Abstract

The interaction of nanosecond laser pulses at 1064- and 355-nm with micro-scale, nominally spherical metallic particles is investigated in order to elucidate the governing interaction mechanisms as a function of material and laser parameters. The experimental model used involves the irradiation of metal particles located on the surface of transparent plates combined with time-resolved imaging capable of capturing the dynamics of particle ejection, plume formation and expansion along with the kinetics of the dispersed material from the liquefied layer of the particle. The mechanisms investigated in this work are informative and relevant across a multitude of materials and irradiation geometries suitable for the description of a wide range of specific applications. The experimental results were interpreted using physical models incorporating specific processes to assess their contribution to the overall observed behaviors. Analysis of the experimental results suggests that the induced kinetic properties of the particle can be adequately described using the concept of momentum coupling introduced to explain the interaction of plane metal targets to large-aperture laser beams. The results also suggest that laser energy deposition on the formed plasma affects the energy partitioning and the material modifications to the substrate.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Relaxation dynamics of nanosecond laser superheated material in dielectrics

Stavros G. Demos, Raluca A. Negres, Rajesh N. Raman, Michael D. Feit, Kenneth R. Manes, and Alexander M. Rubenchik
Optica 2(8) 765-772 (2015)

Damage on fused silica optics caused by laser ablation of surface-bound microparticles

Rajesh N. Raman, Stavros G. Demos, Nan Shen, Eyal Feigenbaum, Raluca A. Negres, Selim Elhadj, Alexander M. Rubenchik, and Manyalibo J. Matthews
Opt. Express 24(3) 2634-2647 (2016)

Time-resolved imaging of processes associated with exit-surface damage growth in fused silica following exposure to nanosecond laser pulses

Stavros G. Demos, Rajesh N. Raman, and Raluca A. Negres
Opt. Express 21(4) 4875-4888 (2013)

References

  • View by:
  • |
  • |
  • |

  1. A. A. Z. V. E. Zuev, Yu. D. Kopytin, and A. V. Kuzikovskii, High-Power Laser Radiation in Atmospheric Aerosols (D. Reidel Publishing Company, 1985).
  2. J. H. Eickmans, W. F. Hsieh, and R. K. Chang, “Laser-induced explosion of H2O droplets: spatially resolved spectra,” Opt. Lett. 12(1), 22–24 (1987).
    [Crossref] [PubMed]
  3. R. L. Armstrong, “Interactions of absorbing aerosols with intense light-beams,” J. Appl. Phys. 56(7), 2142–2153 (1984).
    [Crossref]
  4. S. M. Chitanvis and A. Zardecki, “Propagation of a high-energy laser-beam through a cloud of burning carbon particles,” J. Opt. Soc. Am. A 7(1), 26–33 (1990).
    [Crossref]
  5. E. P. Silaeva, S. A. Shlenov, and V. P. Kandidov, “Multifilamentation of high-power femtosecond laser pulse in turbulent atmosphere with aerosol,” Appl. Phys. B 101(1-2), 393–401 (2010).
    [Crossref]
  6. W. Zapka, W. Ziemlich, and A. C. Tam, “Efficient pulsed laser removal of 0.2-μm sized particles from a solid surface,” Appl. Phys. Lett. 58(20), 2217–2219 (1991).
    [Crossref]
  7. K. Imen, S. J. Lee, and S. D. Allen, “Laser-assisted micron scale particle removal,” Appl. Phys. Lett. 58(2), 203–205 (1991).
    [Crossref]
  8. D. R. Halfpenny and D. M. Kane, “A quantitative analysis of single pulse ultraviolet dry laser cleaning,” J. Appl. Phys. 86(12), 6641–6646 (1999).
    [Crossref]
  9. M. Arronte, P. Neves, and R. Vilar, “Modeling of laser cleaning of metallic particulate contaminants from silicon surfaces,” J. Appl. Phys. 92(12), 6973–6982 (2002).
    [Crossref]
  10. Y. F. Lu, W. D. Song, B. W. Ang, M. H. Hong, D. S. H. Chan, and T. S. Low, “A theoretical model for laser removal of particles from solid surfaces,” Appl. Phys., A Mater. Sci. Process. 65(1), 9–13 (1997).
    [Crossref]
  11. C. Curran, J. M. Lee, and K. G. Watkins, “Ultraviolet laser removal of small metallic particles from silicon wafers,” Opt. Lasers Eng. 38(6), 405–415 (2002).
    [Crossref]
  12. G. Vereecke, E. Rohr, and M. M. Heyns, “Laser-assisted removal of particles on silicon wafers,” J. Appl. Phys. 85(7), 3837–3843 (1999).
    [Crossref]
  13. D. Grojo, M. BoyoMo-Onana, A. Cros, and P. Delaporte, “Influence of laser pulse shape on dry laser cleaning,” Appl. Surf. Sci. 252(13), 4786–4791 (2006).
    [Crossref]
  14. D. Grojo, P. Delaporte, M. Sentis, O. H. Pakarinen, and A. S. Foster, “The so-called dry laser cleaning governed by humidity at the nanometer scale,” Appl. Phys. Lett. 92(3), 033108 (2008).
    [Crossref]
  15. D. M. Kane and D. R. Halfpenny, “Reduced threshold ultraviolet laser ablation of glass substrates with surface particle coverage: A mechanism for systematic surface laser damage,” J. Appl. Phys. 87(9), 4548–4552 (2000).
    [Crossref]
  16. S. Palmier, J. L. Rullier, J. Capoulade, and J. Y. Natoli, “Effect of laser irradiation on silica substrate contaminated by aluminum particles,” Appl. Opt. 47(8), 1164–1170 (2008).
    [Crossref] [PubMed]
  17. S. Arif, O. Armbruster, and W. Kautek, “Pulse laser particulate separation from polycarbonate: surface acoustic wave and thermomechanical mechanisms,” Appl. Phys., A Mater. Sci. Process. 111(2), 539–548 (2013).
    [Crossref]
  18. S. Juodkazis and H. Misawa, “Controlled through-hole ablation of polymer microspheres,” J. Micromech. Microeng. 14(8), 1244–1248 (2004).
    [Crossref]
  19. D. Grojo, L. Boarino, N. De Leo, R. Rocci, G. Panzarasa, P. Delaporte, M. Laus, and K. Sparnacci, “Size scaling of mesoporous silica membranes produced by nanosphere mediated laser ablation,” Nanotechnology 23(48), 485305 (2012).
    [Crossref] [PubMed]
  20. A. Vatry, M. N. Habib, P. Delaporte, M. Sentis, D. Grojo, C. Grisolia, and S. Rosanvallon, “Experimental investigation on laser removal of carbon and tungsten particles,” Appl. Surf. Sci. 255(10), 5569–5573 (2009).
    [Crossref]
  21. Y. Kameo, M. Nakashima, and T. Hirabayashi, “New laser decontamination technique for radioactively contaminated metal surfaces using acid-bearing sodium silicate gel,” J. Nucl. Sci. Technol. 41(9), 919–924 (2004).
    [Crossref]
  22. P. Delaporte, M. Gastaud, W. Marine, M. Sentis, O. Uteza, P. Thouvenot, J. L. Alcaraz, J. M. Le Samedy, and D. Blin, “Dry excimer laser cleaning applied to nuclear decontamination,” Appl. Surf. Sci. 208, 298–305 (2003).
    [Crossref]
  23. D. E. Roberts and T. S. Modise, “Laser removal of loose uranium compound contamination from metal surfaces,” Appl. Surf. Sci. 253(12), 5258–5267 (2007).
    [Crossref]
  24. D. Jang, B. Oh, and D. Kim, “Visualization of microparticle explosion and flow field in nanoparticle synthesis by pulsed laser ablation,” Appl. Phys., A Mater. Sci. Process. 79, 1149–1151 (2004).
  25. J. Lee, M. F. Becker, and J. W. Keto, “Dynamics of laser ablation of microparticles prior to nanoparticle generation,” J. Appl. Phys. 89(12), 8146–8152 (2001).
    [Crossref]
  26. R. Morgan, C. J. Sutcliffe, and W. O’Neill, “Experimental investigation of nanosecond pulsed Nd:YAG laser re-melted pre-placed powder beds,” Rapid Prototyping J. 7(3), 159–172 (2001).
    [Crossref]
  27. C. Konrad, Y. W. Zhang, and Y. Shi, “Melting and resolidification of a subcooled metal powder particle subjected to nanosecond laser heating,” Int. J. Heat Mass Tran. 50(11-12), 2236–2245 (2007).
    [Crossref]
  28. P. Fischer, V. Romano, H. P. Weber, N. P. Karapatis, E. Boillat, and R. Glardon, “Sintering of commercially pure titanium powder with a Nd:YAG laser source,” Acta Mater. 51(6), 1651–1662 (2003).
    [Crossref]
  29. M. Keidar, I. D. Boyd, J. Luke, and C. Phipps, “Plasma generation and plume expansion for a transmission-mode microlaser ablation plasma thruster,” J. Appl. Phys. 96(1), 49–56 (2004).
    [Crossref]
  30. F. O. Génin, M. D. Feit, M. R. Kozlowski, A. M. Rubenchik, A. Salleo, and J. Yoshiyama, “Rear-surface laser damage on 355-nm silica optics owing to Fresnel diffraction on front-surface contamination particles,” Appl. Opt. 39(21), 3654–3663 (2000).
    [Crossref] [PubMed]
  31. J. Honig, M. A. Norton, W. G. Hollingsworth, E. E. Donohue, and M. A. Johnson, “Experimental study of 351-nm and 527-nm laser-initiated surface damage on fused silica surfaces due to typical contaminants,” Proc. SPIE 5647, 129–135 (2005).
    [Crossref]
  32. M. J. Matthews, N. Shen, J. Honig, J. D. Bude, and A. M. Rubenchik, “Phase modulation and morphological evolution associated with surface-bound particle ablation,” J. Opt. Soc. Am. B 30(12), 3233–3242 (2013).
    [Crossref]
  33. S. Palmier, S. Garcia, and J. L. Rullier, “Method to characterize superficial particulate pollution and to evaluate its impact on optical components under a high power laser,” Opt. Eng. 47, 0842031–0842037 (2008).
  34. K. E. Gushwa and C. I. Torrie, “Coming clean: understanding and mitigating optical contamination and laser induced damage in advanced LIGO,” Proc. SPIE 9237, 923702 (2014).
    [Crossref]
  35. R. N. Raman, S. G. Demos, N. Shen, E. Feigenbaum, R. A. Negres, S. Elhadj, A. M. Rubenchik, and M. J. Matthews, “Damage on fused silica optics caused by laser ablation of surface-bound microparticles,” Opt. Express 24(3), 2634–2647 (2016).
    [Crossref] [PubMed]
  36. R. N. Raman, R. A. Negres, and S. G. Demos, “Time-resolved microscope system to image material response following localized laser energy deposition: exit surface damage in fused silica as a case example,” Opt. Eng. 50(1), 013602 (2011).
    [Crossref]
  37. D. A. Liedahl, A. Rubenchik, S. B. Libby, S. Nikolaev, and C. R. Phipps, “Pulsed laser interactions with space debris: target shape effects,” Adv. Space Res. 52(5), 895–915 (2013).
    [Crossref]
  38. J. Wu, W. Wei, X. Li, S. Jia, and A. Qiu, “Infrared nanosecond laser-metal ablation in atmosphere: Initial plasma during laser pulse and further expansion,” Appl. Phys. Lett. 102(16), 164104 (2013).
    [Crossref]
  39. C. D. Boley, S. A. Khairallah, and A. M. Rubenchik, “Calculation of laser absorption by metal powders in additive manufacturing,” Appl. Opt. 54(9), 2477–2482 (2015).
    [Crossref] [PubMed]
  40. N. Arnold, “Dry laser cleaning of particles by nanosecond pulses: theory,” in Laser Cleaning, B. Luk’yanchuk, ed. (World Scientific Publishing, 2002).
  41. C. R. Phipps, T. P. Turner, R. F. Harrison, G. W. York, W. Z. Osborne, G. K. Anderson, X. F. Corlis, L. C. Haynes, H. S. Steele, K. C. Spicochi, and T. R. King, “Impulse coupling to targets in vacuum by KrF, HF, and CO2 single-pulse lasers,” J. Appl. Phys. 64(3), 1083–1096 (1988).
    [Crossref]
  42. L. Berthe, R. Fabbro, P. Peyre, L. Tollier, and E. Bartnicki, “Shock waves from a water-confined laser-generated plasma,” J. Appl. Phys. 82(6), 2826–2832 (1997).
    [Crossref]
  43. L. D. Landau and E. M. Lifshiz, Theory of Elasticity (Pergamon, London, 1959).
  44. Z. Zhiyuan, Z. Yi, W. Xiuwen, C. Min, L. Feng, L. Xin, and L. Yutong, “Experimental investigation of glass-layer confined ablation in laser plasma propulsion,” Plasma Sci. Technol. 10(6), 739–742 (2008).
    [Crossref]
  45. W. M. Manheimer and D. G. Colombant, “Steady-state planar ablative flow,” Phys. Fluids 25(9), 1644–1652 (1982).
    [Crossref]
  46. S. G. Demos, R. A. Negres, R. N. Raman, M. D. Feit, K. R. Manes, and A. M. Rubenchik, “Relaxation dynamics of nanosecond laser super-heated material in dielectrics,” Optica 2(8), 765–772 (2015).
    [Crossref]
  47. S. G. Demos, R. A. Negres, and A. M. Rubenchik, “Dynamics of the plume containing nanometric-sized particles ejected into the atmospheric air following laser-induced breakdown on the exit surface of a CaF2 optical window,” Appl. Phys. Lett. 104(3), 031603 (2014).
    [Crossref]
  48. C. D. Harris, N. Shen, A. M. Rubenchik, S. G. Demos, and M. J. Matthews, “Characterization of laser-induced plasmas associated with energetic laser cleaning of metal particles on fused silica surfaces,” Opt. Lett. 40(22), 5212–5215 (2015).
    [Crossref] [PubMed]
  49. M. Chambonneau, P. Grua, J. L. Rullier, J. Y. Natoli, and L. Lamaignere, “Parametric study of the damage ring pattern in fused silica induced by multiple longitudinal modes laser pulses,” J. Appl. Phys. 117(10), 103101 (2015).
    [Crossref]

