Abstract

Fourier transform spectroscopy has established itself as the standard method for spectral analysis of infrared light. Here we present a robust and compact novel static Fourier transform spectrometer design without any moving parts. The design is well suited for measurements in the infrared as it works with extended light sources independent of their size. The design is experimentally evaluated in the mid-infrared wavelength region between 7.2 μm and 16 μm. Due to its large etendue, its low internal light loss, and its static design it enables high speed spectral analysis in the mid-infrared.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Experimental results from an airborne static Fourier transform imaging spectrometer

Yann Ferrec, Jean Taboury, Hervé Sauer, Pierre Chavel, Pierre Fournet, Christophe Coudrain, Joël Deschamps, and Jérôme Primot
Appl. Opt. 50(30) 5894-5904 (2011)

Analysis and design of compact, static Fourier-transform spectrometers

Carole C. Montarou and Thomas K. Gaylord
Appl. Opt. 39(31) 5762-5767 (2000)

Angular acceptance analysis of an infrared focal plane array with a built-in stationary Fourier transform spectrometer

Frédéric Gillard, Yann Ferrec, Nicolas Guérineau, Sylvain Rommeluère, Jean Taboury, and Pierre Chavel
J. Opt. Soc. Am. A 29(6) 936-944 (2012)

References

  • View by:
  • |
  • |
  • |

  1. D. G. Winters, P. Schlup, and R. A. Bartels, “Highly achromatic Fourier-transform spectrometer,” Opt. Express 15, 1361–1368 (2007).
    [Crossref] [PubMed]
  2. M.-L. Junttila, J. Kauppinen, and E. Ikonen, “Performance limits of stationary Fourier spectrometers,” J. Opt. Soc. Am. A 8, 1457–1462 (1991).
    [Crossref]
  3. F. M. Reininger, “The application of large format, broadband quantum well infrared photodetector arrays to spatially modulated prism interferometers,” Infrared Physics & Technology 42, 345–362 (2001).
    [Crossref]
  4. K. Möller, “Wave-front-dividing array interferometers without moving parts for real-time spectroscopy from the IR to the UV,” Appl. Opt. 34, 1493–1501 (1995).
    [Crossref] [PubMed]
  5. G. Zhan, “Static Fourier-transform spectrometer with spherical reflectors,” Appl. Opt. 41, 560–563 (2002).
    [Crossref] [PubMed]
  6. H. Mortimer, “Compact interferometer spectrometer,” US Patent US20120281223 (2012).
  7. M. Hashimoto and S. Kawata, “Multichannel Fourier-transform infrared spectrometer,” Appl. Opt. 31, 6096–6101 (1992).
    [Crossref] [PubMed]
  8. M. W. Kudenov, M. N. Miskiewicz, M. J. Escuti, and E. L. Dereniak, “Spatial heterodyne interferometry with polarization gratings,” Opt. Lett. 37, 4413–4415 (2012).
    [Crossref] [PubMed]
  9. L. Greengard and J.-Y. Lee, “Accelerating the nonuniform fast Fourier transform,” SIAM review 46, 443–454 (2004).
    [Crossref]
  10. J.-Y. Lee and L. Greengard, “The type 3 nonuniform FFT and its applications,” Journal of Computational Physics 206, 1–5 (2005).
    [Crossref]
  11. J. Connolly, B. DiBenedetto, and R. Donadio, “Specifications of Raytran material,” Proc. SPIE 0181, 141–144 (1979).
    [Crossref]
  12. B. Tatian, “Fitting refractive-index data with the sellmeier dispersion formula,” Appl. Opt. 23, 4477–4485 (1984).
    [Crossref] [PubMed]
  13. H. H. Li, “Refractive index of silicon and germanium and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9, 561 (1980).
    [Crossref]
  14. P. R. Griffiths and J. A. de Haseth, Fourier Transform Infrared Spectrometry (Wiley, 2007).
    [Crossref]
  15. B. R. Wiesent, D. G. Dorigo, M. Schardt, and A. W. Koch, “Miniaturized IR-spectrometer for online oil condition monitoring tasks,” presented at the OilDoc Conference and Exhibition, Rosenheim, Germany, 22–24 Jan. 2013.

