Abstract

A compact diplexer is designed using a silicon photonic-crystal directional coupler of length comparable to the incident wavelength. The diplexer theoretically and experimentally exhibits a cross state bandwidth as broad as 2% of the operation frequency, with over 40-dB isolation between the cross and bar ports. We also demonstrate 1.5-Gbit/s frequency-division communication in the 0.32- and 0.33-THz bands using a single-wavelength-sized diplexer, and discuss the transmission bandwidth. Our study demonstrates the potential for application of photonic crystals as terahertz-wave integration platforms.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Surface modes in two-dimensional photonic crystal slabs with a flat dielectric margin

Hui Chen, Kevin K. Tsia, and Andrew W. Poon
Opt. Express 14(16) 7368-7377 (2006)

On the design of photonic crystal multiplexers

Jasmin Smajic, Christian Hafner, and Daniel Erni
Opt. Express 11(6) 566-571 (2003)

High efficiency coupling of light from a ridge to a photonic crystal waveguide

Murtaza Askari and Ali Adibi
Appl. Opt. 52(23) 5803-5815 (2013)

References

  • View by:
  • |
  • |
  • |

  1. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
    [Crossref] [PubMed]
  2. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58(23), 2486–2489 (1987).
    [Crossref] [PubMed]
  3. E. Yablonovitch, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, “Donor and acceptor modes in photonic band structure,” Phys. Rev. Lett. 67(24), 3380–3383 (1991).
    [Crossref] [PubMed]
  4. M. Fujita, S. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystals,” Science 308(5726), 1296–1298 (2005).
    [Crossref] [PubMed]
  5. A. Scherer, O. Painter, J. Vuckovic, M. Loncar, and T. Yoshie, “Photonic crystals for confining, guiding, and emitting light,” IEEE Trans. NanoTechnol. 1(1), 4–11 (2002).
    [Crossref]
  6. H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, and Y. H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305(5689), 1444–1447 (2004).
    [Crossref] [PubMed]
  7. S. Noda, “Recent progresses and future prospects of two- and three dimensional photonic crystals,” J. Lightwave Technol. 24(12), 4554–4567 (2006).
    [Crossref]
  8. T. Baba, “Photonic crystals remember the light,” Nat. Photonics 1(1), 11–12 (2007).
    [Crossref]
  9. T. F. Krauss, “Slow light in photonic crystal waveguides,” J. Phys. D Appl. Phys. 40(9), 2666–2670 (2007).
    [Crossref]
  10. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University, 2008).
  11. M. Notomi, “Manipulating light with strongly modulated photonic crystals,” Rep. Prog. Phys. 73(9), 096501 (2010).
    [Crossref]
  12. S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407(6804), 608–610 (2000).
    [Crossref] [PubMed]
  13. M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Laser oscillation in a strongly coupled single-quantum-dot–nanocavity system,” Nat. Phys. 6(4), 279–283 (2010).
    [Crossref]
  14. Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
    [Crossref] [PubMed]
  15. B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005).
    [Crossref]
  16. T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, “Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity,” Nat. Photonics 1(1), 49–52 (2007).
    [Crossref]
  17. S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics 1(8), 449–458 (2007).
    [Crossref]
  18. H. Sekoguchi, Y. Takahashi, T. Asano, and S. Noda, “Photonic crystal nanocavity with a Q-factor of ~9 million,” Opt. Express 22(1), 916–924 (2014).
    [Crossref] [PubMed]
  19. B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
    [Crossref] [PubMed]
  20. P. H. Siegel, “Terahertz technology in biology and medicine,” IEEE Trans. Microw. Theory Tech. 52(10), 2438–2447 (2004).
    [Crossref]
  21. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
    [Crossref]
  22. T. Nagatsuma, “Terahertz technologies: present and future,” IEICE Electron. Express 8(14), 1127–1142 (2011).
    [Crossref]
  23. J. H. Son, “Principle and applications of terahertz molecular imaging,” Nanotechnology 24(21), 214001 (2013).
    [Crossref] [PubMed]
  24. D. M. Mittleman, “Frontiers in terahertz sources and plasmonics,” Nat. Photonics 7(9), 666–669 (2013).
    [Crossref]
  25. T. Nagatsuma, S. Horiguchi, Y. Minamikata, Y. Yoshimizu, S. Hisatake, S. Kuwano, N. Yoshimoto, J. Terada, and H. Takahashi, “Terahertz wireless communications based on photonics technologies,” Opt. Express 21(20), 23736–23747 (2013).
    [Crossref] [PubMed]
  26. C. M. Lawson, P. M. Kopera, T. Y. Hsu, and V. J. Tekippe, “In-line single-mode wavelength division multiplexer/demultiplexer,” Electron. Lett. 20(23), 963–964 (1984).
    [Crossref]
  27. C. K. Kirkendall and A. Dandridge, “Overview of high performance fibre-optic sensing,” J. Phys. D Appl. Phys. 37(18), 197–216 (2004).
    [Crossref]
  28. R. Kakimi, M. Fujita, M. Nagai, M. Ashida, and T. Nagatsuma, “Capture of a terahertz wave in a photonic-crystal slab,” Nat. Photonics 8(8), 657–663 (2014).
    [Crossref]
  29. M. Tokushima and H. Yamada, “Photonic crystal line defect waveguide directional coupler,” Electron. Lett. 37(24), 1454–1455 (2001).
    [Crossref]
  30. M. Thorhauge, L. H. Frandsen, and P. I. Borel, “Efficient photonic crystal directional couplers,” Opt. Lett. 28(17), 1525–1527 (2003).
    [Crossref] [PubMed]
  31. D. Mori, S. Kubo, H. Sasaki, and T. Baba, “Experimental demonstration of wideband dispersion-compensated slow light by a chirped photonic crystal directional coupler,” Opt. Express 15(9), 5264–5270 (2007).
    [Crossref] [PubMed]
  32. D. M. Beggs, T. P. White, L. Cairns, L. O’Faolain, and T. F. Krauss, “Demonstration of an integrated optical switch in a silicon photonic crystal directional coupler,” Physica E 41(6), 1111–1114 (2009).
    [Crossref]
  33. J. Sugisaka, N. Yamamoto, M. Okano, K. Komori, T. Yatagai, and M. Itoh, “Demonstration of flat-band structure of two-dimensional photonic crystal directional coupler,” Jpn. J. Appl. Phys. 48(2), 022101 (2009).
    [Crossref]
  34. C. Y. Liu, “Fabrication and optical characteristics of silicon-based two-dimensional wavelength division multiplexing splitter with photonic crystal directional waveguide couplers,” Phys. Lett. A 375(28-29), 2754–2758 (2011).
    [Crossref]
  35. J. Sugisaka, N. Yamamoto, M. Okano, K. Komori, and M. Itoh, “Short photonic-crystal directional coupling optical switch of extended optical bandwidth using flat dispersion,” Jpn. J. Appl. Phys. 50(3R), 032201 (2011).
    [Crossref]
  36. N. R. Erickson, “High performance dual directional couplers for near-mm wavelengths,” IEEE Microw. Wirel. Compon. Lett. 11(5), 205–207 (2001).
    [Crossref]
  37. Z. Jian and D. M. Mittleman, “Out-of-plane dispersion and homogenization in photonic crystal slabs,” Appl. Phys. Lett. 87(19), 191113 (2005).
    [Crossref]
  38. Z. Jian and D. M. Mittleman, “Broadband group velocity anomaly in transmission through a terahertz photonic crystal slab,” Phys. Rev. B 73(11), 115118 (2006).
    [Crossref]
  39. Z. Jian and D. M. Mittleman, “Characterization of guided resonances in photonic crystal slabs using terahertz time-domain spectroscopy,” J. Appl. Phys. 100(12), 123113 (2006).
    [Crossref]
  40. N. Jukam, C. Yee, M. S. Sherwin, I. Fushman, and J. Vučković, “Patterned femtosecond laser excitation of terahertz leaky modes in GaAs photonic crystals,” Appl. Phys. Lett. 89(24), 241112 (2006).
    [Crossref]
  41. C. Yee, N. Jukam, and M. Sherwin, “Transmission of single mode ultrathin terahertz photonic crystal slabs,” Appl. Phys. Lett. 91(19), 194104 (2007).
    [Crossref]
  42. T. Prasad, V. L. Colvin, and D. M. Mittleman, “The effect of structural disorder on guided resonances in photonic crystal slabs studied with terahertz time-domain spectroscopy,” Opt. Express 15(25), 16954–16965 (2007).
    [Crossref] [PubMed]
  43. T. Prasad, V. L. Colvin, and D. M. Mittleman, “Dependence of guided resonances on the structural parameters of terahertz photonic crystal slabs,” J. Opt. Soc. Am. B 25(4), 633–644 (2008).
    [Crossref]
  44. C. M. Yee and M. S. Sherwin, “High-Q terahertz microcavities in silicon photonic crystal slabs,” Appl. Phys. Lett. 94(15), 154104 (2009).
    [Crossref]
  45. W. J. Otter, S. M. Hanham, N. M. Ridler, G. Marino, N. Klein, and S. Lucyszyn, “100 GHz ultra-high Q-factor photonic crystal resonators,” Sens. Actuators A Phys. 217, 151–159 (2014).
    [Crossref]
  46. K. Tsuruda, M. Fujita, and T. Nagatsuma, “Extremely low-loss terahertz waveguide based on silicon photonic-crystal slab,” Opt. Express 23(25), 31977–31990 (2015).
    [Crossref] [PubMed]
  47. M. Yata, M. Fujita, and T. Nagatsuma, “Diplexer for terahertz-wave integrated circuits using a photonic-crystal slab,” in International Topical Meeting on Microwave Photonics / The 9th Asia-Pacific Microwave Photonics Conference (IEICE, 2014), pp. 40–43.
    [Crossref]
  48. X. J. Gu, “Wavelength-division multiplexing isolation fiber filter and light source using cascaded long-period fiber gratings,” Opt. Lett. 23(7), 509–510 (1998).
    [Crossref] [PubMed]
  49. W. B. Jones, Jr., Introduction to Optical Fiber Communication Systems (Oxford University, 1995).
  50. R. Amezcua-Correa, F. Gèrôme, S. G. Leon-Saval, N. G. R. Broderick, T. A. Birks, and J. C. Knight, “Control of surface modes in low loss hollow-core photonic bandgap fibers,” Opt. Express 16(2), 1142–1149 (2008).
    [Crossref] [PubMed]
  51. Y. Hamachi, S. Kubo, and T. Baba, “Slow light with low dispersion and nonlinear enhancement in a lattice-shifted photonic crystal waveguide,” Opt. Lett. 34(7), 1072–1074 (2009).
    [Crossref] [PubMed]
  52. B. S. Song, S. Noda, and T. Asano, “Photonic devices based on in-plane hetero photonic crystals,” Science 300(5625), 1537 (2003).
    [Crossref] [PubMed]

