Abstract

Effects of mesa etching and geometry on InGaAs/InAlAs avalanche photodiodes (APDs) were investigated by using both wet and inductively coupled plasma (ICP) etching with different mesa shapes as well as etchants. It was found that the mesa geometry had no evident impact on APDs’ characteristics regardless of the etching techniques applied. Besides, ICP-etched APDs showed faster punch-through, suppressed premature surface breakdown and lower dark current behaviors compared to the wet-etched devices. Substantially suppressed surface leakage was also observed for ICP-etched devices, showing 1 and 3 orders of magnitude better at room temperature and 77 K respectively, and over 1 order of magnitude higher surface resistivity up to 4×107 Ω cm, in comparison to the wet-etched APDs. Introduction of extra hydrogen and Ar plasma in ICP etching led to detrimental effects to APDs’ performance by enhancing the tunneling or recombination at surfaces. Those experimental results were clearly interpreted based on the surface state theories.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Suppression of dark current in germanium-tin on silicon p-i-n photodiode by a silicon surface passivation technique

Yuan Dong, Wei Wang, Dian Lei, Xiao Gong, Qian Zhou, Shuh Ying Lee, Wan Khai Loke, Soon-Fatt Yoon, Eng Soon Tok, Gengchiau Liang, and Yee-Chia Yeo
Opt. Express 23(14) 18611-18619 (2015)

GaAs nanopillar arrays with suppressed broadband reflectance and high optical quality for photovoltaic applications

R. Sanatinia, K. M. Awan, S. Naureen, N. Anttu, E. Ebraert, and S. Anand
Opt. Mater. Express 2(11) 1671-1679 (2012)

310 GHz gain-bandwidth product Ge/Si avalanche photodetector for 1550 nm light detection

Ning Duan, Tsung-Yang Liow, Andy Eu-Jin Lim, Liang Ding, and G. Q. Lo
Opt. Express 20(10) 11031-11036 (2012)

References

  • View by:
  • |
  • |
  • |

  1. R. Rehm, M. Walther, F. Fuchs, J. Schmitz, and J. Fleissner, “Passivation of InAs/(GaIn)Sb short-period superlattice photodiodes with 10 μ m cutoff wavelength by epitaxial overgrowth with Alx Ga1−x Asy Sb1−y,” Appl. Phys. Rev. 86, 173501 (2005).
  2. P. Y. Delaunay, A. Hood, B. M. Nguyen, D. Hoffman, Y. Wei, and M. Razeghi, “Passivation of type-II InAs/GaSb double heterostructure,” Appl. Phys. Lett. 91, 091112 (2007).
    [Crossref]
  3. G. Chen, A. M. Hoang, S. Bogdanov, A. Haddadi, S. R. Darvish, and M. Razeghi, “Effect of sidewall surface recombination on the quantum efficiency in a Y2O3 passivated gated type-II InAs/GaSb long-infrared photodetector array,” Appl. Phys. Lett. 103, 223501 (2013).
    [Crossref]
  4. H. S. Kim, E. Plis, A. Khoshakhlagh, S. Myers, N. Gautam, Y. D. Sharma, L. R. Dawson, S. Krishna, S. J. Lee, and S. K. Noh, “Performance improvement of InAs/GaSb strained layer superlattice detectors by reducing surface leakage currents with SU-8 passivation,” Appl. Phys. Lett. 96, 033502 (2010).
    [Crossref]
  5. Y. Zhou, X. L. Ji, M. Shi, H. J. Tang, X. M. Shao, X. Li, H. M. Gong, X. Cao, and F. Yan, “Impact of SiNx passivation on the surface properties of InGaAs photo-detectors,” J. Appl. Phys. 118, 034507 (2015).
    [Crossref]
  6. M. Ren, Y. Chen, W. Sun, X. J. Chen, E. B. Johnson, J. F. Christian, and J. C. Campbell, “Linear-and Geiger-mode characteristics of Al0.8Ga0.2As avalanche photodiodes,” IEEE Photon. Technol. Lett. 26, 2480–2483 (2014).
    [Crossref]
  7. X. Guo, A. L. Beck, X. Li, J. C. Campbell, D. Emerson, and J. Sumakeris, “Study of reverse dark current in 4H-SiC avalanche photodiodes,” IEEE J. Quantum Electron. 41, 562–567 (2005).
    [Crossref]
  8. M. Nada, Y. Muramoto, H. Yokoyama, T. Ishibashi, and H. Matsuzaki, “Triple-mesa avalanche photodiode with inverted P-down structure for reliability and stability,” IEEE J. Lightwave Technol. 32, 1543–1548 (2014).
    [Crossref]
  9. S. R. Forrest, R. G. Smith, and O. K. Kim, “Performance of ln0.53Ga0.47As/InP avalanche photodiodes,” IEEE J. Quantum Electron. QE-18, 2040–2048 (1982).
    [Crossref]
  10. H. Sudo and M. Suzuki, “Surface degradation mechanism of InP/InGaAs APDs,” J. Lightwave Technol. 6, 1496–1501 (1988).
    [Crossref]
  11. C. A. Mead and W. Q. Spitzer, “Fermi level position at semiconductor surfaces,” Phys. Rev. Lett. 10, 471–472 (1963).
    [Crossref]
  12. J. Chevallier, W. C. Dautremont-Smith, C. W. Tu, and S. J. Pearto, “Donor neutralization in GaAs(Si) by atomic hydrogen,” Appl. Phys. Lett. 47, 108–110 (1985).
    [Crossref]
  13. D. V. Lang, R. A. Logan, and L. C. Kimerling, “Identification of the defect state associated with a gallium vacancy in GaAs and Alx Ga1−x As,” Phys. Rev. B 15, 4874–4882 (1972).
    [Crossref]
  14. A. B. Sproul, “Dimensionless solution of the equation describing the effect of surface recombination on carrier decay in semiconductors,” Appl. Phys. Lett. 76, 2851–2854 (1994).
  15. N. Li, R. Sidhu, X. Li, F. Ma, X. Zheng, S. Wang, G. Karve, S. Demiguel, A. L. H. Jr, and J. C. Campbell, “InGaAs/InAlAs avalanche photodiode with undepleted absorber,” Appl. Phys. Lett. 82, 2175–2177 (2003).
    [Crossref]
  16. M. Nada, Y. Muramoto, H. Yokoyama, N. Shigekawa, T. Ishibashi, and S. Kodama, “Inverted InAlAs/InGaAs avalanche photodiode with low-high-low electric field profile,” Jpn. J. Appl. Phys. 51, 02BG03 (2012).
    [Crossref]
  17. Y. J. Ma, Y. G. Zhang, Y. Gu, X. Y. Chen, S. P. Xi, B. Du, and H. Li, “Tailoring the performances of low operating voltage InAlAs/InGaAs avalanche photodetectors,” Opt. Express 23, 19278–19287 (2015).
    [Crossref] [PubMed]
  18. T. Nakata, I. Watanabe, K. Makita, and T. Torikai, “InAlAs avalanche photodiodes with very thin multiplication layer of 0.1 μ m for high speed and low-voltage-operation optical receiver,” Electron Lett. 36, 1807–1809 (2000).
    [Crossref]
  19. W. R. Clark, A. Davis, M. Roland, and K. Vaccaro, “A 1 cm × 1 cm In0.53Ga0.47As-In0.52Al0.48As avalanche photodiode array,” IEEE Photon. Technol. Lett. 18, 19–21 (2006).
    [Crossref]
  20. X. G. Zheng, J. S. Hsu, X. Sun, J. B. Hurst, X. Li, S. Wang, A. L. H. Jr, J. C. Campbell, A. S. Huntington, and L. A. Coldren, “A 12× 12 In0.53Ga0.47As-In0.52Al0.48As avalanche photodiode array,” IEEE J. Quantum Electron. 38, 1536–1540 (2002).
    [Crossref]
  21. J. C. Dries, BrianMiles, and R. Stettner, “A 32× 32 pixel FLASH laser radar system incorporating InGaAs PIN and APD detectors,” Proc. SPIE 5412, 250–256 (2004).
    [Crossref]
  22. F. Rutz, P. K. R. Aidam, H. Heussen, W. Bronner, A. Sieck, and M. Walther, “SWIR photodetector development at Fraunhofer IAF,” Proc. SPIE 9481, 948107 (2015).
    [Crossref]
  23. P. Kleinow, F. Rutz, R. Aidam, W. Bronner, H. Heussen, and M. Walther, “Optimization of InGaAs/InAlAs APDs for SWIR detection with demand for high gain and low breakdown voltage,” Proc. SPIE 9249, 92490X (2014).
  24. Y. J. Ma, Y. Zhang, Y. Gu, L. Zhou, X. Y. Chen, S. Xi, and H. Li, “Low operating voltage and small gain slope of InGaAs APDs with p-type multiplication layer,” IEEE Photon. Technol. Lett. 27, 661–664 (2015).
    [Crossref]
  25. X. L. Ji, B. Q. Liu, H. J. Tang, X. L. Yang, X. Li, H. M. Gong, B. Shen, P. Han, and F. Yan, “2.6 μ m MBE grown InGaAs detectors with dark current of SRH and TAT,” AIP Adv. 4, 087135 (2014).
    [Crossref]
  26. P. N. Grillot, S. A. Ringel, and E. A. Fitzgerald, “Effect of composition on deep levels in heteroepitaxial Gex Si1−x layers and evidence for dominant intrinsic recombination-generation in relaxed Ge layers on Si,” J. Electron Mater 25, 1028C1036 (1996).
    [Crossref]
  27. T. Richter, G. Kühnel, W. Siegel, and J. R. Niklas, “Activation energies of the EL6 trap and of the 0.15 eV donor and their correlation in GaAs,” Semicond. Sci. Technol. 15, 1039–1044 (2000).
    [Crossref]
  28. E. K. Huang, D. Hoffman, B.-M. Nguyen, P.-Y. Delaunay, and M. Razeghi, “Surface leakage reduction in narrow band gap type-II antimonide-based superlattice photodiodes,” Appl. Phys. Lett. 94, 053506 (2009).
    [Crossref]
  29. W. E. Spicer, I. Lindau, P. Skeath, C. Y. Su, and P. Chye, “Unified mechanism for schottky-barrier formation and III–V oxide interface states,” Phys. Rev. Lett. 44, 420–423 (1980).
    [Crossref]
  30. O. J. Glembocki, J. A. Tuchman, K. K. Ko, S. W. Pang, A. Giordana, R. Kaplan, and C. E. Stutz, “Effects of electron cyclotron resonance etching on the ambient (100) GaAs surface,” Appl. Phys. Lett. 66, 3054–3056 (1995).
    [Crossref]
  31. R. A. Morrow, “Modeling the diffusion of hydrogen in GaAs,” J. Appl. Phys. 66, 2973–2979 (1989).
    [Crossref]
  32. H. Y. Cho, E. K. Kim, S. K. Min, J. B. Kim, and J. Jang, “Creation of deep levels in horizontal Bridgman-grown GaAs by hydrogenation,” Appl. Phys. Lett. 53, 856–858 (1988).
    [Crossref]
  33. H. Yin, T. X. Li, W. D. Hu, W. J. Wang, N. Li, X. S. Chen, and W. Lu, “Nonequilibrium carrier distribution in semiconductor photodetectors: surface leakage channel under illumination,” Appl. Phys. Lett. 96, 263508 (2010).
    [Crossref]
  34. V. Swaminathan, J. M. Freund, L. M. F. Chirovsky, T. D. Harris, N. A. Kuebler, and L. A. DAsaro, “Evidence for surface recombination at mesa sidewalls of self-electro-optic effect devices,” J. Appl. Phys. 68, 4116–4118 (1990).
    [Crossref]

