Abstract

Quantitative phase imaging (QPI) utilizes refractive index and thickness variations that lead to optical phase shifts. This gives contrast to images of transparent objects. In quantitative biology, phase images are used to accurately segment cells and calculate properties such as dry mass, volume and proliferation rate. The fidelity of the measured phase shifts is of critical importance in this field. However to date, there has been no standardized method for characterizing the performance of phase imaging systems. Consequently, there is an increasing need for protocols to test the performance of phase imaging systems using well-defined phase calibration and resolution targets. In this work, we present a candidate for a standardized phase resolution target, and measurement protocol for the determination of the transfer of spatial frequencies, and sensitivity of a phase imaging system. The target has been carefully designed to contain well-defined depth variations over a broadband range of spatial frequencies. In order to demonstrate the utility of the target, we measure quantitative phase images on a ptychographic microscope, and compare the measured optical phase shifts with Atomic Force Microscopy (AFM) topography maps and surface profile measurements from coherence scanning interferometry. The results show that ptychography has fully quantitative nanometer sensitivity in optical path differences over a broadband range of spatial frequencies for feature sizes ranging from micrometers to hundreds of micrometers.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Quantitative phase microscopy via optimized inversion of the phase optical transfer function

Micah H. Jenkins and Thomas K. Gaylord
Appl. Opt. 54(28) 8566-8579 (2015)

Diffraction phase microscopy: monitoring nanoscale dynamics in materials science [Invited]

Chris Edwards, Renjie Zhou, Suk-Won Hwang, Steven J. McKeown, Kaiyuan Wang, Basanta Bhaduri, Raman Ganti, Peter J. Yunker, Arjun G. Yodh, John A. Rogers, Lynford L. Goddard, and Gabriel Popescu
Appl. Opt. 53(27) G33-G43 (2014)

Diffraction phase microscopy: principles and applications in materials and life sciences

Basanta Bhaduri, Chris Edwards, Hoa Pham, Renjie Zhou, Tan H. Nguyen, Lynford L. Goddard, and Gabriel Popescu
Adv. Opt. Photon. 6(1) 57-119 (2014)

References

  • View by:
  • |
  • |
  • |

  1. T. A. Zangle and M. A. Teitell, “Live-cell mass profiling: an emerging approach in quantitative biophysics,” Nature Methods 11, 1221–1228 (2014).
    [Crossref] [PubMed]
  2. T. Kim, R. Zhou, L. L. Goddard, and G. Popescu, “Breakthroughs in Photonics 2013: Quantitative Phase Imaging: Metrology Meets Biology,” IEEE Photonics Journal 6, 0700909 (2013).
  3. S. Plainis, D. A. Atchinson, and W. N. Charman, “Power Profiles of Multifocal Contact Lenses and Their Interpretation,” Optometry and Vision Science 90, 1066–1077 (2013).
    [Crossref] [PubMed]
  4. M. D. Seaberg, B. Zhang, D. F. Gardner, E. R. Shanblatt, M. M. Murnane, H. C. Kapteyn, and D. E. Adams, “Tabletop nanometer extreme ultraviolet imaging in an extended reflection mode using coherent Fresnel ptychography,” Optica 1, 39–43 (2014).
    [Crossref]
  5. P. Thibault, M. Dierolf, A. Menzel, O. Bunk, C. David, and F. Pfeiffer, “High-resolution scanning x-ray diffraction microscopy,” Science 321, 379–382 (2008).
    [Crossref] [PubMed]
  6. M. Dierolf, A. Menzel, P. Thibault, P. Schneider, C. M. Kewish, R. Wepf, O. Bunk, and F. Pfeiffer, “Ptychographic x-ray computed tomography at the nanoscale,” Nature 467, 436–440 (2010).
    [Crossref] [PubMed]
  7. A. M. Maiden, M. C. Sarahan, M. D. Stagg, S. M. Schramm, and M. J. Humphry, “Quantitative electron phase imaging with high sensitivity and an unlimited field of view,”, Nature Scientific Reports 5, 1460 (2015).
  8. F. Zernike, “Phase-contrast, a new method for microscopic observation of transparent objects,” Physica Part I. 9, 686–698 (1942).
  9. G. Nomarski, “Differential microinterferometer with polarized waves,” J. Phys. Radium 16(9), 9S11S (1955).
  10. H. Iwai, C. Fang-Yen, G. Popescu, A. Wax, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Quantitative phase imaging using actively stabilized phase-shifting low-coherence interferometry,” Optics Letters 29, 2399–2401 (2004).
    [Crossref] [PubMed]
  11. W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nature Methods 4, 717–719 (2007).
    [Crossref] [PubMed]
  12. Y. Sung, W. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Optical diffraction tomography for high resolution live cell imaging,” Opt Express 17, 266–277 (2009).
    [Crossref] [PubMed]
  13. Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, “Marker-free phase nanoscopy,” Nature Photonics 7, 113–117 (2013).
    [Crossref]
  14. P. Marquet, B. Rappaz, P.J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C Depeursinge, “Digital holographic microscopy: a non invasive contrast imaging technique allowing quantitative visualization of living cells with sub wavelength axial accuracy,” Opt. Lett. 30, 468–470 (2005).
    [Crossref] [PubMed]
  15. Z. Jiang, S. P. Veetil, J. Cheng, C. Liu, L. Wang, and J. Zhu, “High-resolution digital holography with the aid of coherent diffraction imaging,” Opt Express 23, 20916–20924 (2015).
    [Crossref] [PubMed]
  16. B. Rappaz, B. Breton, E. Shaffer, and G. Turcatti, “Digital Holographic Microscopy: A Quantitative Label-Free Microscopy Technique for Phenotypic Screening,” Combinatorial Chemistry & High Throughput Screening 17, 80–88, (2014).
    [Crossref]
  17. A. Mölder, M. Sebesta, M. Gustafsson, L. Gisselson, A. Gjörloff Wingren, and K. Alm, Non-invasive, label-free cell counting and quantitative analysis of, adherent cells using digital holography, Journal of Microscopy 232, 240247 (2008).
    [Crossref]
  18. P. Kolman and R. Chmelík, “Coherence-controlled holographic microscope,” Opt Express 18, 21990–22003 (2010).
    [Crossref] [PubMed]
  19. T. Slabý, P. Kolman, Z. Dostál, M. Antoš, M Lošt’ák, and R. Chmelík, “Off-axis setup taking full advantage of incoherent illumination in coherence-controlled holographic microscope,” Opt Express 21, 14747–14762 (2013).
    [Crossref] [PubMed]
  20. Y. Park, G. Popescu, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Diffraction phase and fluorescence microscopy,” Opt Express 14, 8263–8268 (2006).
    [Crossref] [PubMed]
  21. C. Edwards, B. Bhaduri, T. Nguyen, B. G. Griffin, H. Pham, T. Kim, G. Popescu, and L. L. Goddard, “Effects of spatial coherence in diffraction phase microscopy,” Opt Express 22, 5133–5146 (2014).
    [Crossref] [PubMed]
  22. Y. Kim, H. Shim, K. Kim, H. Park, Ji H. Heo, J. Yoon, C. Choi, S. Jang, and Y. Park, “Common-path diffraction optical tomography for investigation of three-dimensional structures and dynamics of biological cells,” Opt Express 22, 10398–10407 (2014).
    [Crossref] [PubMed]
  23. Z. Wang, L. Millet, M. Mir, H. Ding, S. Unarunotai, J. Rogers, M. U. Gillette, and G. Popescu, “Spatial light interference microscopy (SLIM),” Opt Express 19, 1016–1026 (2011).
    [Crossref] [PubMed]
  24. T. Kim, R. Zhou, M. Mir, S. D. Babacan, P. S. Carney, L. L. Goddard, and G. Popescu, “White-light diffraction tomography of unlabelled live cells,” Nature Photonics 8, 256–263 (2014).
    [Crossref]
  25. R. Shang, S. Chen, C. Li, and Y. Zhu, “Spectral modulation interferometry for quantitative phase imaging,” Biomedical Optics Express 6, 473–479 (2015).
    [Crossref] [PubMed]
  26. P. Bon, G. Maucort, B. Wattellier, and S. Monneret, “Quadriwave lateral shearing interferometry for quantitative phase microscopy of living cells,” Opt Express 17, 13080–13094 (2009).
    [Crossref] [PubMed]
  27. K. Creath and G. Goldstein, “Dynamic quantitative phase imaging for biological objects using a pixelated phase mask,” Biomedical Optics Express 3, 2866–2880 (2012).
    [Crossref] [PubMed]
  28. S. Bernet, A. Jesacher, S. Füurhapter, C. Maurer, and M. Ritsch-Marte, “Quantitative imaging of complex samples by spiral phase contrast microscopy,” Opt Express 14, 3792–3805 (2006).
    [Crossref] [PubMed]
  29. H. M. L. Faulkner and J. M. Rodenburg, “Movable aperture lensless transmission microscopy: a novel phase retrieval algorithm,” Phys. Rev. Lett. 93, 023903 (2004).
    [Crossref] [PubMed]
  30. A. M. Maiden and J.M. Rodenburg, “An improved ptychographical phase retrieval algorithm for diffractive imaging,” Ultramicroscopy 109, 1256–1262 (2009).
    [Crossref] [PubMed]
  31. J. A. Rodrigo, T. Alieva, G. Cristóbal, and M. L. Calvo, “Wavefield imaging via iterative retrieval based on phase modulation diversity,” Opt Express 19, 18621–18635 (2011).
    [Crossref] [PubMed]
  32. L. Camacho, V. Micó, Z. Zalevsky, and J. García, “Quantitative phase microscopy using defocusing by means of a spatial light modulator,” Opt Express 18, 6755–6764 (2010).
    [Crossref] [PubMed]
  33. D. W. E. Noom, K. S. E. Eikema, and S. Witte, “Lensless phase contrast microscopy based on multiwavelength Fresnel diffraction,” Optics Letters 39, 193–196 (2014).
    [Crossref] [PubMed]
  34. G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nature Photonics,  7, 739–745 (2013).
    [Crossref]
  35. L. Tian and L. Waller, “3D intensity and phase imaging from light field measurements in an LED array microscope,” Optica 2, 104–111 (2015).
    [Crossref]
  36. R. Oldenbourg, S. Inoué, R. Tiberio, A. Stemmer, G. Mei, and M. Skvarla, “Standard test targets for high resolution light microscopy,” in Nanofabrication and Biosystems: Integrating Materials Science, Engineering, and Biology, H. C. Hoch, L. W. Jelinski, and H. G. Craighead, eds. (Cambridge University, 1996).
  37. R. Horstmeyer, R. Heintzmann, G. Popescu, L. Waller, and C. Yang, “Standardizing the resolution claims for coherent microscopy,” Nature Photonics 10, 68–71 (2016).
    [Crossref]
  38. C. L Giusca, R. K. Leach, F. Helary, T. Gutauskas, and L. Nimishakavi, “Calibration of the scales of areal surface topography-measuring instruments: part 1. Measurement noise and residual flatness,” Meas. Sci. Technol. 23, 3 (2012).
  39. J. M. Rodenburg and R. H. T. Bates, “The theory of super-resolution electron microscopy via Wigner-distribution deconvolution,” Phil. Trans. R. Soc. Lond. A 339, 521 (1992).
    [Crossref]
  40. J. Marrison, L. Raty, P. Marriott, and P. O’Toole, “Ptychography a label free, high-contrast imaging technique for live cells using quantitative phase information,” Nature Scientific Reports 3, 1–7 (2013).
  41. A. M. Maiden, M. J. Humphry, F. Zhang, and J. M. Rodenburg, “Superresolution imaging via ptychography,” J. Opt. Soc. Am. A 28, 604–612 (2011).
    [Crossref]
  42. The specimens are available upon request.
  43. R. K. Leach, C. L. Giusca, and K. Naoi, “Development and characterization of a new instrument for the traceable measurement of areal surface texture,” Meas. Sci. Technol. 20, 125102 (2009).
    [Crossref]
  44. ISO 5436-1:2000, “Geometrical Product Specifications (GPS) - Surface texture: Profile method; Measurement standards - Part 1: Material measures”
  45. M. Anderson and S. Nir, “Van der Waals parameters, refractive indices and dispersion equations of spectrin, actin and other mammalian proteins,” Polymer 18, 867–870 (1977).
    [Crossref]
  46. G. Arfken, Mathematical Methods for Physicists (Orlando Academic3rd ed, 1985).
  47. R. K. Leach and C. L. Giusca, “Determination of the metrological characteristics of optical surface topography measuring instruments,” Proc. SPIE 8430, Optical Micro- and Nanometrology IV 84300Q (2012).
    [Crossref]