2015 (1)

2014 (3)

H. Sekoguchi, Y. Takahashi, T. Asano, and S. Noda, “Photonic crystal nanocavity with a Q-factor of ~9 million,” Opt. Express 22(1), 916–924 (2014).
[Crossref] [PubMed]

W. J. Otter, S. M. Hanham, N. M. Ridler, G. Marino, N. Klein, and S. Lucyszyn, “100 GHz ultra-high Q-factor photonic crystal resonators,” Sens. Actuators A Phys. 217, 151–159 (2014).
[Crossref]

R. Kakimi, M. Fujita, M. Nagai, M. Ashida, and T. Nagatsuma, “Capture of a terahertz wave in a photonic-crystal slab,” Nat. Photonics 8(8), 657–663 (2014).
[Crossref]

2013 (3)

J. H. Son, “Principle and applications of terahertz molecular imaging,” Nanotechnology 24(21), 214001 (2013).
[Crossref] [PubMed]

D. M. Mittleman, “Frontiers in terahertz sources and plasmonics,” Nat. Photonics 7(9), 666–669 (2013).
[Crossref]

T. Nagatsuma, S. Horiguchi, Y. Minamikata, Y. Yoshimizu, S. Hisatake, S. Kuwano, N. Yoshimoto, J. Terada, and H. Takahashi, “Terahertz wireless communications based on photonics technologies,” Opt. Express 21(20), 23736–23747 (2013).
[Crossref] [PubMed]

2011 (3)

C. Y. Liu, “Fabrication and optical characteristics of silicon-based two-dimensional wavelength division multiplexing splitter with photonic crystal directional waveguide couplers,” Phys. Lett. A 375(28-29), 2754–2758 (2011).
[Crossref]

J. Sugisaka, N. Yamamoto, M. Okano, K. Komori, and M. Itoh, “Short photonic-crystal directional coupling optical switch of extended optical bandwidth using flat dispersion,” Jpn. J. Appl. Phys. 50(3R), 032201 (2011).
[Crossref]

T. Nagatsuma, “Terahertz technologies: present and future,” IEICE Electron. Express 8(14), 1127–1142 (2011).
[Crossref]

2010 (2)

M. Notomi, “Manipulating light with strongly modulated photonic crystals,” Rep. Prog. Phys. 73(9), 096501 (2010).
[Crossref]

M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Laser oscillation in a strongly coupled single-quantum-dot–nanocavity system,” Nat. Phys. 6(4), 279–283 (2010).
[Crossref]

2009 (4)

D. M. Beggs, T. P. White, L. Cairns, L. O’Faolain, and T. F. Krauss, “Demonstration of an integrated optical switch in a silicon photonic crystal directional coupler,” Physica E 41(6), 1111–1114 (2009).
[Crossref]