2015 (4)

Y. Zhou, X. L. Ji, M. Shi, H. J. Tang, X. M. Shao, X. Li, H. M. Gong, X. Cao, and F. Yan, “Impact of SiNx passivation on the surface properties of InGaAs photo-detectors,” J. Appl. Phys. 118, 034507 (2015).
[Crossref]

Y. J. Ma, Y. G. Zhang, Y. Gu, X. Y. Chen, S. P. Xi, B. Du, and H. Li, “Tailoring the performances of low operating voltage InAlAs/InGaAs avalanche photodetectors,” Opt. Express 23, 19278–19287 (2015).
[Crossref] [PubMed]

F. Rutz, P. K. R. Aidam, H. Heussen, W. Bronner, A. Sieck, and M. Walther, “SWIR photodetector development at Fraunhofer IAF,” Proc. SPIE 9481, 948107 (2015).
[Crossref]

Y. J. Ma, Y. Zhang, Y. Gu, L. Zhou, X. Y. Chen, S. Xi, and H. Li, “Low operating voltage and small gain slope of InGaAs APDs with p-type multiplication layer,” IEEE Photon. Technol. Lett. 27, 661–664 (2015).
[Crossref]

2014 (4)

X. L. Ji, B. Q. Liu, H. J. Tang, X. L. Yang, X. Li, H. M. Gong, B. Shen, P. Han, and F. Yan, “2.6 μ m MBE grown InGaAs detectors with dark current of SRH and TAT,” AIP Adv. 4, 087135 (2014).
[Crossref]

P. Kleinow, F. Rutz, R. Aidam, W. Bronner, H. Heussen, and M. Walther, “Optimization of InGaAs/InAlAs APDs for SWIR detection with demand for high gain and low breakdown voltage,” Proc. SPIE 9249, 92490X (2014).

M. Ren, Y. Chen, W. Sun, X. J. Chen, E. B. Johnson, J. F. Christian, and J. C. Campbell, “Linear-and Geiger-mode characteristics of Al0.8Ga0.2As avalanche photodiodes,” IEEE Photon. Technol. Lett. 26, 2480–2483 (2014).
[Crossref]

M. Nada, Y. Muramoto, H. Yokoyama, T. Ishibashi, and H. Matsuzaki, “Triple-mesa avalanche photodiode with inverted P-down structure for reliability and stability,” IEEE J. Lightwave Technol. 32, 1543–1548 (2014).
[Crossref]

2013 (1)

G. Chen, A. M. Hoang, S. Bogdanov, A. Haddadi, S. R. Darvish, and M. Razeghi, “Effect of sidewall surface recombination on the quantum efficiency in a Y2O3 passivated gated type-II InAs/GaSb long-infrared photodetector array,” Appl. Phys. Lett. 103, 223501 (2013).
[Crossref]

2012 (1)

M. Nada, Y. Muramoto, H. Yokoyama, N. Shigekawa, T. Ishibashi, and S. Kodama, “Inverted InAlAs/InGaAs avalanche photodiode with low-high-low electric field profile,” Jpn. J. Appl. Phys. 51, 02BG03 (2012).
[Crossref]

2010 (2)

H. Yin, T. X. Li, W. D. Hu, W. J. Wang, N. Li, X. S. Chen, and W. Lu, “Nonequilibrium carrier distribution in semiconductor photodetectors: surface leakage channel under illumination,” Appl. Phys. Lett. 96, 263508 (2010).
[Crossref]

H. S. Kim, E. Plis, A. Khoshakhlagh, S. Myers, N. Gautam, Y. D. Sharma, L. R. Dawson, S. Krishna, S. J. Lee, and S. K. Noh, “Performance improvement of InAs/GaSb strained layer superlattice detectors by reducing surface leakage currents with SU-8 passivation,” Appl. Phys. Lett. 96, 033502 (2010).
[Crossref]

2009 (1)

E. K. Huang, D. Hoffman, B.-M. Nguyen, P.-Y. Delaunay, and M. Razeghi, “Surface leakage reduction in narrow band gap type-II antimonide-based superlattice photodiodes,” Appl. Phys. Lett. 94, 053506 (2009).
[Crossref]

2007 (1)

P. Y. Delaunay, A. Hood, B. M. Nguyen, D. Hoffman, Y. Wei, and M. Razeghi, “Passivation of type-II InAs/GaSb double heterostructure,” Appl. Phys. Lett. 91, 091112 (2007).
[Crossref]

2006 (1)

W. R. Clark, A. Davis, M. Roland, and K. Vaccaro, “A 1 cm × 1 cm In0.53Ga0.47As-In0.52Al0.48As avalanche photodiode array,” IEEE Photon. Technol. Lett. 18, 19–21 (2006).
[Crossref]

2005 (2)

R. Rehm, M. Walther, F. Fuchs, J. Schmitz, and J. Fleissner, “Passivation of InAs/(GaIn)Sb short-period superlattice photodiodes with 10 μ m cutoff wavelength by epitaxial overgrowth with Alx Ga1−x Asy Sb1−y,” Appl. Phys. Rev. 86, 173501 (2005).

X. Guo, A. L. Beck, X. Li, J. C. Campbell, D. Emerson, and J. Sumakeris, “Study of reverse dark current in 4H-SiC avalanche photodiodes,” IEEE J. Quantum Electron. 41, 562–567 (2005).
[Crossref]

2004 (1)

J. C. Dries, BrianMiles, and R. Stettner, “A 32× 32 pixel FLASH laser radar system incorporating InGaAs PIN and APD detectors,” Proc. SPIE 5412, 250–256 (2004).
[Crossref]

2003 (1)

N. Li, R. Sidhu, X. Li, F. Ma, X. Zheng, S. Wang, G. Karve, S. Demiguel, A. L. H. Jr, and J. C. Campbell, “InGaAs/InAlAs avalanche photodiode with undepleted absorber,” Appl. Phys. Lett. 82, 2175–2177 (2003).
[Crossref]

2002 (1)

X. G. Zheng, J. S. Hsu, X. Sun, J. B. Hurst, X. Li, S. Wang, A. L. H. Jr, J. C. Campbell, A. S. Huntington, and L. A. Coldren, “A 12× 12 In0.53Ga0.47As-In0.52Al0.48As avalanche photodiode array,” IEEE J. Quantum Electron. 38, 1536–1540 (2002).
[Crossref]

2000 (2)

T. Richter, G. Kühnel, W. Siegel, and J. R. Niklas, “Activation energies of the EL6 trap and of the 0.15 eV donor and their correlation in GaAs,” Semicond. Sci. Technol. 15, 1039–1044 (2000).
[Crossref]

T. Nakata, I. Watanabe, K. Makita, and T. Torikai, “InAlAs avalanche photodiodes with very thin multiplication layer of 0.1 μ m for high speed and low-voltage-operation optical receiver,” Electron Lett. 36, 1807–1809 (2000).
[Crossref]

1996 (1)

P. N. Grillot, S. A. Ringel, and E. A. Fitzgerald, “Effect of composition on deep levels in heteroepitaxial Gex Si1−x layers and evidence for dominant intrinsic recombination-generation in relaxed Ge layers on Si,” J. Electron Mater 25, 1028C1036 (1996).
[Crossref]

1995 (1)

O. J. Glembocki, J. A. Tuchman, K. K. Ko, S. W. Pang, A. Giordana, R. Kaplan, and C. E. Stutz, “Effects of electron cyclotron resonance etching on the ambient (100) GaAs surface,” Appl. Phys. Lett. 66, 3054–3056 (1995).
[Crossref]

1994 (1)

A. B. Sproul, “Dimensionless solution of the equation describing the effect of surface recombination on carrier decay in semiconductors,” Appl. Phys. Lett. 76, 2851–2854 (1994).

1990 (1)

V. Swaminathan, J. M. Freund, L. M. F. Chirovsky, T. D. Harris, N. A. Kuebler, and L. A. DAsaro, “Evidence for surface recombination at mesa sidewalls of self-electro-optic effect devices,” J. Appl. Phys. 68, 4116–4118 (1990).
[Crossref]

1989 (1)

R. A. Morrow, “Modeling the diffusion of hydrogen in GaAs,” J. Appl. Phys. 66, 2973–2979 (1989).
[Crossref]

1988 (2)

H. Y. Cho, E. K. Kim, S. K. Min, J. B. Kim, and J. Jang, “Creation of deep levels in horizontal Bridgman-grown GaAs by hydrogenation,” Appl. Phys. Lett. 53, 856–858 (1988).
[Crossref]

H. Sudo and M. Suzuki, “Surface degradation mechanism of InP/InGaAs APDs,” J. Lightwave Technol. 6, 1496–1501 (1988).
[Crossref]

1985 (1)

J. Chevallier, W. C. Dautremont-Smith, C. W. Tu, and S. J. Pearto, “Donor neutralization in GaAs(Si) by atomic hydrogen,” Appl. Phys. Lett. 47, 108–110 (1985).
[Crossref]

1982 (1)

S. R. Forrest, R. G. Smith, and O. K. Kim, “Performance of ln0.53Ga0.47As/InP avalanche photodiodes,” IEEE J. Quantum Electron. QE-18, 2040–2048 (1982).
[Crossref]

1980 (1)

W. E. Spicer, I. Lindau, P. Skeath, C. Y. Su, and P. Chye, “Unified mechanism for schottky-barrier formation and III–V oxide interface states,” Phys. Rev. Lett. 44, 420–423 (1980).
[Crossref]

1972 (1)

D. V. Lang, R. A. Logan, and L. C. Kimerling, “Identification of the defect state associated with a gallium vacancy in GaAs and Alx Ga1−x As,” Phys. Rev. B 15, 4874–4882 (1972).
[Crossref]

1963 (1)

C. A. Mead and W. Q. Spitzer, “Fermi level position at semiconductor surfaces,” Phys. Rev. Lett. 10, 471–472 (1963).
[Crossref]

Aidam, P. K. R.

F. Rutz, P. K. R. Aidam, H. Heussen, W. Bronner, A. Sieck, and M. Walther, “SWIR photodetector development at Fraunhofer IAF,” Proc. SPIE 9481, 948107 (2015).
[Crossref]

Aidam, R.

P. Kleinow, F. Rutz, R. Aidam, W. Bronner, H. Heussen, and M. Walther, “Optimization of InGaAs/InAlAs APDs for SWIR detection with demand for high gain and low breakdown voltage,” Proc. SPIE 9249, 92490X (2014).

Beck, A. L.

X. Guo, A. L. Beck, X. Li, J. C. Campbell, D. Emerson, and J. Sumakeris, “Study of reverse dark current in 4H-SiC avalanche photodiodes,” IEEE J. Quantum Electron. 41, 562–567 (2005).
[Crossref]

Bogdanov, S.

