Abstract

It is a challenge for any optical method to measure objects with a large range of reflectivity variation across the surface. Image saturation results in incorrect intensities in captured fringe pattern images, leading to phase and measurement errors. This paper presents a new adaptive digital fringe projection technique which avoids image saturation and has a high signal to noise ratio (SNR) in the three-dimensional (3-D) shape measurement of objects that has a large range of reflectivity variation across the surface. Compared to previous high dynamic range 3-D scan methods using many exposures and fringe pattern projections, which consumes a lot of time, the proposed technique uses only two preliminary steps of fringe pattern projection and image capture to generate the adapted fringe patterns, by adaptively adjusting the pixel-wise intensity of the projected fringe patterns based on the saturated pixels in the captured images of the surface being measured. For the bright regions due to high surface reflectivity and high illumination by the ambient light and surfaces interreflections, the projected intensity is reduced just to be low enough to avoid image saturation. Simultaneously, the maximum intensity of 255 is used for those dark regions with low surface reflectivity to maintain high SNR. Our experiments demonstrate that the proposed technique can achieve higher 3-D measurement accuracy across a surface with a large range of reflectivity variation.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Adaptive fringe-pattern projection for image saturation avoidance in 3D surface-shape measurement

Dong Li and Jonathan Kofman
Opt. Express 22(8) 9887-9901 (2014)

3D shape measurement of objects with high dynamic range of surface reflectivity

Gui-hua Liu, Xian-Yong Liu, and Quan-Yuan Feng
Appl. Opt. 50(23) 4557-4565 (2011)

Suppression of projector distortion in phase-measuring profilometry by projecting adaptive fringe patterns

Junzheng Peng, Xiaoli Liu, Dingnan Deng, Hongwei Guo, Zewei Cai, and Xiang Peng
Opt. Express 24(19) 21846-21860 (2016)