2016 (1)

R. Horstmeyer, R. Heintzmann, G. Popescu, L. Waller, and C. Yang, “Standardizing the resolution claims for coherent microscopy,” Nature Photonics 10, 68–71 (2016).
[Crossref]

2015 (4)

R. Shang, S. Chen, C. Li, and Y. Zhu, “Spectral modulation interferometry for quantitative phase imaging,” Biomedical Optics Express 6, 473–479 (2015).
[Crossref] [PubMed]

A. M. Maiden, M. C. Sarahan, M. D. Stagg, S. M. Schramm, and M. J. Humphry, “Quantitative electron phase imaging with high sensitivity and an unlimited field of view,”, Nature Scientific Reports 5, 1460 (2015).

Z. Jiang, S. P. Veetil, J. Cheng, C. Liu, L. Wang, and J. Zhu, “High-resolution digital holography with the aid of coherent diffraction imaging,” Opt Express 23, 20916–20924 (2015).
[Crossref] [PubMed]

L. Tian and L. Waller, “3D intensity and phase imaging from light field measurements in an LED array microscope,” Optica 2, 104–111 (2015).
[Crossref]

2014 (7)

B. Rappaz, B. Breton, E. Shaffer, and G. Turcatti, “Digital Holographic Microscopy: A Quantitative Label-Free Microscopy Technique for Phenotypic Screening,” Combinatorial Chemistry & High Throughput Screening 17, 80–88, (2014).
[Crossref]

T. A. Zangle and M. A. Teitell, “Live-cell mass profiling: an emerging approach in quantitative biophysics,” Nature Methods 11, 1221–1228 (2014).
[Crossref] [PubMed]

M. D. Seaberg, B. Zhang, D. F. Gardner, E. R. Shanblatt, M. M. Murnane, H. C. Kapteyn, and D. E. Adams, “Tabletop nanometer extreme ultraviolet imaging in an extended reflection mode using coherent Fresnel ptychography,” Optica 1, 39–43 (2014).
[Crossref]

C. Edwards, B. Bhaduri, T. Nguyen, B. G. Griffin, H. Pham, T. Kim, G. Popescu, and L. L. Goddard, “Effects of spatial coherence in diffraction phase microscopy,” Opt Express 22, 5133–5146 (2014).
[Crossref] [PubMed]

Y. Kim, H. Shim, K. Kim, H. Park, Ji H. Heo, J. Yoon, C. Choi, S. Jang, and Y. Park, “Common-path diffraction optical tomography for investigation of three-dimensional structures and dynamics of biological cells,” Opt Express 22, 10398–10407 (2014).
[Crossref] [PubMed]

D. W. E. Noom, K. S. E. Eikema, and S. Witte, “Lensless phase contrast microscopy based on multiwavelength Fresnel diffraction,” Optics Letters 39, 193–196 (2014).
[Crossref] [PubMed]

T. Kim, R. Zhou, M. Mir, S. D. Babacan, P. S. Carney, L. L. Goddard, and G. Popescu, “White-light diffraction tomography of unlabelled live cells,” Nature Photonics 8, 256–263 (2014).
[Crossref]

2013 (6)

G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nature Photonics,  7, 739–745 (2013).
[Crossref]

T. Slabý, P. Kolman, Z. Dostál, M. Antoš, M Lošt’ák, and R. Chmelík, “Off-axis setup taking full advantage of incoherent illumination in coherence-controlled holographic microscope,” Opt Express 21, 14747–14762 (2013).
[Crossref] [PubMed]

T. Kim, R. Zhou, L. L. Goddard, and G. Popescu, “Breakthroughs in Photonics 2013: Quantitative Phase Imaging: Metrology Meets Biology,” IEEE Photonics Journal 6, 0700909 (2013).