2016 (1)

2015 (4)

2014 (2)

S. G. Demos, R. A. Negres, and A. M. Rubenchik, “Dynamics of the plume containing nanometric-sized particles ejected into the atmospheric air following laser-induced breakdown on the exit surface of a CaF2 optical window,” Appl. Phys. Lett. 104(3), 031603 (2014).
[Crossref]

K. E. Gushwa and C. I. Torrie, “Coming clean: understanding and mitigating optical contamination and laser induced damage in advanced LIGO,” Proc. SPIE 9237, 923702 (2014).
[Crossref]

2013 (4)

M. J. Matthews, N. Shen, J. Honig, J. D. Bude, and A. M. Rubenchik, “Phase modulation and morphological evolution associated with surface-bound particle ablation,” J. Opt. Soc. Am. B 30(12), 3233–3242 (2013).
[Crossref]

S. Arif, O. Armbruster, and W. Kautek, “Pulse laser particulate separation from polycarbonate: surface acoustic wave and thermomechanical mechanisms,” Appl. Phys., A Mater. Sci. Process. 111(2), 539–548 (2013).
[Crossref]

D. A. Liedahl, A. Rubenchik, S. B. Libby, S. Nikolaev, and C. R. Phipps, “Pulsed laser interactions with space debris: target shape effects,” Adv. Space Res. 52(5), 895–915 (2013).
[Crossref]

J. Wu, W. Wei, X. Li, S. Jia, and A. Qiu, “Infrared nanosecond laser-metal ablation in atmosphere: Initial plasma during laser pulse and further expansion,” Appl. Phys. Lett. 102(16), 164104 (2013).
[Crossref]

2012 (1)

D. Grojo, L. Boarino, N. De Leo, R. Rocci, G. Panzarasa, P. Delaporte, M. Laus, and K. Sparnacci, “Size scaling of mesoporous silica membranes produced by nanosphere mediated laser ablation,” Nanotechnology 23(48), 485305 (2012).
[Crossref] [PubMed]

2011 (1)

R. N. Raman, R. A. Negres, and S. G. Demos, “Time-resolved microscope system to image material response following localized laser energy deposition: exit surface damage in fused silica as a case example,” Opt. Eng. 50(1), 013602 (2011).
[Crossref]

2010 (1)

E. P. Silaeva, S. A. Shlenov, and V. P. Kandidov, “Multifilamentation of high-power femtosecond laser pulse in turbulent atmosphere with aerosol,” Appl. Phys. B 101(1-2), 393–401 (2010).
[Crossref]

2009 (1)

A. Vatry, M. N. Habib, P. Delaporte, M. Sentis, D. Grojo, C. Grisolia, and S. Rosanvallon, “Experimental investigation on laser removal of carbon and tungsten particles,” Appl. Surf. Sci. 255(10), 5569–5573 (2009).
[Crossref]

2008 (4)

S. Palmier, S. Garcia, and J. L. Rullier, “Method to characterize superficial particulate pollution and to evaluate its impact on optical components under a high power laser,” Opt. Eng. 47, 0842031–0842037 (2008).

S. Palmier, J. L. Rullier, J. Capoulade, and J. Y. Natoli, “Effect of laser irradiation on silica substrate contaminated by aluminum particles,” Appl. Opt. 47(8), 1164–1170 (2008).
[Crossref] [PubMed]

D. Grojo, P. Delaporte, M. Sentis, O. H. Pakarinen, and A. S. Foster, “The so-called dry laser cleaning governed by humidity at the nanometer scale,” Appl. Phys. Lett. 92(3), 033108 (2008).
[Crossref]

Z. Zhiyuan, Z. Yi, W. Xiuwen, C. Min, L. Feng, L. Xin, and L. Yutong, “Experimental investigation of glass-layer confined ablation in laser plasma propulsion,” Plasma Sci. Technol. 10(6), 739–742 (2008).
[Crossref]

2007 (2)

C. Konrad, Y. W. Zhang, and Y. Shi, “Melting and resolidification of a subcooled metal powder particle subjected to nanosecond laser heating,” Int. J. Heat Mass Tran. 50(11-12), 2236–2245 (2007).
[Crossref]

D. E. Roberts and T. S. Modise, “Laser removal of loose uranium compound contamination from metal surfaces,” Appl. Surf. Sci. 253(12), 5258–5267 (2007).
[Crossref]

2006 (1)

D. Grojo, M. BoyoMo-Onana, A. Cros, and P. Delaporte, “Influence of laser pulse shape on dry laser cleaning,” Appl. Surf. Sci. 252(13), 4786–4791 (2006).
[Crossref]

2005 (1)

J. Honig, M. A. Norton, W. G. Hollingsworth, E. E. Donohue, and M. A. Johnson, “Experimental study of 351-nm and 527-nm laser-initiated surface damage on fused silica surfaces due to typical contaminants,” Proc. SPIE 5647, 129–135 (2005).
[Crossref]

2004 (4)

M. Keidar, I. D. Boyd, J. Luke, and C. Phipps, “Plasma generation and plume expansion for a transmission-mode microlaser ablation plasma thruster,” J. Appl. Phys. 96(1), 49–56 (2004).
[Crossref]

D. Jang, B. Oh, and D. Kim, “Visualization of microparticle explosion and flow field in nanoparticle synthesis by pulsed laser ablation,” Appl. Phys., A Mater. Sci. Process. 79, 1149–1151 (2004).

Y. Kameo, M. Nakashima, and T. Hirabayashi, “New laser decontamination technique for radioactively contaminated metal surfaces using acid-bearing sodium silicate gel,” J. Nucl. Sci. Technol. 41(9), 919–924 (2004).
[Crossref]

S. Juodkazis and H. Misawa, “Controlled through-hole ablation of polymer microspheres,” J. Micromech. Microeng. 14(8), 1244–1248 (2004).
[Crossref]

2003 (2)

P. Delaporte, M. Gastaud, W. Marine, M. Sentis, O. Uteza, P. Thouvenot, J. L. Alcaraz, J. M. Le Samedy, and D. Blin, “Dry excimer laser cleaning applied to nuclear decontamination,” Appl. Surf. Sci. 208, 298–305 (2003).
[Crossref]

P. Fischer, V. Romano, H. P. Weber, N. P. Karapatis, E. Boillat, and R. Glardon, “Sintering of commercially pure titanium powder with a Nd:YAG laser source,” Acta Mater. 51(6), 1651–1662 (2003).
[Crossref]

2002 (2)

C. Curran, J. M. Lee, and K. G. Watkins, “Ultraviolet laser removal of small metallic particles from silicon wafers,” Opt. Lasers Eng. 38(6), 405–415 (2002).
[Crossref]

M. Arronte, P. Neves, and R. Vilar, “Modeling of laser cleaning of metallic particulate contaminants from silicon surfaces,” J. Appl. Phys. 92(12), 6973–6982 (2002).
[Crossref]

2001 (2)

J. Lee, M. F. Becker, and J. W. Keto, “Dynamics of laser ablation of microparticles prior to nanoparticle generation,” J. Appl. Phys. 89(12), 8146–8152 (2001).
[Crossref]

R. Morgan, C. J. Sutcliffe, and W. O’Neill, “Experimental investigation of nanosecond pulsed Nd:YAG laser re-melted pre-placed powder beds,” Rapid Prototyping J. 7(3), 159–172 (2001).
[Crossref]

2000 (2)