References

  • View by:
  • |
  • |
  • |

  1. F. Chen, G. M. Brown, and M. Song, “Overview of three-dimensional shape measurement using optical methods,” Opt. Eng. 39(1), 10–22 (2000).
    [Crossref]
  2. J. Salvi, J. Pagès, and J. Batlle, “Pattern codification strategies in structured light systems,” Pattern Recognit. 37(4), 827–849 (2004).
    [Crossref]
  3. S. S. Gorthi and P. Rastogi, “Fringe projection techniques: Whither we are?” Opt. Lasers Eng. 48(2), 133–140 (2010).
    [Crossref]
  4. X. Han and P. Huang, “Combined stereovision and phase shifting method: a new approach for 3D shape measurement,” Proc. SPIE 7389, 73893C (2009).
    [Crossref]
  5. Z. Li, Y. Shi, and C. W. Y. Wang, “Accurate calibration method for a structured light system,” Opt. Eng. 47(5), 053604 (2008).
    [Crossref]
  6. S. Zhang and P. S. Huang, “Novel method for structured light system calibration,” Opt. Eng. 45(8), 083601 (2006).
    [Crossref]
  7. D. Palousek, M. Omasta, D. Koutny, J. Bednar, T. Koutecky, and F. Dokoupil, “Effect of matte coating on 3D optical measurement accuracy,” Opt. Mater. 40, 1–9 (2015).
    [Crossref]
  8. S. Zhang and S.-T. Yau, “High dynamic range scanning technique,” Opt. Eng. 48(3), 033604 (2009).
    [Crossref]
  9. H. Jiang, H. Zhao, and X. Li, “High dynamic range fringe acquisition: A novel 3-D scanning technique for high-reflective surfaces,” Opt. Lasers Eng. 50(10), 1484–1493 (2012).
    [Crossref]
  10. H. Zhao, X. Liang, X. Diao, and H. Jiang, “Rapid in-situ 3D measurement of shiny object based on fast and high dynamic range digital fringe projector,” Opt. Lasers Eng. 54, 170–174 (2014).
    [Crossref]
  11. L. Ekstrand and S. Zhang, “Autoexposure for three-dimensional shape measurement using a digital-light-processing projector,” Opt. Eng. 50(12), 123603 (2011).
    [Crossref]
  12. S. Ri, M. Fujigaki, and Y. Morimoto, “Intensity range extension method for three-dimensional shape measurement in phase-measuring profilometry using a digital micromirror device camera,” Appl. Opt. 47(29), 5400–5407 (2008).
    [Crossref] [PubMed]
  13. C. Waddington and J. Kofman, “Saturation avoidance by adaptive fringe projection in phase-shifting 3D surface-shape measurement,” in 2010 International Symposium on Optomechatronic Technologies, (IEEE, 2010), pp. 1–4.
    [Crossref]
  14. G. Babaie, M. Abolbashari, and F. Farahi, “Dynamics range enhancement in digital fringe projection technique,” Precision Eng. 39, 243–251 (2015).
  15. C. Zhang, J. Xu, N. Xi, J. Zhao, and Q. Shi, “A Robust Surface Coding Method for Optically Challenging Objects Using Structured Light,” IEEE Trans. Autom. Sci. Eng. 11(3), 775–788 (2014).
    [Crossref]
  16. G. H. Liu, X.-Y. Liu, and Q.-Y. Feng, “3D shape measurement of objects with high dynamic range of surface reflectivity,” Appl. Opt. 50(23), 4557–4565 (2011).
    [Crossref] [PubMed]
  17. Q. Hu, K. G. Harding, X. Du, and D. Hamilton, “Shiny parts measurement using color separation,” Proc. SPIE 6000, 60000D (2005).
    [Crossref]
  18. S. K. Nayar, X. S. Fang, and T. Boult, “Separation of Reflection Components Using Color and Polarization,” Int. J. Comput. Vis. 21(3), 163–186 (1997).
    [Crossref]
  19. B. Salahieh, Z. Chen, J. J. Rodriguez, and R. Liang, “Multi-polarization fringe projection imaging for high dynamic range objects,” Opt. Express 22(8), 10064–10071 (2014).
    [Crossref] [PubMed]
  20. R. Kowarschik, P. Kuhmstedt, and J. Gerber, “Adaptive optical three dimensional measurement with structured light,” Opt. Eng. 39(1), 150–158 (2000).
    [Crossref]
  21. X. Su and W. Chen, “Fourier transform profilometry: a review,” Opt. Lasers Eng. 35(5), 263–284 (2001).
    [Crossref]
  22. J. Salvi, S. Fernandez, T. Pribanic, and X. Llado, “A state of the art in structured light patterns for surface profilometry,” Pattern Recognit. 43(8), 2666–2680 (2010).
    [Crossref]
  23. C. Reich, R. Ritter, and J. Thesing, “White light heterodyne principle for 3D-measurement,” Proc. SPIE 3100, 236–244 (1997).
    [Crossref]
  24. C. Waddington and J. Kofman, “Camera-independent saturation avoidance in measuring high-reflectivity-variation surfaces using pixel-wise composed images from projected patterns of different maximum gray level,” Opt. Commun. 333, 32–37 (2014).
    [Crossref]

2015 (2)

D. Palousek, M. Omasta, D. Koutny, J. Bednar, T. Koutecky, and F. Dokoupil, “Effect of matte coating on 3D optical measurement accuracy,” Opt. Mater. 40, 1–9 (2015).
[Crossref]

G. Babaie, M. Abolbashari, and F. Farahi, “Dynamics range enhancement in digital fringe projection technique,” Precision Eng. 39, 243–251 (2015).

2014 (4)

C. Zhang, J. Xu, N. Xi, J. Zhao, and Q. Shi, “A Robust Surface Coding Method for Optically Challenging Objects Using Structured Light,” IEEE Trans. Autom. Sci. Eng. 11(3), 775–788 (2014).
[Crossref]

H. Zhao, X. Liang, X. Diao, and H. Jiang, “Rapid in-situ 3D measurement of shiny object based on fast and high dynamic range digital fringe projector,” Opt. Lasers Eng. 54, 170–174 (2014).
[Crossref]

B. Salahieh, Z. Chen, J. J. Rodriguez, and R. Liang, “Multi-polarization fringe projection imaging for high dynamic range objects,” Opt. Express 22(8), 10064–10071 (2014).
[Crossref] [PubMed]

C. Waddington and J. Kofman, “Camera-independent saturation avoidance in measuring high-reflectivity-variation surfaces using pixel-wise composed images from projected patterns of different maximum gray level,” Opt. Commun. 333, 32–37 (2014).
[Crossref]

2012 (1)

H. Jiang, H. Zhao, and X. Li, “High dynamic range fringe acquisition: A novel 3-D scanning technique for high-reflective surfaces,” Opt. Lasers Eng. 50(10), 1484–1493 (2012).
[Crossref]