S. Plainis, D. A. Atchinson, and W. N. Charman, “Power Profiles of Multifocal Contact Lenses and Their Interpretation,” Optometry and Vision Science 90, 1066–1077 (2013).
[Crossref] [PubMed]

Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, “Marker-free phase nanoscopy,” Nature Photonics 7, 113–117 (2013).
[Crossref]

J. Marrison, L. Raty, P. Marriott, and P. O’Toole, “Ptychography a label free, high-contrast imaging technique for live cells using quantitative phase information,” Nature Scientific Reports 3, 1–7 (2013).

2012 (3)

R. K. Leach and C. L. Giusca, “Determination of the metrological characteristics of optical surface topography measuring instruments,” Proc. SPIE 8430, Optical Micro- and Nanometrology IV 84300Q (2012).
[Crossref]

K. Creath and G. Goldstein, “Dynamic quantitative phase imaging for biological objects using a pixelated phase mask,” Biomedical Optics Express 3, 2866–2880 (2012).
[Crossref] [PubMed]

C. L Giusca, R. K. Leach, F. Helary, T. Gutauskas, and L. Nimishakavi, “Calibration of the scales of areal surface topography-measuring instruments: part 1. Measurement noise and residual flatness,” Meas. Sci. Technol. 23, 3 (2012).

2011 (3)

J. A. Rodrigo, T. Alieva, G. Cristóbal, and M. L. Calvo, “Wavefield imaging via iterative retrieval based on phase modulation diversity,” Opt Express 19, 18621–18635 (2011).
[Crossref] [PubMed]

Z. Wang, L. Millet, M. Mir, H. Ding, S. Unarunotai, J. Rogers, M. U. Gillette, and G. Popescu, “Spatial light interference microscopy (SLIM),” Opt Express 19, 1016–1026 (2011).
[Crossref] [PubMed]

A. M. Maiden, M. J. Humphry, F. Zhang, and J. M. Rodenburg, “Superresolution imaging via ptychography,” J. Opt. Soc. Am. A 28, 604–612 (2011).
[Crossref]

2010 (3)

L. Camacho, V. Micó, Z. Zalevsky, and J. García, “Quantitative phase microscopy using defocusing by means of a spatial light modulator,” Opt Express 18, 6755–6764 (2010).
[Crossref] [PubMed]

P. Kolman and R. Chmelík, “Coherence-controlled holographic microscope,” Opt Express 18, 21990–22003 (2010).
[Crossref] [PubMed]

M. Dierolf, A. Menzel, P. Thibault, P. Schneider, C. M. Kewish, R. Wepf, O. Bunk, and F. Pfeiffer, “Ptychographic x-ray computed tomography at the nanoscale,” Nature 467, 436–440 (2010).
[Crossref] [PubMed]

2009 (4)

Y. Sung, W. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Optical diffraction tomography for high resolution live cell imaging,” Opt Express 17, 266–277 (2009).
[Crossref] [PubMed]

A. M. Maiden and J.M. Rodenburg, “An improved ptychographical phase retrieval algorithm for diffractive imaging,” Ultramicroscopy 109, 1256–1262 (2009).
[Crossref] [PubMed]

P. Bon, G. Maucort, B. Wattellier, and S. Monneret, “Quadriwave lateral shearing interferometry for quantitative phase microscopy of living cells,” Opt Express 17, 13080–13094 (2009).
[Crossref] [PubMed]

R. K. Leach, C. L. Giusca, and K. Naoi, “Development and characterization of a new instrument for the traceable measurement of areal surface texture,” Meas. Sci. Technol. 20, 125102 (2009).
[Crossref]

2008 (2)

A. Mölder, M. Sebesta, M. Gustafsson, L. Gisselson, A. Gjörloff Wingren, and K. Alm, Non-invasive, label-free cell counting and quantitative analysis of, adherent cells using digital holography, Journal of Microscopy 232, 240247 (2008).
[Crossref]

P. Thibault, M. Dierolf, A. Menzel, O. Bunk, C. David, and F. Pfeiffer, “High-resolution scanning x-ray diffraction microscopy,” Science 321, 379–382 (2008).
[Crossref] [PubMed]

2007 (1)

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nature Methods 4, 717–719 (2007).
[Crossref] [PubMed]

2006 (2)

S. Bernet, A. Jesacher, S. Füurhapter, C. Maurer, and M. Ritsch-Marte, “Quantitative imaging of complex samples by spiral phase contrast microscopy,” Opt Express 14, 3792–3805 (2006).
[Crossref] [PubMed]

Y. Park, G. Popescu, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Diffraction phase and fluorescence microscopy,” Opt Express 14, 8263–8268 (2006).
[Crossref] [PubMed]

2005 (1)

2004 (2)

H. Iwai, C. Fang-Yen, G. Popescu, A. Wax, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Quantitative phase imaging using actively stabilized phase-shifting low-coherence interferometry,” Optics Letters 29, 2399–2401 (2004).
[Crossref] [PubMed]

H. M. L. Faulkner and J. M. Rodenburg, “Movable aperture lensless transmission microscopy: a novel phase retrieval algorithm,” Phys. Rev. Lett. 93, 023903 (2004).
[Crossref] [PubMed]

1992 (1)

J. M. Rodenburg and R. H. T. Bates, “The theory of super-resolution electron microscopy via Wigner-distribution deconvolution,” Phil. Trans. R. Soc. Lond. A 339, 521 (1992).
[Crossref]

1977 (1)

M. Anderson and S. Nir, “Van der Waals parameters, refractive indices and dispersion equations of spectrin, actin and other mammalian proteins,” Polymer 18, 867–870 (1977).
[Crossref]

1955 (1)

G. Nomarski, “Differential microinterferometer with polarized waves,” J. Phys. Radium 16(9), 9S11S (1955).

1942 (1)

F. Zernike, “Phase-contrast, a new method for microscopic observation of transparent objects,” Physica Part I. 9, 686–698 (1942).

Adams, D. E.

Alieva, T.

J. A. Rodrigo, T. Alieva, G. Cristóbal, and M. L. Calvo, “Wavefield imaging via iterative retrieval based on phase modulation diversity,” Opt Express 19, 18621–18635 (2011).
[Crossref] [PubMed]

Alm, K.

A. Mölder, M. Sebesta, M. Gustafsson, L. Gisselson, A. Gjörloff Wingren, and K. Alm, Non-invasive, label-free cell counting and quantitative analysis of, adherent cells using digital holography, Journal of Microscopy 232, 240247 (2008).
[Crossref]

Anderson, M.

M. Anderson and S. Nir, “Van der Waals parameters, refractive indices and dispersion equations of spectrin, actin and other mammalian proteins,” Polymer 18, 867–870 (1977).
[Crossref]

Antoš, M.

T. Slabý, P. Kolman, Z. Dostál, M. Antoš, M Lošt’ák, and R. Chmelík, “Off-axis setup taking full advantage of incoherent illumination in coherence-controlled holographic microscope,” Opt Express 21, 14747–14762 (2013).
[Crossref] [PubMed]

Arfken, G.

