Abstract

Thermo-optical tuning of the refractive index is one of the pivotal operations performed in integrated silicon photonic circuits for thermal stabilization, compensation of fabrication tolerances, and implementation of photonic operations. Currently, heaters based on metal wires provide the temperature control in the silicon waveguide. The strong interaction of metal and light, however, necessitates a certain gap between the heater and the photonic structure to avoid significant transmission loss. Here we present a graphene heater that overcomes this constraint and enables an energy efficient tuning of the refractive index. We achieve a tuning power as low as 22 mW per free spectral range and fast response time of 3 µs, outperforming metal based waveguide heaters. Simulations support the experimental results and suggest that for graphene heaters the spacing to the silicon can be further reduced yielding the best possible energy efficiency and operation speed.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Thermally tunable silicon photonic microdisk resonator with transparent graphene nanoheaters

Longhai Yu, Yanlong Yin, Yaocheng Shi, Daoxin Dai, and Sailing He
Optica 3(2) 159-166 (2016)

Ultra-compact tunable silicon nanobeam cavity with an energy-efficient graphene micro-heater

Zhenzhen Xu, Ciyuan Qiu, Yuxing Yang, Qingming Zhu, Xinghong Jiang, Yong Zhang, Weilu Gao, and Yikai Su
Opt. Express 25(16) 19479-19486 (2017)

Graphene-based plasmonic waveguides for photonic integrated circuits

Jin Tae Kim and Sung-Yool Choi
Opt. Express 19(24) 24557-24562 (2011)

References

  • View by:
  • |
  • |
  • |

  1. M. Asghari and A. V. Krishnamoorthy, “Silicon photonics: energy-efficient communication,” Nat. Photonics 5(5), 268–270 (2011).
    [Crossref]
  2. A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. E. Cunningham, “Computer systems based on silicon photonic interconnects,” Proc. IEEE 97(7), 1337–1361 (2009).
    [Crossref]
  3. Q. Xu, B. Schmidt, J. Shakya, and M. Lipson, “Cascaded silicon micro-ring modulators for WDM optical interconnection,” Opt. Express 14(20), 9431–9435 (2006).
    [Crossref] [PubMed]
  4. A. Liu, L. Liao, Y. Chetrit, J. Basak, H. Nguyen, D. Rubin, and M. Paniccia, “Wavelength Division Multiplexing Based Photonic Integrated Circuits on Silicon-on-Insulator Platform,” IEEE J. Sel. Top. Quantum Electron. 16(1), 23–32 (2010).
    [Crossref]
  5. K. Padmaraju, D. F. Logan, X. Zhu, J. J. Ackert, A. P. Knights, and K. Bergman, “Integrated thermal stabilization of a microring modulator,” Opt. Express 21(12), 14342–14350 (2013).
    [Crossref] [PubMed]
  6. K. Padmaraju and K. Bergman, “Resolving the thermal challenges for silicon microring resonator devices,” Nanophotonics 3(4–5), 269–281 (2014).
  7. A. Masood, M. Pantouvaki, G. Lepage, P. Verheyen, J. V. Campenhout, P. Absil, D. V. Thourhout, and W. Bogaerts, “Comparison of heater architectures for thermal control of silicon photonic circuits,” in 10th IEEE Int. Conf. Group IV Phot. (IEEE, 2013), pp. 83–84.
    [Crossref]
  8. A. Masood, M. Pantouvaki, D. Goossens, G. Lepage, P. Verheyen, D. Thourhout, P. Absil, and W. Bogaerts, “CMOS-compatible Tungsten heaters for silicon photonic waveguides,” in 9th IEEE Int. Conf. Group IV Phot. (IEEE, 2012), pp. 234–236.
    [Crossref]
  9. F. Gan, T. Barwicz, M. A. Popovic, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, H. I. Smith, E. P. Ippen, and F. X. Kaertner, “Maximizing the thermo-optic tuning range of silicon photonic structures,” in Photonics in Switching (IEEE, 2007), pp. 67–68.
  10. M. Geng, L. Jia, L. Zhang, L. Yang, P. Chen, T. Wang, and Y. Liu, “Four-channel reconfigurable optical add-drop multiplexer based on photonic wire waveguide,” Opt. Express 17(7), 5502–5516 (2009).
    [Crossref] [PubMed]
  11. M. W. Geis, S. R. J. Spector, C. Williamson, and T. M. Lyszczarz, “Submicrosecond submilliwatt silicon-on-insulator thermooptic switch,” IEEE Photonics Technol. Lett. 16(11), 2514–2516 (2004).
    [Crossref]
  12. X. Li, H. Xu, X. Xiao, Z. Li, Y. Yu, and J. Yu, “Fast and efficient silicon thermo-optic switching based on reverse breakdown of pn junction,” Opt. Lett. 39(4), 751–753 (2014).
    [Crossref] [PubMed]
  13. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
    [Crossref] [PubMed]
  14. P. Avouris, “Graphene: electronic and photonic properties and devices,” Nano Lett. 10(11), 4285–4294 (2010).
    [Crossref] [PubMed]
  15. J. Kang, H. Kim, K. S. Kim, S.-K. Lee, S. Bae, J.-H. Ahn, Y.-J. Kim, J.-B. Choi, and B. H. Hong, “High-performance graphene-based transparent flexible heaters,” Nano Lett. 11(12), 5154–5158 (2011).
    [Crossref] [PubMed]
  16. D. Sui, Y. Huang, L. Huang, J. Liang, Y. Ma, and Y. Chen, “Flexible and transparent electrothermal film heaters based on graphene materials,” Small 7(22), 3186–3192 (2011).
    [Crossref] [PubMed]
  17. M. Liu, X. Yin, and X. Zhang, “Double-layer graphene optical modulator,” Nano Lett. 12(3), 1482–1485 (2012).
    [Crossref] [PubMed]
  18. D. Schall, D. Neumaier, M. Mohsin, B. Chmielak, J. Bolten, C. Porschatis, A. Prinzen, C. Matheisen, W. Kuebart, B. Junginger, W. Templ, A. L. Giesecke, and H. Kurz, “50 GBit/s photodetectors based on wafer-scale graphene for integrated silicon photonic communication systems,” ACS Photonics 1(9), 781–784 (2014).
    [Crossref]
  19. L. Yu, D. Dai, and S. He, “Graphene-based transparent flexible heat conductor for thermally tuning nanophotonic integrated devices,” Appl. Phys. Lett. 105(25), 251104 (2014).
    [Crossref]
  20. L. Yu, Y. Shi, S. He, and D. Dai, “Tunable silicon micro-disk resonator with flexible graphene-based ultra-thin heaters,” in Asia Communications and Photonics Conference 2015, OSA Technical Digest (online) (Optical Society of America, 2015), paper AS3B.2.
    [Crossref]
  21. L. Yu, Y. Yin, Y. Shi, D. Dai, and S. He, “Termally tunable silicon photonic microdisk resonator with transparent graphene nanoheaters,” Optica 3(2), 159 (2016).
    [Crossref]
  22. S. Gan, C. Cheng, Y. Zhan, B. Huang, X. Gan, S. Li, S. Lin, X. Li, J. Zhao, H. Chen, and Q. Bao, “A highly efficient thermo-optic microring modulator assisted by graphene,” Nanoscale 7(47), 20249–20255 (2015).
    [Crossref] [PubMed]
  23. X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324(5932), 1312–1314 (2009).
    [Crossref] [PubMed]
  24. J. Komma, C. Schwarz, G. Hofmann, D. Heinert, and R. Nawrodt, “Thermo-optic coefficient of silicon at 1550 nm and cryogenic temperatures,” Appl. Phys. Lett. 101(4), 041905 (2012).
    [Crossref]
  25. P. Dong, W. Qian, H. Liang, R. Shafiiha, N. N. Feng, D. Feng, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Low power and compact reconfigurable multiplexing devices based on silicon microring resonators,” Opt. Express 18(10), 9852–9858 (2010).
    [Crossref] [PubMed]
  26. J. Van Campenhout, W. M. J. Green, S. Assefa, and Y. A. Vlasov, “Integrated NiSi waveguide heaters for CMOS-compatible silicon thermo-optic devices,” Opt. Lett. 35(7), 1013–1015 (2010).
    [Crossref] [PubMed]
  27. M. Mohsin, D. Neumaier, D. Schall, M. Otto, C. Matheisen, A. L. Giesecke, A. A. Sagade, and H. Kurz, “Experimental verification of electro-refractive phase modulation in graphene,” Sci. Rep. 5, 10967 (2015).
    [Crossref] [PubMed]
  28. L. D’Arsié, S. Esconjauregui, R. Weatherup, Y. Guo, S. Bhardwaj, A. Centeno, A. Zurutuza, C. Cepek, and J. Robertson, “Stability of graphene doping with MoO3 and I2,” Appl. Phys. Lett. 105(10), 103103 (2014).
    [Crossref]
  29. M. Mohsin, D. Schall, M. Otto, A. Noculak, D. Neumaier, and H. Kurz, “Graphene based low insertion loss electro-absorption modulator on SOI waveguide,” Opt. Express 22(12), 15292–15297 (2014).
    [Crossref] [PubMed]
  30. L. W. Luo, G. S. Wiederhecker, J. Cardenas, C. Poitras, and M. Lipson, “High quality factor etchless silicon photonic ring resonators,” Opt. Express 19(7), 6284–6289 (2011).
    [Crossref] [PubMed]