F. O. Génin, M. D. Feit, M. R. Kozlowski, A. M. Rubenchik, A. Salleo, and J. Yoshiyama, “Rear-surface laser damage on 355-nm silica optics owing to Fresnel diffraction on front-surface contamination particles,” Appl. Opt. 39(21), 3654–3663 (2000).
[Crossref] [PubMed]

D. M. Kane and D. R. Halfpenny, “Reduced threshold ultraviolet laser ablation of glass substrates with surface particle coverage: A mechanism for systematic surface laser damage,” J. Appl. Phys. 87(9), 4548–4552 (2000).
[Crossref]

1999 (2)

G. Vereecke, E. Rohr, and M. M. Heyns, “Laser-assisted removal of particles on silicon wafers,” J. Appl. Phys. 85(7), 3837–3843 (1999).
[Crossref]

D. R. Halfpenny and D. M. Kane, “A quantitative analysis of single pulse ultraviolet dry laser cleaning,” J. Appl. Phys. 86(12), 6641–6646 (1999).
[Crossref]

1997 (2)

Y. F. Lu, W. D. Song, B. W. Ang, M. H. Hong, D. S. H. Chan, and T. S. Low, “A theoretical model for laser removal of particles from solid surfaces,” Appl. Phys., A Mater. Sci. Process. 65(1), 9–13 (1997).
[Crossref]

L. Berthe, R. Fabbro, P. Peyre, L. Tollier, and E. Bartnicki, “Shock waves from a water-confined laser-generated plasma,” J. Appl. Phys. 82(6), 2826–2832 (1997).
[Crossref]

1991 (2)

W. Zapka, W. Ziemlich, and A. C. Tam, “Efficient pulsed laser removal of 0.2-μm sized particles from a solid surface,” Appl. Phys. Lett. 58(20), 2217–2219 (1991).
[Crossref]

K. Imen, S. J. Lee, and S. D. Allen, “Laser-assisted micron scale particle removal,” Appl. Phys. Lett. 58(2), 203–205 (1991).
[Crossref]

1990 (1)

1988 (1)

C. R. Phipps, T. P. Turner, R. F. Harrison, G. W. York, W. Z. Osborne, G. K. Anderson, X. F. Corlis, L. C. Haynes, H. S. Steele, K. C. Spicochi, and T. R. King, “Impulse coupling to targets in vacuum by KrF, HF, and CO2 single-pulse lasers,” J. Appl. Phys. 64(3), 1083–1096 (1988).
[Crossref]

1987 (1)

1984 (1)

R. L. Armstrong, “Interactions of absorbing aerosols with intense light-beams,” J. Appl. Phys. 56(7), 2142–2153 (1984).
[Crossref]

1982 (1)

W. M. Manheimer and D. G. Colombant, “Steady-state planar ablative flow,” Phys. Fluids 25(9), 1644–1652 (1982).
[Crossref]

Alcaraz, J. L.

P. Delaporte, M. Gastaud, W. Marine, M. Sentis, O. Uteza, P. Thouvenot, J. L. Alcaraz, J. M. Le Samedy, and D. Blin, “Dry excimer laser cleaning applied to nuclear decontamination,” Appl. Surf. Sci. 208, 298–305 (2003).
[Crossref]

Allen, S. D.

K. Imen, S. J. Lee, and S. D. Allen, “Laser-assisted micron scale particle removal,” Appl. Phys. Lett. 58(2), 203–205 (1991).
[Crossref]

Anderson, G. K.

C. R. Phipps, T. P. Turner, R. F. Harrison, G. W. York, W. Z. Osborne, G. K. Anderson, X. F. Corlis, L. C. Haynes, H. S. Steele, K. C. Spicochi, and T. R. King, “Impulse coupling to targets in vacuum by KrF, HF, and CO2 single-pulse lasers,” J. Appl. Phys. 64(3), 1083–1096 (1988).
[Crossref]

Ang, B. W.

Y. F. Lu, W. D. Song, B. W. Ang, M. H. Hong, D. S. H. Chan, and T. S. Low, “A theoretical model for laser removal of particles from solid surfaces,” Appl. Phys., A Mater. Sci. Process. 65(1), 9–13 (1997).
[Crossref]

Arif, S.

S. Arif, O. Armbruster, and W. Kautek, “Pulse laser particulate separation from polycarbonate: surface acoustic wave and thermomechanical mechanisms,” Appl. Phys., A Mater. Sci. Process. 111(2), 539–548 (2013).
[Crossref]

Armbruster, O.

S. Arif, O. Armbruster, and W. Kautek, “Pulse laser particulate separation from polycarbonate: surface acoustic wave and thermomechanical mechanisms,” Appl. Phys., A Mater. Sci. Process. 111(2), 539–548 (2013).
[Crossref]

Armstrong, R. L.

R. L. Armstrong, “Interactions of absorbing aerosols with intense light-beams,” J. Appl. Phys. 56(7), 2142–2153 (1984).
[Crossref]

Arronte, M.

M. Arronte, P. Neves, and R. Vilar, “Modeling of laser cleaning of metallic particulate contaminants from silicon surfaces,” J. Appl. Phys. 92(12), 6973–6982 (2002).
[Crossref]

Bartnicki, E.

L. Berthe, R. Fabbro, P. Peyre, L. Tollier, and E. Bartnicki, “Shock waves from a water-confined laser-generated plasma,” J. Appl. Phys. 82(6), 2826–2832 (1997).
[Crossref]

Becker, M. F.

J. Lee, M. F. Becker, and J. W. Keto, “Dynamics of laser ablation of microparticles prior to nanoparticle generation,” J. Appl. Phys. 89(12), 8146–8152 (2001).
[Crossref]

Berthe, L.

L. Berthe, R. Fabbro, P. Peyre, L. Tollier, and E. Bartnicki, “Shock waves from a water-confined laser-generated plasma,” J. Appl. Phys. 82(6), 2826–2832 (1997).
[Crossref]

Blin, D.

P. Delaporte, M. Gastaud, W. Marine, M. Sentis, O. Uteza, P. Thouvenot, J. L. Alcaraz, J. M. Le Samedy, and D. Blin, “Dry excimer laser cleaning applied to nuclear decontamination,” Appl. Surf. Sci. 208, 298–305 (2003).
[Crossref]

Boarino, L.

D. Grojo, L. Boarino, N. De Leo, R. Rocci, G. Panzarasa, P. Delaporte, M. Laus, and K. Sparnacci, “Size scaling of mesoporous silica membranes produced by nanosphere mediated laser ablation,” Nanotechnology 23(48), 485305 (2012).
[Crossref] [PubMed]

Boillat, E.

P. Fischer, V. Romano, H. P. Weber, N. P. Karapatis, E. Boillat, and R. Glardon, “Sintering of commercially pure titanium powder with a Nd:YAG laser source,” Acta Mater. 51(6), 1651–1662 (2003).
[Crossref]

Boley, C. D.

Boyd, I. D.

M. Keidar, I. D. Boyd, J. Luke, and C. Phipps, “Plasma generation and plume expansion for a transmission-mode microlaser ablation plasma thruster,” J. Appl. Phys. 96(1), 49–56 (2004).
[Crossref]

BoyoMo-Onana, M.

D. Grojo, M. BoyoMo-Onana, A. Cros, and P. Delaporte, “Influence of laser pulse shape on dry laser cleaning,” Appl. Surf. Sci. 252(13), 4786–4791 (2006).
[Crossref]

Bude, J. D.

Capoulade, J.

Chambonneau, M.

M. Chambonneau, P. Grua, J. L. Rullier, J. Y. Natoli, and L. Lamaignere, “Parametric study of the damage ring pattern in fused silica induced by multiple longitudinal modes laser pulses,” J. Appl. Phys. 117(10), 103101 (2015).
[Crossref]

Chan, D. S. H.

Y. F. Lu, W. D. Song, B. W. Ang, M. H. Hong, D. S. H. Chan, and T. S. Low, “A theoretical model for laser removal of particles from solid surfaces,” Appl. Phys., A Mater. Sci. Process. 65(1), 9–13 (1997).
[Crossref]

Chang, R. K.

Chitanvis, S. M.

Colombant, D. G.

W. M. Manheimer and D. G. Colombant, “Steady-state planar ablative flow,” Phys. Fluids 25(9), 1644–1652 (1982).
[Crossref]

Corlis, X. F.

C. R. Phipps, T. P. Turner, R. F. Harrison, G. W. York, W. Z. Osborne, G. K. Anderson, X. F. Corlis, L. C. Haynes, H. S. Steele, K. C. Spicochi, and T. R. King, “Impulse coupling to targets in vacuum by KrF, HF, and CO2 single-pulse lasers,” J. Appl. Phys. 64(3), 1083–1096 (1988).
[Crossref]

Cros, A.

D. Grojo, M. BoyoMo-Onana, A. Cros, and P. Delaporte, “Influence of laser pulse shape on dry laser cleaning,” Appl. Surf. Sci. 252(13), 4786–4791 (2006).
[Crossref]

Curran, C.

C. Curran, J. M. Lee, and K. G. Watkins, “Ultraviolet laser removal of small metallic particles from silicon wafers,” Opt. Lasers Eng. 38(6), 405–415 (2002).
[Crossref]

De Leo, N.

D. Grojo, L. Boarino, N. De Leo, R. Rocci, G. Panzarasa, P. Delaporte, M. Laus, and K. Sparnacci, “Size scaling of mesoporous silica membranes produced by nanosphere mediated laser ablation,” Nanotechnology 23(48), 485305 (2012).
[Crossref] [PubMed]

Delaporte, P.

D. Grojo, L. Boarino, N. De Leo, R. Rocci, G. Panzarasa, P. Delaporte, M. Laus, and K. Sparnacci, “Size scaling of mesoporous silica membranes produced by nanosphere mediated laser ablation,” Nanotechnology 23(48), 485305 (2012).
[Crossref] [PubMed]

A. Vatry, M. N. Habib, P. Delaporte, M. Sentis, D. Grojo, C. Grisolia, and S. Rosanvallon, “Experimental investigation on laser removal of carbon and tungsten particles,” Appl. Surf. Sci. 255(10), 5569–5573 (2009).
[Crossref]

D. Grojo, P. Delaporte, M. Sentis, O. H. Pakarinen, and A. S. Foster, “The so-called dry laser cleaning governed by humidity at the nanometer scale,” Appl. Phys. Lett. 92(3), 033108 (2008).
[Crossref]

D. Grojo, M. BoyoMo-Onana, A. Cros, and P. Delaporte, “Influence of laser pulse shape on dry laser cleaning,” Appl. Surf. Sci. 252(13), 4786–4791 (2006).
[Crossref]

P. Delaporte, M. Gastaud, W. Marine, M. Sentis, O. Uteza, P. Thouvenot, J. L. Alcaraz, J. M. Le Samedy, and D. Blin, “Dry excimer laser cleaning applied to nuclear decontamination,” Appl. Surf. Sci. 208, 298–305 (2003).
[Crossref]

Demos, S. G.

