Byrne, J. P. Engelstaedter, W. H. Guo, Q. Y. Lu, B. Corbett, B. Roycroft, J. O’Callaghan, F. H. Peters, and J. F. Donegan, “Discretely tunable semiconductor lasers suitable for photonic integration,” IEEE J. Sel. Topics Quantum Electron. 15(3), 482–487 (2009).
[Crossref]

T. Pfau, S. Hoffman, and R. Noé, “Hardware-efficient coherent digital receiver concept with feedforward carrier recovery for M-QAM constellations,” J. Lightwave Technol. 27(8), 989–999 (2009).
[Crossref]

2008 (1)

I. Coddington, W. Swann, and N. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
[Crossref] [PubMed]

2007 (3)

2005 (1)

A. Ellis and F. Gunning, “Spectral density enhancement using coherent WDM,” IEEE Photon. Technol. Lett. 17(2), 504–506 (2005).
[Crossref]

2001 (1)

L. P. Barry, P. Anandarajah, and A. Kaszubowska, “Optical pulse generation at frequencies up to 20 GHz using external-injection seeding of a gain-switched commercial Fabry-Perot laser,” IEEE Photon. Technol. Lett. 13(9), 1014–1016 (2001).
[Crossref]

1990 (1)

H. Tsuchida, “Simple technique for improving the resolution of the delayed self-heterodyne method,” Opt. letters 15(11), 640–642 (1990).
[Crossref]

Alam, S.

Alford, C.

A. Tauke-Pedretti, G. A. Vawter, E. J. Skogen, G. Peake, M. Overberg, C. Alford, W. W. Chow, Z. S. Yang, D. Torres, and F. Cajas, “Mutual injection locking of monolithically integrated coupled-cavity DBR lasers,” IEEE Photon. Technol. Lett. 23(13), 908–910 (2011).
[Crossref]

Anandarajah, P.

L. P. Barry, P. Anandarajah, and A. Kaszubowska, “Optical pulse generation at frequencies up to 20 GHz using external-injection seeding of a gain-switched commercial Fabry-Perot laser,” IEEE Photon. Technol. Lett. 13(9), 1014–1016 (2001).
[Crossref]

R. Zhou, S. Latkowski, J. O’Carroll, R. Phelan, L. P. Barry, and P. Anandarajah, “40nm wavelength tunable gain-switched optical comb source,” in 37th European Conference and Exhibition on Optical Communication19(26), 1–3 (2011).

Anandarajah, P. M.

R. Zhou, P. M. Anandarajah, D. G. Pascual, J. O’Carroll, R. Phelan, B. Kelly, and L. P. Barry, “Monolithically integrated 2-section lasers for injection locked gain switched comb generation,” Optical Fiber Communications Conference and Exhibition (2014).

Azodolmolky, S.

I. Tomkos, S. Azodolmolky, J. Sole-Pareta, D. Careglio, and E. Palkopoulou, “A tutorial on the flexible optical networking paradigm: State of the art, trends, and research challenges,” Proc. IEEE 102(9), 1317–1337 (2014).
[Crossref]

Balsamo, S.

Barry, L. P.

L. P. Barry, P. Anandarajah, and A. Kaszubowska, “Optical pulse generation at frequencies up to 20 GHz using external-injection seeding of a gain-switched commercial Fabry-Perot laser,” IEEE Photon. Technol. Lett. 13(9), 1014–1016 (2001).
[Crossref]

R. Zhou, P. M. Anandarajah, D. G. Pascual, J. O’Carroll, R. Phelan, B. Kelly, and L. P. Barry, “Monolithically integrated 2-section lasers for injection locked gain switched comb generation,” Optical Fiber Communications Conference and Exhibition (2014).

R. Zhou, S. Latkowski, J. O’Carroll, R. Phelan, L. P. Barry, and P. Anandarajah, “40nm wavelength tunable gain-switched optical comb source,” in 37th European Conference and Exhibition on Optical Communication19(26), 1–3 (2011).

Becker, M.

Belmonte, M.

Bradley, T.

Bryce, C.