2016 (1)

2015 (2)

S. Gan, C. Cheng, Y. Zhan, B. Huang, X. Gan, S. Li, S. Lin, X. Li, J. Zhao, H. Chen, and Q. Bao, “A highly efficient thermo-optic microring modulator assisted by graphene,” Nanoscale 7(47), 20249–20255 (2015).
[Crossref] [PubMed]

M. Mohsin, D. Neumaier, D. Schall, M. Otto, C. Matheisen, A. L. Giesecke, A. A. Sagade, and H. Kurz, “Experimental verification of electro-refractive phase modulation in graphene,” Sci. Rep. 5, 10967 (2015).
[Crossref] [PubMed]

2014 (6)

L. D’Arsié, S. Esconjauregui, R. Weatherup, Y. Guo, S. Bhardwaj, A. Centeno, A. Zurutuza, C. Cepek, and J. Robertson, “Stability of graphene doping with MoO3 and I2,” Appl. Phys. Lett. 105(10), 103103 (2014).
[Crossref]

D. Schall, D. Neumaier, M. Mohsin, B. Chmielak, J. Bolten, C. Porschatis, A. Prinzen, C. Matheisen, W. Kuebart, B. Junginger, W. Templ, A. L. Giesecke, and H. Kurz, “50 GBit/s photodetectors based on wafer-scale graphene for integrated silicon photonic communication systems,” ACS Photonics 1(9), 781–784 (2014).
[Crossref]

L. Yu, D. Dai, and S. He, “Graphene-based transparent flexible heat conductor for thermally tuning nanophotonic integrated devices,” Appl. Phys. Lett. 105(25), 251104 (2014).
[Crossref]

K. Padmaraju and K. Bergman, “Resolving the thermal challenges for silicon microring resonator devices,” Nanophotonics 3(4–5), 269–281 (2014).

X. Li, H. Xu, X. Xiao, Z. Li, Y. Yu, and J. Yu, “Fast and efficient silicon thermo-optic switching based on reverse breakdown of pn junction,” Opt. Lett. 39(4), 751–753 (2014).
[Crossref] [PubMed]

M. Mohsin, D. Schall, M. Otto, A. Noculak, D. Neumaier, and H. Kurz, “Graphene based low insertion loss electro-absorption modulator on SOI waveguide,” Opt. Express 22(12), 15292–15297 (2014).
[Crossref] [PubMed]

2013 (1)

2012 (2)

M. Liu, X. Yin, and X. Zhang, “Double-layer graphene optical modulator,” Nano Lett. 12(3), 1482–1485 (2012).
[Crossref] [PubMed]

J. Komma, C. Schwarz, G. Hofmann, D. Heinert, and R. Nawrodt, “Thermo-optic coefficient of silicon at 1550 nm and cryogenic temperatures,” Appl. Phys. Lett. 101(4), 041905 (2012).
[Crossref]

2011 (4)

M. Asghari and A. V. Krishnamoorthy, “Silicon photonics: energy-efficient communication,” Nat. Photonics 5(5), 268–270 (2011).
[Crossref]

J. Kang, H. Kim, K. S. Kim, S.-K. Lee, S. Bae, J.-H. Ahn, Y.-J. Kim, J.-B. Choi, and B. H. Hong, “High-performance graphene-based transparent flexible heaters,” Nano Lett. 11(12), 5154–5158 (2011).
[Crossref] [PubMed]

D. Sui, Y. Huang, L. Huang, J. Liang, Y. Ma, and Y. Chen, “Flexible and transparent electrothermal film heaters based on graphene materials,” Small 7(22), 3186–3192 (2011).
[Crossref] [PubMed]

L. W. Luo, G. S. Wiederhecker, J. Cardenas, C. Poitras, and M. Lipson, “High quality factor etchless silicon photonic ring resonators,” Opt. Express 19(7), 6284–6289 (2011).
[Crossref] [PubMed]

2010 (4)

J. Van Campenhout, W. M. J. Green, S. Assefa, and Y. A. Vlasov, “Integrated NiSi waveguide heaters for CMOS-compatible silicon thermo-optic devices,” Opt. Lett. 35(7), 1013–1015 (2010).
[Crossref] [PubMed]

P. Dong, W. Qian, H. Liang, R. Shafiiha, N. N. Feng, D. Feng, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Low power and compact reconfigurable multiplexing devices based on silicon microring resonators,” Opt. Express 18(10), 9852–9858 (2010).
[Crossref] [PubMed]

A. Liu, L. Liao, Y. Chetrit, J. Basak, H. Nguyen, D. Rubin, and M. Paniccia, “Wavelength Division Multiplexing Based Photonic Integrated Circuits on Silicon-on-Insulator Platform,” IEEE J. Sel. Top. Quantum Electron. 16(1), 23–32 (2010).
[Crossref]

P. Avouris, “Graphene: electronic and photonic properties and devices,” Nano Lett. 10(11), 4285–4294 (2010).
[Crossref] [PubMed]

2009 (3)

A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. E. Cunningham, “Computer systems based on silicon photonic interconnects,” Proc. IEEE 97(7), 1337–1361 (2009).
[Crossref]

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324(5932), 1312–1314 (2009).
[Crossref] [PubMed]

M. Geng, L. Jia, L. Zhang, L. Yang, P. Chen, T. Wang, and Y. Liu, “Four-channel reconfigurable optical add-drop multiplexer based on photonic wire waveguide,” Opt. Express 17(7), 5502–5516 (2009).
[Crossref] [PubMed]

2006 (1)

2004 (2)

M. W. Geis, S. R. J. Spector, C. Williamson, and T. M. Lyszczarz, “Submicrosecond submilliwatt silicon-on-insulator thermooptic switch,” IEEE Photonics Technol. Lett. 16(11), 2514–2516 (2004).
[Crossref]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Absil, P.

A. Masood, M. Pantouvaki, G. Lepage, P. Verheyen, J. V. Campenhout, P. Absil, D. V. Thourhout, and W. Bogaerts, “Comparison of heater architectures for thermal control of silicon photonic circuits,” in 10th IEEE Int. Conf. Group IV Phot. (IEEE, 2013), pp. 83–84.
[Crossref]

A. Masood, M. Pantouvaki, D. Goossens, G. Lepage, P. Verheyen, D. Thourhout, P. Absil, and W. Bogaerts, “CMOS-compatible Tungsten heaters for silicon photonic waveguides,” in 9th IEEE Int. Conf. Group IV Phot. (IEEE, 2012), pp. 234–236.
[Crossref]

Ackert, J. J.