2011 (2)

L. Ekstrand and S. Zhang, “Autoexposure for three-dimensional shape measurement using a digital-light-processing projector,” Opt. Eng. 50(12), 123603 (2011).
[Crossref]

G. H. Liu, X.-Y. Liu, and Q.-Y. Feng, “3D shape measurement of objects with high dynamic range of surface reflectivity,” Appl. Opt. 50(23), 4557–4565 (2011).
[Crossref] [PubMed]

2010 (2)

S. S. Gorthi and P. Rastogi, “Fringe projection techniques: Whither we are?” Opt. Lasers Eng. 48(2), 133–140 (2010).
[Crossref]

J. Salvi, S. Fernandez, T. Pribanic, and X. Llado, “A state of the art in structured light patterns for surface profilometry,” Pattern Recognit. 43(8), 2666–2680 (2010).
[Crossref]

2009 (2)

X. Han and P. Huang, “Combined stereovision and phase shifting method: a new approach for 3D shape measurement,” Proc. SPIE 7389, 73893C (2009).
[Crossref]

S. Zhang and S.-T. Yau, “High dynamic range scanning technique,” Opt. Eng. 48(3), 033604 (2009).
[Crossref]

2008 (2)

2006 (1)

S. Zhang and P. S. Huang, “Novel method for structured light system calibration,” Opt. Eng. 45(8), 083601 (2006).
[Crossref]

2005 (1)

Q. Hu, K. G. Harding, X. Du, and D. Hamilton, “Shiny parts measurement using color separation,” Proc. SPIE 6000, 60000D (2005).
[Crossref]

2004 (1)

J. Salvi, J. Pagès, and J. Batlle, “Pattern codification strategies in structured light systems,” Pattern Recognit. 37(4), 827–849 (2004).
[Crossref]

2001 (1)

X. Su and W. Chen, “Fourier transform profilometry: a review,” Opt. Lasers Eng. 35(5), 263–284 (2001).
[Crossref]

2000 (2)

F. Chen, G. M. Brown, and M. Song, “Overview of three-dimensional shape measurement using optical methods,” Opt. Eng. 39(1), 10–22 (2000).
[Crossref]

R. Kowarschik, P. Kuhmstedt, and J. Gerber, “Adaptive optical three dimensional measurement with structured light,” Opt. Eng. 39(1), 150–158 (2000).
[Crossref]

1997 (2)

S. K. Nayar, X. S. Fang, and T. Boult, “Separation of Reflection Components Using Color and Polarization,” Int. J. Comput. Vis. 21(3), 163–186 (1997).
[Crossref]

C. Reich, R. Ritter, and J. Thesing, “White light heterodyne principle for 3D-measurement,” Proc. SPIE 3100, 236–244 (1997).
[Crossref]

Abolbashari, M.

G. Babaie, M. Abolbashari, and F. Farahi, “Dynamics range enhancement in digital fringe projection technique,” Precision Eng. 39, 243–251 (2015).

Babaie, G.

G. Babaie, M. Abolbashari, and F. Farahi, “Dynamics range enhancement in digital fringe projection technique,” Precision Eng. 39, 243–251 (2015).

Batlle, J.

J. Salvi, J. Pagès, and J. Batlle, “Pattern codification strategies in structured light systems,” Pattern Recognit. 37(4), 827–849 (2004).
[Crossref]

Bednar, J.

D. Palousek, M. Omasta, D. Koutny, J. Bednar, T. Koutecky, and F. Dokoupil, “Effect of matte coating on 3D optical measurement accuracy,” Opt. Mater. 40, 1–9 (2015).
[Crossref]

Boult, T.

S. K. Nayar, X. S. Fang, and T. Boult, “Separation of Reflection Components Using Color and Polarization,” Int. J. Comput. Vis. 21(3), 163–186 (1997).
[Crossref]

Brown, G. M.

F. Chen, G. M. Brown, and M. Song, “Overview of three-dimensional shape measurement using optical methods,” Opt. Eng. 39(1), 10–22 (2000).
[Crossref]

Chen, F.

F. Chen, G. M. Brown, and M. Song, “Overview of three-dimensional shape measurement using optical methods,” Opt. Eng. 39(1), 10–22 (2000).
[Crossref]

Chen, W.

X. Su and W. Chen, “Fourier transform profilometry: a review,” Opt. Lasers Eng. 35(5), 263–284 (2001).
[Crossref]

Chen, Z.