G. Arfken, Mathematical Methods for Physicists (Orlando Academic3rd ed, 1985).

Atchinson, D. A.

S. Plainis, D. A. Atchinson, and W. N. Charman, “Power Profiles of Multifocal Contact Lenses and Their Interpretation,” Optometry and Vision Science 90, 1066–1077 (2013).
[Crossref] [PubMed]

Babacan, S. D.

T. Kim, R. Zhou, M. Mir, S. D. Babacan, P. S. Carney, L. L. Goddard, and G. Popescu, “White-light diffraction tomography of unlabelled live cells,” Nature Photonics 8, 256–263 (2014).
[Crossref]

Badizadegan, K.

Y. Sung, W. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Optical diffraction tomography for high resolution live cell imaging,” Opt Express 17, 266–277 (2009).
[Crossref] [PubMed]

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nature Methods 4, 717–719 (2007).
[Crossref] [PubMed]

Y. Park, G. Popescu, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Diffraction phase and fluorescence microscopy,” Opt Express 14, 8263–8268 (2006).
[Crossref] [PubMed]

H. Iwai, C. Fang-Yen, G. Popescu, A. Wax, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Quantitative phase imaging using actively stabilized phase-shifting low-coherence interferometry,” Optics Letters 29, 2399–2401 (2004).
[Crossref] [PubMed]

Bates, R. H. T.

J. M. Rodenburg and R. H. T. Bates, “The theory of super-resolution electron microscopy via Wigner-distribution deconvolution,” Phil. Trans. R. Soc. Lond. A 339, 521 (1992).
[Crossref]

Bernet, S.

S. Bernet, A. Jesacher, S. Füurhapter, C. Maurer, and M. Ritsch-Marte, “Quantitative imaging of complex samples by spiral phase contrast microscopy,” Opt Express 14, 3792–3805 (2006).
[Crossref] [PubMed]

Bhaduri, B.

C. Edwards, B. Bhaduri, T. Nguyen, B. G. Griffin, H. Pham, T. Kim, G. Popescu, and L. L. Goddard, “Effects of spatial coherence in diffraction phase microscopy,” Opt Express 22, 5133–5146 (2014).
[Crossref] [PubMed]

Bon, P.

P. Bon, G. Maucort, B. Wattellier, and S. Monneret, “Quadriwave lateral shearing interferometry for quantitative phase microscopy of living cells,” Opt Express 17, 13080–13094 (2009).
[Crossref] [PubMed]

Boss, D.

Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, “Marker-free phase nanoscopy,” Nature Photonics 7, 113–117 (2013).
[Crossref]

Breton, B.

B. Rappaz, B. Breton, E. Shaffer, and G. Turcatti, “Digital Holographic Microscopy: A Quantitative Label-Free Microscopy Technique for Phenotypic Screening,” Combinatorial Chemistry & High Throughput Screening 17, 80–88, (2014).
[Crossref]

Bunk, O.

M. Dierolf, A. Menzel, P. Thibault, P. Schneider, C. M. Kewish, R. Wepf, O. Bunk, and F. Pfeiffer, “Ptychographic x-ray computed tomography at the nanoscale,” Nature 467, 436–440 (2010).
[Crossref] [PubMed]

P. Thibault, M. Dierolf, A. Menzel, O. Bunk, C. David, and F. Pfeiffer, “High-resolution scanning x-ray diffraction microscopy,” Science 321, 379–382 (2008).
[Crossref] [PubMed]

Calvo, M. L.

J. A. Rodrigo, T. Alieva, G. Cristóbal, and M. L. Calvo, “Wavefield imaging via iterative retrieval based on phase modulation diversity,” Opt Express 19, 18621–18635 (2011).
[Crossref] [PubMed]

Camacho, L.

L. Camacho, V. Micó, Z. Zalevsky, and J. García, “Quantitative phase microscopy using defocusing by means of a spatial light modulator,” Opt Express 18, 6755–6764 (2010).
[Crossref] [PubMed]

Carney, P. S.

T. Kim, R. Zhou, M. Mir, S. D. Babacan, P. S. Carney, L. L. Goddard, and G. Popescu, “White-light diffraction tomography of unlabelled live cells,” Nature Photonics 8, 256–263 (2014).
[Crossref]

Charman, W. N.

S. Plainis, D. A. Atchinson, and W. N. Charman, “Power Profiles of Multifocal Contact Lenses and Their Interpretation,” Optometry and Vision Science 90, 1066–1077 (2013).
[Crossref] [PubMed]

Chen, S.

R. Shang, S. Chen, C. Li, and Y. Zhu, “Spectral modulation interferometry for quantitative phase imaging,” Biomedical Optics Express 6, 473–479 (2015).
[Crossref] [PubMed]

Cheng, J.

Z. Jiang, S. P. Veetil, J. Cheng, C. Liu, L. Wang, and J. Zhu, “High-resolution digital holography with the aid of coherent diffraction imaging,” Opt Express 23, 20916–20924 (2015).
[Crossref] [PubMed]

Chmelík, R.

T. Slabý, P. Kolman, Z. Dostál, M. Antoš, M Lošt’ák, and R. Chmelík, “Off-axis setup taking full advantage of incoherent illumination in coherence-controlled holographic microscope,” Opt Express 21, 14747–14762 (2013).
[Crossref] [PubMed]

P. Kolman and R. Chmelík, “Coherence-controlled holographic microscope,” Opt Express 18, 21990–22003 (2010).
[Crossref] [PubMed]

Choi, C.

Y. Kim, H. Shim, K. Kim, H. Park, Ji H. Heo, J. Yoon, C. Choi, S. Jang, and Y. Park, “Common-path diffraction optical tomography for investigation of three-dimensional structures and dynamics of biological cells,” Opt Express 22, 10398–10407 (2014).
[Crossref] [PubMed]

Choi, W.

Y. Sung, W. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Optical diffraction tomography for high resolution live cell imaging,” Opt Express 17, 266–277 (2009).
[Crossref] [PubMed]

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nature Methods 4, 717–719 (2007).
[Crossref] [PubMed]

Colomb, T.

Cotte, Y.

Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, “Marker-free phase nanoscopy,” Nature Photonics 7, 113–117 (2013).
[Crossref]

Creath, K.

K. Creath and G. Goldstein, “Dynamic quantitative phase imaging for biological objects using a pixelated phase mask,” Biomedical Optics Express 3, 2866–2880 (2012).
[Crossref] [PubMed]

Cristóbal, G.

J. A. Rodrigo, T. Alieva, G. Cristóbal, and M. L. Calvo, “Wavefield imaging via iterative retrieval based on phase modulation diversity,” Opt Express 19, 18621–18635 (2011).
[Crossref] [PubMed]

Cuche, E.

Dasari, R. R.

Y. Sung, W. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Optical diffraction tomography for high resolution live cell imaging,” Opt Express 17, 266–277 (2009).
[Crossref] [PubMed]

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nature Methods 4, 717–719 (2007).
[Crossref] [PubMed]

Y. Park, G. Popescu, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Diffraction phase and fluorescence microscopy,” Opt Express 14, 8263–8268 (2006).
[Crossref] [PubMed]

H. Iwai, C. Fang-Yen, G. Popescu, A. Wax, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Quantitative phase imaging using actively stabilized phase-shifting low-coherence interferometry,” Optics Letters 29, 2399–2401 (2004).
[Crossref] [PubMed]

David, C.

P. Thibault, M. Dierolf, A. Menzel, O. Bunk, C. David, and F. Pfeiffer, “High-resolution scanning x-ray diffraction microscopy,” Science 321, 379–382 (2008).
[Crossref] [PubMed]

Depeursinge, C

Depeursinge, C.

Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, “Marker-free phase nanoscopy,” Nature Photonics 7, 113–117 (2013).
[Crossref]

Dierolf, M.