R. N. Raman, S. G. Demos, N. Shen, E. Feigenbaum, R. A. Negres, S. Elhadj, A. M. Rubenchik, and M. J. Matthews, “Damage on fused silica optics caused by laser ablation of surface-bound microparticles,” Opt. Express 24(3), 2634–2647 (2016).
[Crossref] [PubMed]

C. D. Harris, N. Shen, A. M. Rubenchik, S. G. Demos, and M. J. Matthews, “Characterization of laser-induced plasmas associated with energetic laser cleaning of metal particles on fused silica surfaces,” Opt. Lett. 40(22), 5212–5215 (2015).
[Crossref] [PubMed]

S. G. Demos, R. A. Negres, R. N. Raman, M. D. Feit, K. R. Manes, and A. M. Rubenchik, “Relaxation dynamics of nanosecond laser super-heated material in dielectrics,” Optica 2(8), 765–772 (2015).
[Crossref]

S. G. Demos, R. A. Negres, and A. M. Rubenchik, “Dynamics of the plume containing nanometric-sized particles ejected into the atmospheric air following laser-induced breakdown on the exit surface of a CaF2 optical window,” Appl. Phys. Lett. 104(3), 031603 (2014).
[Crossref]

R. N. Raman, R. A. Negres, and S. G. Demos, “Time-resolved microscope system to image material response following localized laser energy deposition: exit surface damage in fused silica as a case example,” Opt. Eng. 50(1), 013602 (2011).
[Crossref]

Donohue, E. E.

J. Honig, M. A. Norton, W. G. Hollingsworth, E. E. Donohue, and M. A. Johnson, “Experimental study of 351-nm and 527-nm laser-initiated surface damage on fused silica surfaces due to typical contaminants,” Proc. SPIE 5647, 129–135 (2005).
[Crossref]

Eickmans, J. H.

Elhadj, S.

Fabbro, R.

L. Berthe, R. Fabbro, P. Peyre, L. Tollier, and E. Bartnicki, “Shock waves from a water-confined laser-generated plasma,” J. Appl. Phys. 82(6), 2826–2832 (1997).
[Crossref]

Feigenbaum, E.

Feit, M. D.

Feng, L.

Z. Zhiyuan, Z. Yi, W. Xiuwen, C. Min, L. Feng, L. Xin, and L. Yutong, “Experimental investigation of glass-layer confined ablation in laser plasma propulsion,” Plasma Sci. Technol. 10(6), 739–742 (2008).
[Crossref]

Fischer, P.

P. Fischer, V. Romano, H. P. Weber, N. P. Karapatis, E. Boillat, and R. Glardon, “Sintering of commercially pure titanium powder with a Nd:YAG laser source,” Acta Mater. 51(6), 1651–1662 (2003).
[Crossref]

Foster, A. S.

D. Grojo, P. Delaporte, M. Sentis, O. H. Pakarinen, and A. S. Foster, “The so-called dry laser cleaning governed by humidity at the nanometer scale,” Appl. Phys. Lett. 92(3), 033108 (2008).
[Crossref]

Garcia, S.

S. Palmier, S. Garcia, and J. L. Rullier, “Method to characterize superficial particulate pollution and to evaluate its impact on optical components under a high power laser,” Opt. Eng. 47, 0842031–0842037 (2008).

Gastaud, M.

P. Delaporte, M. Gastaud, W. Marine, M. Sentis, O. Uteza, P. Thouvenot, J. L. Alcaraz, J. M. Le Samedy, and D. Blin, “Dry excimer laser cleaning applied to nuclear decontamination,” Appl. Surf. Sci. 208, 298–305 (2003).
[Crossref]

Génin, F. O.

Glardon, R.

P. Fischer, V. Romano, H. P. Weber, N. P. Karapatis, E. Boillat, and R. Glardon, “Sintering of commercially pure titanium powder with a Nd:YAG laser source,” Acta Mater. 51(6), 1651–1662 (2003).
[Crossref]

Grisolia, C.

A. Vatry, M. N. Habib, P. Delaporte, M. Sentis, D. Grojo, C. Grisolia, and S. Rosanvallon, “Experimental investigation on laser removal of carbon and tungsten particles,” Appl. Surf. Sci. 255(10), 5569–5573 (2009).
[Crossref]

Grojo, D.

D. Grojo, L. Boarino, N. De Leo, R. Rocci, G. Panzarasa, P. Delaporte, M. Laus, and K. Sparnacci, “Size scaling of mesoporous silica membranes produced by nanosphere mediated laser ablation,” Nanotechnology 23(48), 485305 (2012).
[Crossref] [PubMed]

A. Vatry, M. N. Habib, P. Delaporte, M. Sentis, D. Grojo, C. Grisolia, and S. Rosanvallon, “Experimental investigation on laser removal of carbon and tungsten particles,” Appl. Surf. Sci. 255(10), 5569–5573 (2009).
[Crossref]

D. Grojo, P. Delaporte, M. Sentis, O. H. Pakarinen, and A. S. Foster, “The so-called dry laser cleaning governed by humidity at the nanometer scale,” Appl. Phys. Lett. 92(3), 033108 (2008).
[Crossref]

D. Grojo, M. BoyoMo-Onana, A. Cros, and P. Delaporte, “Influence of laser pulse shape on dry laser cleaning,” Appl. Surf. Sci. 252(13), 4786–4791 (2006).
[Crossref]

Grua, P.

M. Chambonneau, P. Grua, J. L. Rullier, J. Y. Natoli, and L. Lamaignere, “Parametric study of the damage ring pattern in fused silica induced by multiple longitudinal modes laser pulses,” J. Appl. Phys. 117(10), 103101 (2015).
[Crossref]

Gushwa, K. E.

K. E. Gushwa and C. I. Torrie, “Coming clean: understanding and mitigating optical contamination and laser induced damage in advanced LIGO,” Proc. SPIE 9237, 923702 (2014).
[Crossref]

Habib, M. N.

A. Vatry, M. N. Habib, P. Delaporte, M. Sentis, D. Grojo, C. Grisolia, and S. Rosanvallon, “Experimental investigation on laser removal of carbon and tungsten particles,” Appl. Surf. Sci. 255(10), 5569–5573 (2009).
[Crossref]

Halfpenny, D. R.

D. M. Kane and D. R. Halfpenny, “Reduced threshold ultraviolet laser ablation of glass substrates with surface particle coverage: A mechanism for systematic surface laser damage,” J. Appl. Phys. 87(9), 4548–4552 (2000).
[Crossref]

D. R. Halfpenny and D. M. Kane, “A quantitative analysis of single pulse ultraviolet dry laser cleaning,” J. Appl. Phys. 86(12), 6641–6646 (1999).
[Crossref]

Harris, C. D.

Harrison, R. F.

C. R. Phipps, T. P. Turner, R. F. Harrison, G. W. York, W. Z. Osborne, G. K. Anderson, X. F. Corlis, L. C. Haynes, H. S. Steele, K. C. Spicochi, and T. R. King, “Impulse coupling to targets in vacuum by KrF, HF, and CO2 single-pulse lasers,” J. Appl. Phys. 64(3), 1083–1096 (1988).
[Crossref]

Haynes, L. C.

C. R. Phipps, T. P. Turner, R. F. Harrison, G. W. York, W. Z. Osborne, G. K. Anderson, X. F. Corlis, L. C. Haynes, H. S. Steele, K. C. Spicochi, and T. R. King, “Impulse coupling to targets in vacuum by KrF, HF, and CO2 single-pulse lasers,” J. Appl. Phys. 64(3), 1083–1096 (1988).
[Crossref]

Heyns, M. M.

G. Vereecke, E. Rohr, and M. M. Heyns, “Laser-assisted removal of particles on silicon wafers,” J. Appl. Phys. 85(7), 3837–3843 (1999).
[Crossref]

Hirabayashi, T.

Y. Kameo, M. Nakashima, and T. Hirabayashi, “New laser decontamination technique for radioactively contaminated metal surfaces using acid-bearing sodium silicate gel,” J. Nucl. Sci. Technol. 41(9), 919–924 (2004).
[Crossref]

Hollingsworth, W. G.

J. Honig, M. A. Norton, W. G. Hollingsworth, E. E. Donohue, and M. A. Johnson, “Experimental study of 351-nm and 527-nm laser-initiated surface damage on fused silica surfaces due to typical contaminants,” Proc. SPIE 5647, 129–135 (2005).
[Crossref]

Hong, M. H.

Y. F. Lu, W. D. Song, B. W. Ang, M. H. Hong, D. S. H. Chan, and T. S. Low, “A theoretical model for laser removal of particles from solid surfaces,” Appl. Phys., A Mater. Sci. Process. 65(1), 9–13 (1997).
[Crossref]

Honig, J.

M. J. Matthews, N. Shen, J. Honig, J. D. Bude, and A. M. Rubenchik, “Phase modulation and morphological evolution associated with surface-bound particle ablation,” J. Opt. Soc. Am. B 30(12), 3233–3242 (2013).
[Crossref]

J. Honig, M. A. Norton, W. G. Hollingsworth, E. E. Donohue, and M. A. Johnson, “Experimental study of 351-nm and 527-nm laser-initiated surface damage on fused silica surfaces due to typical contaminants,” Proc. SPIE 5647, 129–135 (2005).
[Crossref]

Hsieh, W. F.

Imen, K.

K. Imen, S. J. Lee, and S. D. Allen, “Laser-assisted micron scale particle removal,” Appl. Phys. Lett. 58(2), 203–205 (1991).
[Crossref]

Jang, D.

D. Jang, B. Oh, and D. Kim, “Visualization of microparticle explosion and flow field in nanoparticle synthesis by pulsed laser ablation,” Appl. Phys., A Mater. Sci. Process. 79, 1149–1151 (2004).

Jia, S.

J. Wu, W. Wei, X. Li, S. Jia, and A. Qiu, “Infrared nanosecond laser-metal ablation in atmosphere: Initial plasma during laser pulse and further expansion,” Appl. Phys. Lett. 102(16), 164104 (2013).
[Crossref]

Johnson, M. A.

J. Honig, M. A. Norton, W. G. Hollingsworth, E. E. Donohue, and M. A. Johnson, “Experimental study of 351-nm and 527-nm laser-initiated surface damage on fused silica surfaces due to typical contaminants,” Proc. SPIE 5647, 129–135 (2005).
[Crossref]

Juodkazis, S.

S. Juodkazis and H. Misawa, “Controlled through-hole ablation of polymer microspheres,” J. Micromech. Microeng. 14(8), 1244–1248 (2004).
[Crossref]

Kameo, Y.

Y. Kameo, M. Nakashima, and T. Hirabayashi, “New laser decontamination technique for radioactively contaminated metal surfaces using acid-bearing sodium silicate gel,” J. Nucl. Sci. Technol. 41(9), 919–924 (2004).
[Crossref]

Kandidov, V. P.