Diao, X.

H. Zhao, X. Liang, X. Diao, and H. Jiang, “Rapid in-situ 3D measurement of shiny object based on fast and high dynamic range digital fringe projector,” Opt. Lasers Eng. 54, 170–174 (2014).
[Crossref]

Dokoupil, F.

D. Palousek, M. Omasta, D. Koutny, J. Bednar, T. Koutecky, and F. Dokoupil, “Effect of matte coating on 3D optical measurement accuracy,” Opt. Mater. 40, 1–9 (2015).
[Crossref]

Du, X.

Q. Hu, K. G. Harding, X. Du, and D. Hamilton, “Shiny parts measurement using color separation,” Proc. SPIE 6000, 60000D (2005).
[Crossref]

Ekstrand, L.

L. Ekstrand and S. Zhang, “Autoexposure for three-dimensional shape measurement using a digital-light-processing projector,” Opt. Eng. 50(12), 123603 (2011).
[Crossref]

Fang, X. S.

S. K. Nayar, X. S. Fang, and T. Boult, “Separation of Reflection Components Using Color and Polarization,” Int. J. Comput. Vis. 21(3), 163–186 (1997).
[Crossref]

Farahi, F.

G. Babaie, M. Abolbashari, and F. Farahi, “Dynamics range enhancement in digital fringe projection technique,” Precision Eng. 39, 243–251 (2015).

Feng, Q.-Y.

Fernandez, S.

J. Salvi, S. Fernandez, T. Pribanic, and X. Llado, “A state of the art in structured light patterns for surface profilometry,” Pattern Recognit. 43(8), 2666–2680 (2010).
[Crossref]

Fujigaki, M.

Gerber, J.

R. Kowarschik, P. Kuhmstedt, and J. Gerber, “Adaptive optical three dimensional measurement with structured light,” Opt. Eng. 39(1), 150–158 (2000).
[Crossref]

Gorthi, S. S.

S. S. Gorthi and P. Rastogi, “Fringe projection techniques: Whither we are?” Opt. Lasers Eng. 48(2), 133–140 (2010).
[Crossref]

Hamilton, D.

Q. Hu, K. G. Harding, X. Du, and D. Hamilton, “Shiny parts measurement using color separation,” Proc. SPIE 6000, 60000D (2005).
[Crossref]

Han, X.

X. Han and P. Huang, “Combined stereovision and phase shifting method: a new approach for 3D shape measurement,” Proc. SPIE 7389, 73893C (2009).
[Crossref]

Harding, K. G.

Q. Hu, K. G. Harding, X. Du, and D. Hamilton, “Shiny parts measurement using color separation,” Proc. SPIE 6000, 60000D (2005).
[Crossref]

Hu, Q.

Q. Hu, K. G. Harding, X. Du, and D. Hamilton, “Shiny parts measurement using color separation,” Proc. SPIE 6000, 60000D (2005).
[Crossref]

Huang, P.

X. Han and P. Huang, “Combined stereovision and phase shifting method: a new approach for 3D shape measurement,” Proc. SPIE 7389, 73893C (2009).
[Crossref]

Huang, P. S.

S. Zhang and P. S. Huang, “Novel method for structured light system calibration,” Opt. Eng. 45(8), 083601 (2006).
[Crossref]

Jiang, H.

H. Zhao, X. Liang, X. Diao, and H. Jiang, “Rapid in-situ 3D measurement of shiny object based on fast and high dynamic range digital fringe projector,” Opt. Lasers Eng. 54, 170–174 (2014).
[Crossref]

H. Jiang, H. Zhao, and X. Li, “High dynamic range fringe acquisition: A novel 3-D scanning technique for high-reflective surfaces,” Opt. Lasers Eng. 50(10), 1484–1493 (2012).
[Crossref]

Kofman, J.

C. Waddington and J. Kofman, “Camera-independent saturation avoidance in measuring high-reflectivity-variation surfaces using pixel-wise composed images from projected patterns of different maximum gray level,” Opt. Commun. 333, 32–37 (2014).
[Crossref]

C. Waddington and J. Kofman, “Saturation avoidance by adaptive fringe projection in phase-shifting 3D surface-shape measurement,” in 2010 International Symposium on Optomechatronic Technologies, (IEEE, 2010), pp. 1–4.
[Crossref]

Koutecky, T.

