Abstract

We investigated experimentally and numerically the robustness of optical sensors based on Bloch waves at the surface of periodic one-dimensional photonic crystals. The distributions of sensor characteristics caused by the fabrication uncertainties in dielectric layer thicknesses have been analyzed and robustness criteria have been set forth and discussed. We show that the performance of the surface wave sensors is sufficiently robust with respect to the changes of the photonic crystal layer thicknesses. Layer thickness optimization of the photonic crystal, carried out to achieve low limit of detection, leads to an improvement of the robustness of the surface wave sensors that is attributed to Bloch states lying deeper in the photonic band gap.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optimization of angularly resolved Bloch surface wave biosensors

Riccardo Rizzo, Norbert Danz, Francesco Michelotti, Emmanuel Maillart, Aleksei Anopchenko, and Christoph Wächter
Opt. Express 22(19) 23202-23214 (2014)

Hydrogenated amorphous silicon nitride photonic crystals for improved-performance surface electromagnetic wave biosensors

Alberto Sinibaldi, Emiliano Descrovi, Fabrizio Giorgis, Lorenzo Dominici, Mirko Ballarini, Pietro Mandracci, Norbert Danz, and Francesco Michelotti
Biomed. Opt. Express 3(10) 2405-2410 (2012)

Combining label-free and fluorescence operation of Bloch surface wave optical sensors

Alberto Sinibaldi, Antonio Fieramosca, Riccardo Rizzo, Aleksei Anopchenko, Norbert Danz, Peter Munzert, Claudio Magistris, Claudia Barolo, and Francesco Michelotti
Opt. Lett. 39(10) 2947-2950 (2014)

References

  • View by:
  • |
  • |
  • |

  1. A. Yariv and P. Yeh, Optical Waves in Crystals: Propagation and Control of Laser Radiation (Wiley, 1984).
  2. A. Farmer, A. C. Friedli, S. M. Wright, and W. M. Robertson, “Biosensing using surface electromagnetic waves in photonic band gap multilayers,” Sens. Actuat. B 173, 79–84 (2012).
    [Crossref]
  3. V. N. Konopsky, T. Karakouz, E. V. Alieva, C. Vicario, S. K. Sekatskii, and G. Dietler, “Photonic crystal biosensor based on optical surface waves,” Sensors (Basel) 13(3), 2566–2578 (2013).
    [Crossref] [PubMed]
  4. P. Rivolo, F. Michelotti, F. Frascella, G. Digregorio, P. Mandracci, L. Dominici, F. Giorgis, and E. Descrovi, “Real time secondary antibody detection by means of silicon-based multilayers sustaining Bloch surface waves,” Sens. Actuat. B 161(1), 1046–1052 (2012).
    [Crossref]
  5. L. B. Yu, E. Barakat, T. Sfez, L. Hvozdara, J. Di Francesco, and H. P. Herzig, “Manipulating Bloch surface waves in 2D: A platform concept-based flat lens,” Light Sci. Appl. 3(1), e124 (2014).
    [Crossref]
  6. E. Descrovi, T. Sfez, M. Quaglio, D. Brunazzo, L. Dominici, F. Michelotti, H. P. Herzig, O. J. F. Martin, and F. Giorgis, “Guided Bloch surface waves on ultrathin polymeric ridges,” Nano Lett. 10(6), 2087–2091 (2010).
    [Crossref] [PubMed]
  7. E. A. Bezus, L. L. Doskolovich, D. A. Bykov, and V. A. Soifer, “Phase modulation of Bloch surface waves with the use of a diffraction microrelief at the boundary of a one-dimensional photonic crystal,” JETP Lett. 99(2), 63–66 (2014).
    [Crossref]
  8. A. P. Vinogradov, A. V. Dorofeenko, A. M. Merzlikin, and A. A. Lisyansky, “Surface states in photonic crystals,” Phys.- Usp. 53(3), 243–256 (2010).
    [Crossref]
  9. H. Raether, Surface plasmons on smooth and rough surfaces and on gratings (Springer, 1988).
  10. R. Rizzo, N. Danz, F. Michelotti, E. Maillart, A. Anopchenko, and C. Wächter, “Optimization of angularly resolved Bloch surface wave biosensors,” Opt. Express 22(19), 23202–23214 (2014).
    [Crossref] [PubMed]
  11. R. Rizzo, N. Danz, F. Michelotti, P. Munzert, and A. Sinibaldi, “Limit of detection comparison for surface wave biosensors,” Proc. SPIE 9141, 91410P (2014).
    [Crossref]
  12. S. H. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “Theoretical investigation of fabrication-related disorder on the properties of photonic crystals,” J. Appl. Phys. 78(3), 1415–1418 (1995).
    [Crossref]
  13. F. Bragheri, D. Faccio, M. Romagnoli, T. Krauss, and J. Roberts, “Effects of random and systematic perturbations in a one-dimensional photonic crystal wavelength converter,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(1), 017601 (2004).
    [Crossref] [PubMed]
  14. M. A. Kaliteevski, D. M. Beggs, S. Brand, R. A. Abram, and V. V. Nikolaev, “Statistics of the eigenmodes and optical properties of one-dimensional disordered photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(5), 056616 (2006).
    [Crossref] [PubMed]
  15. D. Z. Zhang, Z. L. Li, W. Hu, and B. Y. Cheng, “Broad-band optical reflector - an application of light localization in one-dimension,” Appl. Phys. Lett. 67(17), 2431–2432 (1995).
    [Crossref]
  16. L. Pavesi and P. Dubos, “Random porous silicon multilayers: Application to distributed Bragg reflectors and interferential Fabry-Perot filters,” Semicond. Sci. Technol. 12(5), 570–575 (1997).
    [Crossref]
  17. A. Chiasera, F. Scotognella, L. Criante, S. Varas, G. D. Valle, R. Ramponi, and M. Ferrari, “Disorder in photonic structures induced by random layer thickness,” Sci. Adv. Mater. 7(6), 1207–1212 (2015).
    [Crossref]
  18. A. V. Baryshev, A. M. Merzlikin, and M. Inoue, “Efficiency of optical sensing by a plasmonic photonic-crystal slab,” J. Phys. D Appl. Phys. 46(12), 125107 (2013).
    [Crossref]
  19. http://www.topas.com/ .
  20. N. Danz, A. Kick, F. Sonntag, S. Schmieder, B. Hofer, U. Klotzbach, and M. Mertig, “Surface plasmon resonance platform technology for multi-parameter analyses on polymer chips,” Eng. Life Sci. 11(6), 566–572 (2011).
    [Crossref]
  21. P. Munzert, U. Schulz, and N. Kaiser, “Transparent thermoplastic polymers in plasma-assisted coating processes,” Surf. Coat. Tech. 174–175, 1048–1052 (2003).
    [Crossref]
  22. F. Michelotti, A. Sinibaldi, P. Munzert, N. Danz, and E. Descrovi, “Probing losses of dielectric multilayers by means of Bloch surface waves,” Opt. Lett. 38(5), 616–618 (2013).
    [Crossref] [PubMed]
  23. A. A. Greshnov, M. A. Kaliteevski, and R. A. Abram, “Analytical theory of light localization in one-dimensional disordered photonic crystals,” Solid State Commun. 158, 38–45 (2013).
    [Crossref]
  24. A. Sinibaldi, N. Danz, E. Descrovi, P. Munzert, U. Schulz, F. Sonntag, L. Dominici, and F. Michelotti, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Actuat. B 174, 292–298 (2012).
    [Crossref]
  25. G. Figliozzi, “Theoretical and experimental study of Bloch waves on photonic crystals for biomolecular recognition applications,” Thesis (Sapienza University of Rome, 2011), p. 117.
  26. P. Yeh, A. Yariv, and C.-S. Hong, “Electromagnetic propagation in periodic stratified media. I. General theory,” J. Opt. Soc. Am. 67(4), 423–438 (1977).
    [Crossref]
  27. M. Piliarik and J. Homola, “Surface plasmon resonance (SPR) sensors: approaching their limits?” Opt. Express 17(19), 16505–16517 (2009).
    [Crossref] [PubMed]
  28. A. Sinibaldi, R. Rizzo, G. Figliozzi, E. Descrovi, N. Danz, P. Munzert, A. Anopchenko, and F. Michelotti, “A full ellipsometric approach to optical sensing with Bloch surface waves on photonic crystals,” Opt. Express 21(20), 23331–23344 (2013).
    [Crossref] [PubMed]
  29. R. Rizzo, “Experimental study of photonic crystal biosensors: development of a new optical configuration and procedures for the chemical functionalization of the surfaces,” Thesis (Sapienza University of Rome, 2013), p. 87.
  30. D. L. Windt, “IMD - Software for modeling the optical properties of multilayer films,” Comput. Phys. 12(4), 360–370 (1998).
    [Crossref]
  31. O. Glushko, R. Meisels, F. Kuchar, and R. Danzer, “Numerical and experimental investigations of surface roughness in 1D photonic crystals,” J. Phys. Condens. Matter 20(45), 454220 (2008).
    [Crossref]
  32. V. N. Konopsky and E. V. Alieva, “Photonic crystal surface waves for optical biosensors,” Anal. Chem. 79(12), 4729–4735 (2007).
    [Crossref] [PubMed]
  33. D. A. Armbruster and T. Pry, “Limit of blank, limit of detection and limit of quantitation,” Clin. Biochem. Rev. 29(Suppl 1), S49–S52 (2008).
    [PubMed]
  34. S. Johnson and J. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8(3), 173–190 (2001).
    [Crossref] [PubMed]
  35. http://www.pcbiosensors.com/ .