J. Sugisaka, N. Yamamoto, M. Okano, K. Komori, T. Yatagai, and M. Itoh, “Demonstration of flat-band structure of two-dimensional photonic crystal directional coupler,” Jpn. J. Appl. Phys. 48(2), 022101 (2009).
[Crossref]

Y. Hamachi, S. Kubo, and T. Baba, “Slow light with low dispersion and nonlinear enhancement in a lattice-shifted photonic crystal waveguide,” Opt. Lett. 34(7), 1072–1074 (2009).
[Crossref] [PubMed]

C. M. Yee and M. S. Sherwin, “High-Q terahertz microcavities in silicon photonic crystal slabs,” Appl. Phys. Lett. 94(15), 154104 (2009).
[Crossref]

2008 (2)

2007 (8)

D. Mori, S. Kubo, H. Sasaki, and T. Baba, “Experimental demonstration of wideband dispersion-compensated slow light by a chirped photonic crystal directional coupler,” Opt. Express 15(9), 5264–5270 (2007).
[Crossref] [PubMed]

T. Prasad, V. L. Colvin, and D. M. Mittleman, “The effect of structural disorder on guided resonances in photonic crystal slabs studied with terahertz time-domain spectroscopy,” Opt. Express 15(25), 16954–16965 (2007).
[Crossref] [PubMed]

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

C. Yee, N. Jukam, and M. Sherwin, “Transmission of single mode ultrathin terahertz photonic crystal slabs,” Appl. Phys. Lett. 91(19), 194104 (2007).
[Crossref]

T. Baba, “Photonic crystals remember the light,” Nat. Photonics 1(1), 11–12 (2007).
[Crossref]

T. F. Krauss, “Slow light in photonic crystal waveguides,” J. Phys. D Appl. Phys. 40(9), 2666–2670 (2007).
[Crossref]

T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, “Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity,” Nat. Photonics 1(1), 49–52 (2007).
[Crossref]

S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics 1(8), 449–458 (2007).
[Crossref]

2006 (4)

Z. Jian and D. M. Mittleman, “Broadband group velocity anomaly in transmission through a terahertz photonic crystal slab,” Phys. Rev. B 73(11), 115118 (2006).
[Crossref]

Z. Jian and D. M. Mittleman, “Characterization of guided resonances in photonic crystal slabs using terahertz time-domain spectroscopy,” J. Appl. Phys. 100(12), 123113 (2006).
[Crossref]

N. Jukam, C. Yee, M. S. Sherwin, I. Fushman, and J. Vučković, “Patterned femtosecond laser excitation of terahertz leaky modes in GaAs photonic crystals,” Appl. Phys. Lett. 89(24), 241112 (2006).
[Crossref]

S. Noda, “Recent progresses and future prospects of two- and three dimensional photonic crystals,” J. Lightwave Technol. 24(12), 4554–4567 (2006).
[Crossref]

2005 (3)

Z. Jian and D. M. Mittleman, “Out-of-plane dispersion and homogenization in photonic crystal slabs,” Appl. Phys. Lett. 87(19), 191113 (2005).
[Crossref]

B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005).
[Crossref]

M. Fujita, S. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystals,” Science 308(5726), 1296–1298 (2005).
[Crossref] [PubMed]

2004 (3)

H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, and Y. H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305(5689), 1444–1447 (2004).
[Crossref] [PubMed]

P. H. Siegel, “Terahertz technology in biology and medicine,” IEEE Trans. Microw. Theory Tech. 52(10), 2438–2447 (2004).
[Crossref]

C. K. Kirkendall and A. Dandridge, “Overview of high performance fibre-optic sensing,” J. Phys. D Appl. Phys. 37(18), 197–216 (2004).
[Crossref]

2003 (3)

B. S. Song, S. Noda, and T. Asano, “Photonic devices based on in-plane hetero photonic crystals,” Science 300(5625), 1537 (2003).
[Crossref] [PubMed]

M. Thorhauge, L. H. Frandsen, and P. I. Borel, “Efficient photonic crystal directional couplers,” Opt. Lett. 28(17), 1525–1527 (2003).
[Crossref] [PubMed]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[Crossref] [PubMed]

2002 (2)

B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[Crossref] [PubMed]

A. Scherer, O. Painter, J. Vuckovic, M. Loncar, and T. Yoshie, “Photonic crystals for confining, guiding, and emitting light,” IEEE Trans. NanoTechnol. 1(1), 4–11 (2002).
[Crossref]

2001 (2)

N. R. Erickson, “High performance dual directional couplers for near-mm wavelengths,” IEEE Microw. Wirel. Compon. Lett. 11(5), 205–207 (2001).
[Crossref]

M. Tokushima and H. Yamada, “Photonic crystal line defect waveguide directional coupler,” Electron. Lett. 37(24), 1454–1455 (2001).
[Crossref]

2000 (1)

S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407(6804), 608–610 (2000).
[Crossref] [PubMed]

1998 (1)

1991 (1)

E. Yablonovitch, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, “Donor and acceptor modes in photonic band structure,” Phys. Rev. Lett. 67(24), 3380–3383 (1991).
[Crossref] [PubMed]

1987 (2)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
[Crossref] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58(23), 2486–2489 (1987).
[Crossref] [PubMed]

1984 (1)

C. M. Lawson, P. M. Kopera, T. Y. Hsu, and V. J. Tekippe, “In-line single-mode wavelength division multiplexer/demultiplexer,” Electron. Lett. 20(23), 963–964 (1984).
[Crossref]

Akahane, Y.

B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005).
[Crossref]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[Crossref] [PubMed]

Amezcua-Correa, R.

Arakawa, Y.

M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Laser oscillation in a strongly coupled single-quantum-dot–nanocavity system,” Nat. Phys. 6(4), 279–283 (2010).
[Crossref]

Asano, T.

H. Sekoguchi, Y. Takahashi, T. Asano, and S. Noda, “Photonic crystal nanocavity with a Q-factor of ~9 million,” Opt. Express 22(1), 916–924 (2014).
[Crossref] [PubMed]

S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics 1(8), 449–458 (2007).
[Crossref]

B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005).
[Crossref]

M. Fujita, S. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystals,” Science 308(5726), 1296–1298 (2005).
[Crossref] [PubMed]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[Crossref] [PubMed]

B. S. Song, S. Noda, and T. Asano, “Photonic devices based on in-plane hetero photonic crystals,” Science 300(5625), 1537 (2003).
[Crossref] [PubMed]

Ashida, M.

R. Kakimi, M. Fujita, M. Nagai, M. Ashida, and T. Nagatsuma, “Capture of a terahertz wave in a photonic-crystal slab,” Nat. Photonics 8(8), 657–663 (2014).
[Crossref]

Baba, T.

Baek, J. H.

H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, and Y. H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305(5689), 1444–1447 (2004).
[Crossref] [PubMed]

Beggs, D. M.