D. Palousek, M. Omasta, D. Koutny, J. Bednar, T. Koutecky, and F. Dokoupil, “Effect of matte coating on 3D optical measurement accuracy,” Opt. Mater. 40, 1–9 (2015).
[Crossref]

Koutny, D.

D. Palousek, M. Omasta, D. Koutny, J. Bednar, T. Koutecky, and F. Dokoupil, “Effect of matte coating on 3D optical measurement accuracy,” Opt. Mater. 40, 1–9 (2015).
[Crossref]

Kowarschik, R.

R. Kowarschik, P. Kuhmstedt, and J. Gerber, “Adaptive optical three dimensional measurement with structured light,” Opt. Eng. 39(1), 150–158 (2000).
[Crossref]

Kuhmstedt, P.

R. Kowarschik, P. Kuhmstedt, and J. Gerber, “Adaptive optical three dimensional measurement with structured light,” Opt. Eng. 39(1), 150–158 (2000).
[Crossref]

Li, X.

H. Jiang, H. Zhao, and X. Li, “High dynamic range fringe acquisition: A novel 3-D scanning technique for high-reflective surfaces,” Opt. Lasers Eng. 50(10), 1484–1493 (2012).
[Crossref]

Li, Z.

Z. Li, Y. Shi, and C. W. Y. Wang, “Accurate calibration method for a structured light system,” Opt. Eng. 47(5), 053604 (2008).
[Crossref]

Liang, R.

Liang, X.

H. Zhao, X. Liang, X. Diao, and H. Jiang, “Rapid in-situ 3D measurement of shiny object based on fast and high dynamic range digital fringe projector,” Opt. Lasers Eng. 54, 170–174 (2014).
[Crossref]

Liu, G. H.

Liu, X.-Y.

Llado, X.

J. Salvi, S. Fernandez, T. Pribanic, and X. Llado, “A state of the art in structured light patterns for surface profilometry,” Pattern Recognit. 43(8), 2666–2680 (2010).
[Crossref]

Morimoto, Y.

Nayar, S. K.

S. K. Nayar, X. S. Fang, and T. Boult, “Separation of Reflection Components Using Color and Polarization,” Int. J. Comput. Vis. 21(3), 163–186 (1997).
[Crossref]

Omasta, M.

D. Palousek, M. Omasta, D. Koutny, J. Bednar, T. Koutecky, and F. Dokoupil, “Effect of matte coating on 3D optical measurement accuracy,” Opt. Mater. 40, 1–9 (2015).
[Crossref]

Pagès, J.

J. Salvi, J. Pagès, and J. Batlle, “Pattern codification strategies in structured light systems,” Pattern Recognit. 37(4), 827–849 (2004).
[Crossref]

Palousek, D.

D. Palousek, M. Omasta, D. Koutny, J. Bednar, T. Koutecky, and F. Dokoupil, “Effect of matte coating on 3D optical measurement accuracy,” Opt. Mater. 40, 1–9 (2015).
[Crossref]

Pribanic, T.

J. Salvi, S. Fernandez, T. Pribanic, and X. Llado, “A state of the art in structured light patterns for surface profilometry,” Pattern Recognit. 43(8), 2666–2680 (2010).
[Crossref]

Rastogi, P.

S. S. Gorthi and P. Rastogi, “Fringe projection techniques: Whither we are?” Opt. Lasers Eng. 48(2), 133–140 (2010).
[Crossref]

Reich, C.

C. Reich, R. Ritter, and J. Thesing, “White light heterodyne principle for 3D-measurement,” Proc. SPIE 3100, 236–244 (1997).
[Crossref]

Ri, S.

Ritter, R.

C. Reich, R. Ritter, and J. Thesing, “White light heterodyne principle for 3D-measurement,” Proc. SPIE 3100, 236–244 (1997).
[Crossref]

Rodriguez, J. J.

Salahieh, B.

Salvi, J.

J. Salvi, S. Fernandez, T. Pribanic, and X. Llado, “A state of the art in structured light patterns for surface profilometry,” Pattern Recognit. 43(8), 2666–2680 (2010).
[Crossref]

J. Salvi, J. Pagès, and J. Batlle, “Pattern codification strategies in structured light systems,” Pattern Recognit. 37(4), 827–849 (2004).
[Crossref]

Shi, Q.