P. Stolarz, C. N. Ironside, M. Sorel, and C. Bryce, “High temperature and wide range 40-GHz passive modelocking operation of an AlGaInAs 1.55-mm strained quantum well laser,” 21st Annual Meeting of the IEEE Lasers and Electro-Optics Society, 679–680 (2008).

Bull, J. D.

Byrne, D.

D. Byrne, Q. Lu, W. H. Guo, J. F. Donegan, B. Corbett, B. Roycroft, P. Lambkin, J. P. Engelstaedter, and F. Peters, “A facetless laser suitable for monolithic integration,” Optical Fiber Communication/National Fiber Optic Engineers Conference (2008).

Byrne, D. C.

D. C. Byrne, J. P. Engelstaedter, W. H. Guo, Q. Y. Lu, B. Corbett, B. Roycroft, J. O’Callaghan, F. H. Peters, and J. F. Donegan, “Discretely tunable semiconductor lasers suitable for photonic integration,” IEEE J. Sel. Topics Quantum Electron. 15(3), 482–487 (2009).
[Crossref]

Cajas, F.

A. Tauke-Pedretti, G. A. Vawter, E. J. Skogen, G. Peake, M. Overberg, C. Alford, W. W. Chow, Z. S. Yang, D. Torres, and F. Cajas, “Mutual injection locking of monolithically integrated coupled-cavity DBR lasers,” IEEE Photon. Technol. Lett. 23(13), 908–910 (2011).
[Crossref]

Cannard, P.

C. C. Renaud, M. Pantouvaki, S. Gregoire, I. Lealman, P. Cannard, S. Cole, R. Moore, R. Gwilliam, and A. J. Seeds, “A monolithic MQW InP - InGaAsP-based optical comb generator,” IEEE J. Quantum Electron. 43(11), 998–1005 (2007).
[Crossref]

Careglio, D.

I. Tomkos, S. Azodolmolky, J. Sole-Pareta, D. Careglio, and E. Palkopoulou, “A tutorial on the flexible optical networking paradigm: State of the art, trends, and research challenges,” Proc. IEEE 102(9), 1317–1337 (2014).
[Crossref]

Carroll, J. O.

Chen, Y.

Chow, W. W.

A. Tauke-Pedretti, G. A. Vawter, E. J. Skogen, G. Peake, M. Overberg, C. Alford, W. W. Chow, Z. S. Yang, D. Torres, and F. Cajas, “Mutual injection locking of monolithically integrated coupled-cavity DBR lasers,” IEEE Photon. Technol. Lett. 23(13), 908–910 (2011).
[Crossref]

Coddington, I.

I. Coddington, W. Swann, and N. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
[Crossref] [PubMed]

Cole, S.

C. C. Renaud, M. Pantouvaki, S. Gregoire, I. Lealman, P. Cannard, S. Cole, R. Moore, R. Gwilliam, and A. J. Seeds, “A monolithic MQW InP - InGaAsP-based optical comb generator,” IEEE J. Quantum Electron. 43(11), 998–1005 (2007).
[Crossref]

Corbett, B.

P. E. Morrissey, W. Cotter, D. Goulding, B. Kelleher, S. Osborne, H. Yang, J. O’Callaghan, B. Roycroft, B. Corbett, and F. H. Peters, “On-chip optical phase locking of single growth monolithically integrated slotted fabry perot lasers,” Opt. Express 21, 17315–17323 (2013).
[Crossref] [PubMed]

D. C. Byrne, J. P. Engelstaedter, W. H. Guo, Q. Y. Lu, B. Corbett, B. Roycroft, J. O’Callaghan, F. H. Peters, and J. F. Donegan, “Discretely tunable semiconductor lasers suitable for photonic integration,” IEEE J. Sel. Topics Quantum Electron. 15(3), 482–487 (2009).
[Crossref]

D. Byrne, Q. Lu, W. H. Guo, J. F. Donegan, B. Corbett, B. Roycroft, P. Lambkin, J. P. Engelstaedter, and F. Peters, “A facetless laser suitable for monolithic integration,” Optical Fiber Communication/National Fiber Optic Engineers Conference (2008).

Cotter, W.

Donegan, J. F.