Ahn, J.-H.

J. Kang, H. Kim, K. S. Kim, S.-K. Lee, S. Bae, J.-H. Ahn, Y.-J. Kim, J.-B. Choi, and B. H. Hong, “High-performance graphene-based transparent flexible heaters,” Nano Lett. 11(12), 5154–5158 (2011).
[Crossref] [PubMed]

An, J.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324(5932), 1312–1314 (2009).
[Crossref] [PubMed]

Asghari, M.

Assefa, S.

Avouris, P.

P. Avouris, “Graphene: electronic and photonic properties and devices,” Nano Lett. 10(11), 4285–4294 (2010).
[Crossref] [PubMed]

Bae, S.

J. Kang, H. Kim, K. S. Kim, S.-K. Lee, S. Bae, J.-H. Ahn, Y.-J. Kim, J.-B. Choi, and B. H. Hong, “High-performance graphene-based transparent flexible heaters,” Nano Lett. 11(12), 5154–5158 (2011).
[Crossref] [PubMed]

Banerjee, S. K.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324(5932), 1312–1314 (2009).
[Crossref] [PubMed]

Bao, Q.

S. Gan, C. Cheng, Y. Zhan, B. Huang, X. Gan, S. Li, S. Lin, X. Li, J. Zhao, H. Chen, and Q. Bao, “A highly efficient thermo-optic microring modulator assisted by graphene,” Nanoscale 7(47), 20249–20255 (2015).
[Crossref] [PubMed]

Basak, J.

A. Liu, L. Liao, Y. Chetrit, J. Basak, H. Nguyen, D. Rubin, and M. Paniccia, “Wavelength Division Multiplexing Based Photonic Integrated Circuits on Silicon-on-Insulator Platform,” IEEE J. Sel. Top. Quantum Electron. 16(1), 23–32 (2010).
[Crossref]

Bergman, K.

K. Padmaraju and K. Bergman, “Resolving the thermal challenges for silicon microring resonator devices,” Nanophotonics 3(4–5), 269–281 (2014).

K. Padmaraju, D. F. Logan, X. Zhu, J. J. Ackert, A. P. Knights, and K. Bergman, “Integrated thermal stabilization of a microring modulator,” Opt. Express 21(12), 14342–14350 (2013).
[Crossref] [PubMed]

Bhardwaj, S.

L. D’Arsié, S. Esconjauregui, R. Weatherup, Y. Guo, S. Bhardwaj, A. Centeno, A. Zurutuza, C. Cepek, and J. Robertson, “Stability of graphene doping with MoO3 and I2,” Appl. Phys. Lett. 105(10), 103103 (2014).
[Crossref]

Bogaerts, W.

A. Masood, M. Pantouvaki, G. Lepage, P. Verheyen, J. V. Campenhout, P. Absil, D. V. Thourhout, and W. Bogaerts, “Comparison of heater architectures for thermal control of silicon photonic circuits,” in 10th IEEE Int. Conf. Group IV Phot. (IEEE, 2013), pp. 83–84.
[Crossref]

A. Masood, M. Pantouvaki, D. Goossens, G. Lepage, P. Verheyen, D. Thourhout, P. Absil, and W. Bogaerts, “CMOS-compatible Tungsten heaters for silicon photonic waveguides,” in 9th IEEE Int. Conf. Group IV Phot. (IEEE, 2012), pp. 234–236.
[Crossref]

Bolten, J.

D. Schall, D. Neumaier, M. Mohsin, B. Chmielak, J. Bolten, C. Porschatis, A. Prinzen, C. Matheisen, W. Kuebart, B. Junginger, W. Templ, A. L. Giesecke, and H. Kurz, “50 GBit/s photodetectors based on wafer-scale graphene for integrated silicon photonic communication systems,” ACS Photonics 1(9), 781–784 (2014).
[Crossref]

Cai, W.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324(5932), 1312–1314 (2009).
[Crossref] [PubMed]

Campenhout, J. V.

A. Masood, M. Pantouvaki, G. Lepage, P. Verheyen, J. V. Campenhout, P. Absil, D. V. Thourhout, and W. Bogaerts, “Comparison of heater architectures for thermal control of silicon photonic circuits,” in 10th IEEE Int. Conf. Group IV Phot. (IEEE, 2013), pp. 83–84.
[Crossref]

Cardenas, J.

Centeno, A.

L. D’Arsié, S. Esconjauregui, R. Weatherup, Y. Guo, S. Bhardwaj, A. Centeno, A. Zurutuza, C. Cepek, and J. Robertson, “Stability of graphene doping with MoO3 and I2,” Appl. Phys. Lett. 105(10), 103103 (2014).
[Crossref]

Cepek, C.

L. D’Arsié, S. Esconjauregui, R. Weatherup, Y. Guo, S. Bhardwaj, A. Centeno, A. Zurutuza, C. Cepek, and J. Robertson, “Stability of graphene doping with MoO3 and I2,” Appl. Phys. Lett. 105(10), 103103 (2014).
[Crossref]

Chen, H.

S. Gan, C. Cheng, Y. Zhan, B. Huang, X. Gan, S. Li, S. Lin, X. Li, J. Zhao, H. Chen, and Q. Bao, “A highly efficient thermo-optic microring modulator assisted by graphene,” Nanoscale 7(47), 20249–20255 (2015).
[Crossref] [PubMed]

Chen, P.

Chen, Y.

D. Sui, Y. Huang, L. Huang, J. Liang, Y. Ma, and Y. Chen, “Flexible and transparent electrothermal film heaters based on graphene materials,” Small 7(22), 3186–3192 (2011).
[Crossref] [PubMed]

Cheng, C.

S. Gan, C. Cheng, Y. Zhan, B. Huang, X. Gan, S. Li, S. Lin, X. Li, J. Zhao, H. Chen, and Q. Bao, “A highly efficient thermo-optic microring modulator assisted by graphene,” Nanoscale 7(47), 20249–20255 (2015).
[Crossref] [PubMed]

Chetrit, Y.

A. Liu, L. Liao, Y. Chetrit, J. Basak, H. Nguyen, D. Rubin, and M. Paniccia, “Wavelength Division Multiplexing Based Photonic Integrated Circuits on Silicon-on-Insulator Platform,” IEEE J. Sel. Top. Quantum Electron. 16(1), 23–32 (2010).
[Crossref]

Chmielak, B.

D. Schall, D. Neumaier, M. Mohsin, B. Chmielak, J. Bolten, C. Porschatis, A. Prinzen, C. Matheisen, W. Kuebart, B. Junginger, W. Templ, A. L. Giesecke, and H. Kurz, “50 GBit/s photodetectors based on wafer-scale graphene for integrated silicon photonic communication systems,” ACS Photonics 1(9), 781–784 (2014).
[Crossref]

Choi, J.-B.

J. Kang, H. Kim, K. S. Kim, S.-K. Lee, S. Bae, J.-H. Ahn, Y.-J. Kim, J.-B. Choi, and B. H. Hong, “High-performance graphene-based transparent flexible heaters,” Nano Lett. 11(12), 5154–5158 (2011).
[Crossref] [PubMed]

Colombo, L.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324(5932), 1312–1314 (2009).
[Crossref] [PubMed]

Cunningham, J. E.

A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. E. Cunningham, “Computer systems based on silicon photonic interconnects,” Proc. IEEE 97(7), 1337–1361 (2009).
[Crossref]

D’Arsié, L.