2015 (1)

A. Chiasera, F. Scotognella, L. Criante, S. Varas, G. D. Valle, R. Ramponi, and M. Ferrari, “Disorder in photonic structures induced by random layer thickness,” Sci. Adv. Mater. 7(6), 1207–1212 (2015).
[Crossref]

2014 (4)

L. B. Yu, E. Barakat, T. Sfez, L. Hvozdara, J. Di Francesco, and H. P. Herzig, “Manipulating Bloch surface waves in 2D: A platform concept-based flat lens,” Light Sci. Appl. 3(1), e124 (2014).
[Crossref]

E. A. Bezus, L. L. Doskolovich, D. A. Bykov, and V. A. Soifer, “Phase modulation of Bloch surface waves with the use of a diffraction microrelief at the boundary of a one-dimensional photonic crystal,” JETP Lett. 99(2), 63–66 (2014).
[Crossref]

R. Rizzo, N. Danz, F. Michelotti, E. Maillart, A. Anopchenko, and C. Wächter, “Optimization of angularly resolved Bloch surface wave biosensors,” Opt. Express 22(19), 23202–23214 (2014).
[Crossref] [PubMed]

R. Rizzo, N. Danz, F. Michelotti, P. Munzert, and A. Sinibaldi, “Limit of detection comparison for surface wave biosensors,” Proc. SPIE 9141, 91410P (2014).
[Crossref]

2013 (5)

V. N. Konopsky, T. Karakouz, E. V. Alieva, C. Vicario, S. K. Sekatskii, and G. Dietler, “Photonic crystal biosensor based on optical surface waves,” Sensors (Basel) 13(3), 2566–2578 (2013).
[Crossref] [PubMed]

A. V. Baryshev, A. M. Merzlikin, and M. Inoue, “Efficiency of optical sensing by a plasmonic photonic-crystal slab,” J. Phys. D Appl. Phys. 46(12), 125107 (2013).
[Crossref]

F. Michelotti, A. Sinibaldi, P. Munzert, N. Danz, and E. Descrovi, “Probing losses of dielectric multilayers by means of Bloch surface waves,” Opt. Lett. 38(5), 616–618 (2013).
[Crossref] [PubMed]

A. A. Greshnov, M. A. Kaliteevski, and R. A. Abram, “Analytical theory of light localization in one-dimensional disordered photonic crystals,” Solid State Commun. 158, 38–45 (2013).
[Crossref]

A. Sinibaldi, R. Rizzo, G. Figliozzi, E. Descrovi, N. Danz, P. Munzert, A. Anopchenko, and F. Michelotti, “A full ellipsometric approach to optical sensing with Bloch surface waves on photonic crystals,” Opt. Express 21(20), 23331–23344 (2013).
[Crossref] [PubMed]

2012 (3)

A. Sinibaldi, N. Danz, E. Descrovi, P. Munzert, U. Schulz, F. Sonntag, L. Dominici, and F. Michelotti, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Actuat. B 174, 292–298 (2012).
[Crossref]

A. Farmer, A. C. Friedli, S. M. Wright, and W. M. Robertson, “Biosensing using surface electromagnetic waves in photonic band gap multilayers,” Sens. Actuat. B 173, 79–84 (2012).
[Crossref]

P. Rivolo, F. Michelotti, F. Frascella, G. Digregorio, P. Mandracci, L. Dominici, F. Giorgis, and E. Descrovi, “Real time secondary antibody detection by means of silicon-based multilayers sustaining Bloch surface waves,” Sens. Actuat. B 161(1), 1046–1052 (2012).
[Crossref]

2011 (1)

N. Danz, A. Kick, F. Sonntag, S. Schmieder, B. Hofer, U. Klotzbach, and M. Mertig, “Surface plasmon resonance platform technology for multi-parameter analyses on polymer chips,” Eng. Life Sci. 11(6), 566–572 (2011).
[Crossref]

2010 (2)

E. Descrovi, T. Sfez, M. Quaglio, D. Brunazzo, L. Dominici, F. Michelotti, H. P. Herzig, O. J. F. Martin, and F. Giorgis, “Guided Bloch surface waves on ultrathin polymeric ridges,” Nano Lett. 10(6), 2087–2091 (2010).
[Crossref] [PubMed]

A. P. Vinogradov, A. V. Dorofeenko, A. M. Merzlikin, and A. A. Lisyansky, “Surface states in photonic crystals,” Phys.- Usp. 53(3), 243–256 (2010).
[Crossref]

2009 (1)

2008 (2)

O. Glushko, R. Meisels, F. Kuchar, and R. Danzer, “Numerical and experimental investigations of surface roughness in 1D photonic crystals,” J. Phys. Condens. Matter 20(45), 454220 (2008).
[Crossref]

D. A. Armbruster and T. Pry, “Limit of blank, limit of detection and limit of quantitation,” Clin. Biochem. Rev. 29(Suppl 1), S49–S52 (2008).
[PubMed]

2007 (1)

V. N. Konopsky and E. V. Alieva, “Photonic crystal surface waves for optical biosensors,” Anal. Chem. 79(12), 4729–4735 (2007).
[Crossref] [PubMed]

2006 (1)

M. A. Kaliteevski, D. M. Beggs, S. Brand, R. A. Abram, and V. V. Nikolaev, “Statistics of the eigenmodes and optical properties of one-dimensional disordered photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(5), 056616 (2006).
[Crossref] [PubMed]

2004 (1)