M. Dierolf, A. Menzel, P. Thibault, P. Schneider, C. M. Kewish, R. Wepf, O. Bunk, and F. Pfeiffer, “Ptychographic x-ray computed tomography at the nanoscale,” Nature 467, 436–440 (2010).
[Crossref] [PubMed]

P. Thibault, M. Dierolf, A. Menzel, O. Bunk, C. David, and F. Pfeiffer, “High-resolution scanning x-ray diffraction microscopy,” Science 321, 379–382 (2008).
[Crossref] [PubMed]

Ding, H.

Z. Wang, L. Millet, M. Mir, H. Ding, S. Unarunotai, J. Rogers, M. U. Gillette, and G. Popescu, “Spatial light interference microscopy (SLIM),” Opt Express 19, 1016–1026 (2011).
[Crossref] [PubMed]

Dostál, Z.

T. Slabý, P. Kolman, Z. Dostál, M. Antoš, M Lošt’ák, and R. Chmelík, “Off-axis setup taking full advantage of incoherent illumination in coherence-controlled holographic microscope,” Opt Express 21, 14747–14762 (2013).
[Crossref] [PubMed]

Edwards, C.

C. Edwards, B. Bhaduri, T. Nguyen, B. G. Griffin, H. Pham, T. Kim, G. Popescu, and L. L. Goddard, “Effects of spatial coherence in diffraction phase microscopy,” Opt Express 22, 5133–5146 (2014).
[Crossref] [PubMed]

Eikema, K. S. E.

D. W. E. Noom, K. S. E. Eikema, and S. Witte, “Lensless phase contrast microscopy based on multiwavelength Fresnel diffraction,” Optics Letters 39, 193–196 (2014).
[Crossref] [PubMed]

Emery, Y.

Fang-Yen, C.

Y. Sung, W. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Optical diffraction tomography for high resolution live cell imaging,” Opt Express 17, 266–277 (2009).
[Crossref] [PubMed]

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nature Methods 4, 717–719 (2007).
[Crossref] [PubMed]

H. Iwai, C. Fang-Yen, G. Popescu, A. Wax, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Quantitative phase imaging using actively stabilized phase-shifting low-coherence interferometry,” Optics Letters 29, 2399–2401 (2004).
[Crossref] [PubMed]

Faulkner, H. M. L.

H. M. L. Faulkner and J. M. Rodenburg, “Movable aperture lensless transmission microscopy: a novel phase retrieval algorithm,” Phys. Rev. Lett. 93, 023903 (2004).
[Crossref] [PubMed]

Feld, M. S.

Y. Sung, W. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Optical diffraction tomography for high resolution live cell imaging,” Opt Express 17, 266–277 (2009).
[Crossref] [PubMed]

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nature Methods 4, 717–719 (2007).
[Crossref] [PubMed]

Y. Park, G. Popescu, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Diffraction phase and fluorescence microscopy,” Opt Express 14, 8263–8268 (2006).
[Crossref] [PubMed]

H. Iwai, C. Fang-Yen, G. Popescu, A. Wax, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Quantitative phase imaging using actively stabilized phase-shifting low-coherence interferometry,” Optics Letters 29, 2399–2401 (2004).
[Crossref] [PubMed]

Füurhapter, S.

S. Bernet, A. Jesacher, S. Füurhapter, C. Maurer, and M. Ritsch-Marte, “Quantitative imaging of complex samples by spiral phase contrast microscopy,” Opt Express 14, 3792–3805 (2006).
[Crossref] [PubMed]

García, J.

L. Camacho, V. Micó, Z. Zalevsky, and J. García, “Quantitative phase microscopy using defocusing by means of a spatial light modulator,” Opt Express 18, 6755–6764 (2010).
[Crossref] [PubMed]

Gardner, D. F.

Gillette, M. U.

Z. Wang, L. Millet, M. Mir, H. Ding, S. Unarunotai, J. Rogers, M. U. Gillette, and G. Popescu, “Spatial light interference microscopy (SLIM),” Opt Express 19, 1016–1026 (2011).
[Crossref] [PubMed]

Gisselson, L.

A. Mölder, M. Sebesta, M. Gustafsson, L. Gisselson, A. Gjörloff Wingren, and K. Alm, Non-invasive, label-free cell counting and quantitative analysis of, adherent cells using digital holography, Journal of Microscopy 232, 240247 (2008).
[Crossref]

Giusca, C. L

C. L Giusca, R. K. Leach, F. Helary, T. Gutauskas, and L. Nimishakavi, “Calibration of the scales of areal surface topography-measuring instruments: part 1. Measurement noise and residual flatness,” Meas. Sci. Technol. 23, 3 (2012).

Giusca, C. L.

R. K. Leach and C. L. Giusca, “Determination of the metrological characteristics of optical surface topography measuring instruments,” Proc. SPIE 8430, Optical Micro- and Nanometrology IV 84300Q (2012).
[Crossref]

R. K. Leach, C. L. Giusca, and K. Naoi, “Development and characterization of a new instrument for the traceable measurement of areal surface texture,” Meas. Sci. Technol. 20, 125102 (2009).
[Crossref]

Gjörloff Wingren, A.

A. Mölder, M. Sebesta, M. Gustafsson, L. Gisselson, A. Gjörloff Wingren, and K. Alm, Non-invasive, label-free cell counting and quantitative analysis of, adherent cells using digital holography, Journal of Microscopy 232, 240247 (2008).
[Crossref]

Goddard, L. L.

C. Edwards, B. Bhaduri, T. Nguyen, B. G. Griffin, H. Pham, T. Kim, G. Popescu, and L. L. Goddard, “Effects of spatial coherence in diffraction phase microscopy,” Opt Express 22, 5133–5146 (2014).
[Crossref] [PubMed]

T. Kim, R. Zhou, M. Mir, S. D. Babacan, P. S. Carney, L. L. Goddard, and G. Popescu, “White-light diffraction tomography of unlabelled live cells,” Nature Photonics 8, 256–263 (2014).
[Crossref]

T. Kim, R. Zhou, L. L. Goddard, and G. Popescu, “Breakthroughs in Photonics 2013: Quantitative Phase Imaging: Metrology Meets Biology,” IEEE Photonics Journal 6, 0700909 (2013).

Goldstein, G.

K. Creath and G. Goldstein, “Dynamic quantitative phase imaging for biological objects using a pixelated phase mask,” Biomedical Optics Express 3, 2866–2880 (2012).
[Crossref] [PubMed]

Griffin, B. G.

C. Edwards, B. Bhaduri, T. Nguyen, B. G. Griffin, H. Pham, T. Kim, G. Popescu, and L. L. Goddard, “Effects of spatial coherence in diffraction phase microscopy,” Opt Express 22, 5133–5146 (2014).
[Crossref] [PubMed]

Gustafsson, M.

A. Mölder, M. Sebesta, M. Gustafsson, L. Gisselson, A. Gjörloff Wingren, and K. Alm, Non-invasive, label-free cell counting and quantitative analysis of, adherent cells using digital holography, Journal of Microscopy 232, 240247 (2008).
[Crossref]

Gutauskas, T.

C. L Giusca, R. K. Leach, F. Helary, T. Gutauskas, and L. Nimishakavi, “Calibration of the scales of areal surface topography-measuring instruments: part 1. Measurement noise and residual flatness,” Meas. Sci. Technol. 23, 3 (2012).

Heintzmann, R.

R. Horstmeyer, R. Heintzmann, G. Popescu, L. Waller, and C. Yang, “Standardizing the resolution claims for coherent microscopy,” Nature Photonics 10, 68–71 (2016).
[Crossref]

Helary, F.

C. L Giusca, R. K. Leach, F. Helary, T. Gutauskas, and L. Nimishakavi, “Calibration of the scales of areal surface topography-measuring instruments: part 1. Measurement noise and residual flatness,” Meas. Sci. Technol. 23, 3 (2012).