L. D’Arsié, S. Esconjauregui, R. Weatherup, Y. Guo, S. Bhardwaj, A. Centeno, A. Zurutuza, C. Cepek, and J. Robertson, “Stability of graphene doping with MoO3 and I2,” Appl. Phys. Lett. 105(10), 103103 (2014).
[Crossref]

Dai, D.

L. Yu, Y. Yin, Y. Shi, D. Dai, and S. He, “Termally tunable silicon photonic microdisk resonator with transparent graphene nanoheaters,” Optica 3(2), 159 (2016).
[Crossref]

L. Yu, D. Dai, and S. He, “Graphene-based transparent flexible heat conductor for thermally tuning nanophotonic integrated devices,” Appl. Phys. Lett. 105(25), 251104 (2014).
[Crossref]

Dong, P.

Dubonos, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Esconjauregui, S.

L. D’Arsié, S. Esconjauregui, R. Weatherup, Y. Guo, S. Bhardwaj, A. Centeno, A. Zurutuza, C. Cepek, and J. Robertson, “Stability of graphene doping with MoO3 and I2,” Appl. Phys. Lett. 105(10), 103103 (2014).
[Crossref]

Feng, D.

Feng, N. N.

Firsov, A. A.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Gan, S.

S. Gan, C. Cheng, Y. Zhan, B. Huang, X. Gan, S. Li, S. Lin, X. Li, J. Zhao, H. Chen, and Q. Bao, “A highly efficient thermo-optic microring modulator assisted by graphene,” Nanoscale 7(47), 20249–20255 (2015).
[Crossref] [PubMed]

Gan, X.

S. Gan, C. Cheng, Y. Zhan, B. Huang, X. Gan, S. Li, S. Lin, X. Li, J. Zhao, H. Chen, and Q. Bao, “A highly efficient thermo-optic microring modulator assisted by graphene,” Nanoscale 7(47), 20249–20255 (2015).
[Crossref] [PubMed]

Geim, A. K.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Geis, M. W.

M. W. Geis, S. R. J. Spector, C. Williamson, and T. M. Lyszczarz, “Submicrosecond submilliwatt silicon-on-insulator thermooptic switch,” IEEE Photonics Technol. Lett. 16(11), 2514–2516 (2004).
[Crossref]

Geng, M.

Giesecke, A. L.

M. Mohsin, D. Neumaier, D. Schall, M. Otto, C. Matheisen, A. L. Giesecke, A. A. Sagade, and H. Kurz, “Experimental verification of electro-refractive phase modulation in graphene,” Sci. Rep. 5, 10967 (2015).
[Crossref] [PubMed]

D. Schall, D. Neumaier, M. Mohsin, B. Chmielak, J. Bolten, C. Porschatis, A. Prinzen, C. Matheisen, W. Kuebart, B. Junginger, W. Templ, A. L. Giesecke, and H. Kurz, “50 GBit/s photodetectors based on wafer-scale graphene for integrated silicon photonic communication systems,” ACS Photonics 1(9), 781–784 (2014).
[Crossref]

Goossens, D.

A. Masood, M. Pantouvaki, D. Goossens, G. Lepage, P. Verheyen, D. Thourhout, P. Absil, and W. Bogaerts, “CMOS-compatible Tungsten heaters for silicon photonic waveguides,” in 9th IEEE Int. Conf. Group IV Phot. (IEEE, 2012), pp. 234–236.
[Crossref]

Green, W. M. J.

Grigorieva, I. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Guo, Y.

L. D’Arsié, S. Esconjauregui, R. Weatherup, Y. Guo, S. Bhardwaj, A. Centeno, A. Zurutuza, C. Cepek, and J. Robertson, “Stability of graphene doping with MoO3 and I2,” Appl. Phys. Lett. 105(10), 103103 (2014).
[Crossref]

He, S.

L. Yu, Y. Yin, Y. Shi, D. Dai, and S. He, “Termally tunable silicon photonic microdisk resonator with transparent graphene nanoheaters,” Optica 3(2), 159 (2016).
[Crossref]

L. Yu, D. Dai, and S. He, “Graphene-based transparent flexible heat conductor for thermally tuning nanophotonic integrated devices,” Appl. Phys. Lett. 105(25), 251104 (2014).
[Crossref]

Heinert, D.

J. Komma, C. Schwarz, G. Hofmann, D. Heinert, and R. Nawrodt, “Thermo-optic coefficient of silicon at 1550 nm and cryogenic temperatures,” Appl. Phys. Lett. 101(4), 041905 (2012).
[Crossref]

Ho, R.

A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. E. Cunningham, “Computer systems based on silicon photonic interconnects,” Proc. IEEE 97(7), 1337–1361 (2009).
[Crossref]

Hofmann, G.

J. Komma, C. Schwarz, G. Hofmann, D. Heinert, and R. Nawrodt, “Thermo-optic coefficient of silicon at 1550 nm and cryogenic temperatures,” Appl. Phys. Lett. 101(4), 041905 (2012).
[Crossref]

Hong, B. H.

J. Kang, H. Kim, K. S. Kim, S.-K. Lee, S. Bae, J.-H. Ahn, Y.-J. Kim, J.-B. Choi, and B. H. Hong, “High-performance graphene-based transparent flexible heaters,” Nano Lett. 11(12), 5154–5158 (2011).
[Crossref] [PubMed]

Huang, B.

S. Gan, C. Cheng, Y. Zhan, B. Huang, X. Gan, S. Li, S. Lin, X. Li, J. Zhao, H. Chen, and Q. Bao, “A highly efficient thermo-optic microring modulator assisted by graphene,” Nanoscale 7(47), 20249–20255 (2015).
[Crossref] [PubMed]

Huang, L.

D. Sui, Y. Huang, L. Huang, J. Liang, Y. Ma, and Y. Chen, “Flexible and transparent electrothermal film heaters based on graphene materials,” Small 7(22), 3186–3192 (2011).
[Crossref] [PubMed]

Huang, Y.

D. Sui, Y. Huang, L. Huang, J. Liang, Y. Ma, and Y. Chen, “Flexible and transparent electrothermal film heaters based on graphene materials,” Small 7(22), 3186–3192 (2011).
[Crossref] [PubMed]

Jia, L.

Jiang, D.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Jung, I.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324(5932), 1312–1314 (2009).
[Crossref] [PubMed]

Junginger, B.

D. Schall, D. Neumaier, M. Mohsin, B. Chmielak, J. Bolten, C. Porschatis, A. Prinzen, C. Matheisen, W. Kuebart, B. Junginger, W. Templ, A. L. Giesecke, and H. Kurz, “50 GBit/s photodetectors based on wafer-scale graphene for integrated silicon photonic communication systems,” ACS Photonics 1(9), 781–784 (2014).
[Crossref]

Kang, J.

J. Kang, H. Kim, K. S. Kim, S.-K. Lee, S. Bae, J.-H. Ahn, Y.-J. Kim, J.-B. Choi, and B. H. Hong, “High-performance graphene-based transparent flexible heaters,” Nano Lett. 11(12), 5154–5158 (2011).
[Crossref] [PubMed]

Kim, H.

J. Kang, H. Kim, K. S. Kim, S.-K. Lee, S. Bae, J.-H. Ahn, Y.-J. Kim, J.-B. Choi, and B. H. Hong, “High-performance graphene-based transparent flexible heaters,” Nano Lett. 11(12), 5154–5158 (2011).
[Crossref] [PubMed]

Kim, K. S.

J. Kang, H. Kim, K. S. Kim, S.-K. Lee, S. Bae, J.-H. Ahn, Y.-J. Kim, J.-B. Choi, and B. H. Hong, “High-performance graphene-based transparent flexible heaters,” Nano Lett. 11(12), 5154–5158 (2011).
[Crossref] [PubMed]

Kim, S.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324(5932), 1312–1314 (2009).
[Crossref] [PubMed]

Kim, Y.-J.