2012 (1)

2007 (1)

2005 (1)

J.-Y. Lee and L. Greengard, “The type 3 nonuniform FFT and its applications,” Journal of Computational Physics 206, 1–5 (2005).
[Crossref]

2004 (1)

L. Greengard and J.-Y. Lee, “Accelerating the nonuniform fast Fourier transform,” SIAM review 46, 443–454 (2004).
[Crossref]

2002 (1)

2001 (1)

F. M. Reininger, “The application of large format, broadband quantum well infrared photodetector arrays to spatially modulated prism interferometers,” Infrared Physics & Technology 42, 345–362 (2001).
[Crossref]

1995 (1)

1992 (1)

1991 (1)

1984 (1)

1980 (1)

H. H. Li, “Refractive index of silicon and germanium and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9, 561 (1980).
[Crossref]

1979 (1)

J. Connolly, B. DiBenedetto, and R. Donadio, “Specifications of Raytran material,” Proc. SPIE 0181, 141–144 (1979).
[Crossref]

Bartels, R. A.

Connolly, J.

J. Connolly, B. DiBenedetto, and R. Donadio, “Specifications of Raytran material,” Proc. SPIE 0181, 141–144 (1979).
[Crossref]

de Haseth, J. A.

P. R. Griffiths and J. A. de Haseth, Fourier Transform Infrared Spectrometry (Wiley, 2007).
[Crossref]

Dereniak, E. L.

DiBenedetto, B.

J. Connolly, B. DiBenedetto, and R. Donadio, “Specifications of Raytran material,” Proc. SPIE 0181, 141–144 (1979).
[Crossref]

Donadio, R.

J. Connolly, B. DiBenedetto, and R. Donadio, “Specifications of Raytran material,” Proc. SPIE 0181, 141–144 (1979).
[Crossref]

Dorigo, D. G.

B. R. Wiesent, D. G. Dorigo, M. Schardt, and A. W. Koch, “Miniaturized IR-spectrometer for online oil condition monitoring tasks,” presented at the OilDoc Conference and Exhibition, Rosenheim, Germany, 22–24 Jan. 2013.

Escuti, M. J.

Greengard, L.

J.-Y. Lee and L. Greengard, “The type 3 nonuniform FFT and its applications,” Journal of Computational Physics 206, 1–5 (2005).
[Crossref]

L. Greengard and J.-Y. Lee, “Accelerating the nonuniform fast Fourier transform,” SIAM review 46, 443–454 (2004).
[Crossref]

Griffiths, P. R.

P. R. Griffiths and J. A. de Haseth, Fourier Transform Infrared Spectrometry (Wiley, 2007).
[Crossref]

Hashimoto, M.

Ikonen, E.

Junttila, M.-L.

Kauppinen, J.

Kawata, S.

Koch, A. W.

B. R. Wiesent, D. G. Dorigo, M. Schardt, and A. W. Koch, “Miniaturized IR-spectrometer for online oil condition monitoring tasks,” presented at the OilDoc Conference and Exhibition, Rosenheim, Germany, 22–24 Jan. 2013.

Kudenov, M. W.

Lee, J.-Y.

J.-Y. Lee and L. Greengard, “The type 3 nonuniform FFT and its applications,” Journal of Computational Physics 206, 1–5 (2005).
[Crossref]

L. Greengard and J.-Y. Lee, “Accelerating the nonuniform fast Fourier transform,” SIAM review 46, 443–454 (2004).
[Crossref]

Li, H. H.

H. H. Li, “Refractive index of silicon and germanium and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9, 561 (1980).
[Crossref]

Miskiewicz, M. N.

Möller, K.

Mortimer, H.

H. Mortimer, “Compact interferometer spectrometer,” US Patent US20120281223 (2012).

Reininger, F. M.

F. M. Reininger, “The application of large format, broadband quantum well infrared photodetector arrays to spatially modulated prism interferometers,” Infrared Physics & Technology 42, 345–362 (2001).
[Crossref]

Schardt, M.