E. P. Silaeva, S. A. Shlenov, and V. P. Kandidov, “Multifilamentation of high-power femtosecond laser pulse in turbulent atmosphere with aerosol,” Appl. Phys. B 101(1-2), 393–401 (2010).
[Crossref]

Kane, D. M.

D. M. Kane and D. R. Halfpenny, “Reduced threshold ultraviolet laser ablation of glass substrates with surface particle coverage: A mechanism for systematic surface laser damage,” J. Appl. Phys. 87(9), 4548–4552 (2000).
[Crossref]

D. R. Halfpenny and D. M. Kane, “A quantitative analysis of single pulse ultraviolet dry laser cleaning,” J. Appl. Phys. 86(12), 6641–6646 (1999).
[Crossref]

Karapatis, N. P.

P. Fischer, V. Romano, H. P. Weber, N. P. Karapatis, E. Boillat, and R. Glardon, “Sintering of commercially pure titanium powder with a Nd:YAG laser source,” Acta Mater. 51(6), 1651–1662 (2003).
[Crossref]

Kautek, W.

S. Arif, O. Armbruster, and W. Kautek, “Pulse laser particulate separation from polycarbonate: surface acoustic wave and thermomechanical mechanisms,” Appl. Phys., A Mater. Sci. Process. 111(2), 539–548 (2013).
[Crossref]

Keidar, M.

M. Keidar, I. D. Boyd, J. Luke, and C. Phipps, “Plasma generation and plume expansion for a transmission-mode microlaser ablation plasma thruster,” J. Appl. Phys. 96(1), 49–56 (2004).
[Crossref]

Keto, J. W.

J. Lee, M. F. Becker, and J. W. Keto, “Dynamics of laser ablation of microparticles prior to nanoparticle generation,” J. Appl. Phys. 89(12), 8146–8152 (2001).
[Crossref]

Khairallah, S. A.

Kim, D.

D. Jang, B. Oh, and D. Kim, “Visualization of microparticle explosion and flow field in nanoparticle synthesis by pulsed laser ablation,” Appl. Phys., A Mater. Sci. Process. 79, 1149–1151 (2004).

King, T. R.

C. R. Phipps, T. P. Turner, R. F. Harrison, G. W. York, W. Z. Osborne, G. K. Anderson, X. F. Corlis, L. C. Haynes, H. S. Steele, K. C. Spicochi, and T. R. King, “Impulse coupling to targets in vacuum by KrF, HF, and CO2 single-pulse lasers,” J. Appl. Phys. 64(3), 1083–1096 (1988).
[Crossref]

Konrad, C.

C. Konrad, Y. W. Zhang, and Y. Shi, “Melting and resolidification of a subcooled metal powder particle subjected to nanosecond laser heating,” Int. J. Heat Mass Tran. 50(11-12), 2236–2245 (2007).
[Crossref]

Kozlowski, M. R.

Lamaignere, L.

M. Chambonneau, P. Grua, J. L. Rullier, J. Y. Natoli, and L. Lamaignere, “Parametric study of the damage ring pattern in fused silica induced by multiple longitudinal modes laser pulses,” J. Appl. Phys. 117(10), 103101 (2015).
[Crossref]

Laus, M.

D. Grojo, L. Boarino, N. De Leo, R. Rocci, G. Panzarasa, P. Delaporte, M. Laus, and K. Sparnacci, “Size scaling of mesoporous silica membranes produced by nanosphere mediated laser ablation,” Nanotechnology 23(48), 485305 (2012).
[Crossref] [PubMed]

Le Samedy, J. M.

P. Delaporte, M. Gastaud, W. Marine, M. Sentis, O. Uteza, P. Thouvenot, J. L. Alcaraz, J. M. Le Samedy, and D. Blin, “Dry excimer laser cleaning applied to nuclear decontamination,” Appl. Surf. Sci. 208, 298–305 (2003).
[Crossref]

Lee, J.

J. Lee, M. F. Becker, and J. W. Keto, “Dynamics of laser ablation of microparticles prior to nanoparticle generation,” J. Appl. Phys. 89(12), 8146–8152 (2001).
[Crossref]

Lee, J. M.

C. Curran, J. M. Lee, and K. G. Watkins, “Ultraviolet laser removal of small metallic particles from silicon wafers,” Opt. Lasers Eng. 38(6), 405–415 (2002).
[Crossref]

Lee, S. J.

K. Imen, S. J. Lee, and S. D. Allen, “Laser-assisted micron scale particle removal,” Appl. Phys. Lett. 58(2), 203–205 (1991).
[Crossref]

Li, X.

J. Wu, W. Wei, X. Li, S. Jia, and A. Qiu, “Infrared nanosecond laser-metal ablation in atmosphere: Initial plasma during laser pulse and further expansion,” Appl. Phys. Lett. 102(16), 164104 (2013).
[Crossref]

Libby, S. B.

D. A. Liedahl, A. Rubenchik, S. B. Libby, S. Nikolaev, and C. R. Phipps, “Pulsed laser interactions with space debris: target shape effects,” Adv. Space Res. 52(5), 895–915 (2013).
[Crossref]

Liedahl, D. A.

D. A. Liedahl, A. Rubenchik, S. B. Libby, S. Nikolaev, and C. R. Phipps, “Pulsed laser interactions with space debris: target shape effects,” Adv. Space Res. 52(5), 895–915 (2013).
[Crossref]

Low, T. S.

Y. F. Lu, W. D. Song, B. W. Ang, M. H. Hong, D. S. H. Chan, and T. S. Low, “A theoretical model for laser removal of particles from solid surfaces,” Appl. Phys., A Mater. Sci. Process. 65(1), 9–13 (1997).
[Crossref]

Lu, Y. F.

Y. F. Lu, W. D. Song, B. W. Ang, M. H. Hong, D. S. H. Chan, and T. S. Low, “A theoretical model for laser removal of particles from solid surfaces,” Appl. Phys., A Mater. Sci. Process. 65(1), 9–13 (1997).
[Crossref]

Luke, J.

M. Keidar, I. D. Boyd, J. Luke, and C. Phipps, “Plasma generation and plume expansion for a transmission-mode microlaser ablation plasma thruster,” J. Appl. Phys. 96(1), 49–56 (2004).
[Crossref]

Manes, K. R.

Manheimer, W. M.

W. M. Manheimer and D. G. Colombant, “Steady-state planar ablative flow,” Phys. Fluids 25(9), 1644–1652 (1982).
[Crossref]

Marine, W.

P. Delaporte, M. Gastaud, W. Marine, M. Sentis, O. Uteza, P. Thouvenot, J. L. Alcaraz, J. M. Le Samedy, and D. Blin, “Dry excimer laser cleaning applied to nuclear decontamination,” Appl. Surf. Sci. 208, 298–305 (2003).
[Crossref]

Matthews, M. J.

Min, C.

Z. Zhiyuan, Z. Yi, W. Xiuwen, C. Min, L. Feng, L. Xin, and L. Yutong, “Experimental investigation of glass-layer confined ablation in laser plasma propulsion,” Plasma Sci. Technol. 10(6), 739–742 (2008).
[Crossref]

Misawa, H.

S. Juodkazis and H. Misawa, “Controlled through-hole ablation of polymer microspheres,” J. Micromech. Microeng. 14(8), 1244–1248 (2004).
[Crossref]

Modise, T. S.

D. E. Roberts and T. S. Modise, “Laser removal of loose uranium compound contamination from metal surfaces,” Appl. Surf. Sci. 253(12), 5258–5267 (2007).
[Crossref]

Morgan, R.

R. Morgan, C. J. Sutcliffe, and W. O’Neill, “Experimental investigation of nanosecond pulsed Nd:YAG laser re-melted pre-placed powder beds,” Rapid Prototyping J. 7(3), 159–172 (2001).
[Crossref]

Nakashima, M.

Y. Kameo, M. Nakashima, and T. Hirabayashi, “New laser decontamination technique for radioactively contaminated metal surfaces using acid-bearing sodium silicate gel,” J. Nucl. Sci. Technol. 41(9), 919–924 (2004).
[Crossref]

Natoli, J. Y.

M. Chambonneau, P. Grua, J. L. Rullier, J. Y. Natoli, and L. Lamaignere, “Parametric study of the damage ring pattern in fused silica induced by multiple longitudinal modes laser pulses,” J. Appl. Phys. 117(10), 103101 (2015).
[Crossref]

S. Palmier, J. L. Rullier, J. Capoulade, and J. Y. Natoli, “Effect of laser irradiation on silica substrate contaminated by aluminum particles,” Appl. Opt. 47(8), 1164–1170 (2008).
[Crossref] [PubMed]

Negres, R. A.

R. N. Raman, S. G. Demos, N. Shen, E. Feigenbaum, R. A. Negres, S. Elhadj, A. M. Rubenchik, and M. J. Matthews, “Damage on fused silica optics caused by laser ablation of surface-bound microparticles,” Opt. Express 24(3), 2634–2647 (2016).
[Crossref] [PubMed]

S. G. Demos, R. A. Negres, R. N. Raman, M. D. Feit, K. R. Manes, and A. M. Rubenchik, “Relaxation dynamics of nanosecond laser super-heated material in dielectrics,” Optica 2(8), 765–772 (2015).
[Crossref]

S. G. Demos, R. A. Negres, and A. M. Rubenchik, “Dynamics of the plume containing nanometric-sized particles ejected into the atmospheric air following laser-induced breakdown on the exit surface of a CaF2 optical window,” Appl. Phys. Lett. 104(3), 031603 (2014).
[Crossref]

R. N. Raman, R. A. Negres, and S. G. Demos, “Time-resolved microscope system to image material response following localized laser energy deposition: exit surface damage in fused silica as a case example,” Opt. Eng. 50(1), 013602 (2011).
[Crossref]

Neves, P.

M. Arronte, P. Neves, and R. Vilar, “Modeling of laser cleaning of metallic particulate contaminants from silicon surfaces,” J. Appl. Phys. 92(12), 6973–6982 (2002).
[Crossref]

Nikolaev, S.

D. A. Liedahl, A. Rubenchik, S. B. Libby, S. Nikolaev, and C. R. Phipps, “Pulsed laser interactions with space debris: target shape effects,” Adv. Space Res. 52(5), 895–915 (2013).
[Crossref]

Norton, M. A.

J. Honig, M. A. Norton, W. G. Hollingsworth, E. E. Donohue, and M. A. Johnson, “Experimental study of 351-nm and 527-nm laser-initiated surface damage on fused silica surfaces due to typical contaminants,” Proc. SPIE 5647, 129–135 (2005).
[Crossref]

O’Neill, W.

R. Morgan, C. J. Sutcliffe, and W. O’Neill, “Experimental investigation of nanosecond pulsed Nd:YAG laser re-melted pre-placed powder beds,” Rapid Prototyping J. 7(3), 159–172 (2001).
[Crossref]

Oh, B.

D. Jang, B. Oh, and D. Kim, “Visualization of microparticle explosion and flow field in nanoparticle synthesis by pulsed laser ablation,” Appl. Phys., A Mater. Sci. Process. 79, 1149–1151 (2004).