F. Bragheri, D. Faccio, M. Romagnoli, T. Krauss, and J. Roberts, “Effects of random and systematic perturbations in a one-dimensional photonic crystal wavelength converter,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(1), 017601 (2004).
[Crossref] [PubMed]

2003 (1)

P. Munzert, U. Schulz, and N. Kaiser, “Transparent thermoplastic polymers in plasma-assisted coating processes,” Surf. Coat. Tech. 174–175, 1048–1052 (2003).
[Crossref]

2001 (1)

1998 (1)

D. L. Windt, “IMD - Software for modeling the optical properties of multilayer films,” Comput. Phys. 12(4), 360–370 (1998).
[Crossref]

1997 (1)

L. Pavesi and P. Dubos, “Random porous silicon multilayers: Application to distributed Bragg reflectors and interferential Fabry-Perot filters,” Semicond. Sci. Technol. 12(5), 570–575 (1997).
[Crossref]

1995 (2)

D. Z. Zhang, Z. L. Li, W. Hu, and B. Y. Cheng, “Broad-band optical reflector - an application of light localization in one-dimension,” Appl. Phys. Lett. 67(17), 2431–2432 (1995).
[Crossref]

S. H. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “Theoretical investigation of fabrication-related disorder on the properties of photonic crystals,” J. Appl. Phys. 78(3), 1415–1418 (1995).
[Crossref]

1977 (1)

Abram, R. A.

A. A. Greshnov, M. A. Kaliteevski, and R. A. Abram, “Analytical theory of light localization in one-dimensional disordered photonic crystals,” Solid State Commun. 158, 38–45 (2013).
[Crossref]

M. A. Kaliteevski, D. M. Beggs, S. Brand, R. A. Abram, and V. V. Nikolaev, “Statistics of the eigenmodes and optical properties of one-dimensional disordered photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(5), 056616 (2006).
[Crossref] [PubMed]

Alieva, E. V.

V. N. Konopsky, T. Karakouz, E. V. Alieva, C. Vicario, S. K. Sekatskii, and G. Dietler, “Photonic crystal biosensor based on optical surface waves,” Sensors (Basel) 13(3), 2566–2578 (2013).
[Crossref] [PubMed]

V. N. Konopsky and E. V. Alieva, “Photonic crystal surface waves for optical biosensors,” Anal. Chem. 79(12), 4729–4735 (2007).
[Crossref] [PubMed]

Anopchenko, A.

Armbruster, D. A.

D. A. Armbruster and T. Pry, “Limit of blank, limit of detection and limit of quantitation,” Clin. Biochem. Rev. 29(Suppl 1), S49–S52 (2008).
[PubMed]

Barakat, E.

L. B. Yu, E. Barakat, T. Sfez, L. Hvozdara, J. Di Francesco, and H. P. Herzig, “Manipulating Bloch surface waves in 2D: A platform concept-based flat lens,” Light Sci. Appl. 3(1), e124 (2014).
[Crossref]

Baryshev, A. V.

A. V. Baryshev, A. M. Merzlikin, and M. Inoue, “Efficiency of optical sensing by a plasmonic photonic-crystal slab,” J. Phys. D Appl. Phys. 46(12), 125107 (2013).
[Crossref]

Beggs, D. M.

M. A. Kaliteevski, D. M. Beggs, S. Brand, R. A. Abram, and V. V. Nikolaev, “Statistics of the eigenmodes and optical properties of one-dimensional disordered photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(5), 056616 (2006).
[Crossref] [PubMed]

Bezus, E. A.

E. A. Bezus, L. L. Doskolovich, D. A. Bykov, and V. A. Soifer, “Phase modulation of Bloch surface waves with the use of a diffraction microrelief at the boundary of a one-dimensional photonic crystal,” JETP Lett. 99(2), 63–66 (2014).
[Crossref]

Bragheri, F.

F. Bragheri, D. Faccio, M. Romagnoli, T. Krauss, and J. Roberts, “Effects of random and systematic perturbations in a one-dimensional photonic crystal wavelength converter,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(1), 017601 (2004).
[Crossref] [PubMed]

Brand, S.

M. A. Kaliteevski, D. M. Beggs, S. Brand, R. A. Abram, and V. V. Nikolaev, “Statistics of the eigenmodes and optical properties of one-dimensional disordered photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(5), 056616 (2006).
[Crossref] [PubMed]

Brunazzo, D.

E. Descrovi, T. Sfez, M. Quaglio, D. Brunazzo, L. Dominici, F. Michelotti, H. P. Herzig, O. J. F. Martin, and F. Giorgis, “Guided Bloch surface waves on ultrathin polymeric ridges,” Nano Lett. 10(6), 2087–2091 (2010).
[Crossref] [PubMed]

Bykov, D. A.

E. A. Bezus, L. L. Doskolovich, D. A. Bykov, and V. A. Soifer, “Phase modulation of Bloch surface waves with the use of a diffraction microrelief at the boundary of a one-dimensional photonic crystal,” JETP Lett. 99(2), 63–66 (2014).
[Crossref]

Cheng, B. Y.

D. Z. Zhang, Z. L. Li, W. Hu, and B. Y. Cheng, “Broad-band optical reflector - an application of light localization in one-dimension,” Appl. Phys. Lett. 67(17), 2431–2432 (1995).
[Crossref]

Chiasera, A.

A. Chiasera, F. Scotognella, L. Criante, S. Varas, G. D. Valle, R. Ramponi, and M. Ferrari, “Disorder in photonic structures induced by random layer thickness,” Sci. Adv. Mater. 7(6), 1207–1212 (2015).
[Crossref]

Criante, L.

A. Chiasera, F. Scotognella, L. Criante, S. Varas, G. D. Valle, R. Ramponi, and M. Ferrari, “Disorder in photonic structures induced by random layer thickness,” Sci. Adv. Mater. 7(6), 1207–1212 (2015).
[Crossref]

Danz, N.

R. Rizzo, N. Danz, F. Michelotti, P. Munzert, and A. Sinibaldi, “Limit of detection comparison for surface wave biosensors,” Proc. SPIE 9141, 91410P (2014).
[Crossref]

R. Rizzo, N. Danz, F. Michelotti, E. Maillart, A. Anopchenko, and C. Wächter, “Optimization of angularly resolved Bloch surface wave biosensors,” Opt. Express 22(19), 23202–23214 (2014).
[Crossref] [PubMed]

F. Michelotti, A. Sinibaldi, P. Munzert, N. Danz, and E. Descrovi, “Probing losses of dielectric multilayers by means of Bloch surface waves,” Opt. Lett. 38(5), 616–618 (2013).
[Crossref] [PubMed]

A. Sinibaldi, R. Rizzo, G. Figliozzi, E. Descrovi, N. Danz, P. Munzert, A. Anopchenko, and F. Michelotti, “A full ellipsometric approach to optical sensing with Bloch surface waves on photonic crystals,” Opt. Express 21(20), 23331–23344 (2013).
[Crossref] [PubMed]

A. Sinibaldi, N. Danz, E. Descrovi, P. Munzert, U. Schulz, F. Sonntag, L. Dominici, and F. Michelotti, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Actuat. B 174, 292–298 (2012).
[Crossref]

N. Danz, A. Kick, F. Sonntag, S. Schmieder, B. Hofer, U. Klotzbach, and M. Mertig, “Surface plasmon resonance platform technology for multi-parameter analyses on polymer chips,” Eng. Life Sci. 11(6), 566–572 (2011).
[Crossref]

Danzer, R.

O. Glushko, R. Meisels, F. Kuchar, and R. Danzer, “Numerical and experimental investigations of surface roughness in 1D photonic crystals,” J. Phys. Condens. Matter 20(45), 454220 (2008).
[Crossref]

Descrovi, E.