D. C. Byrne, J. P. Engelstaedter, W. H. Guo, Q. Y. Lu, B. Corbett, B. Roycroft, J. O’Callaghan, F. H. Peters, and J. F. Donegan, “Discretely tunable semiconductor lasers suitable for photonic integration,” IEEE J. Sel. Topics Quantum Electron. 15(3), 482–487 (2009).
[Crossref]

D. Byrne, Q. Lu, W. H. Guo, J. F. Donegan, B. Corbett, B. Roycroft, P. Lambkin, J. P. Engelstaedter, and F. Peters, “A facetless laser suitable for monolithic integration,” Optical Fiber Communication/National Fiber Optic Engineers Conference (2008).

Ellis, A.

A. Ellis and F. Gunning, “Spectral density enhancement using coherent WDM,” IEEE Photon. Technol. Lett. 17(2), 504–506 (2005).
[Crossref]

Ellis, A. D.

Engelstaedter, J. P.

D. C. Byrne, J. P. Engelstaedter, W. H. Guo, Q. Y. Lu, B. Corbett, B. Roycroft, J. O’Callaghan, F. H. Peters, and J. F. Donegan, “Discretely tunable semiconductor lasers suitable for photonic integration,” IEEE J. Sel. Topics Quantum Electron. 15(3), 482–487 (2009).
[Crossref]

D. Byrne, Q. Lu, W. H. Guo, J. F. Donegan, B. Corbett, B. Roycroft, P. Lambkin, J. P. Engelstaedter, and F. Peters, “A facetless laser suitable for monolithic integration,” Optical Fiber Communication/National Fiber Optic Engineers Conference (2008).

GarciaGunning, F. C.

Giurgiola, S.

Goulding, D.

Gregoire, S.

C. C. Renaud, M. Pantouvaki, S. Gregoire, I. Lealman, P. Cannard, S. Cole, R. Moore, R. Gwilliam, and A. J. Seeds, “A monolithic MQW InP - InGaAsP-based optical comb generator,” IEEE J. Quantum Electron. 43(11), 998–1005 (2007).
[Crossref]

Gunning, F.

A. Ellis and F. Gunning, “Spectral density enhancement using coherent WDM,” IEEE Photon. Technol. Lett. 17(2), 504–506 (2005).
[Crossref]

Guo, W. H.

D. C. Byrne, J. P. Engelstaedter, W. H. Guo, Q. Y. Lu, B. Corbett, B. Roycroft, J. O’Callaghan, F. H. Peters, and J. F. Donegan, “Discretely tunable semiconductor lasers suitable for photonic integration,” IEEE J. Sel. Topics Quantum Electron. 15(3), 482–487 (2009).
[Crossref]

D. Byrne, Q. Lu, W. H. Guo, J. F. Donegan, B. Corbett, B. Roycroft, P. Lambkin, J. P. Engelstaedter, and F. Peters, “A facetless laser suitable for monolithic integration,” Optical Fiber Communication/National Fiber Optic Engineers Conference (2008).

Gwilliam, R.

C. C. Renaud, M. Pantouvaki, S. Gregoire, I. Lealman, P. Cannard, S. Cole, R. Moore, R. Gwilliam, and A. J. Seeds, “A monolithic MQW InP - InGaAsP-based optical comb generator,” IEEE J. Quantum Electron. 43(11), 998–1005 (2007).
[Crossref]

Healy, T.

Heidt, A. M.

Hoffman, S.

Ironside, C. N.

P. Stolarz, C. N. Ironside, M. Sorel, and C. Bryce, “High temperature and wide range 40-GHz passive modelocking operation of an AlGaInAs 1.55-mm strained quantum well laser,” 21st Annual Meeting of the IEEE Lasers and Electro-Optics Society, 679–680 (2008).

Janner, D.

Kaszubowska, A.

L. P. Barry, P. Anandarajah, and A. Kaszubowska, “Optical pulse generation at frequencies up to 20 GHz using external-injection seeding of a gain-switched commercial Fabry-Perot laser,” IEEE Photon. Technol. Lett. 13(9), 1014–1016 (2001).
[Crossref]

Kelleher, B.

Kelly, B.