D. M. Beggs, T. P. White, L. Cairns, L. O’Faolain, and T. F. Krauss, “Demonstration of an integrated optical switch in a silicon photonic crystal directional coupler,” Physica E 41(6), 1111–1114 (2009).
[Crossref]

Birks, T. A.

Borel, P. I.

Broderick, N. G. R.

Brommer, K. D.

E. Yablonovitch, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, “Donor and acceptor modes in photonic band structure,” Phys. Rev. Lett. 67(24), 3380–3383 (1991).
[Crossref] [PubMed]

Cairns, L.

D. M. Beggs, T. P. White, L. Cairns, L. O’Faolain, and T. F. Krauss, “Demonstration of an integrated optical switch in a silicon photonic crystal directional coupler,” Physica E 41(6), 1111–1114 (2009).
[Crossref]

Chutinan, A.

S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407(6804), 608–610 (2000).
[Crossref] [PubMed]

Colvin, V. L.

Dandridge, A.

C. K. Kirkendall and A. Dandridge, “Overview of high performance fibre-optic sensing,” J. Phys. D Appl. Phys. 37(18), 197–216 (2004).
[Crossref]

Erickson, N. R.

N. R. Erickson, “High performance dual directional couplers for near-mm wavelengths,” IEEE Microw. Wirel. Compon. Lett. 11(5), 205–207 (2001).
[Crossref]

Ferguson, B.

B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[Crossref] [PubMed]

Frandsen, L. H.

Fujita, M.

K. Tsuruda, M. Fujita, and T. Nagatsuma, “Extremely low-loss terahertz waveguide based on silicon photonic-crystal slab,” Opt. Express 23(25), 31977–31990 (2015).
[Crossref] [PubMed]

R. Kakimi, M. Fujita, M. Nagai, M. Ashida, and T. Nagatsuma, “Capture of a terahertz wave in a photonic-crystal slab,” Nat. Photonics 8(8), 657–663 (2014).
[Crossref]

S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics 1(8), 449–458 (2007).
[Crossref]

M. Fujita, S. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystals,” Science 308(5726), 1296–1298 (2005).
[Crossref] [PubMed]

Fushman, I.

N. Jukam, C. Yee, M. S. Sherwin, I. Fushman, and J. Vučković, “Patterned femtosecond laser excitation of terahertz leaky modes in GaAs photonic crystals,” Appl. Phys. Lett. 89(24), 241112 (2006).
[Crossref]

Gèrôme, F.

Gmitter, T. J.

E. Yablonovitch, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, “Donor and acceptor modes in photonic band structure,” Phys. Rev. Lett. 67(24), 3380–3383 (1991).
[Crossref] [PubMed]

Gu, X. J.

Hamachi, Y.

Hanham, S. M.

W. J. Otter, S. M. Hanham, N. M. Ridler, G. Marino, N. Klein, and S. Lucyszyn, “100 GHz ultra-high Q-factor photonic crystal resonators,” Sens. Actuators A Phys. 217, 151–159 (2014).
[Crossref]

Hisatake, S.

Horiguchi, S.

Hsu, T. Y.

C. M. Lawson, P. M. Kopera, T. Y. Hsu, and V. J. Tekippe, “In-line single-mode wavelength division multiplexer/demultiplexer,” Electron. Lett. 20(23), 963–964 (1984).
[Crossref]

Imada, M.

S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407(6804), 608–610 (2000).
[Crossref] [PubMed]

Itoh, M.

J. Sugisaka, N. Yamamoto, M. Okano, K. Komori, and M. Itoh, “Short photonic-crystal directional coupling optical switch of extended optical bandwidth using flat dispersion,” Jpn. J. Appl. Phys. 50(3R), 032201 (2011).
[Crossref]

J. Sugisaka, N. Yamamoto, M. Okano, K. Komori, T. Yatagai, and M. Itoh, “Demonstration of flat-band structure of two-dimensional photonic crystal directional coupler,” Jpn. J. Appl. Phys. 48(2), 022101 (2009).
[Crossref]

Iwamoto, S.

M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Laser oscillation in a strongly coupled single-quantum-dot–nanocavity system,” Nat. Phys. 6(4), 279–283 (2010).
[Crossref]

Jian, Z.

Z. Jian and D. M. Mittleman, “Broadband group velocity anomaly in transmission through a terahertz photonic crystal slab,” Phys. Rev. B 73(11), 115118 (2006).
[Crossref]

Z. Jian and D. M. Mittleman, “Characterization of guided resonances in photonic crystal slabs using terahertz time-domain spectroscopy,” J. Appl. Phys. 100(12), 123113 (2006).
[Crossref]

Z. Jian and D. M. Mittleman, “Out-of-plane dispersion and homogenization in photonic crystal slabs,” Appl. Phys. Lett. 87(19), 191113 (2005).
[Crossref]

Joannopoulos, J. D.

E. Yablonovitch, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, “Donor and acceptor modes in photonic band structure,” Phys. Rev. Lett. 67(24), 3380–3383 (1991).
[Crossref] [PubMed]

John, S.

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58(23), 2486–2489 (1987).
[Crossref] [PubMed]

Ju, Y. G.

H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, and Y. H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305(5689), 1444–1447 (2004).
[Crossref] [PubMed]

Jukam, N.

C. Yee, N. Jukam, and M. Sherwin, “Transmission of single mode ultrathin terahertz photonic crystal slabs,” Appl. Phys. Lett. 91(19), 194104 (2007).
[Crossref]

N. Jukam, C. Yee, M. S. Sherwin, I. Fushman, and J. Vučković, “Patterned femtosecond laser excitation of terahertz leaky modes in GaAs photonic crystals,” Appl. Phys. Lett. 89(24), 241112 (2006).
[Crossref]

Kakimi, R.

R. Kakimi, M. Fujita, M. Nagai, M. Ashida, and T. Nagatsuma, “Capture of a terahertz wave in a photonic-crystal slab,” Nat. Photonics 8(8), 657–663 (2014).
[Crossref]

Kim, S. B.

H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, and Y. H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305(5689), 1444–1447 (2004).
[Crossref] [PubMed]

Kim, S. H.

H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, and Y. H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305(5689), 1444–1447 (2004).
[Crossref] [PubMed]

Kirkendall, C. K.

C. K. Kirkendall and A. Dandridge, “Overview of high performance fibre-optic sensing,” J. Phys. D Appl. Phys. 37(18), 197–216 (2004).
[Crossref]

Klein, N.

W. J. Otter, S. M. Hanham, N. M. Ridler, G. Marino, N. Klein, and S. Lucyszyn, “100 GHz ultra-high Q-factor photonic crystal resonators,” Sens. Actuators A Phys. 217, 151–159 (2014).
[Crossref]

Knight, J. C.

Komori, K.