A. Sinibaldi, R. Rizzo, G. Figliozzi, E. Descrovi, N. Danz, P. Munzert, A. Anopchenko, and F. Michelotti, “A full ellipsometric approach to optical sensing with Bloch surface waves on photonic crystals,” Opt. Express 21(20), 23331–23344 (2013).
[Crossref] [PubMed]

F. Michelotti, A. Sinibaldi, P. Munzert, N. Danz, and E. Descrovi, “Probing losses of dielectric multilayers by means of Bloch surface waves,” Opt. Lett. 38(5), 616–618 (2013).
[Crossref] [PubMed]

A. Sinibaldi, N. Danz, E. Descrovi, P. Munzert, U. Schulz, F. Sonntag, L. Dominici, and F. Michelotti, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Actuat. B 174, 292–298 (2012).
[Crossref]

P. Rivolo, F. Michelotti, F. Frascella, G. Digregorio, P. Mandracci, L. Dominici, F. Giorgis, and E. Descrovi, “Real time secondary antibody detection by means of silicon-based multilayers sustaining Bloch surface waves,” Sens. Actuat. B 161(1), 1046–1052 (2012).
[Crossref]

E. Descrovi, T. Sfez, M. Quaglio, D. Brunazzo, L. Dominici, F. Michelotti, H. P. Herzig, O. J. F. Martin, and F. Giorgis, “Guided Bloch surface waves on ultrathin polymeric ridges,” Nano Lett. 10(6), 2087–2091 (2010).
[Crossref] [PubMed]

Di Francesco, J.

L. B. Yu, E. Barakat, T. Sfez, L. Hvozdara, J. Di Francesco, and H. P. Herzig, “Manipulating Bloch surface waves in 2D: A platform concept-based flat lens,” Light Sci. Appl. 3(1), e124 (2014).
[Crossref]

Dietler, G.

V. N. Konopsky, T. Karakouz, E. V. Alieva, C. Vicario, S. K. Sekatskii, and G. Dietler, “Photonic crystal biosensor based on optical surface waves,” Sensors (Basel) 13(3), 2566–2578 (2013).
[Crossref] [PubMed]

Digregorio, G.

P. Rivolo, F. Michelotti, F. Frascella, G. Digregorio, P. Mandracci, L. Dominici, F. Giorgis, and E. Descrovi, “Real time secondary antibody detection by means of silicon-based multilayers sustaining Bloch surface waves,” Sens. Actuat. B 161(1), 1046–1052 (2012).
[Crossref]

Dominici, L.

P. Rivolo, F. Michelotti, F. Frascella, G. Digregorio, P. Mandracci, L. Dominici, F. Giorgis, and E. Descrovi, “Real time secondary antibody detection by means of silicon-based multilayers sustaining Bloch surface waves,” Sens. Actuat. B 161(1), 1046–1052 (2012).
[Crossref]

A. Sinibaldi, N. Danz, E. Descrovi, P. Munzert, U. Schulz, F. Sonntag, L. Dominici, and F. Michelotti, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Actuat. B 174, 292–298 (2012).
[Crossref]

E. Descrovi, T. Sfez, M. Quaglio, D. Brunazzo, L. Dominici, F. Michelotti, H. P. Herzig, O. J. F. Martin, and F. Giorgis, “Guided Bloch surface waves on ultrathin polymeric ridges,” Nano Lett. 10(6), 2087–2091 (2010).
[Crossref] [PubMed]

Dorofeenko, A. V.

A. P. Vinogradov, A. V. Dorofeenko, A. M. Merzlikin, and A. A. Lisyansky, “Surface states in photonic crystals,” Phys.- Usp. 53(3), 243–256 (2010).
[Crossref]

Doskolovich, L. L.

E. A. Bezus, L. L. Doskolovich, D. A. Bykov, and V. A. Soifer, “Phase modulation of Bloch surface waves with the use of a diffraction microrelief at the boundary of a one-dimensional photonic crystal,” JETP Lett. 99(2), 63–66 (2014).
[Crossref]

Dubos, P.

L. Pavesi and P. Dubos, “Random porous silicon multilayers: Application to distributed Bragg reflectors and interferential Fabry-Perot filters,” Semicond. Sci. Technol. 12(5), 570–575 (1997).
[Crossref]

Faccio, D.

F. Bragheri, D. Faccio, M. Romagnoli, T. Krauss, and J. Roberts, “Effects of random and systematic perturbations in a one-dimensional photonic crystal wavelength converter,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(1), 017601 (2004).
[Crossref] [PubMed]

Fan, S. H.

S. H. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “Theoretical investigation of fabrication-related disorder on the properties of photonic crystals,” J. Appl. Phys. 78(3), 1415–1418 (1995).
[Crossref]

Farmer, A.

A. Farmer, A. C. Friedli, S. M. Wright, and W. M. Robertson, “Biosensing using surface electromagnetic waves in photonic band gap multilayers,” Sens. Actuat. B 173, 79–84 (2012).
[Crossref]

Ferrari, M.

A. Chiasera, F. Scotognella, L. Criante, S. Varas, G. D. Valle, R. Ramponi, and M. Ferrari, “Disorder in photonic structures induced by random layer thickness,” Sci. Adv. Mater. 7(6), 1207–1212 (2015).
[Crossref]

Figliozzi, G.

Frascella, F.

P. Rivolo, F. Michelotti, F. Frascella, G. Digregorio, P. Mandracci, L. Dominici, F. Giorgis, and E. Descrovi, “Real time secondary antibody detection by means of silicon-based multilayers sustaining Bloch surface waves,” Sens. Actuat. B 161(1), 1046–1052 (2012).
[Crossref]

Friedli, A. C.

A. Farmer, A. C. Friedli, S. M. Wright, and W. M. Robertson, “Biosensing using surface electromagnetic waves in photonic band gap multilayers,” Sens. Actuat. B 173, 79–84 (2012).
[Crossref]

Giorgis, F.

P. Rivolo, F. Michelotti, F. Frascella, G. Digregorio, P. Mandracci, L. Dominici, F. Giorgis, and E. Descrovi, “Real time secondary antibody detection by means of silicon-based multilayers sustaining Bloch surface waves,” Sens. Actuat. B 161(1), 1046–1052 (2012).
[Crossref]

E. Descrovi, T. Sfez, M. Quaglio, D. Brunazzo, L. Dominici, F. Michelotti, H. P. Herzig, O. J. F. Martin, and F. Giorgis, “Guided Bloch surface waves on ultrathin polymeric ridges,” Nano Lett. 10(6), 2087–2091 (2010).
[Crossref] [PubMed]

Glushko, O.

O. Glushko, R. Meisels, F. Kuchar, and R. Danzer, “Numerical and experimental investigations of surface roughness in 1D photonic crystals,” J. Phys. Condens. Matter 20(45), 454220 (2008).
[Crossref]

Greshnov, A. A.

A. A. Greshnov, M. A. Kaliteevski, and R. A. Abram, “Analytical theory of light localization in one-dimensional disordered photonic crystals,” Solid State Commun. 158, 38–45 (2013).
[Crossref]

Herzig, H. P.

L. B. Yu, E. Barakat, T. Sfez, L. Hvozdara, J. Di Francesco, and H. P. Herzig, “Manipulating Bloch surface waves in 2D: A platform concept-based flat lens,” Light Sci. Appl. 3(1), e124 (2014).
[Crossref]

E. Descrovi, T. Sfez, M. Quaglio, D. Brunazzo, L. Dominici, F. Michelotti, H. P. Herzig, O. J. F. Martin, and F. Giorgis, “Guided Bloch surface waves on ultrathin polymeric ridges,” Nano Lett. 10(6), 2087–2091 (2010).
[Crossref] [PubMed]

Hofer, B.