Z. Liu, Y. Chen, Z. Li, B. Kelly, R. Phelan, J. O. Carroll, T. Bradley, J. P. Wooler, N. V. Wheeler, A. M. Heidt, T. Richter, C. Schubert, M. Becker, F. Poletti, M. N. Petrovich, S. Alam, and D. J. Richardson, “High-capacity directly modulated optical transmitter for 2 μm spectral region,” J. Lightwave Technol. 33(7), 1373–1379 (2015).
[Crossref]

R. Zhou, P. M. Anandarajah, D. G. Pascual, J. O’Carroll, R. Phelan, B. Kelly, and L. P. Barry, “Monolithically integrated 2-section lasers for injection locked gain switched comb generation,” Optical Fiber Communications Conference and Exhibition (2014).

Lambkin, P.

D. Byrne, Q. Lu, W. H. Guo, J. F. Donegan, B. Corbett, B. Roycroft, P. Lambkin, J. P. Engelstaedter, and F. Peters, “A facetless laser suitable for monolithic integration,” Optical Fiber Communication/National Fiber Optic Engineers Conference (2008).

Latkowski, S.

R. Zhou, S. Latkowski, J. O’Carroll, R. Phelan, L. P. Barry, and P. Anandarajah, “40nm wavelength tunable gain-switched optical comb source,” in 37th European Conference and Exhibition on Optical Communication19(26), 1–3 (2011).

Lealman, I.

C. C. Renaud, M. Pantouvaki, S. Gregoire, I. Lealman, P. Cannard, S. Cole, R. Moore, R. Gwilliam, and A. J. Seeds, “A monolithic MQW InP - InGaAsP-based optical comb generator,” IEEE J. Quantum Electron. 43(11), 998–1005 (2007).
[Crossref]

Li, Z.

Liu, Z.

Lu, Q.

D. Byrne, Q. Lu, W. H. Guo, J. F. Donegan, B. Corbett, B. Roycroft, P. Lambkin, J. P. Engelstaedter, and F. Peters, “A facetless laser suitable for monolithic integration,” Optical Fiber Communication/National Fiber Optic Engineers Conference (2008).

Lu, Q. Y.

D. C. Byrne, J. P. Engelstaedter, W. H. Guo, Q. Y. Lu, B. Corbett, B. Roycroft, J. O’Callaghan, F. H. Peters, and J. F. Donegan, “Discretely tunable semiconductor lasers suitable for photonic integration,” IEEE J. Sel. Topics Quantum Electron. 15(3), 482–487 (2009).
[Crossref]

Lucchi, F.

Matsumoto, H.

Moore, R.

C. C. Renaud, M. Pantouvaki, S. Gregoire, I. Lealman, P. Cannard, S. Cole, R. Moore, R. Gwilliam, and A. J. Seeds, “A monolithic MQW InP - InGaAsP-based optical comb generator,” IEEE J. Quantum Electron. 43(11), 998–1005 (2007).
[Crossref]

Morrissey, P. E.

Nagai, S.

T. Tanigawa, T. Onishi, S. Nagai, and T. Ueda, “High-speed 850nm AlGaAs / GaAs vertical cavity surface emitting laser with low parasitic capacitance fabricated using BCB planarization technique,” Conference on Lasers and Electro-Optics (2005).

Newbury, N.

I. Coddington, W. Swann, and N. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
[Crossref] [PubMed]

Noé, R.

O’Callaghan, J.

P. E. Morrissey, W. Cotter, D. Goulding, B. Kelleher, S. Osborne, H. Yang, J. O’Callaghan, B. Roycroft, B. Corbett, and F. H. Peters, “On-chip optical phase locking of single growth monolithically integrated slotted fabry perot lasers,” Opt. Express 21, 17315–17323 (2013).
[Crossref] [PubMed]

D. C. Byrne, J. P. Engelstaedter, W. H. Guo, Q. Y. Lu, B. Corbett, B. Roycroft, J. O’Callaghan, F. H. Peters, and J. F. Donegan, “Discretely tunable semiconductor lasers suitable for photonic integration,” IEEE J. Sel. Topics Quantum Electron. 15(3), 482–487 (2009).
[Crossref]

O’Carroll, J.