J. Sugisaka, N. Yamamoto, M. Okano, K. Komori, and M. Itoh, “Short photonic-crystal directional coupling optical switch of extended optical bandwidth using flat dispersion,” Jpn. J. Appl. Phys. 50(3R), 032201 (2011).
[Crossref]

J. Sugisaka, N. Yamamoto, M. Okano, K. Komori, T. Yatagai, and M. Itoh, “Demonstration of flat-band structure of two-dimensional photonic crystal directional coupler,” Jpn. J. Appl. Phys. 48(2), 022101 (2009).
[Crossref]

Kopera, P. M.

C. M. Lawson, P. M. Kopera, T. Y. Hsu, and V. J. Tekippe, “In-line single-mode wavelength division multiplexer/demultiplexer,” Electron. Lett. 20(23), 963–964 (1984).
[Crossref]

Krauss, T. F.

D. M. Beggs, T. P. White, L. Cairns, L. O’Faolain, and T. F. Krauss, “Demonstration of an integrated optical switch in a silicon photonic crystal directional coupler,” Physica E 41(6), 1111–1114 (2009).
[Crossref]

T. F. Krauss, “Slow light in photonic crystal waveguides,” J. Phys. D Appl. Phys. 40(9), 2666–2670 (2007).
[Crossref]

Kubo, S.

Kumagai, N.

M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Laser oscillation in a strongly coupled single-quantum-dot–nanocavity system,” Nat. Phys. 6(4), 279–283 (2010).
[Crossref]

Kuramochi, E.

T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, “Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity,” Nat. Photonics 1(1), 49–52 (2007).
[Crossref]

Kuwano, S.

Kwon, S. H.

H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, and Y. H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305(5689), 1444–1447 (2004).
[Crossref] [PubMed]

Lawson, C. M.

C. M. Lawson, P. M. Kopera, T. Y. Hsu, and V. J. Tekippe, “In-line single-mode wavelength division multiplexer/demultiplexer,” Electron. Lett. 20(23), 963–964 (1984).
[Crossref]

Lee, Y. H.

H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, and Y. H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305(5689), 1444–1447 (2004).
[Crossref] [PubMed]

Leon-Saval, S. G.

Liu, C. Y.

C. Y. Liu, “Fabrication and optical characteristics of silicon-based two-dimensional wavelength division multiplexing splitter with photonic crystal directional waveguide couplers,” Phys. Lett. A 375(28-29), 2754–2758 (2011).
[Crossref]

Loncar, M.

A. Scherer, O. Painter, J. Vuckovic, M. Loncar, and T. Yoshie, “Photonic crystals for confining, guiding, and emitting light,” IEEE Trans. NanoTechnol. 1(1), 4–11 (2002).
[Crossref]

Lucyszyn, S.

W. J. Otter, S. M. Hanham, N. M. Ridler, G. Marino, N. Klein, and S. Lucyszyn, “100 GHz ultra-high Q-factor photonic crystal resonators,” Sens. Actuators A Phys. 217, 151–159 (2014).
[Crossref]

Marino, G.

W. J. Otter, S. M. Hanham, N. M. Ridler, G. Marino, N. Klein, and S. Lucyszyn, “100 GHz ultra-high Q-factor photonic crystal resonators,” Sens. Actuators A Phys. 217, 151–159 (2014).
[Crossref]

Meade, R. D.

E. Yablonovitch, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, “Donor and acceptor modes in photonic band structure,” Phys. Rev. Lett. 67(24), 3380–3383 (1991).
[Crossref] [PubMed]

Minamikata, Y.

Mittleman, D. M.

D. M. Mittleman, “Frontiers in terahertz sources and plasmonics,” Nat. Photonics 7(9), 666–669 (2013).
[Crossref]

T. Prasad, V. L. Colvin, and D. M. Mittleman, “Dependence of guided resonances on the structural parameters of terahertz photonic crystal slabs,” J. Opt. Soc. Am. B 25(4), 633–644 (2008).
[Crossref]

T. Prasad, V. L. Colvin, and D. M. Mittleman, “The effect of structural disorder on guided resonances in photonic crystal slabs studied with terahertz time-domain spectroscopy,” Opt. Express 15(25), 16954–16965 (2007).
[Crossref] [PubMed]

Z. Jian and D. M. Mittleman, “Characterization of guided resonances in photonic crystal slabs using terahertz time-domain spectroscopy,” J. Appl. Phys. 100(12), 123113 (2006).
[Crossref]

Z. Jian and D. M. Mittleman, “Broadband group velocity anomaly in transmission through a terahertz photonic crystal slab,” Phys. Rev. B 73(11), 115118 (2006).
[Crossref]

Z. Jian and D. M. Mittleman, “Out-of-plane dispersion and homogenization in photonic crystal slabs,” Appl. Phys. Lett. 87(19), 191113 (2005).
[Crossref]

Mori, D.

Nagai, M.

R. Kakimi, M. Fujita, M. Nagai, M. Ashida, and T. Nagatsuma, “Capture of a terahertz wave in a photonic-crystal slab,” Nat. Photonics 8(8), 657–663 (2014).
[Crossref]

Nagatsuma, T.

Noda, S.

H. Sekoguchi, Y. Takahashi, T. Asano, and S. Noda, “Photonic crystal nanocavity with a Q-factor of ~9 million,” Opt. Express 22(1), 916–924 (2014).
[Crossref] [PubMed]

S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics 1(8), 449–458 (2007).
[Crossref]

S. Noda, “Recent progresses and future prospects of two- and three dimensional photonic crystals,” J. Lightwave Technol. 24(12), 4554–4567 (2006).
[Crossref]

B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005).
[Crossref]

M. Fujita, S. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystals,” Science 308(5726), 1296–1298 (2005).
[Crossref] [PubMed]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[Crossref] [PubMed]

B. S. Song, S. Noda, and T. Asano, “Photonic devices based on in-plane hetero photonic crystals,” Science 300(5625), 1537 (2003).
[Crossref] [PubMed]

S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407(6804), 608–610 (2000).
[Crossref] [PubMed]

Nomura, M.

M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Laser oscillation in a strongly coupled single-quantum-dot–nanocavity system,” Nat. Phys. 6(4), 279–283 (2010).
[Crossref]

Notomi, M.

M. Notomi, “Manipulating light with strongly modulated photonic crystals,” Rep. Prog. Phys. 73(9), 096501 (2010).
[Crossref]

T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, “Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity,” Nat. Photonics 1(1), 49–52 (2007).
[Crossref]

O’Faolain, L.

D. M. Beggs, T. P. White, L. Cairns, L. O’Faolain, and T. F. Krauss, “Demonstration of an integrated optical switch in a silicon photonic crystal directional coupler,” Physica E 41(6), 1111–1114 (2009).
[Crossref]

Okano, M.

J. Sugisaka, N. Yamamoto, M. Okano, K. Komori, and M. Itoh, “Short photonic-crystal directional coupling optical switch of extended optical bandwidth using flat dispersion,” Jpn. J. Appl. Phys. 50(3R), 032201 (2011).
[Crossref]

J. Sugisaka, N. Yamamoto, M. Okano, K. Komori, T. Yatagai, and M. Itoh, “Demonstration of flat-band structure of two-dimensional photonic crystal directional coupler,” Jpn. J. Appl. Phys. 48(2), 022101 (2009).
[Crossref]

Ota, Y.