N. Danz, A. Kick, F. Sonntag, S. Schmieder, B. Hofer, U. Klotzbach, and M. Mertig, “Surface plasmon resonance platform technology for multi-parameter analyses on polymer chips,” Eng. Life Sci. 11(6), 566–572 (2011).
[Crossref]

Homola, J.

Hong, C.-S.

Hu, W.

D. Z. Zhang, Z. L. Li, W. Hu, and B. Y. Cheng, “Broad-band optical reflector - an application of light localization in one-dimension,” Appl. Phys. Lett. 67(17), 2431–2432 (1995).
[Crossref]

Hvozdara, L.

L. B. Yu, E. Barakat, T. Sfez, L. Hvozdara, J. Di Francesco, and H. P. Herzig, “Manipulating Bloch surface waves in 2D: A platform concept-based flat lens,” Light Sci. Appl. 3(1), e124 (2014).
[Crossref]

Inoue, M.

A. V. Baryshev, A. M. Merzlikin, and M. Inoue, “Efficiency of optical sensing by a plasmonic photonic-crystal slab,” J. Phys. D Appl. Phys. 46(12), 125107 (2013).
[Crossref]

Joannopoulos, J.

Joannopoulos, J. D.

S. H. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “Theoretical investigation of fabrication-related disorder on the properties of photonic crystals,” J. Appl. Phys. 78(3), 1415–1418 (1995).
[Crossref]

Johnson, S.

Kaiser, N.

P. Munzert, U. Schulz, and N. Kaiser, “Transparent thermoplastic polymers in plasma-assisted coating processes,” Surf. Coat. Tech. 174–175, 1048–1052 (2003).
[Crossref]

Kaliteevski, M. A.

A. A. Greshnov, M. A. Kaliteevski, and R. A. Abram, “Analytical theory of light localization in one-dimensional disordered photonic crystals,” Solid State Commun. 158, 38–45 (2013).
[Crossref]

M. A. Kaliteevski, D. M. Beggs, S. Brand, R. A. Abram, and V. V. Nikolaev, “Statistics of the eigenmodes and optical properties of one-dimensional disordered photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(5), 056616 (2006).
[Crossref] [PubMed]

Karakouz, T.

V. N. Konopsky, T. Karakouz, E. V. Alieva, C. Vicario, S. K. Sekatskii, and G. Dietler, “Photonic crystal biosensor based on optical surface waves,” Sensors (Basel) 13(3), 2566–2578 (2013).
[Crossref] [PubMed]

Kick, A.

N. Danz, A. Kick, F. Sonntag, S. Schmieder, B. Hofer, U. Klotzbach, and M. Mertig, “Surface plasmon resonance platform technology for multi-parameter analyses on polymer chips,” Eng. Life Sci. 11(6), 566–572 (2011).
[Crossref]

Klotzbach, U.

N. Danz, A. Kick, F. Sonntag, S. Schmieder, B. Hofer, U. Klotzbach, and M. Mertig, “Surface plasmon resonance platform technology for multi-parameter analyses on polymer chips,” Eng. Life Sci. 11(6), 566–572 (2011).
[Crossref]

Konopsky, V. N.

V. N. Konopsky, T. Karakouz, E. V. Alieva, C. Vicario, S. K. Sekatskii, and G. Dietler, “Photonic crystal biosensor based on optical surface waves,” Sensors (Basel) 13(3), 2566–2578 (2013).
[Crossref] [PubMed]

V. N. Konopsky and E. V. Alieva, “Photonic crystal surface waves for optical biosensors,” Anal. Chem. 79(12), 4729–4735 (2007).
[Crossref] [PubMed]

Krauss, T.

F. Bragheri, D. Faccio, M. Romagnoli, T. Krauss, and J. Roberts, “Effects of random and systematic perturbations in a one-dimensional photonic crystal wavelength converter,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(1), 017601 (2004).
[Crossref] [PubMed]

Kuchar, F.

O. Glushko, R. Meisels, F. Kuchar, and R. Danzer, “Numerical and experimental investigations of surface roughness in 1D photonic crystals,” J. Phys. Condens. Matter 20(45), 454220 (2008).
[Crossref]

Li, Z. L.

D. Z. Zhang, Z. L. Li, W. Hu, and B. Y. Cheng, “Broad-band optical reflector - an application of light localization in one-dimension,” Appl. Phys. Lett. 67(17), 2431–2432 (1995).
[Crossref]

Lisyansky, A. A.

A. P. Vinogradov, A. V. Dorofeenko, A. M. Merzlikin, and A. A. Lisyansky, “Surface states in photonic crystals,” Phys.- Usp. 53(3), 243–256 (2010).
[Crossref]

Maillart, E.

Mandracci, P.

P. Rivolo, F. Michelotti, F. Frascella, G. Digregorio, P. Mandracci, L. Dominici, F. Giorgis, and E. Descrovi, “Real time secondary antibody detection by means of silicon-based multilayers sustaining Bloch surface waves,” Sens. Actuat. B 161(1), 1046–1052 (2012).
[Crossref]

Martin, O. J. F.

E. Descrovi, T. Sfez, M. Quaglio, D. Brunazzo, L. Dominici, F. Michelotti, H. P. Herzig, O. J. F. Martin, and F. Giorgis, “Guided Bloch surface waves on ultrathin polymeric ridges,” Nano Lett. 10(6), 2087–2091 (2010).
[Crossref] [PubMed]

Meisels, R.

O. Glushko, R. Meisels, F. Kuchar, and R. Danzer, “Numerical and experimental investigations of surface roughness in 1D photonic crystals,” J. Phys. Condens. Matter 20(45), 454220 (2008).
[Crossref]

Mertig, M.

N. Danz, A. Kick, F. Sonntag, S. Schmieder, B. Hofer, U. Klotzbach, and M. Mertig, “Surface plasmon resonance platform technology for multi-parameter analyses on polymer chips,” Eng. Life Sci. 11(6), 566–572 (2011).
[Crossref]

Merzlikin, A. M.

A. V. Baryshev, A. M. Merzlikin, and M. Inoue, “Efficiency of optical sensing by a plasmonic photonic-crystal slab,” J. Phys. D Appl. Phys. 46(12), 125107 (2013).
[Crossref]

A. P. Vinogradov, A. V. Dorofeenko, A. M. Merzlikin, and A. A. Lisyansky, “Surface states in photonic crystals,” Phys.- Usp. 53(3), 243–256 (2010).
[Crossref]

Michelotti, F.