Heo, Ji H.

Y. Kim, H. Shim, K. Kim, H. Park, Ji H. Heo, J. Yoon, C. Choi, S. Jang, and Y. Park, “Common-path diffraction optical tomography for investigation of three-dimensional structures and dynamics of biological cells,” Opt Express 22, 10398–10407 (2014).
[Crossref] [PubMed]

Horstmeyer, R.

R. Horstmeyer, R. Heintzmann, G. Popescu, L. Waller, and C. Yang, “Standardizing the resolution claims for coherent microscopy,” Nature Photonics 10, 68–71 (2016).
[Crossref]

G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nature Photonics,  7, 739–745 (2013).
[Crossref]

Humphry, M. J.

A. M. Maiden, M. C. Sarahan, M. D. Stagg, S. M. Schramm, and M. J. Humphry, “Quantitative electron phase imaging with high sensitivity and an unlimited field of view,”, Nature Scientific Reports 5, 1460 (2015).

A. M. Maiden, M. J. Humphry, F. Zhang, and J. M. Rodenburg, “Superresolution imaging via ptychography,” J. Opt. Soc. Am. A 28, 604–612 (2011).
[Crossref]

Inoué, S.

R. Oldenbourg, S. Inoué, R. Tiberio, A. Stemmer, G. Mei, and M. Skvarla, “Standard test targets for high resolution light microscopy,” in Nanofabrication and Biosystems: Integrating Materials Science, Engineering, and Biology, H. C. Hoch, L. W. Jelinski, and H. G. Craighead, eds. (Cambridge University, 1996).

Iwai, H.

H. Iwai, C. Fang-Yen, G. Popescu, A. Wax, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Quantitative phase imaging using actively stabilized phase-shifting low-coherence interferometry,” Optics Letters 29, 2399–2401 (2004).
[Crossref] [PubMed]

Jang, S.

Y. Kim, H. Shim, K. Kim, H. Park, Ji H. Heo, J. Yoon, C. Choi, S. Jang, and Y. Park, “Common-path diffraction optical tomography for investigation of three-dimensional structures and dynamics of biological cells,” Opt Express 22, 10398–10407 (2014).
[Crossref] [PubMed]

Jesacher, A.

S. Bernet, A. Jesacher, S. Füurhapter, C. Maurer, and M. Ritsch-Marte, “Quantitative imaging of complex samples by spiral phase contrast microscopy,” Opt Express 14, 3792–3805 (2006).
[Crossref] [PubMed]

Jiang, Z.

Z. Jiang, S. P. Veetil, J. Cheng, C. Liu, L. Wang, and J. Zhu, “High-resolution digital holography with the aid of coherent diffraction imaging,” Opt Express 23, 20916–20924 (2015).
[Crossref] [PubMed]

Jourdain, P.

Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, “Marker-free phase nanoscopy,” Nature Photonics 7, 113–117 (2013).
[Crossref]

Kapteyn, H. C.

Kewish, C. M.

M. Dierolf, A. Menzel, P. Thibault, P. Schneider, C. M. Kewish, R. Wepf, O. Bunk, and F. Pfeiffer, “Ptychographic x-ray computed tomography at the nanoscale,” Nature 467, 436–440 (2010).
[Crossref] [PubMed]

Kim, K.

Y. Kim, H. Shim, K. Kim, H. Park, Ji H. Heo, J. Yoon, C. Choi, S. Jang, and Y. Park, “Common-path diffraction optical tomography for investigation of three-dimensional structures and dynamics of biological cells,” Opt Express 22, 10398–10407 (2014).
[Crossref] [PubMed]

Kim, T.

T. Kim, R. Zhou, M. Mir, S. D. Babacan, P. S. Carney, L. L. Goddard, and G. Popescu, “White-light diffraction tomography of unlabelled live cells,” Nature Photonics 8, 256–263 (2014).
[Crossref]

C. Edwards, B. Bhaduri, T. Nguyen, B. G. Griffin, H. Pham, T. Kim, G. Popescu, and L. L. Goddard, “Effects of spatial coherence in diffraction phase microscopy,” Opt Express 22, 5133–5146 (2014).
[Crossref] [PubMed]

T. Kim, R. Zhou, L. L. Goddard, and G. Popescu, “Breakthroughs in Photonics 2013: Quantitative Phase Imaging: Metrology Meets Biology,” IEEE Photonics Journal 6, 0700909 (2013).

Kim, Y.

Y. Kim, H. Shim, K. Kim, H. Park, Ji H. Heo, J. Yoon, C. Choi, S. Jang, and Y. Park, “Common-path diffraction optical tomography for investigation of three-dimensional structures and dynamics of biological cells,” Opt Express 22, 10398–10407 (2014).
[Crossref] [PubMed]

Kolman, P.

T. Slabý, P. Kolman, Z. Dostál, M. Antoš, M Lošt’ák, and R. Chmelík, “Off-axis setup taking full advantage of incoherent illumination in coherence-controlled holographic microscope,” Opt Express 21, 14747–14762 (2013).
[Crossref] [PubMed]

P. Kolman and R. Chmelík, “Coherence-controlled holographic microscope,” Opt Express 18, 21990–22003 (2010).
[Crossref] [PubMed]

Leach, R. K.

C. L Giusca, R. K. Leach, F. Helary, T. Gutauskas, and L. Nimishakavi, “Calibration of the scales of areal surface topography-measuring instruments: part 1. Measurement noise and residual flatness,” Meas. Sci. Technol. 23, 3 (2012).

R. K. Leach and C. L. Giusca, “Determination of the metrological characteristics of optical surface topography measuring instruments,” Proc. SPIE 8430, Optical Micro- and Nanometrology IV 84300Q (2012).
[Crossref]

R. K. Leach, C. L. Giusca, and K. Naoi, “Development and characterization of a new instrument for the traceable measurement of areal surface texture,” Meas. Sci. Technol. 20, 125102 (2009).
[Crossref]

Li, C.

R. Shang, S. Chen, C. Li, and Y. Zhu, “Spectral modulation interferometry for quantitative phase imaging,” Biomedical Optics Express 6, 473–479 (2015).
[Crossref] [PubMed]

Liu, C.

Z. Jiang, S. P. Veetil, J. Cheng, C. Liu, L. Wang, and J. Zhu, “High-resolution digital holography with the aid of coherent diffraction imaging,” Opt Express 23, 20916–20924 (2015).
[Crossref] [PubMed]

Lošt’ák, M

T. Slabý, P. Kolman, Z. Dostál, M. Antoš, M Lošt’ák, and R. Chmelík, “Off-axis setup taking full advantage of incoherent illumination in coherence-controlled holographic microscope,” Opt Express 21, 14747–14762 (2013).
[Crossref] [PubMed]

Lue, N.

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nature Methods 4, 717–719 (2007).
[Crossref] [PubMed]

Magistretti, P.

Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, “Marker-free phase nanoscopy,” Nature Photonics 7, 113–117 (2013).
[Crossref]

Magistretti, P.J.

Maiden, A. M.

A. M. Maiden, M. C. Sarahan, M. D. Stagg, S. M. Schramm, and M. J. Humphry, “Quantitative electron phase imaging with high sensitivity and an unlimited field of view,”, Nature Scientific Reports 5, 1460 (2015).

A. M. Maiden, M. J. Humphry, F. Zhang, and J. M. Rodenburg, “Superresolution imaging via ptychography,” J. Opt. Soc. Am. A 28, 604–612 (2011).
[Crossref]

A. M. Maiden and J.M. Rodenburg, “An improved ptychographical phase retrieval algorithm for diffractive imaging,” Ultramicroscopy 109, 1256–1262 (2009).
[Crossref] [PubMed]

Marquet, P.

Marriott, P.