M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Laser oscillation in a strongly coupled single-quantum-dot–nanocavity system,” Nat. Phys. 6(4), 279–283 (2010).
[Crossref]

Otter, W. J.

W. J. Otter, S. M. Hanham, N. M. Ridler, G. Marino, N. Klein, and S. Lucyszyn, “100 GHz ultra-high Q-factor photonic crystal resonators,” Sens. Actuators A Phys. 217, 151–159 (2014).
[Crossref]

Painter, O.

A. Scherer, O. Painter, J. Vuckovic, M. Loncar, and T. Yoshie, “Photonic crystals for confining, guiding, and emitting light,” IEEE Trans. NanoTechnol. 1(1), 4–11 (2002).
[Crossref]

Park, H. G.

H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, and Y. H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305(5689), 1444–1447 (2004).
[Crossref] [PubMed]

Prasad, T.

Rappe, A. M.

E. Yablonovitch, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, “Donor and acceptor modes in photonic band structure,” Phys. Rev. Lett. 67(24), 3380–3383 (1991).
[Crossref] [PubMed]

Ridler, N. M.

W. J. Otter, S. M. Hanham, N. M. Ridler, G. Marino, N. Klein, and S. Lucyszyn, “100 GHz ultra-high Q-factor photonic crystal resonators,” Sens. Actuators A Phys. 217, 151–159 (2014).
[Crossref]

Sasaki, H.

Scherer, A.

A. Scherer, O. Painter, J. Vuckovic, M. Loncar, and T. Yoshie, “Photonic crystals for confining, guiding, and emitting light,” IEEE Trans. NanoTechnol. 1(1), 4–11 (2002).
[Crossref]

Sekoguchi, H.

Sherwin, M.

C. Yee, N. Jukam, and M. Sherwin, “Transmission of single mode ultrathin terahertz photonic crystal slabs,” Appl. Phys. Lett. 91(19), 194104 (2007).
[Crossref]

Sherwin, M. S.

C. M. Yee and M. S. Sherwin, “High-Q terahertz microcavities in silicon photonic crystal slabs,” Appl. Phys. Lett. 94(15), 154104 (2009).
[Crossref]

N. Jukam, C. Yee, M. S. Sherwin, I. Fushman, and J. Vučković, “Patterned femtosecond laser excitation of terahertz leaky modes in GaAs photonic crystals,” Appl. Phys. Lett. 89(24), 241112 (2006).
[Crossref]

Shinya, A.

T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, “Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity,” Nat. Photonics 1(1), 49–52 (2007).
[Crossref]

Siegel, P. H.

P. H. Siegel, “Terahertz technology in biology and medicine,” IEEE Trans. Microw. Theory Tech. 52(10), 2438–2447 (2004).
[Crossref]

Son, J. H.

J. H. Son, “Principle and applications of terahertz molecular imaging,” Nanotechnology 24(21), 214001 (2013).
[Crossref] [PubMed]

Song, B. S.

B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005).
[Crossref]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[Crossref] [PubMed]

B. S. Song, S. Noda, and T. Asano, “Photonic devices based on in-plane hetero photonic crystals,” Science 300(5625), 1537 (2003).
[Crossref] [PubMed]

Sugisaka, J.

J. Sugisaka, N. Yamamoto, M. Okano, K. Komori, and M. Itoh, “Short photonic-crystal directional coupling optical switch of extended optical bandwidth using flat dispersion,” Jpn. J. Appl. Phys. 50(3R), 032201 (2011).
[Crossref]

J. Sugisaka, N. Yamamoto, M. Okano, K. Komori, T. Yatagai, and M. Itoh, “Demonstration of flat-band structure of two-dimensional photonic crystal directional coupler,” Jpn. J. Appl. Phys. 48(2), 022101 (2009).
[Crossref]

Takahashi, H.

Takahashi, S.

M. Fujita, S. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystals,” Science 308(5726), 1296–1298 (2005).
[Crossref] [PubMed]

Takahashi, Y.

Tanabe, T.

T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, “Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity,” Nat. Photonics 1(1), 49–52 (2007).
[Crossref]

Tanaka, Y.

M. Fujita, S. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystals,” Science 308(5726), 1296–1298 (2005).
[Crossref] [PubMed]

Taniyama, H.

T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, “Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity,” Nat. Photonics 1(1), 49–52 (2007).
[Crossref]

Tekippe, V. J.

C. M. Lawson, P. M. Kopera, T. Y. Hsu, and V. J. Tekippe, “In-line single-mode wavelength division multiplexer/demultiplexer,” Electron. Lett. 20(23), 963–964 (1984).
[Crossref]

Terada, J.

Thorhauge, M.

Tokushima, M.

M. Tokushima and H. Yamada, “Photonic crystal line defect waveguide directional coupler,” Electron. Lett. 37(24), 1454–1455 (2001).
[Crossref]

Tonouchi, M.

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

Tsuruda, K.

Vuckovic, J.

N. Jukam, C. Yee, M. S. Sherwin, I. Fushman, and J. Vučković, “Patterned femtosecond laser excitation of terahertz leaky modes in GaAs photonic crystals,” Appl. Phys. Lett. 89(24), 241112 (2006).
[Crossref]

A. Scherer, O. Painter, J. Vuckovic, M. Loncar, and T. Yoshie, “Photonic crystals for confining, guiding, and emitting light,” IEEE Trans. NanoTechnol. 1(1), 4–11 (2002).
[Crossref]

White, T. P.

D. M. Beggs, T. P. White, L. Cairns, L. O’Faolain, and T. F. Krauss, “Demonstration of an integrated optical switch in a silicon photonic crystal directional coupler,” Physica E 41(6), 1111–1114 (2009).
[Crossref]

Yablonovitch, E.

E. Yablonovitch, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, “Donor and acceptor modes in photonic band structure,” Phys. Rev. Lett. 67(24), 3380–3383 (1991).
[Crossref] [PubMed]

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
[Crossref] [PubMed]

Yamada, H.

M. Tokushima and H. Yamada, “Photonic crystal line defect waveguide directional coupler,” Electron. Lett. 37(24), 1454–1455 (2001).
[Crossref]

Yamamoto, N.

J. Sugisaka, N. Yamamoto, M. Okano, K. Komori, and M. Itoh, “Short photonic-crystal directional coupling optical switch of extended optical bandwidth using flat dispersion,” Jpn. J. Appl. Phys. 50(3R), 032201 (2011).
[Crossref]

J. Sugisaka, N. Yamamoto, M. Okano, K. Komori, T. Yatagai, and M. Itoh, “Demonstration of flat-band structure of two-dimensional photonic crystal directional coupler,” Jpn. J. Appl. Phys. 48(2), 022101 (2009).
[Crossref]

Yang, J. K.