C. Zhang, J. Xu, N. Xi, J. Zhao, and Q. Shi, “A Robust Surface Coding Method for Optically Challenging Objects Using Structured Light,” IEEE Trans. Autom. Sci. Eng. 11(3), 775–788 (2014).
[Crossref]

Shi, Y.

Z. Li, Y. Shi, and C. W. Y. Wang, “Accurate calibration method for a structured light system,” Opt. Eng. 47(5), 053604 (2008).
[Crossref]

Song, M.

F. Chen, G. M. Brown, and M. Song, “Overview of three-dimensional shape measurement using optical methods,” Opt. Eng. 39(1), 10–22 (2000).
[Crossref]

Su, X.

X. Su and W. Chen, “Fourier transform profilometry: a review,” Opt. Lasers Eng. 35(5), 263–284 (2001).
[Crossref]

Thesing, J.

C. Reich, R. Ritter, and J. Thesing, “White light heterodyne principle for 3D-measurement,” Proc. SPIE 3100, 236–244 (1997).
[Crossref]

Waddington, C.

C. Waddington and J. Kofman, “Camera-independent saturation avoidance in measuring high-reflectivity-variation surfaces using pixel-wise composed images from projected patterns of different maximum gray level,” Opt. Commun. 333, 32–37 (2014).
[Crossref]

C. Waddington and J. Kofman, “Saturation avoidance by adaptive fringe projection in phase-shifting 3D surface-shape measurement,” in 2010 International Symposium on Optomechatronic Technologies, (IEEE, 2010), pp. 1–4.
[Crossref]

Wang, C. W. Y.

Z. Li, Y. Shi, and C. W. Y. Wang, “Accurate calibration method for a structured light system,” Opt. Eng. 47(5), 053604 (2008).
[Crossref]

Xi, N.

C. Zhang, J. Xu, N. Xi, J. Zhao, and Q. Shi, “A Robust Surface Coding Method for Optically Challenging Objects Using Structured Light,” IEEE Trans. Autom. Sci. Eng. 11(3), 775–788 (2014).
[Crossref]

Xu, J.

C. Zhang, J. Xu, N. Xi, J. Zhao, and Q. Shi, “A Robust Surface Coding Method for Optically Challenging Objects Using Structured Light,” IEEE Trans. Autom. Sci. Eng. 11(3), 775–788 (2014).
[Crossref]

Yau, S.-T.

S. Zhang and S.-T. Yau, “High dynamic range scanning technique,” Opt. Eng. 48(3), 033604 (2009).
[Crossref]

Zhang, C.

C. Zhang, J. Xu, N. Xi, J. Zhao, and Q. Shi, “A Robust Surface Coding Method for Optically Challenging Objects Using Structured Light,” IEEE Trans. Autom. Sci. Eng. 11(3), 775–788 (2014).
[Crossref]

Zhang, S.

L. Ekstrand and S. Zhang, “Autoexposure for three-dimensional shape measurement using a digital-light-processing projector,” Opt. Eng. 50(12), 123603 (2011).
[Crossref]

S. Zhang and S.-T. Yau, “High dynamic range scanning technique,” Opt. Eng. 48(3), 033604 (2009).
[Crossref]

S. Zhang and P. S. Huang, “Novel method for structured light system calibration,” Opt. Eng. 45(8), 083601 (2006).
[Crossref]

Zhao, H.

H. Zhao, X. Liang, X. Diao, and H. Jiang, “Rapid in-situ 3D measurement of shiny object based on fast and high dynamic range digital fringe projector,” Opt. Lasers Eng. 54, 170–174 (2014).
[Crossref]

H. Jiang, H. Zhao, and X. Li, “High dynamic range fringe acquisition: A novel 3-D scanning technique for high-reflective surfaces,” Opt. Lasers Eng. 50(10), 1484–1493 (2012).
[Crossref]

Zhao, J.