R. Zhou, S. Latkowski, J. O’Carroll, R. Phelan, L. P. Barry, and P. Anandarajah, “40nm wavelength tunable gain-switched optical comb source,” in 37th European Conference and Exhibition on Optical Communication19(26), 1–3 (2011).

R. Zhou, P. M. Anandarajah, D. G. Pascual, J. O’Carroll, R. Phelan, B. Kelly, and L. P. Barry, “Monolithically integrated 2-section lasers for injection locked gain switched comb generation,” Optical Fiber Communications Conference and Exhibition (2014).

Onishi, T.

T. Tanigawa, T. Onishi, S. Nagai, and T. Ueda, “High-speed 850nm AlGaAs / GaAs vertical cavity surface emitting laser with low parasitic capacitance fabricated using BCB planarization technique,” Conference on Lasers and Electro-Optics (2005).

Osborne, S.

Overberg, M.

A. Tauke-Pedretti, G. A. Vawter, E. J. Skogen, G. Peake, M. Overberg, C. Alford, W. W. Chow, Z. S. Yang, D. Torres, and F. Cajas, “Mutual injection locking of monolithically integrated coupled-cavity DBR lasers,” IEEE Photon. Technol. Lett. 23(13), 908–910 (2011).
[Crossref]

Palkopoulou, E.

I. Tomkos, S. Azodolmolky, J. Sole-Pareta, D. Careglio, and E. Palkopoulou, “A tutorial on the flexible optical networking paradigm: State of the art, trends, and research challenges,” Proc. IEEE 102(9), 1317–1337 (2014).
[Crossref]

Pantouvaki, M.

C. C. Renaud, M. Pantouvaki, S. Gregoire, I. Lealman, P. Cannard, S. Cole, R. Moore, R. Gwilliam, and A. J. Seeds, “A monolithic MQW InP - InGaAsP-based optical comb generator,” IEEE J. Quantum Electron. 43(11), 998–1005 (2007).
[Crossref]

Pascual, D. G.

R. Zhou, P. M. Anandarajah, D. G. Pascual, J. O’Carroll, R. Phelan, B. Kelly, and L. P. Barry, “Monolithically integrated 2-section lasers for injection locked gain switched comb generation,” Optical Fiber Communications Conference and Exhibition (2014).

Peake, G.

A. Tauke-Pedretti, G. A. Vawter, E. J. Skogen, G. Peake, M. Overberg, C. Alford, W. W. Chow, Z. S. Yang, D. Torres, and F. Cajas, “Mutual injection locking of monolithically integrated coupled-cavity DBR lasers,” IEEE Photon. Technol. Lett. 23(13), 908–910 (2011).
[Crossref]

Peters, F.

D. Byrne, Q. Lu, W. H. Guo, J. F. Donegan, B. Corbett, B. Roycroft, P. Lambkin, J. P. Engelstaedter, and F. Peters, “A facetless laser suitable for monolithic integration,” Optical Fiber Communication/National Fiber Optic Engineers Conference (2008).

Peters, F. H.

P. E. Morrissey, W. Cotter, D. Goulding, B. Kelleher, S. Osborne, H. Yang, J. O’Callaghan, B. Roycroft, B. Corbett, and F. H. Peters, “On-chip optical phase locking of single growth monolithically integrated slotted fabry perot lasers,” Opt. Express 21, 17315–17323 (2013).
[Crossref] [PubMed]

D. C. Byrne, J. P. Engelstaedter, W. H. Guo, Q. Y. Lu, B. Corbett, B. Roycroft, J. O’Callaghan, F. H. Peters, and J. F. Donegan, “Discretely tunable semiconductor lasers suitable for photonic integration,” IEEE J. Sel. Topics Quantum Electron. 15(3), 482–487 (2009).
[Crossref]

Petrovich, M. N.

Pfau, T.

Phelan, R.