G. Chen, A. M. Hoang, S. Bogdanov, A. Haddadi, S. R. Darvish, and M. Razeghi, “Effect of sidewall surface recombination on the quantum efficiency in a Y2O3 passivated gated type-II InAs/GaSb long-infrared photodetector array,” Appl. Phys. Lett. 103, 223501 (2013).
[Crossref]

BrianMiles,

J. C. Dries, BrianMiles, and R. Stettner, “A 32× 32 pixel FLASH laser radar system incorporating InGaAs PIN and APD detectors,” Proc. SPIE 5412, 250–256 (2004).
[Crossref]

Bronner, W.

F. Rutz, P. K. R. Aidam, H. Heussen, W. Bronner, A. Sieck, and M. Walther, “SWIR photodetector development at Fraunhofer IAF,” Proc. SPIE 9481, 948107 (2015).
[Crossref]

P. Kleinow, F. Rutz, R. Aidam, W. Bronner, H. Heussen, and M. Walther, “Optimization of InGaAs/InAlAs APDs for SWIR detection with demand for high gain and low breakdown voltage,” Proc. SPIE 9249, 92490X (2014).

Campbell, J. C.

M. Ren, Y. Chen, W. Sun, X. J. Chen, E. B. Johnson, J. F. Christian, and J. C. Campbell, “Linear-and Geiger-mode characteristics of Al0.8Ga0.2As avalanche photodiodes,” IEEE Photon. Technol. Lett. 26, 2480–2483 (2014).
[Crossref]

X. Guo, A. L. Beck, X. Li, J. C. Campbell, D. Emerson, and J. Sumakeris, “Study of reverse dark current in 4H-SiC avalanche photodiodes,” IEEE J. Quantum Electron. 41, 562–567 (2005).
[Crossref]

N. Li, R. Sidhu, X. Li, F. Ma, X. Zheng, S. Wang, G. Karve, S. Demiguel, A. L. H. Jr, and J. C. Campbell, “InGaAs/InAlAs avalanche photodiode with undepleted absorber,” Appl. Phys. Lett. 82, 2175–2177 (2003).
[Crossref]

X. G. Zheng, J. S. Hsu, X. Sun, J. B. Hurst, X. Li, S. Wang, A. L. H. Jr, J. C. Campbell, A. S. Huntington, and L. A. Coldren, “A 12× 12 In0.53Ga0.47As-In0.52Al0.48As avalanche photodiode array,” IEEE J. Quantum Electron. 38, 1536–1540 (2002).
[Crossref]

Cao, X.

Y. Zhou, X. L. Ji, M. Shi, H. J. Tang, X. M. Shao, X. Li, H. M. Gong, X. Cao, and F. Yan, “Impact of SiNx passivation on the surface properties of InGaAs photo-detectors,” J. Appl. Phys. 118, 034507 (2015).
[Crossref]

Chen, G.

G. Chen, A. M. Hoang, S. Bogdanov, A. Haddadi, S. R. Darvish, and M. Razeghi, “Effect of sidewall surface recombination on the quantum efficiency in a Y2O3 passivated gated type-II InAs/GaSb long-infrared photodetector array,” Appl. Phys. Lett. 103, 223501 (2013).
[Crossref]

Chen, X. J.

M. Ren, Y. Chen, W. Sun, X. J. Chen, E. B. Johnson, J. F. Christian, and J. C. Campbell, “Linear-and Geiger-mode characteristics of Al0.8Ga0.2As avalanche photodiodes,” IEEE Photon. Technol. Lett. 26, 2480–2483 (2014).
[Crossref]

Chen, X. S.

H. Yin, T. X. Li, W. D. Hu, W. J. Wang, N. Li, X. S. Chen, and W. Lu, “Nonequilibrium carrier distribution in semiconductor photodetectors: surface leakage channel under illumination,” Appl. Phys. Lett. 96, 263508 (2010).
[Crossref]

Chen, X. Y.

Y. J. Ma, Y. G. Zhang, Y. Gu, X. Y. Chen, S. P. Xi, B. Du, and H. Li, “Tailoring the performances of low operating voltage InAlAs/InGaAs avalanche photodetectors,” Opt. Express 23, 19278–19287 (2015).
[Crossref] [PubMed]

Y. J. Ma, Y. Zhang, Y. Gu, L. Zhou, X. Y. Chen, S. Xi, and H. Li, “Low operating voltage and small gain slope of InGaAs APDs with p-type multiplication layer,” IEEE Photon. Technol. Lett. 27, 661–664 (2015).
[Crossref]

Chen, Y.

M. Ren, Y. Chen, W. Sun, X. J. Chen, E. B. Johnson, J. F. Christian, and J. C. Campbell, “Linear-and Geiger-mode characteristics of Al0.8Ga0.2As avalanche photodiodes,” IEEE Photon. Technol. Lett. 26, 2480–2483 (2014).
[Crossref]

Chevallier, J.

J. Chevallier, W. C. Dautremont-Smith, C. W. Tu, and S. J. Pearto, “Donor neutralization in GaAs(Si) by atomic hydrogen,” Appl. Phys. Lett. 47, 108–110 (1985).
[Crossref]

Chirovsky, L. M. F.

V. Swaminathan, J. M. Freund, L. M. F. Chirovsky, T. D. Harris, N. A. Kuebler, and L. A. DAsaro, “Evidence for surface recombination at mesa sidewalls of self-electro-optic effect devices,” J. Appl. Phys. 68, 4116–4118 (1990).
[Crossref]

Cho, H. Y.

H. Y. Cho, E. K. Kim, S. K. Min, J. B. Kim, and J. Jang, “Creation of deep levels in horizontal Bridgman-grown GaAs by hydrogenation,” Appl. Phys. Lett. 53, 856–858 (1988).
[Crossref]

Christian, J. F.

M. Ren, Y. Chen, W. Sun, X. J. Chen, E. B. Johnson, J. F. Christian, and J. C. Campbell, “Linear-and Geiger-mode characteristics of Al0.8Ga0.2As avalanche photodiodes,” IEEE Photon. Technol. Lett. 26, 2480–2483 (2014).
[Crossref]

Chye, P.

W. E. Spicer, I. Lindau, P. Skeath, C. Y. Su, and P. Chye, “Unified mechanism for schottky-barrier formation and III–V oxide interface states,” Phys. Rev. Lett. 44, 420–423 (1980).
[Crossref]

Clark, W. R.

W. R. Clark, A. Davis, M. Roland, and K. Vaccaro, “A 1 cm × 1 cm In0.53Ga0.47As-In0.52Al0.48As avalanche photodiode array,” IEEE Photon. Technol. Lett. 18, 19–21 (2006).
[Crossref]

Coldren, L. A.

X. G. Zheng, J. S. Hsu, X. Sun, J. B. Hurst, X. Li, S. Wang, A. L. H. Jr, J. C. Campbell, A. S. Huntington, and L. A. Coldren, “A 12× 12 In0.53Ga0.47As-In0.52Al0.48As avalanche photodiode array,” IEEE J. Quantum Electron. 38, 1536–1540 (2002).
[Crossref]

Darvish, S. R.

G. Chen, A. M. Hoang, S. Bogdanov, A. Haddadi, S. R. Darvish, and M. Razeghi, “Effect of sidewall surface recombination on the quantum efficiency in a Y2O3 passivated gated type-II InAs/GaSb long-infrared photodetector array,” Appl. Phys. Lett. 103, 223501 (2013).
[Crossref]

DAsaro, L. A.

V. Swaminathan, J. M. Freund, L. M. F. Chirovsky, T. D. Harris, N. A. Kuebler, and L. A. DAsaro, “Evidence for surface recombination at mesa sidewalls of self-electro-optic effect devices,” J. Appl. Phys. 68, 4116–4118 (1990).
[Crossref]

Dautremont-Smith, W. C.

J. Chevallier, W. C. Dautremont-Smith, C. W. Tu, and S. J. Pearto, “Donor neutralization in GaAs(Si) by atomic hydrogen,” Appl. Phys. Lett. 47, 108–110 (1985).
[Crossref]

Davis, A.

W. R. Clark, A. Davis, M. Roland, and K. Vaccaro, “A 1 cm × 1 cm In0.53Ga0.47As-In0.52Al0.48As avalanche photodiode array,” IEEE Photon. Technol. Lett. 18, 19–21 (2006).
[Crossref]

Dawson, L. R.

H. S. Kim, E. Plis, A. Khoshakhlagh, S. Myers, N. Gautam, Y. D. Sharma, L. R. Dawson, S. Krishna, S. J. Lee, and S. K. Noh, “Performance improvement of InAs/GaSb strained layer superlattice detectors by reducing surface leakage currents with SU-8 passivation,” Appl. Phys. Lett. 96, 033502 (2010).
[Crossref]

Delaunay, P. Y.

P. Y. Delaunay, A. Hood, B. M. Nguyen, D. Hoffman, Y. Wei, and M. Razeghi, “Passivation of type-II InAs/GaSb double heterostructure,” Appl. Phys. Lett. 91, 091112 (2007).
[Crossref]

Delaunay, P.-Y.

E. K. Huang, D. Hoffman, B.-M. Nguyen, P.-Y. Delaunay, and M. Razeghi, “Surface leakage reduction in narrow band gap type-II antimonide-based superlattice photodiodes,” Appl. Phys. Lett. 94, 053506 (2009).
[Crossref]

Demiguel, S.

N. Li, R. Sidhu, X. Li, F. Ma, X. Zheng, S. Wang, G. Karve, S. Demiguel, A. L. H. Jr, and J. C. Campbell, “InGaAs/InAlAs avalanche photodiode with undepleted absorber,” Appl. Phys. Lett. 82, 2175–2177 (2003).
[Crossref]

Dries, J. C.

J. C. Dries, BrianMiles, and R. Stettner, “A 32× 32 pixel FLASH laser radar system incorporating InGaAs PIN and APD detectors,” Proc. SPIE 5412, 250–256 (2004).
[Crossref]

Du, B.

Emerson, D.

X. Guo, A. L. Beck, X. Li, J. C. Campbell, D. Emerson, and J. Sumakeris, “Study of reverse dark current in 4H-SiC avalanche photodiodes,” IEEE J. Quantum Electron. 41, 562–567 (2005).
[Crossref]

Fitzgerald, E. A.

P. N. Grillot, S. A. Ringel, and E. A. Fitzgerald, “Effect of composition on deep levels in heteroepitaxial Gex Si1−x layers and evidence for dominant intrinsic recombination-generation in relaxed Ge layers on Si,” J. Electron Mater 25, 1028C1036 (1996).
[Crossref]

Fleissner, J.

R. Rehm, M. Walther, F. Fuchs, J. Schmitz, and J. Fleissner, “Passivation of InAs/(GaIn)Sb short-period superlattice photodiodes with 10 μ m cutoff wavelength by epitaxial overgrowth with Alx Ga1−x Asy Sb1−y,” Appl. Phys. Rev. 86, 173501 (2005).

Forrest, S. R.

S. R. Forrest, R. G. Smith, and O. K. Kim, “Performance of ln0.53Ga0.47As/InP avalanche photodiodes,” IEEE J. Quantum Electron. QE-18, 2040–2048 (1982).
[Crossref]

Freund, J. M.

V. Swaminathan, J. M. Freund, L. M. F. Chirovsky, T. D. Harris, N. A. Kuebler, and L. A. DAsaro, “Evidence for surface recombination at mesa sidewalls of self-electro-optic effect devices,” J. Appl. Phys. 68, 4116–4118 (1990).
[Crossref]

Fuchs, F.