C. Zhang, J. Xu, N. Xi, J. Zhao, and Q. Shi, “A Robust Surface Coding Method for Optically Challenging Objects Using Structured Light,” IEEE Trans. Autom. Sci. Eng. 11(3), 775–788 (2014).
[Crossref]

Appl. Opt. (2)

IEEE Trans. Autom. Sci. Eng. (1)

C. Zhang, J. Xu, N. Xi, J. Zhao, and Q. Shi, “A Robust Surface Coding Method for Optically Challenging Objects Using Structured Light,” IEEE Trans. Autom. Sci. Eng. 11(3), 775–788 (2014).
[Crossref]

Int. J. Comput. Vis. (1)

S. K. Nayar, X. S. Fang, and T. Boult, “Separation of Reflection Components Using Color and Polarization,” Int. J. Comput. Vis. 21(3), 163–186 (1997).
[Crossref]

Opt. Commun. (1)

C. Waddington and J. Kofman, “Camera-independent saturation avoidance in measuring high-reflectivity-variation surfaces using pixel-wise composed images from projected patterns of different maximum gray level,” Opt. Commun. 333, 32–37 (2014).
[Crossref]

Opt. Eng. (6)

R. Kowarschik, P. Kuhmstedt, and J. Gerber, “Adaptive optical three dimensional measurement with structured light,” Opt. Eng. 39(1), 150–158 (2000).
[Crossref]

L. Ekstrand and S. Zhang, “Autoexposure for three-dimensional shape measurement using a digital-light-processing projector,” Opt. Eng. 50(12), 123603 (2011).
[Crossref]

F. Chen, G. M. Brown, and M. Song, “Overview of three-dimensional shape measurement using optical methods,” Opt. Eng. 39(1), 10–22 (2000).
[Crossref]

Z. Li, Y. Shi, and C. W. Y. Wang, “Accurate calibration method for a structured light system,” Opt. Eng. 47(5), 053604 (2008).
[Crossref]

S. Zhang and P. S. Huang, “Novel method for structured light system calibration,” Opt. Eng. 45(8), 083601 (2006).
[Crossref]

S. Zhang and S.-T. Yau, “High dynamic range scanning technique,” Opt. Eng. 48(3), 033604 (2009).
[Crossref]

Opt. Express (1)

Opt. Lasers Eng. (4)

H. Jiang, H. Zhao, and X. Li, “High dynamic range fringe acquisition: A novel 3-D scanning technique for high-reflective surfaces,” Opt. Lasers Eng. 50(10), 1484–1493 (2012).
[Crossref]

H. Zhao, X. Liang, X. Diao, and H. Jiang, “Rapid in-situ 3D measurement of shiny object based on fast and high dynamic range digital fringe projector,” Opt. Lasers Eng. 54, 170–174 (2014).
[Crossref]

S. S. Gorthi and P. Rastogi, “Fringe projection techniques: Whither we are?” Opt. Lasers Eng. 48(2), 133–140 (2010).
[Crossref]

X. Su and W. Chen, “Fourier transform profilometry: a review,” Opt. Lasers Eng. 35(5), 263–284 (2001).
[Crossref]

Opt. Mater. (1)

D. Palousek, M. Omasta, D. Koutny, J. Bednar, T. Koutecky, and F. Dokoupil, “Effect of matte coating on 3D optical measurement accuracy,” Opt. Mater. 40, 1–9 (2015).
[Crossref]

Pattern Recognit. (2)

J. Salvi, J. Pagès, and J. Batlle, “Pattern codification strategies in structured light systems,” Pattern Recognit. 37(4), 827–849 (2004).
[Crossref]

J. Salvi, S. Fernandez, T. Pribanic, and X. Llado, “A state of the art in structured light patterns for surface profilometry,” Pattern Recognit. 43(8), 2666–2680 (2010).
[Crossref]

Precision Eng. (1)

G. Babaie, M. Abolbashari, and F. Farahi, “Dynamics range enhancement in digital fringe projection technique,” Precision Eng. 39, 243–251 (2015).

Proc. SPIE (3)

Q. Hu, K. G. Harding, X. Du, and D. Hamilton, “Shiny parts measurement using color separation,” Proc. SPIE 6000, 60000D (2005).
[Crossref]

X. Han and P. Huang, “Combined stereovision and phase shifting method: a new approach for 3D shape measurement,” Proc. SPIE 7389, 73893C (2009).
[Crossref]

C. Reich, R. Ritter, and J. Thesing, “White light heterodyne principle for 3D-measurement,” Proc. SPIE 3100, 236–244 (1997).
[Crossref]

Other (1)

C. Waddington and J. Kofman, “Saturation avoidance by adaptive fringe projection in phase-shifting 3D surface-shape measurement,” in 2010 International Symposium on Optomechatronic Technologies, (IEEE, 2010), pp. 1–4.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

The images of objects with different surface material, and the corresponding captured fringe pattern images: (a) a plastic block, (b) a fringe pattern image of the plastic block, (c) a metallic workpiece, (d) reflected fringe pattern captured by the camera from the metallic workpiece with exposure time = 16.7 ms, and (e) reflected pattern of the same sample with exposure time = 100ms.