Osborne, W. Z.

C. R. Phipps, T. P. Turner, R. F. Harrison, G. W. York, W. Z. Osborne, G. K. Anderson, X. F. Corlis, L. C. Haynes, H. S. Steele, K. C. Spicochi, and T. R. King, “Impulse coupling to targets in vacuum by KrF, HF, and CO2 single-pulse lasers,” J. Appl. Phys. 64(3), 1083–1096 (1988).
[Crossref]

Pakarinen, O. H.

D. Grojo, P. Delaporte, M. Sentis, O. H. Pakarinen, and A. S. Foster, “The so-called dry laser cleaning governed by humidity at the nanometer scale,” Appl. Phys. Lett. 92(3), 033108 (2008).
[Crossref]

Palmier, S.

S. Palmier, S. Garcia, and J. L. Rullier, “Method to characterize superficial particulate pollution and to evaluate its impact on optical components under a high power laser,” Opt. Eng. 47, 0842031–0842037 (2008).

S. Palmier, J. L. Rullier, J. Capoulade, and J. Y. Natoli, “Effect of laser irradiation on silica substrate contaminated by aluminum particles,” Appl. Opt. 47(8), 1164–1170 (2008).
[Crossref] [PubMed]

Panzarasa, G.

D. Grojo, L. Boarino, N. De Leo, R. Rocci, G. Panzarasa, P. Delaporte, M. Laus, and K. Sparnacci, “Size scaling of mesoporous silica membranes produced by nanosphere mediated laser ablation,” Nanotechnology 23(48), 485305 (2012).
[Crossref] [PubMed]

Peyre, P.

L. Berthe, R. Fabbro, P. Peyre, L. Tollier, and E. Bartnicki, “Shock waves from a water-confined laser-generated plasma,” J. Appl. Phys. 82(6), 2826–2832 (1997).
[Crossref]

Phipps, C.

M. Keidar, I. D. Boyd, J. Luke, and C. Phipps, “Plasma generation and plume expansion for a transmission-mode microlaser ablation plasma thruster,” J. Appl. Phys. 96(1), 49–56 (2004).
[Crossref]

Phipps, C. R.

D. A. Liedahl, A. Rubenchik, S. B. Libby, S. Nikolaev, and C. R. Phipps, “Pulsed laser interactions with space debris: target shape effects,” Adv. Space Res. 52(5), 895–915 (2013).
[Crossref]

C. R. Phipps, T. P. Turner, R. F. Harrison, G. W. York, W. Z. Osborne, G. K. Anderson, X. F. Corlis, L. C. Haynes, H. S. Steele, K. C. Spicochi, and T. R. King, “Impulse coupling to targets in vacuum by KrF, HF, and CO2 single-pulse lasers,” J. Appl. Phys. 64(3), 1083–1096 (1988).
[Crossref]

Qiu, A.

J. Wu, W. Wei, X. Li, S. Jia, and A. Qiu, “Infrared nanosecond laser-metal ablation in atmosphere: Initial plasma during laser pulse and further expansion,” Appl. Phys. Lett. 102(16), 164104 (2013).
[Crossref]

Raman, R. N.

Roberts, D. E.

D. E. Roberts and T. S. Modise, “Laser removal of loose uranium compound contamination from metal surfaces,” Appl. Surf. Sci. 253(12), 5258–5267 (2007).
[Crossref]

Rocci, R.

D. Grojo, L. Boarino, N. De Leo, R. Rocci, G. Panzarasa, P. Delaporte, M. Laus, and K. Sparnacci, “Size scaling of mesoporous silica membranes produced by nanosphere mediated laser ablation,” Nanotechnology 23(48), 485305 (2012).
[Crossref] [PubMed]

Rohr, E.

G. Vereecke, E. Rohr, and M. M. Heyns, “Laser-assisted removal of particles on silicon wafers,” J. Appl. Phys. 85(7), 3837–3843 (1999).
[Crossref]

Romano, V.

P. Fischer, V. Romano, H. P. Weber, N. P. Karapatis, E. Boillat, and R. Glardon, “Sintering of commercially pure titanium powder with a Nd:YAG laser source,” Acta Mater. 51(6), 1651–1662 (2003).
[Crossref]

Rosanvallon, S.

A. Vatry, M. N. Habib, P. Delaporte, M. Sentis, D. Grojo, C. Grisolia, and S. Rosanvallon, “Experimental investigation on laser removal of carbon and tungsten particles,” Appl. Surf. Sci. 255(10), 5569–5573 (2009).
[Crossref]

Rubenchik, A.

D. A. Liedahl, A. Rubenchik, S. B. Libby, S. Nikolaev, and C. R. Phipps, “Pulsed laser interactions with space debris: target shape effects,” Adv. Space Res. 52(5), 895–915 (2013).
[Crossref]

Rubenchik, A. M.

R. N. Raman, S. G. Demos, N. Shen, E. Feigenbaum, R. A. Negres, S. Elhadj, A. M. Rubenchik, and M. J. Matthews, “Damage on fused silica optics caused by laser ablation of surface-bound microparticles,” Opt. Express 24(3), 2634–2647 (2016).
[Crossref] [PubMed]

C. D. Harris, N. Shen, A. M. Rubenchik, S. G. Demos, and M. J. Matthews, “Characterization of laser-induced plasmas associated with energetic laser cleaning of metal particles on fused silica surfaces,” Opt. Lett. 40(22), 5212–5215 (2015).
[Crossref] [PubMed]

S. G. Demos, R. A. Negres, R. N. Raman, M. D. Feit, K. R. Manes, and A. M. Rubenchik, “Relaxation dynamics of nanosecond laser super-heated material in dielectrics,” Optica 2(8), 765–772 (2015).
[Crossref]

C. D. Boley, S. A. Khairallah, and A. M. Rubenchik, “Calculation of laser absorption by metal powders in additive manufacturing,” Appl. Opt. 54(9), 2477–2482 (2015).
[Crossref] [PubMed]

S. G. Demos, R. A. Negres, and A. M. Rubenchik, “Dynamics of the plume containing nanometric-sized particles ejected into the atmospheric air following laser-induced breakdown on the exit surface of a CaF2 optical window,” Appl. Phys. Lett. 104(3), 031603 (2014).
[Crossref]

M. J. Matthews, N. Shen, J. Honig, J. D. Bude, and A. M. Rubenchik, “Phase modulation and morphological evolution associated with surface-bound particle ablation,” J. Opt. Soc. Am. B 30(12), 3233–3242 (2013).
[Crossref]

F. O. Génin, M. D. Feit, M. R. Kozlowski, A. M. Rubenchik, A. Salleo, and J. Yoshiyama, “Rear-surface laser damage on 355-nm silica optics owing to Fresnel diffraction on front-surface contamination particles,” Appl. Opt. 39(21), 3654–3663 (2000).
[Crossref] [PubMed]

Rullier, J. L.

M. Chambonneau, P. Grua, J. L. Rullier, J. Y. Natoli, and L. Lamaignere, “Parametric study of the damage ring pattern in fused silica induced by multiple longitudinal modes laser pulses,” J. Appl. Phys. 117(10), 103101 (2015).
[Crossref]

S. Palmier, J. L. Rullier, J. Capoulade, and J. Y. Natoli, “Effect of laser irradiation on silica substrate contaminated by aluminum particles,” Appl. Opt. 47(8), 1164–1170 (2008).
[Crossref] [PubMed]

S. Palmier, S. Garcia, and J. L. Rullier, “Method to characterize superficial particulate pollution and to evaluate its impact on optical components under a high power laser,” Opt. Eng. 47, 0842031–0842037 (2008).

Salleo, A.

Sentis, M.

A. Vatry, M. N. Habib, P. Delaporte, M. Sentis, D. Grojo, C. Grisolia, and S. Rosanvallon, “Experimental investigation on laser removal of carbon and tungsten particles,” Appl. Surf. Sci. 255(10), 5569–5573 (2009).
[Crossref]

D. Grojo, P. Delaporte, M. Sentis, O. H. Pakarinen, and A. S. Foster, “The so-called dry laser cleaning governed by humidity at the nanometer scale,” Appl. Phys. Lett. 92(3), 033108 (2008).
[Crossref]

P. Delaporte, M. Gastaud, W. Marine, M. Sentis, O. Uteza, P. Thouvenot, J. L. Alcaraz, J. M. Le Samedy, and D. Blin, “Dry excimer laser cleaning applied to nuclear decontamination,” Appl. Surf. Sci. 208, 298–305 (2003).
[Crossref]

Shen, N.

Shi, Y.

C. Konrad, Y. W. Zhang, and Y. Shi, “Melting and resolidification of a subcooled metal powder particle subjected to nanosecond laser heating,” Int. J. Heat Mass Tran. 50(11-12), 2236–2245 (2007).
[Crossref]

Shlenov, S. A.

E. P. Silaeva, S. A. Shlenov, and V. P. Kandidov, “Multifilamentation of high-power femtosecond laser pulse in turbulent atmosphere with aerosol,” Appl. Phys. B 101(1-2), 393–401 (2010).
[Crossref]

Silaeva, E. P.

E. P. Silaeva, S. A. Shlenov, and V. P. Kandidov, “Multifilamentation of high-power femtosecond laser pulse in turbulent atmosphere with aerosol,” Appl. Phys. B 101(1-2), 393–401 (2010).
[Crossref]

Song, W. D.

Y. F. Lu, W. D. Song, B. W. Ang, M. H. Hong, D. S. H. Chan, and T. S. Low, “A theoretical model for laser removal of particles from solid surfaces,” Appl. Phys., A Mater. Sci. Process. 65(1), 9–13 (1997).
[Crossref]

Sparnacci, K.

D. Grojo, L. Boarino, N. De Leo, R. Rocci, G. Panzarasa, P. Delaporte, M. Laus, and K. Sparnacci, “Size scaling of mesoporous silica membranes produced by nanosphere mediated laser ablation,” Nanotechnology 23(48), 485305 (2012).
[Crossref] [PubMed]

Spicochi, K. C.

C. R. Phipps, T. P. Turner, R. F. Harrison, G. W. York, W. Z. Osborne, G. K. Anderson, X. F. Corlis, L. C. Haynes, H. S. Steele, K. C. Spicochi, and T. R. King, “Impulse coupling to targets in vacuum by KrF, HF, and CO2 single-pulse lasers,” J. Appl. Phys. 64(3), 1083–1096 (1988).
[Crossref]

Steele, H. S.

C. R. Phipps, T. P. Turner, R. F. Harrison, G. W. York, W. Z. Osborne, G. K. Anderson, X. F. Corlis, L. C. Haynes, H. S. Steele, K. C. Spicochi, and T. R. King, “Impulse coupling to targets in vacuum by KrF, HF, and CO2 single-pulse lasers,” J. Appl. Phys. 64(3), 1083–1096 (1988).
[Crossref]

Sutcliffe, C. J.