R. Rehm, M. Walther, F. Fuchs, J. Schmitz, and J. Fleissner, “Passivation of InAs/(GaIn)Sb short-period superlattice photodiodes with 10 μ m cutoff wavelength by epitaxial overgrowth with Alx Ga1−x Asy Sb1−y,” Appl. Phys. Rev. 86, 173501 (2005).

Gautam, N.

H. S. Kim, E. Plis, A. Khoshakhlagh, S. Myers, N. Gautam, Y. D. Sharma, L. R. Dawson, S. Krishna, S. J. Lee, and S. K. Noh, “Performance improvement of InAs/GaSb strained layer superlattice detectors by reducing surface leakage currents with SU-8 passivation,” Appl. Phys. Lett. 96, 033502 (2010).
[Crossref]

Giordana, A.

O. J. Glembocki, J. A. Tuchman, K. K. Ko, S. W. Pang, A. Giordana, R. Kaplan, and C. E. Stutz, “Effects of electron cyclotron resonance etching on the ambient (100) GaAs surface,” Appl. Phys. Lett. 66, 3054–3056 (1995).
[Crossref]

Glembocki, O. J.

O. J. Glembocki, J. A. Tuchman, K. K. Ko, S. W. Pang, A. Giordana, R. Kaplan, and C. E. Stutz, “Effects of electron cyclotron resonance etching on the ambient (100) GaAs surface,” Appl. Phys. Lett. 66, 3054–3056 (1995).
[Crossref]

Gong, H. M.

Y. Zhou, X. L. Ji, M. Shi, H. J. Tang, X. M. Shao, X. Li, H. M. Gong, X. Cao, and F. Yan, “Impact of SiNx passivation on the surface properties of InGaAs photo-detectors,” J. Appl. Phys. 118, 034507 (2015).
[Crossref]

X. L. Ji, B. Q. Liu, H. J. Tang, X. L. Yang, X. Li, H. M. Gong, B. Shen, P. Han, and F. Yan, “2.6 μ m MBE grown InGaAs detectors with dark current of SRH and TAT,” AIP Adv. 4, 087135 (2014).
[Crossref]

Grillot, P. N.

P. N. Grillot, S. A. Ringel, and E. A. Fitzgerald, “Effect of composition on deep levels in heteroepitaxial Gex Si1−x layers and evidence for dominant intrinsic recombination-generation in relaxed Ge layers on Si,” J. Electron Mater 25, 1028C1036 (1996).
[Crossref]

Gu, Y.

Y. J. Ma, Y. Zhang, Y. Gu, L. Zhou, X. Y. Chen, S. Xi, and H. Li, “Low operating voltage and small gain slope of InGaAs APDs with p-type multiplication layer,” IEEE Photon. Technol. Lett. 27, 661–664 (2015).
[Crossref]

Y. J. Ma, Y. G. Zhang, Y. Gu, X. Y. Chen, S. P. Xi, B. Du, and H. Li, “Tailoring the performances of low operating voltage InAlAs/InGaAs avalanche photodetectors,” Opt. Express 23, 19278–19287 (2015).
[Crossref] [PubMed]

Guo, X.

X. Guo, A. L. Beck, X. Li, J. C. Campbell, D. Emerson, and J. Sumakeris, “Study of reverse dark current in 4H-SiC avalanche photodiodes,” IEEE J. Quantum Electron. 41, 562–567 (2005).
[Crossref]

Haddadi, A.

G. Chen, A. M. Hoang, S. Bogdanov, A. Haddadi, S. R. Darvish, and M. Razeghi, “Effect of sidewall surface recombination on the quantum efficiency in a Y2O3 passivated gated type-II InAs/GaSb long-infrared photodetector array,” Appl. Phys. Lett. 103, 223501 (2013).
[Crossref]

Han, P.

X. L. Ji, B. Q. Liu, H. J. Tang, X. L. Yang, X. Li, H. M. Gong, B. Shen, P. Han, and F. Yan, “2.6 μ m MBE grown InGaAs detectors with dark current of SRH and TAT,” AIP Adv. 4, 087135 (2014).
[Crossref]

Harris, T. D.

V. Swaminathan, J. M. Freund, L. M. F. Chirovsky, T. D. Harris, N. A. Kuebler, and L. A. DAsaro, “Evidence for surface recombination at mesa sidewalls of self-electro-optic effect devices,” J. Appl. Phys. 68, 4116–4118 (1990).
[Crossref]

Heussen, H.

F. Rutz, P. K. R. Aidam, H. Heussen, W. Bronner, A. Sieck, and M. Walther, “SWIR photodetector development at Fraunhofer IAF,” Proc. SPIE 9481, 948107 (2015).
[Crossref]

P. Kleinow, F. Rutz, R. Aidam, W. Bronner, H. Heussen, and M. Walther, “Optimization of InGaAs/InAlAs APDs for SWIR detection with demand for high gain and low breakdown voltage,” Proc. SPIE 9249, 92490X (2014).

Hoang, A. M.

G. Chen, A. M. Hoang, S. Bogdanov, A. Haddadi, S. R. Darvish, and M. Razeghi, “Effect of sidewall surface recombination on the quantum efficiency in a Y2O3 passivated gated type-II InAs/GaSb long-infrared photodetector array,” Appl. Phys. Lett. 103, 223501 (2013).
[Crossref]

Hoffman, D.

E. K. Huang, D. Hoffman, B.-M. Nguyen, P.-Y. Delaunay, and M. Razeghi, “Surface leakage reduction in narrow band gap type-II antimonide-based superlattice photodiodes,” Appl. Phys. Lett. 94, 053506 (2009).
[Crossref]

P. Y. Delaunay, A. Hood, B. M. Nguyen, D. Hoffman, Y. Wei, and M. Razeghi, “Passivation of type-II InAs/GaSb double heterostructure,” Appl. Phys. Lett. 91, 091112 (2007).
[Crossref]

Hood, A.

P. Y. Delaunay, A. Hood, B. M. Nguyen, D. Hoffman, Y. Wei, and M. Razeghi, “Passivation of type-II InAs/GaSb double heterostructure,” Appl. Phys. Lett. 91, 091112 (2007).
[Crossref]

Hsu, J. S.

X. G. Zheng, J. S. Hsu, X. Sun, J. B. Hurst, X. Li, S. Wang, A. L. H. Jr, J. C. Campbell, A. S. Huntington, and L. A. Coldren, “A 12× 12 In0.53Ga0.47As-In0.52Al0.48As avalanche photodiode array,” IEEE J. Quantum Electron. 38, 1536–1540 (2002).
[Crossref]

Hu, W. D.

H. Yin, T. X. Li, W. D. Hu, W. J. Wang, N. Li, X. S. Chen, and W. Lu, “Nonequilibrium carrier distribution in semiconductor photodetectors: surface leakage channel under illumination,” Appl. Phys. Lett. 96, 263508 (2010).
[Crossref]

Huang, E. K.

E. K. Huang, D. Hoffman, B.-M. Nguyen, P.-Y. Delaunay, and M. Razeghi, “Surface leakage reduction in narrow band gap type-II antimonide-based superlattice photodiodes,” Appl. Phys. Lett. 94, 053506 (2009).
[Crossref]

Huntington, A. S.

X. G. Zheng, J. S. Hsu, X. Sun, J. B. Hurst, X. Li, S. Wang, A. L. H. Jr, J. C. Campbell, A. S. Huntington, and L. A. Coldren, “A 12× 12 In0.53Ga0.47As-In0.52Al0.48As avalanche photodiode array,” IEEE J. Quantum Electron. 38, 1536–1540 (2002).
[Crossref]

Hurst, J. B.

X. G. Zheng, J. S. Hsu, X. Sun, J. B. Hurst, X. Li, S. Wang, A. L. H. Jr, J. C. Campbell, A. S. Huntington, and L. A. Coldren, “A 12× 12 In0.53Ga0.47As-In0.52Al0.48As avalanche photodiode array,” IEEE J. Quantum Electron. 38, 1536–1540 (2002).
[Crossref]

Ishibashi, T.

M. Nada, Y. Muramoto, H. Yokoyama, T. Ishibashi, and H. Matsuzaki, “Triple-mesa avalanche photodiode with inverted P-down structure for reliability and stability,” IEEE J. Lightwave Technol. 32, 1543–1548 (2014).
[Crossref]

M. Nada, Y. Muramoto, H. Yokoyama, N. Shigekawa, T. Ishibashi, and S. Kodama, “Inverted InAlAs/InGaAs avalanche photodiode with low-high-low electric field profile,” Jpn. J. Appl. Phys. 51, 02BG03 (2012).
[Crossref]

Jang, J.

H. Y. Cho, E. K. Kim, S. K. Min, J. B. Kim, and J. Jang, “Creation of deep levels in horizontal Bridgman-grown GaAs by hydrogenation,” Appl. Phys. Lett. 53, 856–858 (1988).
[Crossref]

Ji, X. L.

Y. Zhou, X. L. Ji, M. Shi, H. J. Tang, X. M. Shao, X. Li, H. M. Gong, X. Cao, and F. Yan, “Impact of SiNx passivation on the surface properties of InGaAs photo-detectors,” J. Appl. Phys. 118, 034507 (2015).
[Crossref]

X. L. Ji, B. Q. Liu, H. J. Tang, X. L. Yang, X. Li, H. M. Gong, B. Shen, P. Han, and F. Yan, “2.6 μ m MBE grown InGaAs detectors with dark current of SRH and TAT,” AIP Adv. 4, 087135 (2014).
[Crossref]

Johnson, E. B.

M. Ren, Y. Chen, W. Sun, X. J. Chen, E. B. Johnson, J. F. Christian, and J. C. Campbell, “Linear-and Geiger-mode characteristics of Al0.8Ga0.2As avalanche photodiodes,” IEEE Photon. Technol. Lett. 26, 2480–2483 (2014).
[Crossref]

Jr, A. L. H.

N. Li, R. Sidhu, X. Li, F. Ma, X. Zheng, S. Wang, G. Karve, S. Demiguel, A. L. H. Jr, and J. C. Campbell, “InGaAs/InAlAs avalanche photodiode with undepleted absorber,” Appl. Phys. Lett. 82, 2175–2177 (2003).
[Crossref]

X. G. Zheng, J. S. Hsu, X. Sun, J. B. Hurst, X. Li, S. Wang, A. L. H. Jr, J. C. Campbell, A. S. Huntington, and L. A. Coldren, “A 12× 12 In0.53Ga0.47As-In0.52Al0.48As avalanche photodiode array,” IEEE J. Quantum Electron. 38, 1536–1540 (2002).
[Crossref]

Kaplan, R.

O. J. Glembocki, J. A. Tuchman, K. K. Ko, S. W. Pang, A. Giordana, R. Kaplan, and C. E. Stutz, “Effects of electron cyclotron resonance etching on the ambient (100) GaAs surface,” Appl. Phys. Lett. 66, 3054–3056 (1995).
[Crossref]

Karve, G.

N. Li, R. Sidhu, X. Li, F. Ma, X. Zheng, S. Wang, G. Karve, S. Demiguel, A. L. H. Jr, and J. C. Campbell, “InGaAs/InAlAs avalanche photodiode with undepleted absorber,” Appl. Phys. Lett. 82, 2175–2177 (2003).
[Crossref]

Khoshakhlagh, A.