H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, and Y. H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305(5689), 1444–1447 (2004).
[Crossref] [PubMed]

Yatagai, T.

J. Sugisaka, N. Yamamoto, M. Okano, K. Komori, T. Yatagai, and M. Itoh, “Demonstration of flat-band structure of two-dimensional photonic crystal directional coupler,” Jpn. J. Appl. Phys. 48(2), 022101 (2009).
[Crossref]

Yee, C.

C. Yee, N. Jukam, and M. Sherwin, “Transmission of single mode ultrathin terahertz photonic crystal slabs,” Appl. Phys. Lett. 91(19), 194104 (2007).
[Crossref]

N. Jukam, C. Yee, M. S. Sherwin, I. Fushman, and J. Vučković, “Patterned femtosecond laser excitation of terahertz leaky modes in GaAs photonic crystals,” Appl. Phys. Lett. 89(24), 241112 (2006).
[Crossref]

Yee, C. M.

C. M. Yee and M. S. Sherwin, “High-Q terahertz microcavities in silicon photonic crystal slabs,” Appl. Phys. Lett. 94(15), 154104 (2009).
[Crossref]

Yoshie, T.

A. Scherer, O. Painter, J. Vuckovic, M. Loncar, and T. Yoshie, “Photonic crystals for confining, guiding, and emitting light,” IEEE Trans. NanoTechnol. 1(1), 4–11 (2002).
[Crossref]

Yoshimizu, Y.

Yoshimoto, N.

Zhang, X. C.

B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[Crossref] [PubMed]

Appl. Phys. Lett. (4)

Z. Jian and D. M. Mittleman, “Out-of-plane dispersion and homogenization in photonic crystal slabs,” Appl. Phys. Lett. 87(19), 191113 (2005).
[Crossref]

N. Jukam, C. Yee, M. S. Sherwin, I. Fushman, and J. Vučković, “Patterned femtosecond laser excitation of terahertz leaky modes in GaAs photonic crystals,” Appl. Phys. Lett. 89(24), 241112 (2006).
[Crossref]

C. Yee, N. Jukam, and M. Sherwin, “Transmission of single mode ultrathin terahertz photonic crystal slabs,” Appl. Phys. Lett. 91(19), 194104 (2007).
[Crossref]

C. M. Yee and M. S. Sherwin, “High-Q terahertz microcavities in silicon photonic crystal slabs,” Appl. Phys. Lett. 94(15), 154104 (2009).
[Crossref]

Electron. Lett. (2)

C. M. Lawson, P. M. Kopera, T. Y. Hsu, and V. J. Tekippe, “In-line single-mode wavelength division multiplexer/demultiplexer,” Electron. Lett. 20(23), 963–964 (1984).
[Crossref]

M. Tokushima and H. Yamada, “Photonic crystal line defect waveguide directional coupler,” Electron. Lett. 37(24), 1454–1455 (2001).
[Crossref]

IEEE Microw. Wirel. Compon. Lett. (1)

N. R. Erickson, “High performance dual directional couplers for near-mm wavelengths,” IEEE Microw. Wirel. Compon. Lett. 11(5), 205–207 (2001).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

P. H. Siegel, “Terahertz technology in biology and medicine,” IEEE Trans. Microw. Theory Tech. 52(10), 2438–2447 (2004).
[Crossref]

IEEE Trans. NanoTechnol. (1)

A. Scherer, O. Painter, J. Vuckovic, M. Loncar, and T. Yoshie, “Photonic crystals for confining, guiding, and emitting light,” IEEE Trans. NanoTechnol. 1(1), 4–11 (2002).
[Crossref]

IEICE Electron. Express (1)

T. Nagatsuma, “Terahertz technologies: present and future,” IEICE Electron. Express 8(14), 1127–1142 (2011).
[Crossref]

J. Appl. Phys. (1)

Z. Jian and D. M. Mittleman, “Characterization of guided resonances in photonic crystal slabs using terahertz time-domain spectroscopy,” J. Appl. Phys. 100(12), 123113 (2006).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

J. Phys. D Appl. Phys. (2)

T. F. Krauss, “Slow light in photonic crystal waveguides,” J. Phys. D Appl. Phys. 40(9), 2666–2670 (2007).
[Crossref]

C. K. Kirkendall and A. Dandridge, “Overview of high performance fibre-optic sensing,” J. Phys. D Appl. Phys. 37(18), 197–216 (2004).
[Crossref]

Jpn. J. Appl. Phys. (2)

J. Sugisaka, N. Yamamoto, M. Okano, K. Komori, T. Yatagai, and M. Itoh, “Demonstration of flat-band structure of two-dimensional photonic crystal directional coupler,” Jpn. J. Appl. Phys. 48(2), 022101 (2009).
[Crossref]

J. Sugisaka, N. Yamamoto, M. Okano, K. Komori, and M. Itoh, “Short photonic-crystal directional coupling optical switch of extended optical bandwidth using flat dispersion,” Jpn. J. Appl. Phys. 50(3R), 032201 (2011).
[Crossref]

Nanotechnology (1)

J. H. Son, “Principle and applications of terahertz molecular imaging,” Nanotechnology 24(21), 214001 (2013).
[Crossref] [PubMed]

Nat. Mater. (2)

B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005).
[Crossref]

B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[Crossref] [PubMed]

Nat. Photonics (6)

T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, “Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity,” Nat. Photonics 1(1), 49–52 (2007).
[Crossref]

S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics 1(8), 449–458 (2007).
[Crossref]

T. Baba, “Photonic crystals remember the light,” Nat. Photonics 1(1), 11–12 (2007).
[Crossref]

D. M. Mittleman, “Frontiers in terahertz sources and plasmonics,” Nat. Photonics 7(9), 666–669 (2013).
[Crossref]

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

R. Kakimi, M. Fujita, M. Nagai, M. Ashida, and T. Nagatsuma, “Capture of a terahertz wave in a photonic-crystal slab,” Nat. Photonics 8(8), 657–663 (2014).
[Crossref]

Nat. Phys. (1)

M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Laser oscillation in a strongly coupled single-quantum-dot–nanocavity system,” Nat. Phys. 6(4), 279–283 (2010).
[Crossref]

Nature (2)

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[Crossref] [PubMed]

S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407(6804), 608–610 (2000).
[Crossref] [PubMed]

Opt. Express (6)

Opt. Lett. (3)

Phys. Lett. A (1)

C. Y. Liu, “Fabrication and optical characteristics of silicon-based two-dimensional wavelength division multiplexing splitter with photonic crystal directional waveguide couplers,” Phys. Lett. A 375(28-29), 2754–2758 (2011).
[Crossref]

Phys. Rev. B (1)

Z. Jian and D. M. Mittleman, “Broadband group velocity anomaly in transmission through a terahertz photonic crystal slab,” Phys. Rev. B 73(11), 115118 (2006).
[Crossref]