Z. Liu, Y. Chen, Z. Li, B. Kelly, R. Phelan, J. O. Carroll, T. Bradley, J. P. Wooler, N. V. Wheeler, A. M. Heidt, T. Richter, C. Schubert, M. Becker, F. Poletti, M. N. Petrovich, S. Alam, and D. J. Richardson, “High-capacity directly modulated optical transmitter for 2 μm spectral region,” J. Lightwave Technol. 33(7), 1373–1379 (2015).
[Crossref]

R. Zhou, P. M. Anandarajah, D. G. Pascual, J. O’Carroll, R. Phelan, B. Kelly, and L. P. Barry, “Monolithically integrated 2-section lasers for injection locked gain switched comb generation,” Optical Fiber Communications Conference and Exhibition (2014).

R. Zhou, S. Latkowski, J. O’Carroll, R. Phelan, L. P. Barry, and P. Anandarajah, “40nm wavelength tunable gain-switched optical comb source,” in 37th European Conference and Exhibition on Optical Communication19(26), 1–3 (2011).

Poletti, F.

Pruneri, V.

Renaud, C. C.

C. C. Renaud, M. Pantouvaki, S. Gregoire, I. Lealman, P. Cannard, S. Cole, R. Moore, R. Gwilliam, and A. J. Seeds, “A monolithic MQW InP - InGaAsP-based optical comb generator,” IEEE J. Quantum Electron. 43(11), 998–1005 (2007).
[Crossref]

Richardson, D. J.

Richter, T.

Roycroft, B.

P. E. Morrissey, W. Cotter, D. Goulding, B. Kelleher, S. Osborne, H. Yang, J. O’Callaghan, B. Roycroft, B. Corbett, and F. H. Peters, “On-chip optical phase locking of single growth monolithically integrated slotted fabry perot lasers,” Opt. Express 21, 17315–17323 (2013).
[Crossref] [PubMed]

D. C. Byrne, J. P. Engelstaedter, W. H. Guo, Q. Y. Lu, B. Corbett, B. Roycroft, J. O’Callaghan, F. H. Peters, and J. F. Donegan, “Discretely tunable semiconductor lasers suitable for photonic integration,” IEEE J. Sel. Topics Quantum Electron. 15(3), 482–487 (2009).
[Crossref]

D. Byrne, Q. Lu, W. H. Guo, J. F. Donegan, B. Corbett, B. Roycroft, P. Lambkin, J. P. Engelstaedter, and F. Peters, “A facetless laser suitable for monolithic integration,” Optical Fiber Communication/National Fiber Optic Engineers Conference (2008).

Schubert, C.

Seeds, A. J.

C. C. Renaud, M. Pantouvaki, S. Gregoire, I. Lealman, P. Cannard, S. Cole, R. Moore, R. Gwilliam, and A. J. Seeds, “A monolithic MQW InP - InGaAsP-based optical comb generator,” IEEE J. Quantum Electron. 43(11), 998–1005 (2007).
[Crossref]

Skogen, E. J.

A. Tauke-Pedretti, G. A. Vawter, E. J. Skogen, G. Peake, M. Overberg, C. Alford, W. W. Chow, Z. S. Yang, D. Torres, and F. Cajas, “Mutual injection locking of monolithically integrated coupled-cavity DBR lasers,” IEEE Photon. Technol. Lett. 23(13), 908–910 (2011).
[Crossref]

Sole-Pareta, J.

I. Tomkos, S. Azodolmolky, J. Sole-Pareta, D. Careglio, and E. Palkopoulou, “A tutorial on the flexible optical networking paradigm: State of the art, trends, and research challenges,” Proc. IEEE 102(9), 1317–1337 (2014).
[Crossref]

Sorel, M.

P. Stolarz, C. N. Ironside, M. Sorel, and C. Bryce, “High temperature and wide range 40-GHz passive modelocking operation of an AlGaInAs 1.55-mm strained quantum well laser,” 21st Annual Meeting of the IEEE Lasers and Electro-Optics Society, 679–680 (2008).

Stolarz, P.

P. Stolarz, C. N. Ironside, M. Sorel, and C. Bryce, “High temperature and wide range 40-GHz passive modelocking operation of an AlGaInAs 1.55-mm strained quantum well laser,” 21st Annual Meeting of the IEEE Lasers and Electro-Optics Society, 679–680 (2008).

Swann, W.