H. S. Kim, E. Plis, A. Khoshakhlagh, S. Myers, N. Gautam, Y. D. Sharma, L. R. Dawson, S. Krishna, S. J. Lee, and S. K. Noh, “Performance improvement of InAs/GaSb strained layer superlattice detectors by reducing surface leakage currents with SU-8 passivation,” Appl. Phys. Lett. 96, 033502 (2010).
[Crossref]

Kim, E. K.

H. Y. Cho, E. K. Kim, S. K. Min, J. B. Kim, and J. Jang, “Creation of deep levels in horizontal Bridgman-grown GaAs by hydrogenation,” Appl. Phys. Lett. 53, 856–858 (1988).
[Crossref]

Kim, H. S.

H. S. Kim, E. Plis, A. Khoshakhlagh, S. Myers, N. Gautam, Y. D. Sharma, L. R. Dawson, S. Krishna, S. J. Lee, and S. K. Noh, “Performance improvement of InAs/GaSb strained layer superlattice detectors by reducing surface leakage currents with SU-8 passivation,” Appl. Phys. Lett. 96, 033502 (2010).
[Crossref]

Kim, J. B.

H. Y. Cho, E. K. Kim, S. K. Min, J. B. Kim, and J. Jang, “Creation of deep levels in horizontal Bridgman-grown GaAs by hydrogenation,” Appl. Phys. Lett. 53, 856–858 (1988).
[Crossref]

Kim, O. K.

S. R. Forrest, R. G. Smith, and O. K. Kim, “Performance of ln0.53Ga0.47As/InP avalanche photodiodes,” IEEE J. Quantum Electron. QE-18, 2040–2048 (1982).
[Crossref]

Kimerling, L. C.

D. V. Lang, R. A. Logan, and L. C. Kimerling, “Identification of the defect state associated with a gallium vacancy in GaAs and Alx Ga1−x As,” Phys. Rev. B 15, 4874–4882 (1972).
[Crossref]

Kleinow, P.

P. Kleinow, F. Rutz, R. Aidam, W. Bronner, H. Heussen, and M. Walther, “Optimization of InGaAs/InAlAs APDs for SWIR detection with demand for high gain and low breakdown voltage,” Proc. SPIE 9249, 92490X (2014).

Ko, K. K.

O. J. Glembocki, J. A. Tuchman, K. K. Ko, S. W. Pang, A. Giordana, R. Kaplan, and C. E. Stutz, “Effects of electron cyclotron resonance etching on the ambient (100) GaAs surface,” Appl. Phys. Lett. 66, 3054–3056 (1995).
[Crossref]

Kodama, S.

M. Nada, Y. Muramoto, H. Yokoyama, N. Shigekawa, T. Ishibashi, and S. Kodama, “Inverted InAlAs/InGaAs avalanche photodiode with low-high-low electric field profile,” Jpn. J. Appl. Phys. 51, 02BG03 (2012).
[Crossref]

Krishna, S.

H. S. Kim, E. Plis, A. Khoshakhlagh, S. Myers, N. Gautam, Y. D. Sharma, L. R. Dawson, S. Krishna, S. J. Lee, and S. K. Noh, “Performance improvement of InAs/GaSb strained layer superlattice detectors by reducing surface leakage currents with SU-8 passivation,” Appl. Phys. Lett. 96, 033502 (2010).
[Crossref]

Kuebler, N. A.

V. Swaminathan, J. M. Freund, L. M. F. Chirovsky, T. D. Harris, N. A. Kuebler, and L. A. DAsaro, “Evidence for surface recombination at mesa sidewalls of self-electro-optic effect devices,” J. Appl. Phys. 68, 4116–4118 (1990).
[Crossref]

Kühnel, G.

T. Richter, G. Kühnel, W. Siegel, and J. R. Niklas, “Activation energies of the EL6 trap and of the 0.15 eV donor and their correlation in GaAs,” Semicond. Sci. Technol. 15, 1039–1044 (2000).
[Crossref]

Lang, D. V.

D. V. Lang, R. A. Logan, and L. C. Kimerling, “Identification of the defect state associated with a gallium vacancy in GaAs and Alx Ga1−x As,” Phys. Rev. B 15, 4874–4882 (1972).
[Crossref]

Lee, S. J.

H. S. Kim, E. Plis, A. Khoshakhlagh, S. Myers, N. Gautam, Y. D. Sharma, L. R. Dawson, S. Krishna, S. J. Lee, and S. K. Noh, “Performance improvement of InAs/GaSb strained layer superlattice detectors by reducing surface leakage currents with SU-8 passivation,” Appl. Phys. Lett. 96, 033502 (2010).
[Crossref]

Li, H.

Y. J. Ma, Y. Zhang, Y. Gu, L. Zhou, X. Y. Chen, S. Xi, and H. Li, “Low operating voltage and small gain slope of InGaAs APDs with p-type multiplication layer,” IEEE Photon. Technol. Lett. 27, 661–664 (2015).
[Crossref]

Y. J. Ma, Y. G. Zhang, Y. Gu, X. Y. Chen, S. P. Xi, B. Du, and H. Li, “Tailoring the performances of low operating voltage InAlAs/InGaAs avalanche photodetectors,” Opt. Express 23, 19278–19287 (2015).
[Crossref] [PubMed]

Li, N.

H. Yin, T. X. Li, W. D. Hu, W. J. Wang, N. Li, X. S. Chen, and W. Lu, “Nonequilibrium carrier distribution in semiconductor photodetectors: surface leakage channel under illumination,” Appl. Phys. Lett. 96, 263508 (2010).
[Crossref]

N. Li, R. Sidhu, X. Li, F. Ma, X. Zheng, S. Wang, G. Karve, S. Demiguel, A. L. H. Jr, and J. C. Campbell, “InGaAs/InAlAs avalanche photodiode with undepleted absorber,” Appl. Phys. Lett. 82, 2175–2177 (2003).
[Crossref]

Li, T. X.

H. Yin, T. X. Li, W. D. Hu, W. J. Wang, N. Li, X. S. Chen, and W. Lu, “Nonequilibrium carrier distribution in semiconductor photodetectors: surface leakage channel under illumination,” Appl. Phys. Lett. 96, 263508 (2010).
[Crossref]

Li, X.

Y. Zhou, X. L. Ji, M. Shi, H. J. Tang, X. M. Shao, X. Li, H. M. Gong, X. Cao, and F. Yan, “Impact of SiNx passivation on the surface properties of InGaAs photo-detectors,” J. Appl. Phys. 118, 034507 (2015).
[Crossref]

X. L. Ji, B. Q. Liu, H. J. Tang, X. L. Yang, X. Li, H. M. Gong, B. Shen, P. Han, and F. Yan, “2.6 μ m MBE grown InGaAs detectors with dark current of SRH and TAT,” AIP Adv. 4, 087135 (2014).
[Crossref]

X. Guo, A. L. Beck, X. Li, J. C. Campbell, D. Emerson, and J. Sumakeris, “Study of reverse dark current in 4H-SiC avalanche photodiodes,” IEEE J. Quantum Electron. 41, 562–567 (2005).
[Crossref]

N. Li, R. Sidhu, X. Li, F. Ma, X. Zheng, S. Wang, G. Karve, S. Demiguel, A. L. H. Jr, and J. C. Campbell, “InGaAs/InAlAs avalanche photodiode with undepleted absorber,” Appl. Phys. Lett. 82, 2175–2177 (2003).
[Crossref]

X. G. Zheng, J. S. Hsu, X. Sun, J. B. Hurst, X. Li, S. Wang, A. L. H. Jr, J. C. Campbell, A. S. Huntington, and L. A. Coldren, “A 12× 12 In0.53Ga0.47As-In0.52Al0.48As avalanche photodiode array,” IEEE J. Quantum Electron. 38, 1536–1540 (2002).
[Crossref]

Lindau, I.

W. E. Spicer, I. Lindau, P. Skeath, C. Y. Su, and P. Chye, “Unified mechanism for schottky-barrier formation and III–V oxide interface states,” Phys. Rev. Lett. 44, 420–423 (1980).
[Crossref]

Liu, B. Q.

X. L. Ji, B. Q. Liu, H. J. Tang, X. L. Yang, X. Li, H. M. Gong, B. Shen, P. Han, and F. Yan, “2.6 μ m MBE grown InGaAs detectors with dark current of SRH and TAT,” AIP Adv. 4, 087135 (2014).
[Crossref]

Logan, R. A.

D. V. Lang, R. A. Logan, and L. C. Kimerling, “Identification of the defect state associated with a gallium vacancy in GaAs and Alx Ga1−x As,” Phys. Rev. B 15, 4874–4882 (1972).
[Crossref]

Lu, W.

H. Yin, T. X. Li, W. D. Hu, W. J. Wang, N. Li, X. S. Chen, and W. Lu, “Nonequilibrium carrier distribution in semiconductor photodetectors: surface leakage channel under illumination,” Appl. Phys. Lett. 96, 263508 (2010).
[Crossref]

Ma, F.

N. Li, R. Sidhu, X. Li, F. Ma, X. Zheng, S. Wang, G. Karve, S. Demiguel, A. L. H. Jr, and J. C. Campbell, “InGaAs/InAlAs avalanche photodiode with undepleted absorber,” Appl. Phys. Lett. 82, 2175–2177 (2003).
[Crossref]

Ma, Y. J.

Y. J. Ma, Y. Zhang, Y. Gu, L. Zhou, X. Y. Chen, S. Xi, and H. Li, “Low operating voltage and small gain slope of InGaAs APDs with p-type multiplication layer,” IEEE Photon. Technol. Lett. 27, 661–664 (2015).
[Crossref]

Y. J. Ma, Y. G. Zhang, Y. Gu, X. Y. Chen, S. P. Xi, B. Du, and H. Li, “Tailoring the performances of low operating voltage InAlAs/InGaAs avalanche photodetectors,” Opt. Express 23, 19278–19287 (2015).
[Crossref] [PubMed]

Makita, K.

T. Nakata, I. Watanabe, K. Makita, and T. Torikai, “InAlAs avalanche photodiodes with very thin multiplication layer of 0.1 μ m for high speed and low-voltage-operation optical receiver,” Electron Lett. 36, 1807–1809 (2000).
[Crossref]

Matsuzaki, H.

M. Nada, Y. Muramoto, H. Yokoyama, T. Ishibashi, and H. Matsuzaki, “Triple-mesa avalanche photodiode with inverted P-down structure for reliability and stability,” IEEE J. Lightwave Technol. 32, 1543–1548 (2014).
[Crossref]

Mead, C. A.

C. A. Mead and W. Q. Spitzer, “Fermi level position at semiconductor surfaces,” Phys. Rev. Lett. 10, 471–472 (1963).
[Crossref]

Min, S. K.

H. Y. Cho, E. K. Kim, S. K. Min, J. B. Kim, and J. Jang, “Creation of deep levels in horizontal Bridgman-grown GaAs by hydrogenation,” Appl. Phys. Lett. 53, 856–858 (1988).
[Crossref]

Morrow, R. A.

R. A. Morrow, “Modeling the diffusion of hydrogen in GaAs,” J. Appl. Phys. 66, 2973–2979 (1989).
[Crossref]

Muramoto, Y.