J. Kang, H. Kim, K. S. Kim, S.-K. Lee, S. Bae, J.-H. Ahn, Y.-J. Kim, J.-B. Choi, and B. H. Hong, “High-performance graphene-based transparent flexible heaters,” Nano Lett. 11(12), 5154–5158 (2011).
[Crossref] [PubMed]

Knights, A. P.

Koka, P.

A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. E. Cunningham, “Computer systems based on silicon photonic interconnects,” Proc. IEEE 97(7), 1337–1361 (2009).
[Crossref]

Komma, J.

J. Komma, C. Schwarz, G. Hofmann, D. Heinert, and R. Nawrodt, “Thermo-optic coefficient of silicon at 1550 nm and cryogenic temperatures,” Appl. Phys. Lett. 101(4), 041905 (2012).
[Crossref]

Krishnamoorthy, A. V.

M. Asghari and A. V. Krishnamoorthy, “Silicon photonics: energy-efficient communication,” Nat. Photonics 5(5), 268–270 (2011).
[Crossref]

P. Dong, W. Qian, H. Liang, R. Shafiiha, N. N. Feng, D. Feng, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Low power and compact reconfigurable multiplexing devices based on silicon microring resonators,” Opt. Express 18(10), 9852–9858 (2010).
[Crossref] [PubMed]

A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. E. Cunningham, “Computer systems based on silicon photonic interconnects,” Proc. IEEE 97(7), 1337–1361 (2009).
[Crossref]

Kuebart, W.

D. Schall, D. Neumaier, M. Mohsin, B. Chmielak, J. Bolten, C. Porschatis, A. Prinzen, C. Matheisen, W. Kuebart, B. Junginger, W. Templ, A. L. Giesecke, and H. Kurz, “50 GBit/s photodetectors based on wafer-scale graphene for integrated silicon photonic communication systems,” ACS Photonics 1(9), 781–784 (2014).
[Crossref]

Kurz, H.

M. Mohsin, D. Neumaier, D. Schall, M. Otto, C. Matheisen, A. L. Giesecke, A. A. Sagade, and H. Kurz, “Experimental verification of electro-refractive phase modulation in graphene,” Sci. Rep. 5, 10967 (2015).
[Crossref] [PubMed]

D. Schall, D. Neumaier, M. Mohsin, B. Chmielak, J. Bolten, C. Porschatis, A. Prinzen, C. Matheisen, W. Kuebart, B. Junginger, W. Templ, A. L. Giesecke, and H. Kurz, “50 GBit/s photodetectors based on wafer-scale graphene for integrated silicon photonic communication systems,” ACS Photonics 1(9), 781–784 (2014).
[Crossref]

M. Mohsin, D. Schall, M. Otto, A. Noculak, D. Neumaier, and H. Kurz, “Graphene based low insertion loss electro-absorption modulator on SOI waveguide,” Opt. Express 22(12), 15292–15297 (2014).
[Crossref] [PubMed]

Lee, S.-K.

J. Kang, H. Kim, K. S. Kim, S.-K. Lee, S. Bae, J.-H. Ahn, Y.-J. Kim, J.-B. Choi, and B. H. Hong, “High-performance graphene-based transparent flexible heaters,” Nano Lett. 11(12), 5154–5158 (2011).
[Crossref] [PubMed]

Lepage, G.

A. Masood, M. Pantouvaki, D. Goossens, G. Lepage, P. Verheyen, D. Thourhout, P. Absil, and W. Bogaerts, “CMOS-compatible Tungsten heaters for silicon photonic waveguides,” in 9th IEEE Int. Conf. Group IV Phot. (IEEE, 2012), pp. 234–236.
[Crossref]

A. Masood, M. Pantouvaki, G. Lepage, P. Verheyen, J. V. Campenhout, P. Absil, D. V. Thourhout, and W. Bogaerts, “Comparison of heater architectures for thermal control of silicon photonic circuits,” in 10th IEEE Int. Conf. Group IV Phot. (IEEE, 2013), pp. 83–84.
[Crossref]

Lexau, J.

A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. E. Cunningham, “Computer systems based on silicon photonic interconnects,” Proc. IEEE 97(7), 1337–1361 (2009).
[Crossref]

Li, G.

A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. E. Cunningham, “Computer systems based on silicon photonic interconnects,” Proc. IEEE 97(7), 1337–1361 (2009).
[Crossref]

Li, S.

S. Gan, C. Cheng, Y. Zhan, B. Huang, X. Gan, S. Li, S. Lin, X. Li, J. Zhao, H. Chen, and Q. Bao, “A highly efficient thermo-optic microring modulator assisted by graphene,” Nanoscale 7(47), 20249–20255 (2015).
[Crossref] [PubMed]

Li, X.

S. Gan, C. Cheng, Y. Zhan, B. Huang, X. Gan, S. Li, S. Lin, X. Li, J. Zhao, H. Chen, and Q. Bao, “A highly efficient thermo-optic microring modulator assisted by graphene,” Nanoscale 7(47), 20249–20255 (2015).
[Crossref] [PubMed]

X. Li, H. Xu, X. Xiao, Z. Li, Y. Yu, and J. Yu, “Fast and efficient silicon thermo-optic switching based on reverse breakdown of pn junction,” Opt. Lett. 39(4), 751–753 (2014).
[Crossref] [PubMed]

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324(5932), 1312–1314 (2009).
[Crossref] [PubMed]

Li, Z.

Liang, H.

Liang, J.

D. Sui, Y. Huang, L. Huang, J. Liang, Y. Ma, and Y. Chen, “Flexible and transparent electrothermal film heaters based on graphene materials,” Small 7(22), 3186–3192 (2011).
[Crossref] [PubMed]

Liao, L.

A. Liu, L. Liao, Y. Chetrit, J. Basak, H. Nguyen, D. Rubin, and M. Paniccia, “Wavelength Division Multiplexing Based Photonic Integrated Circuits on Silicon-on-Insulator Platform,” IEEE J. Sel. Top. Quantum Electron. 16(1), 23–32 (2010).
[Crossref]

Lin, S.

S. Gan, C. Cheng, Y. Zhan, B. Huang, X. Gan, S. Li, S. Lin, X. Li, J. Zhao, H. Chen, and Q. Bao, “A highly efficient thermo-optic microring modulator assisted by graphene,” Nanoscale 7(47), 20249–20255 (2015).
[Crossref] [PubMed]

Lipson, M.

Liu, A.

A. Liu, L. Liao, Y. Chetrit, J. Basak, H. Nguyen, D. Rubin, and M. Paniccia, “Wavelength Division Multiplexing Based Photonic Integrated Circuits on Silicon-on-Insulator Platform,” IEEE J. Sel. Top. Quantum Electron. 16(1), 23–32 (2010).
[Crossref]

Liu, M.

M. Liu, X. Yin, and X. Zhang, “Double-layer graphene optical modulator,” Nano Lett. 12(3), 1482–1485 (2012).
[Crossref] [PubMed]

Liu, Y.

Logan, D. F.

Luo, L. W.

Lyszczarz, T. M.

M. W. Geis, S. R. J. Spector, C. Williamson, and T. M. Lyszczarz, “Submicrosecond submilliwatt silicon-on-insulator thermooptic switch,” IEEE Photonics Technol. Lett. 16(11), 2514–2516 (2004).
[Crossref]

Ma, Y.

D. Sui, Y. Huang, L. Huang, J. Liang, Y. Ma, and Y. Chen, “Flexible and transparent electrothermal film heaters based on graphene materials,” Small 7(22), 3186–3192 (2011).
[Crossref] [PubMed]

Masood, A.