B. R. Wiesent, D. G. Dorigo, M. Schardt, and A. W. Koch, “Miniaturized IR-spectrometer for online oil condition monitoring tasks,” presented at the OilDoc Conference and Exhibition, Rosenheim, Germany, 22–24 Jan. 2013.

Schlup, P.

Tatian, B.

Wiesent, B. R.

B. R. Wiesent, D. G. Dorigo, M. Schardt, and A. W. Koch, “Miniaturized IR-spectrometer for online oil condition monitoring tasks,” presented at the OilDoc Conference and Exhibition, Rosenheim, Germany, 22–24 Jan. 2013.

Winters, D. G.

Zhan, G.

Appl. Opt. (4)

Infrared Physics & Technology (1)

F. M. Reininger, “The application of large format, broadband quantum well infrared photodetector arrays to spatially modulated prism interferometers,” Infrared Physics & Technology 42, 345–362 (2001).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Phys. Chem. Ref. Data (1)

H. H. Li, “Refractive index of silicon and germanium and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9, 561 (1980).
[Crossref]

Journal of Computational Physics (1)

J.-Y. Lee and L. Greengard, “The type 3 nonuniform FFT and its applications,” Journal of Computational Physics 206, 1–5 (2005).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Proc. SPIE (1)

J. Connolly, B. DiBenedetto, and R. Donadio, “Specifications of Raytran material,” Proc. SPIE 0181, 141–144 (1979).
[Crossref]

SIAM review (1)

L. Greengard and J.-Y. Lee, “Accelerating the nonuniform fast Fourier transform,” SIAM review 46, 443–454 (2004).
[Crossref]

Other (3)

H. Mortimer, “Compact interferometer spectrometer,” US Patent US20120281223 (2012).

P. R. Griffiths and J. A. de Haseth, Fourier Transform Infrared Spectrometry (Wiley, 2007).
[Crossref]

B. R. Wiesent, D. G. Dorigo, M. Schardt, and A. W. Koch, “Miniaturized IR-spectrometer for online oil condition monitoring tasks,” presented at the OilDoc Conference and Exhibition, Rosenheim, Germany, 22–24 Jan. 2013.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic illustration of the proposed static single-mirror Fourier transform spectrometer design.

Fig. 2
Fig. 2

Virtual sources model of the proposed static single-mirror Fourier transform spectrometer design. The ellipse in the schematic drawing of the virtual source S2 illustrates the astigmatism induced by the tilted beam splitter.

Fig. 3
Fig. 3

Simulation of the optical path differences at the detector. The contours of the nonlinear influences and the resulting OPD are calculated with parameters matching the characteristics of the prototype specified in Section 3.

Fig. 4
Fig. 4

Calculated nonlinear wavenumber shift Δνshift between the incorrectly linearly distributed wavenumbers and the correct wavenumbers due to the wavenumber-dependence of the refractive index.

Fig. 5
Fig. 5

Overview of the system configuration used to evaluate the proposed static single-mirror Fourier transform spectrometer design. The use of an extended light source results in focal points with a non-zero diameter Dfp.

Fig. 6
Fig. 6

Detector image of the background interference pattern and the corresponding interferogram. The detector image is a close-up of the central peak of the interference pattern.

Fig. 7
Fig. 7

Background and probe spectra as well as the corresponding background SNR. The SNR was calculated at a measurement frequency of 8.3 Hz.

Fig. 8
Fig. 8

Comparison of the evaluated static single-mirror Fourier transform spectrometer prototype with a traditional FTIR spectrometer using a polystyrene standard.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

d bs-m = T bs ( n bs + n s sin ( π 4 arcsin ( n s n bs 2 ) ) 1 ( n s n bs 2 ) n s . 2 ) ;
s = d bs-m + T bs ( n s sin ( π 4 arcsin ( n s n bs 2 ) ) 1 ( n s n bs 2 ) 2 ) .
Δ x ( y , z ) lin = s f y .
Δ x ( y , z ) = Δ x ( y , z ) lin + Δ x ( y , z ) nonlin .
γ ν = v s , ν v s , ν design
Δ ν shift = ν correct ν lin = ν lin ( γ ν 1 ) .
Δ ν ˜ = 1 Δ x max .

Metrics