I. Coddington, W. Swann, and N. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
[Crossref] [PubMed]

Takahashi, S.

Takamasu, K.

Tanigawa, T.

T. Tanigawa, T. Onishi, S. Nagai, and T. Ueda, “High-speed 850nm AlGaAs / GaAs vertical cavity surface emitting laser with low parasitic capacitance fabricated using BCB planarization technique,” Conference on Lasers and Electro-Optics (2005).

Tauke-Pedretti, A.

A. Tauke-Pedretti, G. A. Vawter, E. J. Skogen, G. Peake, M. Overberg, C. Alford, W. W. Chow, Z. S. Yang, D. Torres, and F. Cajas, “Mutual injection locking of monolithically integrated coupled-cavity DBR lasers,” IEEE Photon. Technol. Lett. 23(13), 908–910 (2011).
[Crossref]

Tomkos, I.

I. Tomkos, S. Azodolmolky, J. Sole-Pareta, D. Careglio, and E. Palkopoulou, “A tutorial on the flexible optical networking paradigm: State of the art, trends, and research challenges,” Proc. IEEE 102(9), 1317–1337 (2014).
[Crossref]

Torres, D.

A. Tauke-Pedretti, G. A. Vawter, E. J. Skogen, G. Peake, M. Overberg, C. Alford, W. W. Chow, Z. S. Yang, D. Torres, and F. Cajas, “Mutual injection locking of monolithically integrated coupled-cavity DBR lasers,” IEEE Photon. Technol. Lett. 23(13), 908–910 (2011).
[Crossref]

Tsuchida, H.

H. Tsuchida, “Simple technique for improving the resolution of the delayed self-heterodyne method,” Opt. letters 15(11), 640–642 (1990).
[Crossref]

Ueda, T.

T. Tanigawa, T. Onishi, S. Nagai, and T. Ueda, “High-speed 850nm AlGaAs / GaAs vertical cavity surface emitting laser with low parasitic capacitance fabricated using BCB planarization technique,” Conference on Lasers and Electro-Optics (2005).

Vawter, G. A.

A. Tauke-Pedretti, G. A. Vawter, E. J. Skogen, G. Peake, M. Overberg, C. Alford, W. W. Chow, Z. S. Yang, D. Torres, and F. Cajas, “Mutual injection locking of monolithically integrated coupled-cavity DBR lasers,” IEEE Photon. Technol. Lett. 23(13), 908–910 (2011).
[Crossref]

Vergani, P.

Villa, M.

Wang, X.

Wheeler, N. V.

Wooler, J. P.

Yang, H.

Yang, Z. S.

A. Tauke-Pedretti, G. A. Vawter, E. J. Skogen, G. Peake, M. Overberg, C. Alford, W. W. Chow, Z. S. Yang, D. Torres, and F. Cajas, “Mutual injection locking of monolithically integrated coupled-cavity DBR lasers,” IEEE Photon. Technol. Lett. 23(13), 908–910 (2011).
[Crossref]

Zhou, R.

R. Zhou, S. Latkowski, J. O’Carroll, R. Phelan, L. P. Barry, and P. Anandarajah, “40nm wavelength tunable gain-switched optical comb source,” in 37th European Conference and Exhibition on Optical Communication19(26), 1–3 (2011).

R. Zhou, P. M. Anandarajah, D. G. Pascual, J. O’Carroll, R. Phelan, B. Kelly, and L. P. Barry, “Monolithically integrated 2-section lasers for injection locked gain switched comb generation,” Optical Fiber Communications Conference and Exhibition (2014).

IEEE J. Quantum Electron. (1)

C. C. Renaud, M. Pantouvaki, S. Gregoire, I. Lealman, P. Cannard, S. Cole, R. Moore, R. Gwilliam, and A. J. Seeds, “A monolithic MQW InP - InGaAsP-based optical comb generator,” IEEE J. Quantum Electron. 43(11), 998–1005 (2007).
[Crossref]

IEEE J. Sel. Topics Quantum Electron. (1)