A. Masood, M. Pantouvaki, G. Lepage, P. Verheyen, J. V. Campenhout, P. Absil, D. V. Thourhout, and W. Bogaerts, “Comparison of heater architectures for thermal control of silicon photonic circuits,” in 10th IEEE Int. Conf. Group IV Phot. (IEEE, 2013), pp. 83–84.
[Crossref]

A. Masood, M. Pantouvaki, D. Goossens, G. Lepage, P. Verheyen, D. Thourhout, P. Absil, and W. Bogaerts, “CMOS-compatible Tungsten heaters for silicon photonic waveguides,” in 9th IEEE Int. Conf. Group IV Phot. (IEEE, 2012), pp. 234–236.
[Crossref]

Matheisen, C.

M. Mohsin, D. Neumaier, D. Schall, M. Otto, C. Matheisen, A. L. Giesecke, A. A. Sagade, and H. Kurz, “Experimental verification of electro-refractive phase modulation in graphene,” Sci. Rep. 5, 10967 (2015).
[Crossref] [PubMed]

D. Schall, D. Neumaier, M. Mohsin, B. Chmielak, J. Bolten, C. Porschatis, A. Prinzen, C. Matheisen, W. Kuebart, B. Junginger, W. Templ, A. L. Giesecke, and H. Kurz, “50 GBit/s photodetectors based on wafer-scale graphene for integrated silicon photonic communication systems,” ACS Photonics 1(9), 781–784 (2014).
[Crossref]

Mohsin, M.

M. Mohsin, D. Neumaier, D. Schall, M. Otto, C. Matheisen, A. L. Giesecke, A. A. Sagade, and H. Kurz, “Experimental verification of electro-refractive phase modulation in graphene,” Sci. Rep. 5, 10967 (2015).
[Crossref] [PubMed]

D. Schall, D. Neumaier, M. Mohsin, B. Chmielak, J. Bolten, C. Porschatis, A. Prinzen, C. Matheisen, W. Kuebart, B. Junginger, W. Templ, A. L. Giesecke, and H. Kurz, “50 GBit/s photodetectors based on wafer-scale graphene for integrated silicon photonic communication systems,” ACS Photonics 1(9), 781–784 (2014).
[Crossref]

M. Mohsin, D. Schall, M. Otto, A. Noculak, D. Neumaier, and H. Kurz, “Graphene based low insertion loss electro-absorption modulator on SOI waveguide,” Opt. Express 22(12), 15292–15297 (2014).
[Crossref] [PubMed]

Morozov, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Nah, J.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324(5932), 1312–1314 (2009).
[Crossref] [PubMed]

Nawrodt, R.

J. Komma, C. Schwarz, G. Hofmann, D. Heinert, and R. Nawrodt, “Thermo-optic coefficient of silicon at 1550 nm and cryogenic temperatures,” Appl. Phys. Lett. 101(4), 041905 (2012).
[Crossref]

Neumaier, D.

M. Mohsin, D. Neumaier, D. Schall, M. Otto, C. Matheisen, A. L. Giesecke, A. A. Sagade, and H. Kurz, “Experimental verification of electro-refractive phase modulation in graphene,” Sci. Rep. 5, 10967 (2015).
[Crossref] [PubMed]

D. Schall, D. Neumaier, M. Mohsin, B. Chmielak, J. Bolten, C. Porschatis, A. Prinzen, C. Matheisen, W. Kuebart, B. Junginger, W. Templ, A. L. Giesecke, and H. Kurz, “50 GBit/s photodetectors based on wafer-scale graphene for integrated silicon photonic communication systems,” ACS Photonics 1(9), 781–784 (2014).
[Crossref]

M. Mohsin, D. Schall, M. Otto, A. Noculak, D. Neumaier, and H. Kurz, “Graphene based low insertion loss electro-absorption modulator on SOI waveguide,” Opt. Express 22(12), 15292–15297 (2014).
[Crossref] [PubMed]

Nguyen, H.

A. Liu, L. Liao, Y. Chetrit, J. Basak, H. Nguyen, D. Rubin, and M. Paniccia, “Wavelength Division Multiplexing Based Photonic Integrated Circuits on Silicon-on-Insulator Platform,” IEEE J. Sel. Top. Quantum Electron. 16(1), 23–32 (2010).
[Crossref]

Noculak, A.

Novoselov, K. S.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Otto, M.

M. Mohsin, D. Neumaier, D. Schall, M. Otto, C. Matheisen, A. L. Giesecke, A. A. Sagade, and H. Kurz, “Experimental verification of electro-refractive phase modulation in graphene,” Sci. Rep. 5, 10967 (2015).
[Crossref] [PubMed]

M. Mohsin, D. Schall, M. Otto, A. Noculak, D. Neumaier, and H. Kurz, “Graphene based low insertion loss electro-absorption modulator on SOI waveguide,” Opt. Express 22(12), 15292–15297 (2014).
[Crossref] [PubMed]

Padmaraju, K.

K. Padmaraju and K. Bergman, “Resolving the thermal challenges for silicon microring resonator devices,” Nanophotonics 3(4–5), 269–281 (2014).

K. Padmaraju, D. F. Logan, X. Zhu, J. J. Ackert, A. P. Knights, and K. Bergman, “Integrated thermal stabilization of a microring modulator,” Opt. Express 21(12), 14342–14350 (2013).
[Crossref] [PubMed]

Paniccia, M.

A. Liu, L. Liao, Y. Chetrit, J. Basak, H. Nguyen, D. Rubin, and M. Paniccia, “Wavelength Division Multiplexing Based Photonic Integrated Circuits on Silicon-on-Insulator Platform,” IEEE J. Sel. Top. Quantum Electron. 16(1), 23–32 (2010).
[Crossref]

Pantouvaki, M.

A. Masood, M. Pantouvaki, D. Goossens, G. Lepage, P. Verheyen, D. Thourhout, P. Absil, and W. Bogaerts, “CMOS-compatible Tungsten heaters for silicon photonic waveguides,” in 9th IEEE Int. Conf. Group IV Phot. (IEEE, 2012), pp. 234–236.
[Crossref]

A. Masood, M. Pantouvaki, G. Lepage, P. Verheyen, J. V. Campenhout, P. Absil, D. V. Thourhout, and W. Bogaerts, “Comparison of heater architectures for thermal control of silicon photonic circuits,” in 10th IEEE Int. Conf. Group IV Phot. (IEEE, 2013), pp. 83–84.
[Crossref]

Piner, R.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324(5932), 1312–1314 (2009).
[Crossref] [PubMed]

Poitras, C.

Porschatis, C.

D. Schall, D. Neumaier, M. Mohsin, B. Chmielak, J. Bolten, C. Porschatis, A. Prinzen, C. Matheisen, W. Kuebart, B. Junginger, W. Templ, A. L. Giesecke, and H. Kurz, “50 GBit/s photodetectors based on wafer-scale graphene for integrated silicon photonic communication systems,” ACS Photonics 1(9), 781–784 (2014).
[Crossref]

Prinzen, A.

D. Schall, D. Neumaier, M. Mohsin, B. Chmielak, J. Bolten, C. Porschatis, A. Prinzen, C. Matheisen, W. Kuebart, B. Junginger, W. Templ, A. L. Giesecke, and H. Kurz, “50 GBit/s photodetectors based on wafer-scale graphene for integrated silicon photonic communication systems,” ACS Photonics 1(9), 781–784 (2014).
[Crossref]

Qian, W.

Robertson, J.

L. D’Arsié, S. Esconjauregui, R. Weatherup, Y. Guo, S. Bhardwaj, A. Centeno, A. Zurutuza, C. Cepek, and J. Robertson, “Stability of graphene doping with MoO3 and I2,” Appl. Phys. Lett. 105(10), 103103 (2014).
[Crossref]

Rubin, D.

A. Liu, L. Liao, Y. Chetrit, J. Basak, H. Nguyen, D. Rubin, and M. Paniccia, “Wavelength Division Multiplexing Based Photonic Integrated Circuits on Silicon-on-Insulator Platform,” IEEE J. Sel. Top. Quantum Electron. 16(1), 23–32 (2010).
[Crossref]

Ruoff, R. S.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324(5932), 1312–1314 (2009).
[Crossref] [PubMed]

Sagade, A. A.