J. Marrison, L. Raty, P. Marriott, and P. O’Toole, “Ptychography a label free, high-contrast imaging technique for live cells using quantitative phase information,” Nature Scientific Reports 3, 1–7 (2013).

Marrison, J.

J. Marrison, L. Raty, P. Marriott, and P. O’Toole, “Ptychography a label free, high-contrast imaging technique for live cells using quantitative phase information,” Nature Scientific Reports 3, 1–7 (2013).

Maucort, G.

P. Bon, G. Maucort, B. Wattellier, and S. Monneret, “Quadriwave lateral shearing interferometry for quantitative phase microscopy of living cells,” Opt Express 17, 13080–13094 (2009).
[Crossref] [PubMed]

Maurer, C.

S. Bernet, A. Jesacher, S. Füurhapter, C. Maurer, and M. Ritsch-Marte, “Quantitative imaging of complex samples by spiral phase contrast microscopy,” Opt Express 14, 3792–3805 (2006).
[Crossref] [PubMed]

Mei, G.

R. Oldenbourg, S. Inoué, R. Tiberio, A. Stemmer, G. Mei, and M. Skvarla, “Standard test targets for high resolution light microscopy,” in Nanofabrication and Biosystems: Integrating Materials Science, Engineering, and Biology, H. C. Hoch, L. W. Jelinski, and H. G. Craighead, eds. (Cambridge University, 1996).

Menzel, A.

M. Dierolf, A. Menzel, P. Thibault, P. Schneider, C. M. Kewish, R. Wepf, O. Bunk, and F. Pfeiffer, “Ptychographic x-ray computed tomography at the nanoscale,” Nature 467, 436–440 (2010).
[Crossref] [PubMed]

P. Thibault, M. Dierolf, A. Menzel, O. Bunk, C. David, and F. Pfeiffer, “High-resolution scanning x-ray diffraction microscopy,” Science 321, 379–382 (2008).
[Crossref] [PubMed]

Micó, V.

L. Camacho, V. Micó, Z. Zalevsky, and J. García, “Quantitative phase microscopy using defocusing by means of a spatial light modulator,” Opt Express 18, 6755–6764 (2010).
[Crossref] [PubMed]

Millet, L.

Z. Wang, L. Millet, M. Mir, H. Ding, S. Unarunotai, J. Rogers, M. U. Gillette, and G. Popescu, “Spatial light interference microscopy (SLIM),” Opt Express 19, 1016–1026 (2011).
[Crossref] [PubMed]

Mir, M.

T. Kim, R. Zhou, M. Mir, S. D. Babacan, P. S. Carney, L. L. Goddard, and G. Popescu, “White-light diffraction tomography of unlabelled live cells,” Nature Photonics 8, 256–263 (2014).
[Crossref]

Z. Wang, L. Millet, M. Mir, H. Ding, S. Unarunotai, J. Rogers, M. U. Gillette, and G. Popescu, “Spatial light interference microscopy (SLIM),” Opt Express 19, 1016–1026 (2011).
[Crossref] [PubMed]

Mölder, A.

A. Mölder, M. Sebesta, M. Gustafsson, L. Gisselson, A. Gjörloff Wingren, and K. Alm, Non-invasive, label-free cell counting and quantitative analysis of, adherent cells using digital holography, Journal of Microscopy 232, 240247 (2008).
[Crossref]

Monneret, S.

P. Bon, G. Maucort, B. Wattellier, and S. Monneret, “Quadriwave lateral shearing interferometry for quantitative phase microscopy of living cells,” Opt Express 17, 13080–13094 (2009).
[Crossref] [PubMed]

Murnane, M. M.

Naoi, K.

R. K. Leach, C. L. Giusca, and K. Naoi, “Development and characterization of a new instrument for the traceable measurement of areal surface texture,” Meas. Sci. Technol. 20, 125102 (2009).
[Crossref]

Nguyen, T.

C. Edwards, B. Bhaduri, T. Nguyen, B. G. Griffin, H. Pham, T. Kim, G. Popescu, and L. L. Goddard, “Effects of spatial coherence in diffraction phase microscopy,” Opt Express 22, 5133–5146 (2014).
[Crossref] [PubMed]

Nimishakavi, L.

C. L Giusca, R. K. Leach, F. Helary, T. Gutauskas, and L. Nimishakavi, “Calibration of the scales of areal surface topography-measuring instruments: part 1. Measurement noise and residual flatness,” Meas. Sci. Technol. 23, 3 (2012).

Nir, S.

M. Anderson and S. Nir, “Van der Waals parameters, refractive indices and dispersion equations of spectrin, actin and other mammalian proteins,” Polymer 18, 867–870 (1977).
[Crossref]

Nomarski, G.

G. Nomarski, “Differential microinterferometer with polarized waves,” J. Phys. Radium 16(9), 9S11S (1955).

Noom, D. W. E.

D. W. E. Noom, K. S. E. Eikema, and S. Witte, “Lensless phase contrast microscopy based on multiwavelength Fresnel diffraction,” Optics Letters 39, 193–196 (2014).
[Crossref] [PubMed]

O’Toole, P.

J. Marrison, L. Raty, P. Marriott, and P. O’Toole, “Ptychography a label free, high-contrast imaging technique for live cells using quantitative phase information,” Nature Scientific Reports 3, 1–7 (2013).

Oh, S.

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nature Methods 4, 717–719 (2007).
[Crossref] [PubMed]

Oldenbourg, R.

R. Oldenbourg, S. Inoué, R. Tiberio, A. Stemmer, G. Mei, and M. Skvarla, “Standard test targets for high resolution light microscopy,” in Nanofabrication and Biosystems: Integrating Materials Science, Engineering, and Biology, H. C. Hoch, L. W. Jelinski, and H. G. Craighead, eds. (Cambridge University, 1996).

Park, H.

Y. Kim, H. Shim, K. Kim, H. Park, Ji H. Heo, J. Yoon, C. Choi, S. Jang, and Y. Park, “Common-path diffraction optical tomography for investigation of three-dimensional structures and dynamics of biological cells,” Opt Express 22, 10398–10407 (2014).
[Crossref] [PubMed]

Park, Y.

Y. Kim, H. Shim, K. Kim, H. Park, Ji H. Heo, J. Yoon, C. Choi, S. Jang, and Y. Park, “Common-path diffraction optical tomography for investigation of three-dimensional structures and dynamics of biological cells,” Opt Express 22, 10398–10407 (2014).
[Crossref] [PubMed]

Y. Park, G. Popescu, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Diffraction phase and fluorescence microscopy,” Opt Express 14, 8263–8268 (2006).
[Crossref] [PubMed]

Pavillon, N.

Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, “Marker-free phase nanoscopy,” Nature Photonics 7, 113–117 (2013).
[Crossref]

Pfeiffer, F.

M. Dierolf, A. Menzel, P. Thibault, P. Schneider, C. M. Kewish, R. Wepf, O. Bunk, and F. Pfeiffer, “Ptychographic x-ray computed tomography at the nanoscale,” Nature 467, 436–440 (2010).
[Crossref] [PubMed]

P. Thibault, M. Dierolf, A. Menzel, O. Bunk, C. David, and F. Pfeiffer, “High-resolution scanning x-ray diffraction microscopy,” Science 321, 379–382 (2008).
[Crossref] [PubMed]

Pham, H.

C. Edwards, B. Bhaduri, T. Nguyen, B. G. Griffin, H. Pham, T. Kim, G. Popescu, and L. L. Goddard, “Effects of spatial coherence in diffraction phase microscopy,” Opt Express 22, 5133–5146 (2014).
[Crossref] [PubMed]

Plainis, S.

S. Plainis, D. A. Atchinson, and W. N. Charman, “Power Profiles of Multifocal Contact Lenses and Their Interpretation,” Optometry and Vision Science 90, 1066–1077 (2013).
[Crossref] [PubMed]

Popescu, G.