R. Rizzo, N. Danz, F. Michelotti, P. Munzert, and A. Sinibaldi, “Limit of detection comparison for surface wave biosensors,” Proc. SPIE 9141, 91410P (2014).
[Crossref]

R. Rizzo, N. Danz, F. Michelotti, E. Maillart, A. Anopchenko, and C. Wächter, “Optimization of angularly resolved Bloch surface wave biosensors,” Opt. Express 22(19), 23202–23214 (2014).
[Crossref] [PubMed]

A. Sinibaldi, R. Rizzo, G. Figliozzi, E. Descrovi, N. Danz, P. Munzert, A. Anopchenko, and F. Michelotti, “A full ellipsometric approach to optical sensing with Bloch surface waves on photonic crystals,” Opt. Express 21(20), 23331–23344 (2013).
[Crossref] [PubMed]

F. Michelotti, A. Sinibaldi, P. Munzert, N. Danz, and E. Descrovi, “Probing losses of dielectric multilayers by means of Bloch surface waves,” Opt. Lett. 38(5), 616–618 (2013).
[Crossref] [PubMed]

A. Sinibaldi, N. Danz, E. Descrovi, P. Munzert, U. Schulz, F. Sonntag, L. Dominici, and F. Michelotti, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Actuat. B 174, 292–298 (2012).
[Crossref]

P. Rivolo, F. Michelotti, F. Frascella, G. Digregorio, P. Mandracci, L. Dominici, F. Giorgis, and E. Descrovi, “Real time secondary antibody detection by means of silicon-based multilayers sustaining Bloch surface waves,” Sens. Actuat. B 161(1), 1046–1052 (2012).
[Crossref]

E. Descrovi, T. Sfez, M. Quaglio, D. Brunazzo, L. Dominici, F. Michelotti, H. P. Herzig, O. J. F. Martin, and F. Giorgis, “Guided Bloch surface waves on ultrathin polymeric ridges,” Nano Lett. 10(6), 2087–2091 (2010).
[Crossref] [PubMed]

Munzert, P.

R. Rizzo, N. Danz, F. Michelotti, P. Munzert, and A. Sinibaldi, “Limit of detection comparison for surface wave biosensors,” Proc. SPIE 9141, 91410P (2014).
[Crossref]

A. Sinibaldi, R. Rizzo, G. Figliozzi, E. Descrovi, N. Danz, P. Munzert, A. Anopchenko, and F. Michelotti, “A full ellipsometric approach to optical sensing with Bloch surface waves on photonic crystals,” Opt. Express 21(20), 23331–23344 (2013).
[Crossref] [PubMed]

F. Michelotti, A. Sinibaldi, P. Munzert, N. Danz, and E. Descrovi, “Probing losses of dielectric multilayers by means of Bloch surface waves,” Opt. Lett. 38(5), 616–618 (2013).
[Crossref] [PubMed]

A. Sinibaldi, N. Danz, E. Descrovi, P. Munzert, U. Schulz, F. Sonntag, L. Dominici, and F. Michelotti, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Actuat. B 174, 292–298 (2012).
[Crossref]

P. Munzert, U. Schulz, and N. Kaiser, “Transparent thermoplastic polymers in plasma-assisted coating processes,” Surf. Coat. Tech. 174–175, 1048–1052 (2003).
[Crossref]

Nikolaev, V. V.

M. A. Kaliteevski, D. M. Beggs, S. Brand, R. A. Abram, and V. V. Nikolaev, “Statistics of the eigenmodes and optical properties of one-dimensional disordered photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(5), 056616 (2006).
[Crossref] [PubMed]

Pavesi, L.

L. Pavesi and P. Dubos, “Random porous silicon multilayers: Application to distributed Bragg reflectors and interferential Fabry-Perot filters,” Semicond. Sci. Technol. 12(5), 570–575 (1997).
[Crossref]

Piliarik, M.

Pry, T.

D. A. Armbruster and T. Pry, “Limit of blank, limit of detection and limit of quantitation,” Clin. Biochem. Rev. 29(Suppl 1), S49–S52 (2008).
[PubMed]

Quaglio, M.

E. Descrovi, T. Sfez, M. Quaglio, D. Brunazzo, L. Dominici, F. Michelotti, H. P. Herzig, O. J. F. Martin, and F. Giorgis, “Guided Bloch surface waves on ultrathin polymeric ridges,” Nano Lett. 10(6), 2087–2091 (2010).
[Crossref] [PubMed]

Ramponi, R.

A. Chiasera, F. Scotognella, L. Criante, S. Varas, G. D. Valle, R. Ramponi, and M. Ferrari, “Disorder in photonic structures induced by random layer thickness,” Sci. Adv. Mater. 7(6), 1207–1212 (2015).
[Crossref]

Rivolo, P.

P. Rivolo, F. Michelotti, F. Frascella, G. Digregorio, P. Mandracci, L. Dominici, F. Giorgis, and E. Descrovi, “Real time secondary antibody detection by means of silicon-based multilayers sustaining Bloch surface waves,” Sens. Actuat. B 161(1), 1046–1052 (2012).
[Crossref]

Rizzo, R.

Roberts, J.

F. Bragheri, D. Faccio, M. Romagnoli, T. Krauss, and J. Roberts, “Effects of random and systematic perturbations in a one-dimensional photonic crystal wavelength converter,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(1), 017601 (2004).
[Crossref] [PubMed]

Robertson, W. M.

A. Farmer, A. C. Friedli, S. M. Wright, and W. M. Robertson, “Biosensing using surface electromagnetic waves in photonic band gap multilayers,” Sens. Actuat. B 173, 79–84 (2012).
[Crossref]

Romagnoli, M.

F. Bragheri, D. Faccio, M. Romagnoli, T. Krauss, and J. Roberts, “Effects of random and systematic perturbations in a one-dimensional photonic crystal wavelength converter,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(1), 017601 (2004).
[Crossref] [PubMed]

Schmieder, S.

N. Danz, A. Kick, F. Sonntag, S. Schmieder, B. Hofer, U. Klotzbach, and M. Mertig, “Surface plasmon resonance platform technology for multi-parameter analyses on polymer chips,” Eng. Life Sci. 11(6), 566–572 (2011).
[Crossref]

Schulz, U.

A. Sinibaldi, N. Danz, E. Descrovi, P. Munzert, U. Schulz, F. Sonntag, L. Dominici, and F. Michelotti, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Actuat. B 174, 292–298 (2012).
[Crossref]

P. Munzert, U. Schulz, and N. Kaiser, “Transparent thermoplastic polymers in plasma-assisted coating processes,” Surf. Coat. Tech. 174–175, 1048–1052 (2003).
[Crossref]

Scotognella, F.

A. Chiasera, F. Scotognella, L. Criante, S. Varas, G. D. Valle, R. Ramponi, and M. Ferrari, “Disorder in photonic structures induced by random layer thickness,” Sci. Adv. Mater. 7(6), 1207–1212 (2015).
[Crossref]

Sekatskii, S. K.

V. N. Konopsky, T. Karakouz, E. V. Alieva, C. Vicario, S. K. Sekatskii, and G. Dietler, “Photonic crystal biosensor based on optical surface waves,” Sensors (Basel) 13(3), 2566–2578 (2013).
[Crossref] [PubMed]

Sfez, T.

L. B. Yu, E. Barakat, T. Sfez, L. Hvozdara, J. Di Francesco, and H. P. Herzig, “Manipulating Bloch surface waves in 2D: A platform concept-based flat lens,” Light Sci. Appl. 3(1), e124 (2014).
[Crossref]

E. Descrovi, T. Sfez, M. Quaglio, D. Brunazzo, L. Dominici, F. Michelotti, H. P. Herzig, O. J. F. Martin, and F. Giorgis, “Guided Bloch surface waves on ultrathin polymeric ridges,” Nano Lett. 10(6), 2087–2091 (2010).
[Crossref] [PubMed]

Sinibaldi, A.