M. Mohsin, D. Neumaier, D. Schall, M. Otto, C. Matheisen, A. L. Giesecke, A. A. Sagade, and H. Kurz, “Experimental verification of electro-refractive phase modulation in graphene,” Sci. Rep. 5, 10967 (2015).
[Crossref] [PubMed]

Schall, D.

M. Mohsin, D. Neumaier, D. Schall, M. Otto, C. Matheisen, A. L. Giesecke, A. A. Sagade, and H. Kurz, “Experimental verification of electro-refractive phase modulation in graphene,” Sci. Rep. 5, 10967 (2015).
[Crossref] [PubMed]

D. Schall, D. Neumaier, M. Mohsin, B. Chmielak, J. Bolten, C. Porschatis, A. Prinzen, C. Matheisen, W. Kuebart, B. Junginger, W. Templ, A. L. Giesecke, and H. Kurz, “50 GBit/s photodetectors based on wafer-scale graphene for integrated silicon photonic communication systems,” ACS Photonics 1(9), 781–784 (2014).
[Crossref]

M. Mohsin, D. Schall, M. Otto, A. Noculak, D. Neumaier, and H. Kurz, “Graphene based low insertion loss electro-absorption modulator on SOI waveguide,” Opt. Express 22(12), 15292–15297 (2014).
[Crossref] [PubMed]

Schmidt, B.

Schwarz, C.

J. Komma, C. Schwarz, G. Hofmann, D. Heinert, and R. Nawrodt, “Thermo-optic coefficient of silicon at 1550 nm and cryogenic temperatures,” Appl. Phys. Lett. 101(4), 041905 (2012).
[Crossref]

Schwetman, H.

A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. E. Cunningham, “Computer systems based on silicon photonic interconnects,” Proc. IEEE 97(7), 1337–1361 (2009).
[Crossref]

Shafiiha, R.

Shakya, J.

Shi, Y.

Shubin, I.

A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. E. Cunningham, “Computer systems based on silicon photonic interconnects,” Proc. IEEE 97(7), 1337–1361 (2009).
[Crossref]

Spector, S. R. J.

M. W. Geis, S. R. J. Spector, C. Williamson, and T. M. Lyszczarz, “Submicrosecond submilliwatt silicon-on-insulator thermooptic switch,” IEEE Photonics Technol. Lett. 16(11), 2514–2516 (2004).
[Crossref]

Sui, D.

D. Sui, Y. Huang, L. Huang, J. Liang, Y. Ma, and Y. Chen, “Flexible and transparent electrothermal film heaters based on graphene materials,” Small 7(22), 3186–3192 (2011).
[Crossref] [PubMed]

Templ, W.

D. Schall, D. Neumaier, M. Mohsin, B. Chmielak, J. Bolten, C. Porschatis, A. Prinzen, C. Matheisen, W. Kuebart, B. Junginger, W. Templ, A. L. Giesecke, and H. Kurz, “50 GBit/s photodetectors based on wafer-scale graphene for integrated silicon photonic communication systems,” ACS Photonics 1(9), 781–784 (2014).
[Crossref]

Thourhout, D.

A. Masood, M. Pantouvaki, D. Goossens, G. Lepage, P. Verheyen, D. Thourhout, P. Absil, and W. Bogaerts, “CMOS-compatible Tungsten heaters for silicon photonic waveguides,” in 9th IEEE Int. Conf. Group IV Phot. (IEEE, 2012), pp. 234–236.
[Crossref]

Thourhout, D. V.

A. Masood, M. Pantouvaki, G. Lepage, P. Verheyen, J. V. Campenhout, P. Absil, D. V. Thourhout, and W. Bogaerts, “Comparison of heater architectures for thermal control of silicon photonic circuits,” in 10th IEEE Int. Conf. Group IV Phot. (IEEE, 2013), pp. 83–84.
[Crossref]

Tutuc, E.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324(5932), 1312–1314 (2009).
[Crossref] [PubMed]

Van Campenhout, J.

Velamakanni, A.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324(5932), 1312–1314 (2009).
[Crossref] [PubMed]

Verheyen, P.

A. Masood, M. Pantouvaki, G. Lepage, P. Verheyen, J. V. Campenhout, P. Absil, D. V. Thourhout, and W. Bogaerts, “Comparison of heater architectures for thermal control of silicon photonic circuits,” in 10th IEEE Int. Conf. Group IV Phot. (IEEE, 2013), pp. 83–84.
[Crossref]

A. Masood, M. Pantouvaki, D. Goossens, G. Lepage, P. Verheyen, D. Thourhout, P. Absil, and W. Bogaerts, “CMOS-compatible Tungsten heaters for silicon photonic waveguides,” in 9th IEEE Int. Conf. Group IV Phot. (IEEE, 2012), pp. 234–236.
[Crossref]

Vlasov, Y. A.

Wang, T.

Weatherup, R.

L. D’Arsié, S. Esconjauregui, R. Weatherup, Y. Guo, S. Bhardwaj, A. Centeno, A. Zurutuza, C. Cepek, and J. Robertson, “Stability of graphene doping with MoO3 and I2,” Appl. Phys. Lett. 105(10), 103103 (2014).
[Crossref]

Wiederhecker, G. S.

Williamson, C.

M. W. Geis, S. R. J. Spector, C. Williamson, and T. M. Lyszczarz, “Submicrosecond submilliwatt silicon-on-insulator thermooptic switch,” IEEE Photonics Technol. Lett. 16(11), 2514–2516 (2004).
[Crossref]

Xiao, X.

Xu, H.

Xu, Q.

Yang, D.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324(5932), 1312–1314 (2009).
[Crossref] [PubMed]

Yang, L.

Yin, X.

M. Liu, X. Yin, and X. Zhang, “Double-layer graphene optical modulator,” Nano Lett. 12(3), 1482–1485 (2012).
[Crossref] [PubMed]

Yin, Y.

Yu, J.

Yu, L.

L. Yu, Y. Yin, Y. Shi, D. Dai, and S. He, “Termally tunable silicon photonic microdisk resonator with transparent graphene nanoheaters,” Optica 3(2), 159 (2016).
[Crossref]

L. Yu, D. Dai, and S. He, “Graphene-based transparent flexible heat conductor for thermally tuning nanophotonic integrated devices,” Appl. Phys. Lett. 105(25), 251104 (2014).
[Crossref]

Yu, Y.

Zhan, Y.

S. Gan, C. Cheng, Y. Zhan, B. Huang, X. Gan, S. Li, S. Lin, X. Li, J. Zhao, H. Chen, and Q. Bao, “A highly efficient thermo-optic microring modulator assisted by graphene,” Nanoscale 7(47), 20249–20255 (2015).
[Crossref] [PubMed]

Zhang, L.

Zhang, X.

M. Liu, X. Yin, and X. Zhang, “Double-layer graphene optical modulator,” Nano Lett. 12(3), 1482–1485 (2012).
[Crossref] [PubMed]

Zhang, Y.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Zhao, J.

S. Gan, C. Cheng, Y. Zhan, B. Huang, X. Gan, S. Li, S. Lin, X. Li, J. Zhao, H. Chen, and Q. Bao, “A highly efficient thermo-optic microring modulator assisted by graphene,” Nanoscale 7(47), 20249–20255 (2015).
[Crossref] [PubMed]

Zheng, X.

P. Dong, W. Qian, H. Liang, R. Shafiiha, N. N. Feng, D. Feng, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Low power and compact reconfigurable multiplexing devices based on silicon microring resonators,” Opt. Express 18(10), 9852–9858 (2010).
[Crossref] [PubMed]

A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. E. Cunningham, “Computer systems based on silicon photonic interconnects,” Proc. IEEE 97(7), 1337–1361 (2009).
[Crossref]

Zhu, X.