M. Nada, Y. Muramoto, H. Yokoyama, T. Ishibashi, and H. Matsuzaki, “Triple-mesa avalanche photodiode with inverted P-down structure for reliability and stability,” IEEE J. Lightwave Technol. 32, 1543–1548 (2014).
[Crossref]

M. Nada, Y. Muramoto, H. Yokoyama, N. Shigekawa, T. Ishibashi, and S. Kodama, “Inverted InAlAs/InGaAs avalanche photodiode with low-high-low electric field profile,” Jpn. J. Appl. Phys. 51, 02BG03 (2012).
[Crossref]

Myers, S.

H. S. Kim, E. Plis, A. Khoshakhlagh, S. Myers, N. Gautam, Y. D. Sharma, L. R. Dawson, S. Krishna, S. J. Lee, and S. K. Noh, “Performance improvement of InAs/GaSb strained layer superlattice detectors by reducing surface leakage currents with SU-8 passivation,” Appl. Phys. Lett. 96, 033502 (2010).
[Crossref]

Nada, M.

M. Nada, Y. Muramoto, H. Yokoyama, T. Ishibashi, and H. Matsuzaki, “Triple-mesa avalanche photodiode with inverted P-down structure for reliability and stability,” IEEE J. Lightwave Technol. 32, 1543–1548 (2014).
[Crossref]

M. Nada, Y. Muramoto, H. Yokoyama, N. Shigekawa, T. Ishibashi, and S. Kodama, “Inverted InAlAs/InGaAs avalanche photodiode with low-high-low electric field profile,” Jpn. J. Appl. Phys. 51, 02BG03 (2012).
[Crossref]

Nakata, T.

T. Nakata, I. Watanabe, K. Makita, and T. Torikai, “InAlAs avalanche photodiodes with very thin multiplication layer of 0.1 μ m for high speed and low-voltage-operation optical receiver,” Electron Lett. 36, 1807–1809 (2000).
[Crossref]

Nguyen, B. M.

P. Y. Delaunay, A. Hood, B. M. Nguyen, D. Hoffman, Y. Wei, and M. Razeghi, “Passivation of type-II InAs/GaSb double heterostructure,” Appl. Phys. Lett. 91, 091112 (2007).
[Crossref]

Nguyen, B.-M.

E. K. Huang, D. Hoffman, B.-M. Nguyen, P.-Y. Delaunay, and M. Razeghi, “Surface leakage reduction in narrow band gap type-II antimonide-based superlattice photodiodes,” Appl. Phys. Lett. 94, 053506 (2009).
[Crossref]

Niklas, J. R.

T. Richter, G. Kühnel, W. Siegel, and J. R. Niklas, “Activation energies of the EL6 trap and of the 0.15 eV donor and their correlation in GaAs,” Semicond. Sci. Technol. 15, 1039–1044 (2000).
[Crossref]

Noh, S. K.

H. S. Kim, E. Plis, A. Khoshakhlagh, S. Myers, N. Gautam, Y. D. Sharma, L. R. Dawson, S. Krishna, S. J. Lee, and S. K. Noh, “Performance improvement of InAs/GaSb strained layer superlattice detectors by reducing surface leakage currents with SU-8 passivation,” Appl. Phys. Lett. 96, 033502 (2010).
[Crossref]

Pang, S. W.

O. J. Glembocki, J. A. Tuchman, K. K. Ko, S. W. Pang, A. Giordana, R. Kaplan, and C. E. Stutz, “Effects of electron cyclotron resonance etching on the ambient (100) GaAs surface,” Appl. Phys. Lett. 66, 3054–3056 (1995).
[Crossref]

Pearto, S. J.

J. Chevallier, W. C. Dautremont-Smith, C. W. Tu, and S. J. Pearto, “Donor neutralization in GaAs(Si) by atomic hydrogen,” Appl. Phys. Lett. 47, 108–110 (1985).
[Crossref]

Plis, E.

H. S. Kim, E. Plis, A. Khoshakhlagh, S. Myers, N. Gautam, Y. D. Sharma, L. R. Dawson, S. Krishna, S. J. Lee, and S. K. Noh, “Performance improvement of InAs/GaSb strained layer superlattice detectors by reducing surface leakage currents with SU-8 passivation,” Appl. Phys. Lett. 96, 033502 (2010).
[Crossref]

Razeghi, M.

G. Chen, A. M. Hoang, S. Bogdanov, A. Haddadi, S. R. Darvish, and M. Razeghi, “Effect of sidewall surface recombination on the quantum efficiency in a Y2O3 passivated gated type-II InAs/GaSb long-infrared photodetector array,” Appl. Phys. Lett. 103, 223501 (2013).
[Crossref]

E. K. Huang, D. Hoffman, B.-M. Nguyen, P.-Y. Delaunay, and M. Razeghi, “Surface leakage reduction in narrow band gap type-II antimonide-based superlattice photodiodes,” Appl. Phys. Lett. 94, 053506 (2009).
[Crossref]

P. Y. Delaunay, A. Hood, B. M. Nguyen, D. Hoffman, Y. Wei, and M. Razeghi, “Passivation of type-II InAs/GaSb double heterostructure,” Appl. Phys. Lett. 91, 091112 (2007).
[Crossref]

Rehm, R.

R. Rehm, M. Walther, F. Fuchs, J. Schmitz, and J. Fleissner, “Passivation of InAs/(GaIn)Sb short-period superlattice photodiodes with 10 μ m cutoff wavelength by epitaxial overgrowth with Alx Ga1−x Asy Sb1−y,” Appl. Phys. Rev. 86, 173501 (2005).

Ren, M.

M. Ren, Y. Chen, W. Sun, X. J. Chen, E. B. Johnson, J. F. Christian, and J. C. Campbell, “Linear-and Geiger-mode characteristics of Al0.8Ga0.2As avalanche photodiodes,” IEEE Photon. Technol. Lett. 26, 2480–2483 (2014).
[Crossref]

Richter, T.

T. Richter, G. Kühnel, W. Siegel, and J. R. Niklas, “Activation energies of the EL6 trap and of the 0.15 eV donor and their correlation in GaAs,” Semicond. Sci. Technol. 15, 1039–1044 (2000).
[Crossref]

Ringel, S. A.

P. N. Grillot, S. A. Ringel, and E. A. Fitzgerald, “Effect of composition on deep levels in heteroepitaxial Gex Si1−x layers and evidence for dominant intrinsic recombination-generation in relaxed Ge layers on Si,” J. Electron Mater 25, 1028C1036 (1996).
[Crossref]

Roland, M.

W. R. Clark, A. Davis, M. Roland, and K. Vaccaro, “A 1 cm × 1 cm In0.53Ga0.47As-In0.52Al0.48As avalanche photodiode array,” IEEE Photon. Technol. Lett. 18, 19–21 (2006).
[Crossref]

Rutz, F.

F. Rutz, P. K. R. Aidam, H. Heussen, W. Bronner, A. Sieck, and M. Walther, “SWIR photodetector development at Fraunhofer IAF,” Proc. SPIE 9481, 948107 (2015).
[Crossref]

P. Kleinow, F. Rutz, R. Aidam, W. Bronner, H. Heussen, and M. Walther, “Optimization of InGaAs/InAlAs APDs for SWIR detection with demand for high gain and low breakdown voltage,” Proc. SPIE 9249, 92490X (2014).

Schmitz, J.

R. Rehm, M. Walther, F. Fuchs, J. Schmitz, and J. Fleissner, “Passivation of InAs/(GaIn)Sb short-period superlattice photodiodes with 10 μ m cutoff wavelength by epitaxial overgrowth with Alx Ga1−x Asy Sb1−y,” Appl. Phys. Rev. 86, 173501 (2005).

Shao, X. M.

Y. Zhou, X. L. Ji, M. Shi, H. J. Tang, X. M. Shao, X. Li, H. M. Gong, X. Cao, and F. Yan, “Impact of SiNx passivation on the surface properties of InGaAs photo-detectors,” J. Appl. Phys. 118, 034507 (2015).
[Crossref]

Sharma, Y. D.

H. S. Kim, E. Plis, A. Khoshakhlagh, S. Myers, N. Gautam, Y. D. Sharma, L. R. Dawson, S. Krishna, S. J. Lee, and S. K. Noh, “Performance improvement of InAs/GaSb strained layer superlattice detectors by reducing surface leakage currents with SU-8 passivation,” Appl. Phys. Lett. 96, 033502 (2010).
[Crossref]

Shen, B.

X. L. Ji, B. Q. Liu, H. J. Tang, X. L. Yang, X. Li, H. M. Gong, B. Shen, P. Han, and F. Yan, “2.6 μ m MBE grown InGaAs detectors with dark current of SRH and TAT,” AIP Adv. 4, 087135 (2014).
[Crossref]

Shi, M.

Y. Zhou, X. L. Ji, M. Shi, H. J. Tang, X. M. Shao, X. Li, H. M. Gong, X. Cao, and F. Yan, “Impact of SiNx passivation on the surface properties of InGaAs photo-detectors,” J. Appl. Phys. 118, 034507 (2015).
[Crossref]

Shigekawa, N.

M. Nada, Y. Muramoto, H. Yokoyama, N. Shigekawa, T. Ishibashi, and S. Kodama, “Inverted InAlAs/InGaAs avalanche photodiode with low-high-low electric field profile,” Jpn. J. Appl. Phys. 51, 02BG03 (2012).
[Crossref]

Sidhu, R.

N. Li, R. Sidhu, X. Li, F. Ma, X. Zheng, S. Wang, G. Karve, S. Demiguel, A. L. H. Jr, and J. C. Campbell, “InGaAs/InAlAs avalanche photodiode with undepleted absorber,” Appl. Phys. Lett. 82, 2175–2177 (2003).
[Crossref]

Sieck, A.

F. Rutz, P. K. R. Aidam, H. Heussen, W. Bronner, A. Sieck, and M. Walther, “SWIR photodetector development at Fraunhofer IAF,” Proc. SPIE 9481, 948107 (2015).
[Crossref]

Siegel, W.

T. Richter, G. Kühnel, W. Siegel, and J. R. Niklas, “Activation energies of the EL6 trap and of the 0.15 eV donor and their correlation in GaAs,” Semicond. Sci. Technol. 15, 1039–1044 (2000).
[Crossref]

Skeath, P.

W. E. Spicer, I. Lindau, P. Skeath, C. Y. Su, and P. Chye, “Unified mechanism for schottky-barrier formation and III–V oxide interface states,” Phys. Rev. Lett. 44, 420–423 (1980).
[Crossref]

Smith, R. G.

S. R. Forrest, R. G. Smith, and O. K. Kim, “Performance of ln0.53Ga0.47As/InP avalanche photodiodes,” IEEE J. Quantum Electron. QE-18, 2040–2048 (1982).
[Crossref]

Spicer, W. E.

W. E. Spicer, I. Lindau, P. Skeath, C. Y. Su, and P. Chye, “Unified mechanism for schottky-barrier formation and III–V oxide interface states,” Phys. Rev. Lett. 44, 420–423 (1980).
[Crossref]

Spitzer, W. Q.

C. A. Mead and W. Q. Spitzer, “Fermi level position at semiconductor surfaces,” Phys. Rev. Lett. 10, 471–472 (1963).
[Crossref]

Sproul, A. B.

A. B. Sproul, “Dimensionless solution of the equation describing the effect of surface recombination on carrier decay in semiconductors,” Appl. Phys. Lett. 76, 2851–2854 (1994).

Stettner, R.