Phys. Rev. Lett. (3)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
[Crossref] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58(23), 2486–2489 (1987).
[Crossref] [PubMed]

E. Yablonovitch, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, “Donor and acceptor modes in photonic band structure,” Phys. Rev. Lett. 67(24), 3380–3383 (1991).
[Crossref] [PubMed]

Physica E (1)

D. M. Beggs, T. P. White, L. Cairns, L. O’Faolain, and T. F. Krauss, “Demonstration of an integrated optical switch in a silicon photonic crystal directional coupler,” Physica E 41(6), 1111–1114 (2009).
[Crossref]

Rep. Prog. Phys. (1)

M. Notomi, “Manipulating light with strongly modulated photonic crystals,” Rep. Prog. Phys. 73(9), 096501 (2010).
[Crossref]

Science (3)

M. Fujita, S. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystals,” Science 308(5726), 1296–1298 (2005).
[Crossref] [PubMed]

H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, and Y. H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305(5689), 1444–1447 (2004).
[Crossref] [PubMed]

B. S. Song, S. Noda, and T. Asano, “Photonic devices based on in-plane hetero photonic crystals,” Science 300(5625), 1537 (2003).
[Crossref] [PubMed]

Sens. Actuators A Phys. (1)

W. J. Otter, S. M. Hanham, N. M. Ridler, G. Marino, N. Klein, and S. Lucyszyn, “100 GHz ultra-high Q-factor photonic crystal resonators,” Sens. Actuators A Phys. 217, 151–159 (2014).
[Crossref]

Other (3)

M. Yata, M. Fujita, and T. Nagatsuma, “Diplexer for terahertz-wave integrated circuits using a photonic-crystal slab,” in International Topical Meeting on Microwave Photonics / The 9th Asia-Pacific Microwave Photonics Conference (IEICE, 2014), pp. 40–43.
[Crossref]

W. B. Jones, Jr., Introduction to Optical Fiber Communication Systems (Oxford University, 1995).

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University, 2008).

Supplementary Material (1)

NameDescription
» Visualization 1: MP4 (4088 KB)      supplementary movie

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (24)

Fig. 1
Fig. 1

(a) Angled-view schematic of PC waveguide. (b) Simulated electric-field distribution of guided mode. (c) Photonic band diagram. The red curve denotes the dispersion curve of the fundamental (0th) mode. The dashed line is the light line, which corresponds to the dispersion in free space.

Fig. 2
Fig. 2

(a) Top-view schematic of PC directional coupler. (b) Simulated wave propagation.

Fig. 3
Fig. 3

Comparison of photonic band diagrams of PC directional couplers with (a) single-, (b) double-, and (c) triple-row spacings between waveguides. The orange and green curves denote the even and odd modes, respectively.

Fig. 4
Fig. 4

Number of air-hole spaces N in PC directional coupler versus (a) coupling length (in terms of a) and (b) operation bandwidth.

Fig. 5
Fig. 5

(a) Operation bandwidth of double-row-spaced directional coupler as a function of radii of holes between waveguides r’. (b) Photonic band diagram when r’ = 0.23a.

Fig. 6
Fig. 6

(a) Designed diplexer layout. The dashed line indicates the original lattice and the yellow circles are smaller holes with radii of 0.23a. (b) Directional-coupler band diagram, with 0.91-fold reduced width for operation frequency tuning. The red shaded regions indicate the cross band, defined as in Fig. 4(b). (c) Calculated transmission spectra. The red and blue shaded regions indicate the cross and bar bands referred to in Fig. 7(c). The inset donates the cross and bar operations. The frequency difference of cross band between Fig. 6 (b) and Fig. 6 (c) is caused by different simulation methods used.

Fig. 7
Fig. 7

(a) Improved isolation of designed diplexer between bar and cross port, obtained by reducing waveguide width to 0.91 times the original value. (b) Bar-waveguide band diagram. The red dashed line indicates the original waveguide mode shown in Fig. 1(c). (c) Calculated transmission spectra. The red and blue shaded regions indicate the cross and bar bands defined with more than −3 dB transmission, respectively.

Fig. 8
Fig. 8

Calculated diplexer wave propagation profile at (a) 0.2544 (cross state) and (b) 0.2624 (bar state) of normalized frequency.

Fig. 9
Fig. 9

Photographs of fabricated device for 0.3-THz band.

Fig. 10
Fig. 10

Block diagram of transmission-spectrum measurement setup. IF: intermediate frequency; LO: local oscillator.

Fig. 11
Fig. 11

Measured transmission spectra for fabricated diplexer.

Fig. 12
Fig. 12

Block diagram of terahertz communication experiment.

Fig. 13
Fig. 13

Measured eye diagram with 1.5-Gbit/s error-free communication: (a) cross transmission at fc = 0.324 THz and (b) bar transmission at fc = 0.334 THz.

Fig. 14
Fig. 14

HD-video transmissions according to path and fc (see also, Visualization 1): (a) port 3 to port 1 (cross state) and (b) port 1 to port 2 (bar state).

Fig. 15
Fig. 15

Experimental setup for high-bit-rate communication.

Fig. 16
Fig. 16

BER as a function of bit rate. fC is 0.324 and 0.334 THz in the cross and bar paths, respectively. The transmitter power was changed to yield the minimum BER for each bitrate.

Fig. 17
Fig. 17

(a) Measured BER at 1.5 Gbit/s depending on fc in cross (red) and bar (blue) paths. The transmitter power was changed for each fc to yield the minimum BER. (b) Calculated transmission bandwidth B limited by group delay dispersion from measured group delay. The red and blue shaded regions indicate the band where B is higher than 2 GHz.

Fig. 18
Fig. 18

(a) Top-view schematic of diplexer series connection. (b) Calculated transmission spectra.

Fig. 19
Fig. 19

Calculated bend-loss frequency dependence. The inset shows the 60°-bend structure. The cross band is from Fig. 7(c).

Fig. 20
Fig. 20

Comparison of calculated bandwidths B of 10-mm PC waveguides with/without a bend. The a is set to 240 μm. The cross band is from Fig. 7(c).

Fig. 21
Fig. 21

Measured group delay. The shaded regions are from Fig. 17(b), which corresponds to a flat group delay region.

Fig. 22
Fig. 22

Simulated electric-field distributions of cascade-connected diplexers, the operation bandwidths of which are varied by adjusting the lattice constants a at (a) 0.2584, (b) 0.2664, and (c) 0.2800 of the normalized frequency.

Fig. 23
Fig. 23

Calculated transmission spectra. The shaded regions indicate the 3-dB transmission bands.

Fig. 24
Fig. 24

Schematic image of terahertz-wave integrated circuit for frequency-multiplexed wireless communication, constructed on a PC slab platform. The absorber [28] is used to reduce the undesired reflections around the coupler.

Metrics