R. Rizzo, N. Danz, F. Michelotti, P. Munzert, and A. Sinibaldi, “Limit of detection comparison for surface wave biosensors,” Proc. SPIE 9141, 91410P (2014).
[Crossref]

A. Sinibaldi, R. Rizzo, G. Figliozzi, E. Descrovi, N. Danz, P. Munzert, A. Anopchenko, and F. Michelotti, “A full ellipsometric approach to optical sensing with Bloch surface waves on photonic crystals,” Opt. Express 21(20), 23331–23344 (2013).
[Crossref] [PubMed]

F. Michelotti, A. Sinibaldi, P. Munzert, N. Danz, and E. Descrovi, “Probing losses of dielectric multilayers by means of Bloch surface waves,” Opt. Lett. 38(5), 616–618 (2013).
[Crossref] [PubMed]

A. Sinibaldi, N. Danz, E. Descrovi, P. Munzert, U. Schulz, F. Sonntag, L. Dominici, and F. Michelotti, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Actuat. B 174, 292–298 (2012).
[Crossref]

Soifer, V. A.

E. A. Bezus, L. L. Doskolovich, D. A. Bykov, and V. A. Soifer, “Phase modulation of Bloch surface waves with the use of a diffraction microrelief at the boundary of a one-dimensional photonic crystal,” JETP Lett. 99(2), 63–66 (2014).
[Crossref]

Sonntag, F.

A. Sinibaldi, N. Danz, E. Descrovi, P. Munzert, U. Schulz, F. Sonntag, L. Dominici, and F. Michelotti, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Actuat. B 174, 292–298 (2012).
[Crossref]

N. Danz, A. Kick, F. Sonntag, S. Schmieder, B. Hofer, U. Klotzbach, and M. Mertig, “Surface plasmon resonance platform technology for multi-parameter analyses on polymer chips,” Eng. Life Sci. 11(6), 566–572 (2011).
[Crossref]

Valle, G. D.

A. Chiasera, F. Scotognella, L. Criante, S. Varas, G. D. Valle, R. Ramponi, and M. Ferrari, “Disorder in photonic structures induced by random layer thickness,” Sci. Adv. Mater. 7(6), 1207–1212 (2015).
[Crossref]

Varas, S.

A. Chiasera, F. Scotognella, L. Criante, S. Varas, G. D. Valle, R. Ramponi, and M. Ferrari, “Disorder in photonic structures induced by random layer thickness,” Sci. Adv. Mater. 7(6), 1207–1212 (2015).
[Crossref]

Vicario, C.

V. N. Konopsky, T. Karakouz, E. V. Alieva, C. Vicario, S. K. Sekatskii, and G. Dietler, “Photonic crystal biosensor based on optical surface waves,” Sensors (Basel) 13(3), 2566–2578 (2013).
[Crossref] [PubMed]

Villeneuve, P. R.

S. H. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “Theoretical investigation of fabrication-related disorder on the properties of photonic crystals,” J. Appl. Phys. 78(3), 1415–1418 (1995).
[Crossref]

Vinogradov, A. P.

A. P. Vinogradov, A. V. Dorofeenko, A. M. Merzlikin, and A. A. Lisyansky, “Surface states in photonic crystals,” Phys.- Usp. 53(3), 243–256 (2010).
[Crossref]

Wächter, C.

Windt, D. L.

D. L. Windt, “IMD - Software for modeling the optical properties of multilayer films,” Comput. Phys. 12(4), 360–370 (1998).
[Crossref]

Wright, S. M.

A. Farmer, A. C. Friedli, S. M. Wright, and W. M. Robertson, “Biosensing using surface electromagnetic waves in photonic band gap multilayers,” Sens. Actuat. B 173, 79–84 (2012).
[Crossref]

Yariv, A.

Yeh, P.

Yu, L. B.

L. B. Yu, E. Barakat, T. Sfez, L. Hvozdara, J. Di Francesco, and H. P. Herzig, “Manipulating Bloch surface waves in 2D: A platform concept-based flat lens,” Light Sci. Appl. 3(1), e124 (2014).
[Crossref]

Zhang, D. Z.

D. Z. Zhang, Z. L. Li, W. Hu, and B. Y. Cheng, “Broad-band optical reflector - an application of light localization in one-dimension,” Appl. Phys. Lett. 67(17), 2431–2432 (1995).
[Crossref]

Anal. Chem. (1)

V. N. Konopsky and E. V. Alieva, “Photonic crystal surface waves for optical biosensors,” Anal. Chem. 79(12), 4729–4735 (2007).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

D. Z. Zhang, Z. L. Li, W. Hu, and B. Y. Cheng, “Broad-band optical reflector - an application of light localization in one-dimension,” Appl. Phys. Lett. 67(17), 2431–2432 (1995).
[Crossref]

Clin. Biochem. Rev. (1)

D. A. Armbruster and T. Pry, “Limit of blank, limit of detection and limit of quantitation,” Clin. Biochem. Rev. 29(Suppl 1), S49–S52 (2008).
[PubMed]

Comput. Phys. (1)

D. L. Windt, “IMD - Software for modeling the optical properties of multilayer films,” Comput. Phys. 12(4), 360–370 (1998).
[Crossref]

Eng. Life Sci. (1)

N. Danz, A. Kick, F. Sonntag, S. Schmieder, B. Hofer, U. Klotzbach, and M. Mertig, “Surface plasmon resonance platform technology for multi-parameter analyses on polymer chips,” Eng. Life Sci. 11(6), 566–572 (2011).
[Crossref]

J. Appl. Phys. (1)

S. H. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “Theoretical investigation of fabrication-related disorder on the properties of photonic crystals,” J. Appl. Phys. 78(3), 1415–1418 (1995).
[Crossref]

J. Opt. Soc. Am. (1)

J. Phys. Condens. Matter (1)

O. Glushko, R. Meisels, F. Kuchar, and R. Danzer, “Numerical and experimental investigations of surface roughness in 1D photonic crystals,” J. Phys. Condens. Matter 20(45), 454220 (2008).
[Crossref]

J. Phys. D Appl. Phys. (1)

A. V. Baryshev, A. M. Merzlikin, and M. Inoue, “Efficiency of optical sensing by a plasmonic photonic-crystal slab,” J. Phys. D Appl. Phys. 46(12), 125107 (2013).
[Crossref]

JETP Lett. (1)

E. A. Bezus, L. L. Doskolovich, D. A. Bykov, and V. A. Soifer, “Phase modulation of Bloch surface waves with the use of a diffraction microrelief at the boundary of a one-dimensional photonic crystal,” JETP Lett. 99(2), 63–66 (2014).
[Crossref]

Light Sci. Appl. (1)

L. B. Yu, E. Barakat, T. Sfez, L. Hvozdara, J. Di Francesco, and H. P. Herzig, “Manipulating Bloch surface waves in 2D: A platform concept-based flat lens,” Light Sci. Appl. 3(1), e124 (2014).
[Crossref]

Nano Lett. (1)

E. Descrovi, T. Sfez, M. Quaglio, D. Brunazzo, L. Dominici, F. Michelotti, H. P. Herzig, O. J. F. Martin, and F. Giorgis, “Guided Bloch surface waves on ultrathin polymeric ridges,” Nano Lett. 10(6), 2087–2091 (2010).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Lett. (1)

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (2)

F. Bragheri, D. Faccio, M. Romagnoli, T. Krauss, and J. Roberts, “Effects of random and systematic perturbations in a one-dimensional photonic crystal wavelength converter,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(1), 017601 (2004).
[Crossref] [PubMed]

M. A. Kaliteevski, D. M. Beggs, S. Brand, R. A. Abram, and V. V. Nikolaev, “Statistics of the eigenmodes and optical properties of one-dimensional disordered photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(5), 056616 (2006).
[Crossref] [PubMed]

Phys.- Usp. (1)

A. P. Vinogradov, A. V. Dorofeenko, A. M. Merzlikin, and A. A. Lisyansky, “Surface states in photonic crystals,” Phys.- Usp. 53(3), 243–256 (2010).
[Crossref]