Fig. 2
Fig. 2

Schematic diagram of the phase-shifting fringe projection system for 3-D surface measurement.

Fig. 3
Fig. 3

Light sources in capturing fringe pattern images.

Fig. 4
Fig. 4

Flowchart of the ADFP method proposed.

Fig. 5
Fig. 5

System setup.

Fig. 6
Fig. 6

The problems in the workpiece measurement without ADFP: (a) a fringe pattern using the maximum intensity of 255, (b) captured image of the workpiece with projection of the fringe pattern in (a), (c) highlights under the projection of high frequency fringe pattern, (d) absolute phase map of the workpiece from (b) and (c).

Fig. 7
Fig. 7

Measurement result of the workpiece without the ADFP: (a) 3-D point cloud, (b) 3-D reconstructed result rendered in shaded mode.

Fig. 8
Fig. 8

Surface comparison between the CAD model and the reconstructed result without the ADFP: (a) deviations of surface comparison in color, (b) deviations of 13 points on the cross section.

Fig. 9
Fig. 9

Results of the fringe pattern projection and captured images in measuring the workpiece using the ADFP method: (a) the optimal intensity of each pixel in the fringe pattern, (b) contours of saturated-pixel clusters, (c) a vertical adapted fringe pattern at matching contours in (b), (d) captured image of the workpiece with projection of the adapted fringe pattern in (c), (e) the details under the projection of high frequency adapted fringe pattern, (f) absolute phase map of the workpiece from (d) and (e).

Fig. 10
Fig. 10

Measurement result of the workpiece using the ADFP method: (a) 3-D point cloud, (b) 3-D reconstructed result rendered in shaded mode.

Fig. 11
Fig. 11

Surface comparison between the CAD model and the reconstructed result using the ADFP method: (a) deviations of surface comparison in color, (b) deviations of 13 points on the cross section.

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

I 1 (x,y)= I (x,y)+ I (x,y)cos[ϕ(x,y)].
I 2 (x,y)= I (x,y)+ I (x,y)cos[ϕ(x,y)+π/2].
I 3 (x,y)= I (x,y)+ I (x,y)cos[ϕ(x,y)+π].
I 4 (x,y)= I (x,y)+ I (x,y)cos[ϕ(x,y)+3π/2].
ϕ(x,y)=arctan[ I 4 (x,y) I 2 (x,y) I 1 (x,y) I 3 (x,y) ].
I(x,y)=kt{r(x,y)[ L p (x,y)+ L i (x,y)]+ L a (x,y)}+ I n (x,y).
I(x,y)=ktr(x,y) L p (x,y)+kt[r(x,y) L i (x,y)+ L a (x,y)]+ I n (x,y).
I= b 1 x 1 + b 2 x 2 + I n .
{ Q b 1 =2 i=1 n ( I 1 b 1 x i1 b 2 x i2 ) x i1 =0 Q b 2 =2 i=1 n ( I 1 b 1 x i1 b 2 x i2 ) x i2 =0 .
{ b 1 i=1 n x i1 2 + b 2 i=1 n x i1 x i2 = i=1 n x i1 I i b 1 i=1 n x i1 x i2 + b 2 i=1 n x i2 2 = i=1 n x i2 I i .
X T XB= X T I.
B =[ b 1 b 2 ]= ( X T X) 1 X T I.
I (x,y)=kt[ b 1 L p (x,y)+ b 2 ].
L p (x,y)= I (x,y) b 2 kt b 1 kt .
L opt (x,y)= I ideal b 2 kt b 1 kt .
M c (x,y)={ 0( I i (x,y)248)i[1,4] 255otherwise .
s[ u v 1 ]=H×[ x y 1 ].
B =[ b 1 b 2 ]= ( X T X) 1 X T I= ( [ L 1 L 2 L 7 t t t ][ L 1 L 2 L 7 t t t ] ) 1 × [ L 1 L 2 L 7 t t t ][ I 1 (x,y) I 2 (x,y) I 7 (x,y) ].
I (u,v)= L opt (u,v) L min (u,v) 2 .
I (u,v)= L opt (u,v)+ L min (u,v) 2 .

Metrics