J. C. Dries, BrianMiles, and R. Stettner, “A 32× 32 pixel FLASH laser radar system incorporating InGaAs PIN and APD detectors,” Proc. SPIE 5412, 250–256 (2004).
[Crossref]

Stutz, C. E.

O. J. Glembocki, J. A. Tuchman, K. K. Ko, S. W. Pang, A. Giordana, R. Kaplan, and C. E. Stutz, “Effects of electron cyclotron resonance etching on the ambient (100) GaAs surface,” Appl. Phys. Lett. 66, 3054–3056 (1995).
[Crossref]

Su, C. Y.

W. E. Spicer, I. Lindau, P. Skeath, C. Y. Su, and P. Chye, “Unified mechanism for schottky-barrier formation and III–V oxide interface states,” Phys. Rev. Lett. 44, 420–423 (1980).
[Crossref]

Sudo, H.

H. Sudo and M. Suzuki, “Surface degradation mechanism of InP/InGaAs APDs,” J. Lightwave Technol. 6, 1496–1501 (1988).
[Crossref]

Sumakeris, J.

X. Guo, A. L. Beck, X. Li, J. C. Campbell, D. Emerson, and J. Sumakeris, “Study of reverse dark current in 4H-SiC avalanche photodiodes,” IEEE J. Quantum Electron. 41, 562–567 (2005).
[Crossref]

Sun, W.

M. Ren, Y. Chen, W. Sun, X. J. Chen, E. B. Johnson, J. F. Christian, and J. C. Campbell, “Linear-and Geiger-mode characteristics of Al0.8Ga0.2As avalanche photodiodes,” IEEE Photon. Technol. Lett. 26, 2480–2483 (2014).
[Crossref]

Sun, X.

X. G. Zheng, J. S. Hsu, X. Sun, J. B. Hurst, X. Li, S. Wang, A. L. H. Jr, J. C. Campbell, A. S. Huntington, and L. A. Coldren, “A 12× 12 In0.53Ga0.47As-In0.52Al0.48As avalanche photodiode array,” IEEE J. Quantum Electron. 38, 1536–1540 (2002).
[Crossref]

Suzuki, M.

H. Sudo and M. Suzuki, “Surface degradation mechanism of InP/InGaAs APDs,” J. Lightwave Technol. 6, 1496–1501 (1988).
[Crossref]

Swaminathan, V.

V. Swaminathan, J. M. Freund, L. M. F. Chirovsky, T. D. Harris, N. A. Kuebler, and L. A. DAsaro, “Evidence for surface recombination at mesa sidewalls of self-electro-optic effect devices,” J. Appl. Phys. 68, 4116–4118 (1990).
[Crossref]

Tang, H. J.

Y. Zhou, X. L. Ji, M. Shi, H. J. Tang, X. M. Shao, X. Li, H. M. Gong, X. Cao, and F. Yan, “Impact of SiNx passivation on the surface properties of InGaAs photo-detectors,” J. Appl. Phys. 118, 034507 (2015).
[Crossref]

X. L. Ji, B. Q. Liu, H. J. Tang, X. L. Yang, X. Li, H. M. Gong, B. Shen, P. Han, and F. Yan, “2.6 μ m MBE grown InGaAs detectors with dark current of SRH and TAT,” AIP Adv. 4, 087135 (2014).
[Crossref]

Torikai, T.

T. Nakata, I. Watanabe, K. Makita, and T. Torikai, “InAlAs avalanche photodiodes with very thin multiplication layer of 0.1 μ m for high speed and low-voltage-operation optical receiver,” Electron Lett. 36, 1807–1809 (2000).
[Crossref]

Tu, C. W.

J. Chevallier, W. C. Dautremont-Smith, C. W. Tu, and S. J. Pearto, “Donor neutralization in GaAs(Si) by atomic hydrogen,” Appl. Phys. Lett. 47, 108–110 (1985).
[Crossref]

Tuchman, J. A.

O. J. Glembocki, J. A. Tuchman, K. K. Ko, S. W. Pang, A. Giordana, R. Kaplan, and C. E. Stutz, “Effects of electron cyclotron resonance etching on the ambient (100) GaAs surface,” Appl. Phys. Lett. 66, 3054–3056 (1995).
[Crossref]

Vaccaro, K.

W. R. Clark, A. Davis, M. Roland, and K. Vaccaro, “A 1 cm × 1 cm In0.53Ga0.47As-In0.52Al0.48As avalanche photodiode array,” IEEE Photon. Technol. Lett. 18, 19–21 (2006).
[Crossref]

Walther, M.

F. Rutz, P. K. R. Aidam, H. Heussen, W. Bronner, A. Sieck, and M. Walther, “SWIR photodetector development at Fraunhofer IAF,” Proc. SPIE 9481, 948107 (2015).
[Crossref]

P. Kleinow, F. Rutz, R. Aidam, W. Bronner, H. Heussen, and M. Walther, “Optimization of InGaAs/InAlAs APDs for SWIR detection with demand for high gain and low breakdown voltage,” Proc. SPIE 9249, 92490X (2014).

R. Rehm, M. Walther, F. Fuchs, J. Schmitz, and J. Fleissner, “Passivation of InAs/(GaIn)Sb short-period superlattice photodiodes with 10 μ m cutoff wavelength by epitaxial overgrowth with Alx Ga1−x Asy Sb1−y,” Appl. Phys. Rev. 86, 173501 (2005).

Wang, S.

N. Li, R. Sidhu, X. Li, F. Ma, X. Zheng, S. Wang, G. Karve, S. Demiguel, A. L. H. Jr, and J. C. Campbell, “InGaAs/InAlAs avalanche photodiode with undepleted absorber,” Appl. Phys. Lett. 82, 2175–2177 (2003).
[Crossref]

X. G. Zheng, J. S. Hsu, X. Sun, J. B. Hurst, X. Li, S. Wang, A. L. H. Jr, J. C. Campbell, A. S. Huntington, and L. A. Coldren, “A 12× 12 In0.53Ga0.47As-In0.52Al0.48As avalanche photodiode array,” IEEE J. Quantum Electron. 38, 1536–1540 (2002).
[Crossref]

Wang, W. J.

H. Yin, T. X. Li, W. D. Hu, W. J. Wang, N. Li, X. S. Chen, and W. Lu, “Nonequilibrium carrier distribution in semiconductor photodetectors: surface leakage channel under illumination,” Appl. Phys. Lett. 96, 263508 (2010).
[Crossref]

Watanabe, I.

T. Nakata, I. Watanabe, K. Makita, and T. Torikai, “InAlAs avalanche photodiodes with very thin multiplication layer of 0.1 μ m for high speed and low-voltage-operation optical receiver,” Electron Lett. 36, 1807–1809 (2000).
[Crossref]

Wei, Y.

P. Y. Delaunay, A. Hood, B. M. Nguyen, D. Hoffman, Y. Wei, and M. Razeghi, “Passivation of type-II InAs/GaSb double heterostructure,” Appl. Phys. Lett. 91, 091112 (2007).
[Crossref]

Xi, S.

Y. J. Ma, Y. Zhang, Y. Gu, L. Zhou, X. Y. Chen, S. Xi, and H. Li, “Low operating voltage and small gain slope of InGaAs APDs with p-type multiplication layer,” IEEE Photon. Technol. Lett. 27, 661–664 (2015).
[Crossref]

Xi, S. P.

Yan, F.

Y. Zhou, X. L. Ji, M. Shi, H. J. Tang, X. M. Shao, X. Li, H. M. Gong, X. Cao, and F. Yan, “Impact of SiNx passivation on the surface properties of InGaAs photo-detectors,” J. Appl. Phys. 118, 034507 (2015).
[Crossref]

X. L. Ji, B. Q. Liu, H. J. Tang, X. L. Yang, X. Li, H. M. Gong, B. Shen, P. Han, and F. Yan, “2.6 μ m MBE grown InGaAs detectors with dark current of SRH and TAT,” AIP Adv. 4, 087135 (2014).
[Crossref]

Yang, X. L.

X. L. Ji, B. Q. Liu, H. J. Tang, X. L. Yang, X. Li, H. M. Gong, B. Shen, P. Han, and F. Yan, “2.6 μ m MBE grown InGaAs detectors with dark current of SRH and TAT,” AIP Adv. 4, 087135 (2014).
[Crossref]

Yin, H.

H. Yin, T. X. Li, W. D. Hu, W. J. Wang, N. Li, X. S. Chen, and W. Lu, “Nonequilibrium carrier distribution in semiconductor photodetectors: surface leakage channel under illumination,” Appl. Phys. Lett. 96, 263508 (2010).
[Crossref]

Yokoyama, H.

M. Nada, Y. Muramoto, H. Yokoyama, T. Ishibashi, and H. Matsuzaki, “Triple-mesa avalanche photodiode with inverted P-down structure for reliability and stability,” IEEE J. Lightwave Technol. 32, 1543–1548 (2014).
[Crossref]

M. Nada, Y. Muramoto, H. Yokoyama, N. Shigekawa, T. Ishibashi, and S. Kodama, “Inverted InAlAs/InGaAs avalanche photodiode with low-high-low electric field profile,” Jpn. J. Appl. Phys. 51, 02BG03 (2012).
[Crossref]

Zhang, Y.

Y. J. Ma, Y. Zhang, Y. Gu, L. Zhou, X. Y. Chen, S. Xi, and H. Li, “Low operating voltage and small gain slope of InGaAs APDs with p-type multiplication layer,” IEEE Photon. Technol. Lett. 27, 661–664 (2015).
[Crossref]

Zhang, Y. G.

Zheng, X.

N. Li, R. Sidhu, X. Li, F. Ma, X. Zheng, S. Wang, G. Karve, S. Demiguel, A. L. H. Jr, and J. C. Campbell, “InGaAs/InAlAs avalanche photodiode with undepleted absorber,” Appl. Phys. Lett. 82, 2175–2177 (2003).
[Crossref]

Zheng, X. G.

X. G. Zheng, J. S. Hsu, X. Sun, J. B. Hurst, X. Li, S. Wang, A. L. H. Jr, J. C. Campbell, A. S. Huntington, and L. A. Coldren, “A 12× 12 In0.53Ga0.47As-In0.52Al0.48As avalanche photodiode array,” IEEE J. Quantum Electron. 38, 1536–1540 (2002).
[Crossref]

Zhou, L.

Y. J. Ma, Y. Zhang, Y. Gu, L. Zhou, X. Y. Chen, S. Xi, and H. Li, “Low operating voltage and small gain slope of InGaAs APDs with p-type multiplication layer,” IEEE Photon. Technol. Lett. 27, 661–664 (2015).
[Crossref]

Zhou, Y.