R. Morgan, C. J. Sutcliffe, and W. O’Neill, “Experimental investigation of nanosecond pulsed Nd:YAG laser re-melted pre-placed powder beds,” Rapid Prototyping J. 7(3), 159–172 (2001).
[Crossref]

Tam, A. C.

W. Zapka, W. Ziemlich, and A. C. Tam, “Efficient pulsed laser removal of 0.2-μm sized particles from a solid surface,” Appl. Phys. Lett. 58(20), 2217–2219 (1991).
[Crossref]

Thouvenot, P.

P. Delaporte, M. Gastaud, W. Marine, M. Sentis, O. Uteza, P. Thouvenot, J. L. Alcaraz, J. M. Le Samedy, and D. Blin, “Dry excimer laser cleaning applied to nuclear decontamination,” Appl. Surf. Sci. 208, 298–305 (2003).
[Crossref]

Tollier, L.

L. Berthe, R. Fabbro, P. Peyre, L. Tollier, and E. Bartnicki, “Shock waves from a water-confined laser-generated plasma,” J. Appl. Phys. 82(6), 2826–2832 (1997).
[Crossref]

Torrie, C. I.

K. E. Gushwa and C. I. Torrie, “Coming clean: understanding and mitigating optical contamination and laser induced damage in advanced LIGO,” Proc. SPIE 9237, 923702 (2014).
[Crossref]

Turner, T. P.

C. R. Phipps, T. P. Turner, R. F. Harrison, G. W. York, W. Z. Osborne, G. K. Anderson, X. F. Corlis, L. C. Haynes, H. S. Steele, K. C. Spicochi, and T. R. King, “Impulse coupling to targets in vacuum by KrF, HF, and CO2 single-pulse lasers,” J. Appl. Phys. 64(3), 1083–1096 (1988).
[Crossref]

Uteza, O.

P. Delaporte, M. Gastaud, W. Marine, M. Sentis, O. Uteza, P. Thouvenot, J. L. Alcaraz, J. M. Le Samedy, and D. Blin, “Dry excimer laser cleaning applied to nuclear decontamination,” Appl. Surf. Sci. 208, 298–305 (2003).
[Crossref]

Vatry, A.

A. Vatry, M. N. Habib, P. Delaporte, M. Sentis, D. Grojo, C. Grisolia, and S. Rosanvallon, “Experimental investigation on laser removal of carbon and tungsten particles,” Appl. Surf. Sci. 255(10), 5569–5573 (2009).
[Crossref]

Vereecke, G.

G. Vereecke, E. Rohr, and M. M. Heyns, “Laser-assisted removal of particles on silicon wafers,” J. Appl. Phys. 85(7), 3837–3843 (1999).
[Crossref]

Vilar, R.

M. Arronte, P. Neves, and R. Vilar, “Modeling of laser cleaning of metallic particulate contaminants from silicon surfaces,” J. Appl. Phys. 92(12), 6973–6982 (2002).
[Crossref]

Watkins, K. G.

C. Curran, J. M. Lee, and K. G. Watkins, “Ultraviolet laser removal of small metallic particles from silicon wafers,” Opt. Lasers Eng. 38(6), 405–415 (2002).
[Crossref]

Weber, H. P.

P. Fischer, V. Romano, H. P. Weber, N. P. Karapatis, E. Boillat, and R. Glardon, “Sintering of commercially pure titanium powder with a Nd:YAG laser source,” Acta Mater. 51(6), 1651–1662 (2003).
[Crossref]

Wei, W.

J. Wu, W. Wei, X. Li, S. Jia, and A. Qiu, “Infrared nanosecond laser-metal ablation in atmosphere: Initial plasma during laser pulse and further expansion,” Appl. Phys. Lett. 102(16), 164104 (2013).
[Crossref]

Wu, J.

J. Wu, W. Wei, X. Li, S. Jia, and A. Qiu, “Infrared nanosecond laser-metal ablation in atmosphere: Initial plasma during laser pulse and further expansion,” Appl. Phys. Lett. 102(16), 164104 (2013).
[Crossref]

Xin, L.

Z. Zhiyuan, Z. Yi, W. Xiuwen, C. Min, L. Feng, L. Xin, and L. Yutong, “Experimental investigation of glass-layer confined ablation in laser plasma propulsion,” Plasma Sci. Technol. 10(6), 739–742 (2008).
[Crossref]

Xiuwen, W.

Z. Zhiyuan, Z. Yi, W. Xiuwen, C. Min, L. Feng, L. Xin, and L. Yutong, “Experimental investigation of glass-layer confined ablation in laser plasma propulsion,” Plasma Sci. Technol. 10(6), 739–742 (2008).
[Crossref]

Yi, Z.

Z. Zhiyuan, Z. Yi, W. Xiuwen, C. Min, L. Feng, L. Xin, and L. Yutong, “Experimental investigation of glass-layer confined ablation in laser plasma propulsion,” Plasma Sci. Technol. 10(6), 739–742 (2008).
[Crossref]

York, G. W.

C. R. Phipps, T. P. Turner, R. F. Harrison, G. W. York, W. Z. Osborne, G. K. Anderson, X. F. Corlis, L. C. Haynes, H. S. Steele, K. C. Spicochi, and T. R. King, “Impulse coupling to targets in vacuum by KrF, HF, and CO2 single-pulse lasers,” J. Appl. Phys. 64(3), 1083–1096 (1988).
[Crossref]

Yoshiyama, J.

Yutong, L.

Z. Zhiyuan, Z. Yi, W. Xiuwen, C. Min, L. Feng, L. Xin, and L. Yutong, “Experimental investigation of glass-layer confined ablation in laser plasma propulsion,” Plasma Sci. Technol. 10(6), 739–742 (2008).
[Crossref]

Zapka, W.

W. Zapka, W. Ziemlich, and A. C. Tam, “Efficient pulsed laser removal of 0.2-μm sized particles from a solid surface,” Appl. Phys. Lett. 58(20), 2217–2219 (1991).
[Crossref]

Zardecki, A.

Zhang, Y. W.

C. Konrad, Y. W. Zhang, and Y. Shi, “Melting and resolidification of a subcooled metal powder particle subjected to nanosecond laser heating,” Int. J. Heat Mass Tran. 50(11-12), 2236–2245 (2007).
[Crossref]

Zhiyuan, Z.

Z. Zhiyuan, Z. Yi, W. Xiuwen, C. Min, L. Feng, L. Xin, and L. Yutong, “Experimental investigation of glass-layer confined ablation in laser plasma propulsion,” Plasma Sci. Technol. 10(6), 739–742 (2008).
[Crossref]

Ziemlich, W.

W. Zapka, W. Ziemlich, and A. C. Tam, “Efficient pulsed laser removal of 0.2-μm sized particles from a solid surface,” Appl. Phys. Lett. 58(20), 2217–2219 (1991).
[Crossref]

Acta Mater. (1)

P. Fischer, V. Romano, H. P. Weber, N. P. Karapatis, E. Boillat, and R. Glardon, “Sintering of commercially pure titanium powder with a Nd:YAG laser source,” Acta Mater. 51(6), 1651–1662 (2003).
[Crossref]

Adv. Space Res. (1)

D. A. Liedahl, A. Rubenchik, S. B. Libby, S. Nikolaev, and C. R. Phipps, “Pulsed laser interactions with space debris: target shape effects,” Adv. Space Res. 52(5), 895–915 (2013).
[Crossref]

Appl. Opt. (3)

Appl. Phys. B (1)

E. P. Silaeva, S. A. Shlenov, and V. P. Kandidov, “Multifilamentation of high-power femtosecond laser pulse in turbulent atmosphere with aerosol,” Appl. Phys. B 101(1-2), 393–401 (2010).
[Crossref]

Appl. Phys. Lett. (5)

W. Zapka, W. Ziemlich, and A. C. Tam, “Efficient pulsed laser removal of 0.2-μm sized particles from a solid surface,” Appl. Phys. Lett. 58(20), 2217–2219 (1991).
[Crossref]

K. Imen, S. J. Lee, and S. D. Allen, “Laser-assisted micron scale particle removal,” Appl. Phys. Lett. 58(2), 203–205 (1991).
[Crossref]

D. Grojo, P. Delaporte, M. Sentis, O. H. Pakarinen, and A. S. Foster, “The so-called dry laser cleaning governed by humidity at the nanometer scale,” Appl. Phys. Lett. 92(3), 033108 (2008).
[Crossref]

J. Wu, W. Wei, X. Li, S. Jia, and A. Qiu, “Infrared nanosecond laser-metal ablation in atmosphere: Initial plasma during laser pulse and further expansion,” Appl. Phys. Lett. 102(16), 164104 (2013).
[Crossref]

S. G. Demos, R. A. Negres, and A. M. Rubenchik, “Dynamics of the plume containing nanometric-sized particles ejected into the atmospheric air following laser-induced breakdown on the exit surface of a CaF2 optical window,” Appl. Phys. Lett. 104(3), 031603 (2014).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (3)

D. Jang, B. Oh, and D. Kim, “Visualization of microparticle explosion and flow field in nanoparticle synthesis by pulsed laser ablation,” Appl. Phys., A Mater. Sci. Process. 79, 1149–1151 (2004).

S. Arif, O. Armbruster, and W. Kautek, “Pulse laser particulate separation from polycarbonate: surface acoustic wave and thermomechanical mechanisms,” Appl. Phys., A Mater. Sci. Process. 111(2), 539–548 (2013).
[Crossref]

Y. F. Lu, W. D. Song, B. W. Ang, M. H. Hong, D. S. H. Chan, and T. S. Low, “A theoretical model for laser removal of particles from solid surfaces,” Appl. Phys., A Mater. Sci. Process. 65(1), 9–13 (1997).
[Crossref]

Appl. Surf. Sci. (4)

D. Grojo, M. BoyoMo-Onana, A. Cros, and P. Delaporte, “Influence of laser pulse shape on dry laser cleaning,” Appl. Surf. Sci. 252(13), 4786–4791 (2006).
[Crossref]

A. Vatry, M. N. Habib, P. Delaporte, M. Sentis, D. Grojo, C. Grisolia, and S. Rosanvallon, “Experimental investigation on laser removal of carbon and tungsten particles,” Appl. Surf. Sci. 255(10), 5569–5573 (2009).
[Crossref]

P. Delaporte, M. Gastaud, W. Marine, M. Sentis, O. Uteza, P. Thouvenot, J. L. Alcaraz, J. M. Le Samedy, and D. Blin, “Dry excimer laser cleaning applied to nuclear decontamination,” Appl. Surf. Sci. 208, 298–305 (2003).
[Crossref]

D. E. Roberts and T. S. Modise, “Laser removal of loose uranium compound contamination from metal surfaces,” Appl. Surf. Sci. 253(12), 5258–5267 (2007).
[Crossref]

Int. J. Heat Mass Tran. (1)