D. C. Byrne, J. P. Engelstaedter, W. H. Guo, Q. Y. Lu, B. Corbett, B. Roycroft, J. O’Callaghan, F. H. Peters, and J. F. Donegan, “Discretely tunable semiconductor lasers suitable for photonic integration,” IEEE J. Sel. Topics Quantum Electron. 15(3), 482–487 (2009).
[Crossref]

IEEE Photon. Technol. Lett. (3)

A. Tauke-Pedretti, G. A. Vawter, E. J. Skogen, G. Peake, M. Overberg, C. Alford, W. W. Chow, Z. S. Yang, D. Torres, and F. Cajas, “Mutual injection locking of monolithically integrated coupled-cavity DBR lasers,” IEEE Photon. Technol. Lett. 23(13), 908–910 (2011).
[Crossref]

L. P. Barry, P. Anandarajah, and A. Kaszubowska, “Optical pulse generation at frequencies up to 20 GHz using external-injection seeding of a gain-switched commercial Fabry-Perot laser,” IEEE Photon. Technol. Lett. 13(9), 1014–1016 (2001).
[Crossref]

A. Ellis and F. Gunning, “Spectral density enhancement using coherent WDM,” IEEE Photon. Technol. Lett. 17(2), 504–506 (2005).
[Crossref]

J. Lightwave Technol. (2)

Opt. Express (4)

Opt. letters (1)

H. Tsuchida, “Simple technique for improving the resolution of the delayed self-heterodyne method,” Opt. letters 15(11), 640–642 (1990).
[Crossref]

Phys. Rev. Lett. (1)

I. Coddington, W. Swann, and N. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
[Crossref] [PubMed]

Proc. IEEE (1)

I. Tomkos, S. Azodolmolky, J. Sole-Pareta, D. Careglio, and E. Palkopoulou, “A tutorial on the flexible optical networking paradigm: State of the art, trends, and research challenges,” Proc. IEEE 102(9), 1317–1337 (2014).
[Crossref]

Other (5)

R. Zhou, S. Latkowski, J. O’Carroll, R. Phelan, L. P. Barry, and P. Anandarajah, “40nm wavelength tunable gain-switched optical comb source,” in 37th European Conference and Exhibition on Optical Communication19(26), 1–3 (2011).

D. Byrne, Q. Lu, W. H. Guo, J. F. Donegan, B. Corbett, B. Roycroft, P. Lambkin, J. P. Engelstaedter, and F. Peters, “A facetless laser suitable for monolithic integration,” Optical Fiber Communication/National Fiber Optic Engineers Conference (2008).

R. Zhou, P. M. Anandarajah, D. G. Pascual, J. O’Carroll, R. Phelan, B. Kelly, and L. P. Barry, “Monolithically integrated 2-section lasers for injection locked gain switched comb generation,” Optical Fiber Communications Conference and Exhibition (2014).

P. Stolarz, C. N. Ironside, M. Sorel, and C. Bryce, “High temperature and wide range 40-GHz passive modelocking operation of an AlGaInAs 1.55-mm strained quantum well laser,” 21st Annual Meeting of the IEEE Lasers and Electro-Optics Society, 679–680 (2008).

T. Tanigawa, T. Onishi, S. Nagai, and T. Ueda, “High-speed 850nm AlGaAs / GaAs vertical cavity surface emitting laser with low parasitic capacitance fabricated using BCB planarization technique,” Conference on Lasers and Electro-Optics (2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Top profile of device. GS contact pads can be seen for both the master and the slave. (b) Side profile of device. Slotted mirror section can be clearly seen. Slot depth is equal to the ridge height.

Fig. 2
Fig. 2

(a) Slave output before/after master section injection. (b) Optical spectrum on varying master and mirror bias showing 4 main lasing modes.

Fig. 3
Fig. 3

(a) Resonance frequency enhancement. (b) Optical comb with master ON/OFF, with an FSR of 4 Ghz. The master ON comb is centered at 1580.3 nm, the master OFF comb at 1586.9 nm. This difference arises as the slave section required higher biasing to generate a comb with the master OFF.

Fig. 4
Fig. 4

(a) Schematic for the RDSHI linewidth measurement. (b) Measured linewidths for the device (modulated/unmodulated), and commercial DFB. 3 dB width of the comb set linewidth can seen in the top left inset.

Metrics