Y. Zhou, X. L. Ji, M. Shi, H. J. Tang, X. M. Shao, X. Li, H. M. Gong, X. Cao, and F. Yan, “Impact of SiNx passivation on the surface properties of InGaAs photo-detectors,” J. Appl. Phys. 118, 034507 (2015).
[Crossref]

AIP Adv. (1)

X. L. Ji, B. Q. Liu, H. J. Tang, X. L. Yang, X. Li, H. M. Gong, B. Shen, P. Han, and F. Yan, “2.6 μ m MBE grown InGaAs detectors with dark current of SRH and TAT,” AIP Adv. 4, 087135 (2014).
[Crossref]

Appl. Phys. Lett. (10)

E. K. Huang, D. Hoffman, B.-M. Nguyen, P.-Y. Delaunay, and M. Razeghi, “Surface leakage reduction in narrow band gap type-II antimonide-based superlattice photodiodes,” Appl. Phys. Lett. 94, 053506 (2009).
[Crossref]

O. J. Glembocki, J. A. Tuchman, K. K. Ko, S. W. Pang, A. Giordana, R. Kaplan, and C. E. Stutz, “Effects of electron cyclotron resonance etching on the ambient (100) GaAs surface,” Appl. Phys. Lett. 66, 3054–3056 (1995).
[Crossref]

H. Y. Cho, E. K. Kim, S. K. Min, J. B. Kim, and J. Jang, “Creation of deep levels in horizontal Bridgman-grown GaAs by hydrogenation,” Appl. Phys. Lett. 53, 856–858 (1988).
[Crossref]

H. Yin, T. X. Li, W. D. Hu, W. J. Wang, N. Li, X. S. Chen, and W. Lu, “Nonequilibrium carrier distribution in semiconductor photodetectors: surface leakage channel under illumination,” Appl. Phys. Lett. 96, 263508 (2010).
[Crossref]

P. Y. Delaunay, A. Hood, B. M. Nguyen, D. Hoffman, Y. Wei, and M. Razeghi, “Passivation of type-II InAs/GaSb double heterostructure,” Appl. Phys. Lett. 91, 091112 (2007).
[Crossref]

G. Chen, A. M. Hoang, S. Bogdanov, A. Haddadi, S. R. Darvish, and M. Razeghi, “Effect of sidewall surface recombination on the quantum efficiency in a Y2O3 passivated gated type-II InAs/GaSb long-infrared photodetector array,” Appl. Phys. Lett. 103, 223501 (2013).
[Crossref]

H. S. Kim, E. Plis, A. Khoshakhlagh, S. Myers, N. Gautam, Y. D. Sharma, L. R. Dawson, S. Krishna, S. J. Lee, and S. K. Noh, “Performance improvement of InAs/GaSb strained layer superlattice detectors by reducing surface leakage currents with SU-8 passivation,” Appl. Phys. Lett. 96, 033502 (2010).
[Crossref]

J. Chevallier, W. C. Dautremont-Smith, C. W. Tu, and S. J. Pearto, “Donor neutralization in GaAs(Si) by atomic hydrogen,” Appl. Phys. Lett. 47, 108–110 (1985).
[Crossref]

A. B. Sproul, “Dimensionless solution of the equation describing the effect of surface recombination on carrier decay in semiconductors,” Appl. Phys. Lett. 76, 2851–2854 (1994).

N. Li, R. Sidhu, X. Li, F. Ma, X. Zheng, S. Wang, G. Karve, S. Demiguel, A. L. H. Jr, and J. C. Campbell, “InGaAs/InAlAs avalanche photodiode with undepleted absorber,” Appl. Phys. Lett. 82, 2175–2177 (2003).
[Crossref]

Appl. Phys. Rev. (1)

R. Rehm, M. Walther, F. Fuchs, J. Schmitz, and J. Fleissner, “Passivation of InAs/(GaIn)Sb short-period superlattice photodiodes with 10 μ m cutoff wavelength by epitaxial overgrowth with Alx Ga1−x Asy Sb1−y,” Appl. Phys. Rev. 86, 173501 (2005).

Electron Lett. (1)

T. Nakata, I. Watanabe, K. Makita, and T. Torikai, “InAlAs avalanche photodiodes with very thin multiplication layer of 0.1 μ m for high speed and low-voltage-operation optical receiver,” Electron Lett. 36, 1807–1809 (2000).
[Crossref]

IEEE J. Lightwave Technol. (1)

M. Nada, Y. Muramoto, H. Yokoyama, T. Ishibashi, and H. Matsuzaki, “Triple-mesa avalanche photodiode with inverted P-down structure for reliability and stability,” IEEE J. Lightwave Technol. 32, 1543–1548 (2014).
[Crossref]

IEEE J. Quantum Electron. (3)

S. R. Forrest, R. G. Smith, and O. K. Kim, “Performance of ln0.53Ga0.47As/InP avalanche photodiodes,” IEEE J. Quantum Electron. QE-18, 2040–2048 (1982).
[Crossref]

X. Guo, A. L. Beck, X. Li, J. C. Campbell, D. Emerson, and J. Sumakeris, “Study of reverse dark current in 4H-SiC avalanche photodiodes,” IEEE J. Quantum Electron. 41, 562–567 (2005).
[Crossref]

X. G. Zheng, J. S. Hsu, X. Sun, J. B. Hurst, X. Li, S. Wang, A. L. H. Jr, J. C. Campbell, A. S. Huntington, and L. A. Coldren, “A 12× 12 In0.53Ga0.47As-In0.52Al0.48As avalanche photodiode array,” IEEE J. Quantum Electron. 38, 1536–1540 (2002).
[Crossref]

IEEE Photon. Technol. Lett. (3)

Y. J. Ma, Y. Zhang, Y. Gu, L. Zhou, X. Y. Chen, S. Xi, and H. Li, “Low operating voltage and small gain slope of InGaAs APDs with p-type multiplication layer,” IEEE Photon. Technol. Lett. 27, 661–664 (2015).
[Crossref]

W. R. Clark, A. Davis, M. Roland, and K. Vaccaro, “A 1 cm × 1 cm In0.53Ga0.47As-In0.52Al0.48As avalanche photodiode array,” IEEE Photon. Technol. Lett. 18, 19–21 (2006).
[Crossref]

M. Ren, Y. Chen, W. Sun, X. J. Chen, E. B. Johnson, J. F. Christian, and J. C. Campbell, “Linear-and Geiger-mode characteristics of Al0.8Ga0.2As avalanche photodiodes,” IEEE Photon. Technol. Lett. 26, 2480–2483 (2014).
[Crossref]

J. Appl. Phys. (3)

Y. Zhou, X. L. Ji, M. Shi, H. J. Tang, X. M. Shao, X. Li, H. M. Gong, X. Cao, and F. Yan, “Impact of SiNx passivation on the surface properties of InGaAs photo-detectors,” J. Appl. Phys. 118, 034507 (2015).
[Crossref]

V. Swaminathan, J. M. Freund, L. M. F. Chirovsky, T. D. Harris, N. A. Kuebler, and L. A. DAsaro, “Evidence for surface recombination at mesa sidewalls of self-electro-optic effect devices,” J. Appl. Phys. 68, 4116–4118 (1990).
[Crossref]

R. A. Morrow, “Modeling the diffusion of hydrogen in GaAs,” J. Appl. Phys. 66, 2973–2979 (1989).
[Crossref]

J. Electron Mater (1)

P. N. Grillot, S. A. Ringel, and E. A. Fitzgerald, “Effect of composition on deep levels in heteroepitaxial Gex Si1−x layers and evidence for dominant intrinsic recombination-generation in relaxed Ge layers on Si,” J. Electron Mater 25, 1028C1036 (1996).
[Crossref]

J. Lightwave Technol. (1)

H. Sudo and M. Suzuki, “Surface degradation mechanism of InP/InGaAs APDs,” J. Lightwave Technol. 6, 1496–1501 (1988).
[Crossref]

Jpn. J. Appl. Phys. (1)

M. Nada, Y. Muramoto, H. Yokoyama, N. Shigekawa, T. Ishibashi, and S. Kodama, “Inverted InAlAs/InGaAs avalanche photodiode with low-high-low electric field profile,” Jpn. J. Appl. Phys. 51, 02BG03 (2012).
[Crossref]

Opt. Express (1)

Phys. Rev. B (1)

D. V. Lang, R. A. Logan, and L. C. Kimerling, “Identification of the defect state associated with a gallium vacancy in GaAs and Alx Ga1−x As,” Phys. Rev. B 15, 4874–4882 (1972).
[Crossref]

Phys. Rev. Lett. (2)

C. A. Mead and W. Q. Spitzer, “Fermi level position at semiconductor surfaces,” Phys. Rev. Lett. 10, 471–472 (1963).
[Crossref]

W. E. Spicer, I. Lindau, P. Skeath, C. Y. Su, and P. Chye, “Unified mechanism for schottky-barrier formation and III–V oxide interface states,” Phys. Rev. Lett. 44, 420–423 (1980).
[Crossref]

Proc. SPIE (3)

J. C. Dries, BrianMiles, and R. Stettner, “A 32× 32 pixel FLASH laser radar system incorporating InGaAs PIN and APD detectors,” Proc. SPIE 5412, 250–256 (2004).
[Crossref]

F. Rutz, P. K. R. Aidam, H. Heussen, W. Bronner, A. Sieck, and M. Walther, “SWIR photodetector development at Fraunhofer IAF,” Proc. SPIE 9481, 948107 (2015).
[Crossref]

P. Kleinow, F. Rutz, R. Aidam, W. Bronner, H. Heussen, and M. Walther, “Optimization of InGaAs/InAlAs APDs for SWIR detection with demand for high gain and low breakdown voltage,” Proc. SPIE 9249, 92490X (2014).

Semicond. Sci. Technol. (1)

T. Richter, G. Kühnel, W. Siegel, and J. R. Niklas, “Activation energies of the EL6 trap and of the 0.15 eV donor and their correlation in GaAs,” Semicond. Sci. Technol. 15, 1039–1044 (2000).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

45° side-view SEM images of the wet-etched (a) square (WS) and (b) round (WR) mesas and the ICP-etched (c) square (DS) and (d) round (DR) mesas. Right panel: cross-sectional SEM images of the mesa edges along < −110 > and < 110 > crystal orientations for corresponding wet- and ICP-etched mesas

Fig. 2
Fig. 2

Photo and dark current density versus reverse bias of (a) the wet- (WS and WR) and the ICP-etched (DS and DR) APDs with both square and round mesa shapes, and (b) the ICP-etched APDs with different etchants (DRA, DRH, DR). The corresponding gain-bias curves for the APDs are also depicted. Note that the curve of DR is shown both in (a) and (b) for comparison.

Fig. 3
Fig. 3

(a) The dependence of 1/(RA) biased at 0.8VB versus the ratio of P/A for variable area devices with different mesa shapes and etching processes at RT. (b) The extracted ρsurf and (c) the deduced ratio of Jsurf/Jbulk of different devices.

Fig. 4
Fig. 4

Temperature-dependent JD for (a) devices with different etching processes biased at −15 V and (b) DRH biased from −10 to −21 V. The square and round mesas under the same etching processes (WS/WR and DS/DR) show nearly identical temperature dependences and therefore only one of them are shown for better viewing in (a).

Fig. 5
Fig. 5

Schematic band diagrams of the surface states at the interfaces between the SiNx passivation layer and the p-type InAlAs multiplication layer as well as the InGaAs absorption layer. (a) Acceptor-like states induced by dangling bonds. (b) Donor-like states induced by adsorbed hydrogen impurity states. (FE-TAT: field enhanced trap-assisted tunneling; REC: recombination, EH: deep hydrogen defect level near surfaces)

Tables (1)

Tables Icon

Table 1 List on the Mesa Etching Parameters of the APD Samples and the Corresponding Device Performances Measured at RT

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

1 / R A = 1 / ( R A ) bulk + ( 1 / ρ surf ) ( P / A )
J D = J b u l k + J s u r f ( P / A )

Metrics