C. Konrad, Y. W. Zhang, and Y. Shi, “Melting and resolidification of a subcooled metal powder particle subjected to nanosecond laser heating,” Int. J. Heat Mass Tran. 50(11-12), 2236–2245 (2007).
[Crossref]

J. Appl. Phys. (10)

C. R. Phipps, T. P. Turner, R. F. Harrison, G. W. York, W. Z. Osborne, G. K. Anderson, X. F. Corlis, L. C. Haynes, H. S. Steele, K. C. Spicochi, and T. R. King, “Impulse coupling to targets in vacuum by KrF, HF, and CO2 single-pulse lasers,” J. Appl. Phys. 64(3), 1083–1096 (1988).
[Crossref]

L. Berthe, R. Fabbro, P. Peyre, L. Tollier, and E. Bartnicki, “Shock waves from a water-confined laser-generated plasma,” J. Appl. Phys. 82(6), 2826–2832 (1997).
[Crossref]

J. Lee, M. F. Becker, and J. W. Keto, “Dynamics of laser ablation of microparticles prior to nanoparticle generation,” J. Appl. Phys. 89(12), 8146–8152 (2001).
[Crossref]

M. Keidar, I. D. Boyd, J. Luke, and C. Phipps, “Plasma generation and plume expansion for a transmission-mode microlaser ablation plasma thruster,” J. Appl. Phys. 96(1), 49–56 (2004).
[Crossref]

R. L. Armstrong, “Interactions of absorbing aerosols with intense light-beams,” J. Appl. Phys. 56(7), 2142–2153 (1984).
[Crossref]

D. M. Kane and D. R. Halfpenny, “Reduced threshold ultraviolet laser ablation of glass substrates with surface particle coverage: A mechanism for systematic surface laser damage,” J. Appl. Phys. 87(9), 4548–4552 (2000).
[Crossref]

G. Vereecke, E. Rohr, and M. M. Heyns, “Laser-assisted removal of particles on silicon wafers,” J. Appl. Phys. 85(7), 3837–3843 (1999).
[Crossref]

D. R. Halfpenny and D. M. Kane, “A quantitative analysis of single pulse ultraviolet dry laser cleaning,” J. Appl. Phys. 86(12), 6641–6646 (1999).
[Crossref]

M. Arronte, P. Neves, and R. Vilar, “Modeling of laser cleaning of metallic particulate contaminants from silicon surfaces,” J. Appl. Phys. 92(12), 6973–6982 (2002).
[Crossref]

M. Chambonneau, P. Grua, J. L. Rullier, J. Y. Natoli, and L. Lamaignere, “Parametric study of the damage ring pattern in fused silica induced by multiple longitudinal modes laser pulses,” J. Appl. Phys. 117(10), 103101 (2015).
[Crossref]

J. Micromech. Microeng. (1)

S. Juodkazis and H. Misawa, “Controlled through-hole ablation of polymer microspheres,” J. Micromech. Microeng. 14(8), 1244–1248 (2004).
[Crossref]

J. Nucl. Sci. Technol. (1)

Y. Kameo, M. Nakashima, and T. Hirabayashi, “New laser decontamination technique for radioactively contaminated metal surfaces using acid-bearing sodium silicate gel,” J. Nucl. Sci. Technol. 41(9), 919–924 (2004).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Nanotechnology (1)

D. Grojo, L. Boarino, N. De Leo, R. Rocci, G. Panzarasa, P. Delaporte, M. Laus, and K. Sparnacci, “Size scaling of mesoporous silica membranes produced by nanosphere mediated laser ablation,” Nanotechnology 23(48), 485305 (2012).
[Crossref] [PubMed]

Opt. Eng. (2)

S. Palmier, S. Garcia, and J. L. Rullier, “Method to characterize superficial particulate pollution and to evaluate its impact on optical components under a high power laser,” Opt. Eng. 47, 0842031–0842037 (2008).

R. N. Raman, R. A. Negres, and S. G. Demos, “Time-resolved microscope system to image material response following localized laser energy deposition: exit surface damage in fused silica as a case example,” Opt. Eng. 50(1), 013602 (2011).
[Crossref]

Opt. Express (1)

Opt. Lasers Eng. (1)

C. Curran, J. M. Lee, and K. G. Watkins, “Ultraviolet laser removal of small metallic particles from silicon wafers,” Opt. Lasers Eng. 38(6), 405–415 (2002).
[Crossref]

Opt. Lett. (2)

Optica (1)

Phys. Fluids (1)

W. M. Manheimer and D. G. Colombant, “Steady-state planar ablative flow,” Phys. Fluids 25(9), 1644–1652 (1982).
[Crossref]

Plasma Sci. Technol. (1)

Z. Zhiyuan, Z. Yi, W. Xiuwen, C. Min, L. Feng, L. Xin, and L. Yutong, “Experimental investigation of glass-layer confined ablation in laser plasma propulsion,” Plasma Sci. Technol. 10(6), 739–742 (2008).
[Crossref]

Proc. SPIE (2)

K. E. Gushwa and C. I. Torrie, “Coming clean: understanding and mitigating optical contamination and laser induced damage in advanced LIGO,” Proc. SPIE 9237, 923702 (2014).
[Crossref]

J. Honig, M. A. Norton, W. G. Hollingsworth, E. E. Donohue, and M. A. Johnson, “Experimental study of 351-nm and 527-nm laser-initiated surface damage on fused silica surfaces due to typical contaminants,” Proc. SPIE 5647, 129–135 (2005).
[Crossref]

Rapid Prototyping J. (1)

R. Morgan, C. J. Sutcliffe, and W. O’Neill, “Experimental investigation of nanosecond pulsed Nd:YAG laser re-melted pre-placed powder beds,” Rapid Prototyping J. 7(3), 159–172 (2001).
[Crossref]

Other (3)

A. A. Z. V. E. Zuev, Yu. D. Kopytin, and A. V. Kuzikovskii, High-Power Laser Radiation in Atmospheric Aerosols (D. Reidel Publishing Company, 1985).

L. D. Landau and E. M. Lifshiz, Theory of Elasticity (Pergamon, London, 1959).

N. Arnold, “Dry laser cleaning of particles by nanosecond pulses: theory,” in Laser Cleaning, B. Luk’yanchuk, ed. (World Scientific Publishing, 2002).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Schematic depiction of the experimental system. Details are provided in the text.

Fig. 2
Fig. 2

Time-resolved SV images capture the main features observed following the irradiation by a laser pulse of ~30 μm diameter SS particles (1) located at the exit surface of a silica substrate that include the plume (2), the shockwave (3) and the atomized melted material (4). Irradiation conditions: ~10 J/cm2 at 3ω for images (a1)-(a4) and ~100 J/cm2 at 1ω for images (b1)-(b3). The corresponding image capture delay times are: before exposure for (a1) and (b1), 2 ns for (a2), 100 ns for (a3), (a4) and (b2), and 500 ns for (b3).

Fig. 3
Fig. 3

Time-resolved TV images (after image normalization) captured at (a) 2.5 ns and (b1)-(b2) 39 ns delay times, using ~10 J/cm2 at 3ω. The main features observed are the particle (1), the plume (2), the shockwave (3) and the atomized melted material (4).

Fig. 4
Fig. 4

(a) The measured (cross symbols) and averaged values (solid circle symbols) of the ejection speeds of stainless steel (SS) particles as a function of the 1ω laser fluence in semi-logarithmic and linear (inset) scale. (b) The average speed of stainless steel (SS), Aluminum (Al) and Tungsten (W) particles as a function of the 1ω laser fluence. Particle size ranges for each material are given in the text.

Fig. 5
Fig. 5

The average (a) particle momentum and (b) momentum coupling coefficient Cm as a function of the 1ω laser fluence for stainless steel (SS), Aluminum (Al) and Tungsten (W) particles.

Fig. 6
Fig. 6

(a) Distance traveled by the shockwave at 500 ns delay and (b) normalized particle kinetic energy (to R5) as a function of the 1ω laser fluence for stainless steel (SS), Aluminum (Al) and Tungsten (W) particles. Inset shows the measured and averaged values of the shock distance traveled in stainless steel (SS) particles as smaller and larger solid circle symbols, respectively.

Fig. 7
Fig. 7

(a) The speed of the plume during the laser pulse and (b) the distance of the outer boundary of the plasma from the contact point of the particle with the substrate as a function of the probe 1 delay (time separation between probe 1 and 2 was 2.4 ns).

Fig. 8
Fig. 8

Pit morphology following laser ablation of SS particles: (a) Representative cross-section profiles and (b) average width (along with range of values observed shown by vertical bars) and average depth as a function of 1ω laser fluence.

Fig. 9
Fig. 9

The spatial profiles (d1 and d2) of pits formed after the removal of Al particles having diameter of ≈6.5 µm under exposure to 3ω pulses with different temporal profiles (t1 and t2, respectively) and total fluence of about 7.5 J/cm2. The inset shows the temporal profiles of the laser pulses.

Fig. 10
Fig. 10

Depiction of the key mechanisms of particle ejection (with speed u) following exposure to ns-laser pulses: (a) Thermal expansion; (b) Recoil momentum transfer; (c) Confined plasma pressure; (d) Partially confined plasma. The laser is incident normal to the surface of the substrate and the particle is located on the exit surface.

Fig. 11
Fig. 11

Schematic depiction of (a) the initial expansion of the plume and (b) the subsequent trapping in the flow of the atomized melted material layer based on the experimental observations shown in Figs. 2 and 3.

Tables (2)

Tables Icon

Table 1 The pump and probe laser pulse parameters for various experimental configurations.

Tables Icon

Table 2 Comparison of models with experiment can enable an estimate of the contribution of each mechanism as a function of laser and material parameters.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

dV dt =β dT dt V dR dt = 1 3 β dT dt R,
ρCVdTAπ R 2 Idt,
u a < dR dt βAI 4ρC .
A F t H Dτ .
I opt ( GW/cm 2 )= 2.5 τ(ns) ,
u b = ζ C m E m = ζ C m E 4ρ / 3π R 3 = 3ζ C m F 4ρR .
P(kbar)=0.1 I 1/2 ( GW/cm 2 ) ( α (a+3) ) 1/2 Z 1/2 ( g/cm 2 s).
2 Z = 1 Z m + 1 Z g ,with Z i =ρ c i s ,i=m,g
M= Pdt 0.1 Z 1/2 I 1/2 α 1/2 τB Z 1/2 F 1/2 ( α (a+3) ) 1/2 τ 1/2 B,
C m 1 = M F =B Zα I .
φ= A' 2π ϵ 2 ,
a= ( 2πφ Ε ' ¯ R ) 1/6 R,with 1 Ε ' ¯ =( 1 ν m 2 Ε m ' + 1 ν g 2 Ε g ' )
u c Pτπ a 2 ρ4/3π R 3 B Zα I 3F a 2 4ρ R 3 .
u d C m 1 Fπ r 2 ρ4/3π R 3 C m 1 3Fs 4ρ R 2 B Zα I 3Fs 4ρ R 2 ,

Metrics