Zurutuza, A.

L. D’Arsié, S. Esconjauregui, R. Weatherup, Y. Guo, S. Bhardwaj, A. Centeno, A. Zurutuza, C. Cepek, and J. Robertson, “Stability of graphene doping with MoO3 and I2,” Appl. Phys. Lett. 105(10), 103103 (2014).
[Crossref]

ACS Photonics (1)

D. Schall, D. Neumaier, M. Mohsin, B. Chmielak, J. Bolten, C. Porschatis, A. Prinzen, C. Matheisen, W. Kuebart, B. Junginger, W. Templ, A. L. Giesecke, and H. Kurz, “50 GBit/s photodetectors based on wafer-scale graphene for integrated silicon photonic communication systems,” ACS Photonics 1(9), 781–784 (2014).
[Crossref]

Appl. Phys. Lett. (3)

L. Yu, D. Dai, and S. He, “Graphene-based transparent flexible heat conductor for thermally tuning nanophotonic integrated devices,” Appl. Phys. Lett. 105(25), 251104 (2014).
[Crossref]

J. Komma, C. Schwarz, G. Hofmann, D. Heinert, and R. Nawrodt, “Thermo-optic coefficient of silicon at 1550 nm and cryogenic temperatures,” Appl. Phys. Lett. 101(4), 041905 (2012).
[Crossref]

L. D’Arsié, S. Esconjauregui, R. Weatherup, Y. Guo, S. Bhardwaj, A. Centeno, A. Zurutuza, C. Cepek, and J. Robertson, “Stability of graphene doping with MoO3 and I2,” Appl. Phys. Lett. 105(10), 103103 (2014).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

A. Liu, L. Liao, Y. Chetrit, J. Basak, H. Nguyen, D. Rubin, and M. Paniccia, “Wavelength Division Multiplexing Based Photonic Integrated Circuits on Silicon-on-Insulator Platform,” IEEE J. Sel. Top. Quantum Electron. 16(1), 23–32 (2010).
[Crossref]

IEEE Photonics Technol. Lett. (1)

M. W. Geis, S. R. J. Spector, C. Williamson, and T. M. Lyszczarz, “Submicrosecond submilliwatt silicon-on-insulator thermooptic switch,” IEEE Photonics Technol. Lett. 16(11), 2514–2516 (2004).
[Crossref]

Nano Lett. (3)

M. Liu, X. Yin, and X. Zhang, “Double-layer graphene optical modulator,” Nano Lett. 12(3), 1482–1485 (2012).
[Crossref] [PubMed]

P. Avouris, “Graphene: electronic and photonic properties and devices,” Nano Lett. 10(11), 4285–4294 (2010).
[Crossref] [PubMed]

J. Kang, H. Kim, K. S. Kim, S.-K. Lee, S. Bae, J.-H. Ahn, Y.-J. Kim, J.-B. Choi, and B. H. Hong, “High-performance graphene-based transparent flexible heaters,” Nano Lett. 11(12), 5154–5158 (2011).
[Crossref] [PubMed]

Nanophotonics (1)

K. Padmaraju and K. Bergman, “Resolving the thermal challenges for silicon microring resonator devices,” Nanophotonics 3(4–5), 269–281 (2014).

Nanoscale (1)

S. Gan, C. Cheng, Y. Zhan, B. Huang, X. Gan, S. Li, S. Lin, X. Li, J. Zhao, H. Chen, and Q. Bao, “A highly efficient thermo-optic microring modulator assisted by graphene,” Nanoscale 7(47), 20249–20255 (2015).
[Crossref] [PubMed]

Nat. Photonics (1)

M. Asghari and A. V. Krishnamoorthy, “Silicon photonics: energy-efficient communication,” Nat. Photonics 5(5), 268–270 (2011).
[Crossref]

Opt. Express (6)

Opt. Lett. (2)

Optica (1)

Proc. IEEE (1)

A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. E. Cunningham, “Computer systems based on silicon photonic interconnects,” Proc. IEEE 97(7), 1337–1361 (2009).
[Crossref]

Sci. Rep. (1)

M. Mohsin, D. Neumaier, D. Schall, M. Otto, C. Matheisen, A. L. Giesecke, A. A. Sagade, and H. Kurz, “Experimental verification of electro-refractive phase modulation in graphene,” Sci. Rep. 5, 10967 (2015).
[Crossref] [PubMed]

Science (2)

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324(5932), 1312–1314 (2009).
[Crossref] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Small (1)

D. Sui, Y. Huang, L. Huang, J. Liang, Y. Ma, and Y. Chen, “Flexible and transparent electrothermal film heaters based on graphene materials,” Small 7(22), 3186–3192 (2011).
[Crossref] [PubMed]

Other (4)

A. Masood, M. Pantouvaki, G. Lepage, P. Verheyen, J. V. Campenhout, P. Absil, D. V. Thourhout, and W. Bogaerts, “Comparison of heater architectures for thermal control of silicon photonic circuits,” in 10th IEEE Int. Conf. Group IV Phot. (IEEE, 2013), pp. 83–84.
[Crossref]

A. Masood, M. Pantouvaki, D. Goossens, G. Lepage, P. Verheyen, D. Thourhout, P. Absil, and W. Bogaerts, “CMOS-compatible Tungsten heaters for silicon photonic waveguides,” in 9th IEEE Int. Conf. Group IV Phot. (IEEE, 2012), pp. 234–236.
[Crossref]

F. Gan, T. Barwicz, M. A. Popovic, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, H. I. Smith, E. P. Ippen, and F. X. Kaertner, “Maximizing the thermo-optic tuning range of silicon photonic structures,” in Photonics in Switching (IEEE, 2007), pp. 67–68.

L. Yu, Y. Shi, S. He, and D. Dai, “Tunable silicon micro-disk resonator with flexible graphene-based ultra-thin heaters,” in Asia Communications and Photonics Conference 2015, OSA Technical Digest (online) (Optical Society of America, 2015), paper AS3B.2.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) False color micrograph of the graphene heater (orange) and the photonic ring (red). The light travels along the direction of the arrows. The scale bar is 6 µm. (b) Typical Raman spectrum of the graphene. The inset shows the 2D peak of a Raman mapping of the entire heater. (c) False color cross section of the waveguide and the cladding. The scale bar is 200 nm. (d) Transmission before (blue) and after the heater fabrication (red). The inset shows resonances before and after fabrication at 1311,7 nm.

Fig. 2
Fig. 2

(a) Transmission spectrum of the ring resonance for a heater power from 0 to 15 mW. (b) Shift of the ring resonance wavelength as a function of the heater power. The dashed line is a linear fit to the data with a slope of 0.33 nm/mW.

Fig. 3
Fig. 3

Resistance of the heater device as a function of time for a constantly applied supply voltage of 4 V.

Fig. 4
Fig. 4

Dynamic response of the heater measured by detecting the transmitted light. The electrical modulation signal has a square shape (0 to 0.1V with 0.05 V offset) at a frequency of 60 kHz. The corresponding peak electric power is 2 µW. The 10% to 90% rise time is 3 µs and the corresponding fall time is 3.6 µs.

Fig. 5
Fig. 5

(a) Profile of the TE mode at λ = 1310 nm in the cladded waveguide. The distance between the upper surface of the waveguide and the top of the cladding is labeled d. (b) Simulated absorption of the graphene as a function of the distance d to the waveguide for different Fermi-levels and scattering parameters Г1 = 13,5 x 1012 s−1 and Г2 = 2 x 1012 s−1. The blue symbols are measured absorption values.

Tables (1)

Tables Icon

Table 1 Comparison of key parameters obtained in this work to different metal heaters on Si waveguides and a graphene heater on a microdisk.

Metrics