Proc. SPIE (1)

R. Rizzo, N. Danz, F. Michelotti, P. Munzert, and A. Sinibaldi, “Limit of detection comparison for surface wave biosensors,” Proc. SPIE 9141, 91410P (2014).
[Crossref]

Sci. Adv. Mater. (1)

A. Chiasera, F. Scotognella, L. Criante, S. Varas, G. D. Valle, R. Ramponi, and M. Ferrari, “Disorder in photonic structures induced by random layer thickness,” Sci. Adv. Mater. 7(6), 1207–1212 (2015).
[Crossref]

Semicond. Sci. Technol. (1)

L. Pavesi and P. Dubos, “Random porous silicon multilayers: Application to distributed Bragg reflectors and interferential Fabry-Perot filters,” Semicond. Sci. Technol. 12(5), 570–575 (1997).
[Crossref]

Sens. Actuat. B (3)

A. Farmer, A. C. Friedli, S. M. Wright, and W. M. Robertson, “Biosensing using surface electromagnetic waves in photonic band gap multilayers,” Sens. Actuat. B 173, 79–84 (2012).
[Crossref]

P. Rivolo, F. Michelotti, F. Frascella, G. Digregorio, P. Mandracci, L. Dominici, F. Giorgis, and E. Descrovi, “Real time secondary antibody detection by means of silicon-based multilayers sustaining Bloch surface waves,” Sens. Actuat. B 161(1), 1046–1052 (2012).
[Crossref]

A. Sinibaldi, N. Danz, E. Descrovi, P. Munzert, U. Schulz, F. Sonntag, L. Dominici, and F. Michelotti, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Actuat. B 174, 292–298 (2012).
[Crossref]

Sensors (Basel) (1)

V. N. Konopsky, T. Karakouz, E. V. Alieva, C. Vicario, S. K. Sekatskii, and G. Dietler, “Photonic crystal biosensor based on optical surface waves,” Sensors (Basel) 13(3), 2566–2578 (2013).
[Crossref] [PubMed]

Solid State Commun. (1)

A. A. Greshnov, M. A. Kaliteevski, and R. A. Abram, “Analytical theory of light localization in one-dimensional disordered photonic crystals,” Solid State Commun. 158, 38–45 (2013).
[Crossref]

Surf. Coat. Tech. (1)

P. Munzert, U. Schulz, and N. Kaiser, “Transparent thermoplastic polymers in plasma-assisted coating processes,” Surf. Coat. Tech. 174–175, 1048–1052 (2003).
[Crossref]

Other (6)

R. Rizzo, “Experimental study of photonic crystal biosensors: development of a new optical configuration and procedures for the chemical functionalization of the surfaces,” Thesis (Sapienza University of Rome, 2013), p. 87.

G. Figliozzi, “Theoretical and experimental study of Bloch waves on photonic crystals for biomolecular recognition applications,” Thesis (Sapienza University of Rome, 2011), p. 117.

http://www.pcbiosensors.com/ .

A. Yariv and P. Yeh, Optical Waves in Crystals: Propagation and Control of Laser Radiation (Wiley, 1984).

H. Raether, Surface plasmons on smooth and rough surfaces and on gratings (Springer, 1988).

http://www.topas.com/ .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) A false-color image of the TOPAS plastic chip with the Ta2O5/SiO2 1D PhC deposited onto the chip surface. The PhC appears as a pink coloration of the chip surface. (b) Schematic of the chip cross-section along the A-A line and BSW resonance measurements.

Fig. 2
Fig. 2

(a) TE reflectivity curves around the BSW resonance in water for the central spot on 19 virgin PhCs deposited on plastic chips. Thick red curve in (a) is the fit model of the centermost reflectivity curve. (b) BSW resonance distribution due to variations among 15 different spot positions on the surface of one chip. (c) BSW resonance distribution due to the uncertainty of the mechanical fixture. The red curves in (b) and (c) are examples of the Lorentzian fit. (d) The TIR angle measurements from the surface of the TOPAS chip in contact with 1-propanol. The red curve in (d) is an example of the Fresnel’s formula fit. Measurements were performed at room temperature with the excitation wavelength centered at λ0. The standard deviation of the BSW and TIR angular positions are shown in the figures.

Fig. 3
Fig. 3

Histograms of the distributions of simulated (top row) and experimental (bottom row) BSW resonance parameters (experimental data are from Fig. 2(a)). The parameters of experimental resonances have been extracted from Lorentzian fits. An error of ± 3% in the original layer thicknesses is used in the BSW simulations. Spectral broadening of 2.5 nm of the light source and the dispersion of the RI have been taken into account. The histograms are based on sets of 5760 (simulation) and 19 (experiment) sensors.

Fig. 4
Fig. 4

Simulated histograms of the distributions of SV and LoDV simulated for the PhC with an error of ± 3% in the layer thicknesses. Spectral broadening of 2.5 nm of the light source and the dispersion of the RI have been taken into account. The histograms are based on a set of 5760 sensors.

Fig. 5
Fig. 5

Dependence of the FoMS on low and high RI layer thicknesses calculated for the periodic BSW stack with four periods. The value of FoMS is shown at the contour lines and the color scale bar. Layer thicknesses for the original and optimized BSW stacks are marked by full circles. The layer thickness variations of ± 3% are shown by the white rectangles. The FoMS optimization has been performed using monochromatic illumination at λ0.

Fig. 6
Fig. 6

Histograms of the distributions of BSW resonance angle, width, depth, sensitivity, and figure of merit at λ0, simulated for the original (green) and optimized (red) PhC with an error of ± 3% in the layer thicknesses. (Left) Monochromatic illumination. The histograms are based on a set of 8960 sensors. (Right) Polychromatic illumination with Δλ0 = 2.5 nm. The histograms are based on a set of 767 sensors.

Fig. 7
Fig. 7

Photonic band gap as a function of the fill factor, f = dL / (dL + dH). The PBG is calculated at the wave vector that corresponds to the BSW with a fixed frequency (green line). f = 0.744 and f = 0.81 for the non-optimized and optimized PhC, respectively. The white rhombic areas show variations in the photonic band edges and the light line that correspond to ± 3% variations in the PhC layer thicknesses (Fig. 5). The large shaded areas correspond to the thickness optimization domain. The PhC mode continuum is shown as grey areas.

Tables (3)

Tables Icon

Table 1 Median value (μ), standard deviation (σ), and relative error of the BSW resonance parameter distributions

Tables Icon

Table 2 Summary of the key parameters for the original and optimized BSW sensors in a case of the monochromatic illumination at λ0

Tables Icon

Table 3 Summary of the key parameters for the original and optimized BSW sensors in a case of illumination with the light source having 2.5 nm bandwidth centered at λ0

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

Lo D S = σ S S = 2.8× 10 3 Fo M S A WN ,
Fo M S = S S D W ,
S V = dθ dn = dθ dt dt dn = S S dt dn S S L p n bio n H 2 O ,
θ σ θ θ 1 > θ c ,
θ+ σ θ +( S S + σ Ss )Δ t bio +( S V + σ Sv )Δ n sol θ 1 +A= θ 2 ,
θ 1 +2 σ θ +( S S + σ Ss )Δ t bio +( S V + σ Sv )Δ n sol θ 1 +A,
A2 σ θ +( S S + σ Ss )Δ t bio +( S V + σ Sv )Δ n sol
A2 σ θ +( S V + σ Sv )Δ n sol
μ LoD +1.645 σ LoD Lo D * ,

Metrics