R. Horstmeyer, R. Heintzmann, G. Popescu, L. Waller, and C. Yang, “Standardizing the resolution claims for coherent microscopy,” Nature Photonics 10, 68–71 (2016).
[Crossref]

C. Edwards, B. Bhaduri, T. Nguyen, B. G. Griffin, H. Pham, T. Kim, G. Popescu, and L. L. Goddard, “Effects of spatial coherence in diffraction phase microscopy,” Opt Express 22, 5133–5146 (2014).
[Crossref] [PubMed]

T. Kim, R. Zhou, M. Mir, S. D. Babacan, P. S. Carney, L. L. Goddard, and G. Popescu, “White-light diffraction tomography of unlabelled live cells,” Nature Photonics 8, 256–263 (2014).
[Crossref]

T. Kim, R. Zhou, L. L. Goddard, and G. Popescu, “Breakthroughs in Photonics 2013: Quantitative Phase Imaging: Metrology Meets Biology,” IEEE Photonics Journal 6, 0700909 (2013).

Z. Wang, L. Millet, M. Mir, H. Ding, S. Unarunotai, J. Rogers, M. U. Gillette, and G. Popescu, “Spatial light interference microscopy (SLIM),” Opt Express 19, 1016–1026 (2011).
[Crossref] [PubMed]

Y. Park, G. Popescu, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Diffraction phase and fluorescence microscopy,” Opt Express 14, 8263–8268 (2006).
[Crossref] [PubMed]

H. Iwai, C. Fang-Yen, G. Popescu, A. Wax, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Quantitative phase imaging using actively stabilized phase-shifting low-coherence interferometry,” Optics Letters 29, 2399–2401 (2004).
[Crossref] [PubMed]

Rappaz, B.

B. Rappaz, B. Breton, E. Shaffer, and G. Turcatti, “Digital Holographic Microscopy: A Quantitative Label-Free Microscopy Technique for Phenotypic Screening,” Combinatorial Chemistry & High Throughput Screening 17, 80–88, (2014).
[Crossref]

P. Marquet, B. Rappaz, P.J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C Depeursinge, “Digital holographic microscopy: a non invasive contrast imaging technique allowing quantitative visualization of living cells with sub wavelength axial accuracy,” Opt. Lett. 30, 468–470 (2005).
[Crossref] [PubMed]

Raty, L.

J. Marrison, L. Raty, P. Marriott, and P. O’Toole, “Ptychography a label free, high-contrast imaging technique for live cells using quantitative phase information,” Nature Scientific Reports 3, 1–7 (2013).

Ritsch-Marte, M.

S. Bernet, A. Jesacher, S. Füurhapter, C. Maurer, and M. Ritsch-Marte, “Quantitative imaging of complex samples by spiral phase contrast microscopy,” Opt Express 14, 3792–3805 (2006).
[Crossref] [PubMed]

Rodenburg, J. M.

A. M. Maiden, M. J. Humphry, F. Zhang, and J. M. Rodenburg, “Superresolution imaging via ptychography,” J. Opt. Soc. Am. A 28, 604–612 (2011).
[Crossref]

H. M. L. Faulkner and J. M. Rodenburg, “Movable aperture lensless transmission microscopy: a novel phase retrieval algorithm,” Phys. Rev. Lett. 93, 023903 (2004).
[Crossref] [PubMed]

J. M. Rodenburg and R. H. T. Bates, “The theory of super-resolution electron microscopy via Wigner-distribution deconvolution,” Phil. Trans. R. Soc. Lond. A 339, 521 (1992).
[Crossref]

Rodenburg, J.M.

A. M. Maiden and J.M. Rodenburg, “An improved ptychographical phase retrieval algorithm for diffractive imaging,” Ultramicroscopy 109, 1256–1262 (2009).
[Crossref] [PubMed]

Rodrigo, J. A.

J. A. Rodrigo, T. Alieva, G. Cristóbal, and M. L. Calvo, “Wavefield imaging via iterative retrieval based on phase modulation diversity,” Opt Express 19, 18621–18635 (2011).
[Crossref] [PubMed]

Rogers, J.

Z. Wang, L. Millet, M. Mir, H. Ding, S. Unarunotai, J. Rogers, M. U. Gillette, and G. Popescu, “Spatial light interference microscopy (SLIM),” Opt Express 19, 1016–1026 (2011).
[Crossref] [PubMed]

Sarahan, M. C.

A. M. Maiden, M. C. Sarahan, M. D. Stagg, S. M. Schramm, and M. J. Humphry, “Quantitative electron phase imaging with high sensitivity and an unlimited field of view,”, Nature Scientific Reports 5, 1460 (2015).

Schneider, P.

M. Dierolf, A. Menzel, P. Thibault, P. Schneider, C. M. Kewish, R. Wepf, O. Bunk, and F. Pfeiffer, “Ptychographic x-ray computed tomography at the nanoscale,” Nature 467, 436–440 (2010).
[Crossref] [PubMed]

Schramm, S. M.

A. M. Maiden, M. C. Sarahan, M. D. Stagg, S. M. Schramm, and M. J. Humphry, “Quantitative electron phase imaging with high sensitivity and an unlimited field of view,”, Nature Scientific Reports 5, 1460 (2015).

Seaberg, M. D.

Sebesta, M.

A. Mölder, M. Sebesta, M. Gustafsson, L. Gisselson, A. Gjörloff Wingren, and K. Alm, Non-invasive, label-free cell counting and quantitative analysis of, adherent cells using digital holography, Journal of Microscopy 232, 240247 (2008).
[Crossref]

Shaffer, E.

B. Rappaz, B. Breton, E. Shaffer, and G. Turcatti, “Digital Holographic Microscopy: A Quantitative Label-Free Microscopy Technique for Phenotypic Screening,” Combinatorial Chemistry & High Throughput Screening 17, 80–88, (2014).
[Crossref]

Shanblatt, E. R.

Shang, R.

R. Shang, S. Chen, C. Li, and Y. Zhu, “Spectral modulation interferometry for quantitative phase imaging,” Biomedical Optics Express 6, 473–479 (2015).
[Crossref] [PubMed]

Shim, H.

Y. Kim, H. Shim, K. Kim, H. Park, Ji H. Heo, J. Yoon, C. Choi, S. Jang, and Y. Park, “Common-path diffraction optical tomography for investigation of three-dimensional structures and dynamics of biological cells,” Opt Express 22, 10398–10407 (2014).
[Crossref] [PubMed]

Skvarla, M.

R. Oldenbourg, S. Inoué, R. Tiberio, A. Stemmer, G. Mei, and M. Skvarla, “Standard test targets for high resolution light microscopy,” in Nanofabrication and Biosystems: Integrating Materials Science, Engineering, and Biology, H. C. Hoch, L. W. Jelinski, and H. G. Craighead, eds. (Cambridge University, 1996).

Slabý, T.

T. Slabý, P. Kolman, Z. Dostál, M. Antoš, M Lošt’ák, and R. Chmelík, “Off-axis setup taking full advantage of incoherent illumination in coherence-controlled holographic microscope,” Opt Express 21, 14747–14762 (2013).
[Crossref] [PubMed]

Stagg, M. D.

A. M. Maiden, M. C. Sarahan, M. D. Stagg, S. M. Schramm, and M. J. Humphry, “Quantitative electron phase imaging with high sensitivity and an unlimited field of view,”, Nature Scientific Reports 5, 1460 (2015).

Stemmer, A.

R. Oldenbourg, S. Inoué, R. Tiberio, A. Stemmer, G. Mei, and M. Skvarla, “Standard test targets for high resolution light microscopy,” in Nanofabrication and Biosystems: Integrating Materials Science, Engineering, and Biology, H. C. Hoch, L. W. Jelinski, and H. G. Craighead, eds. (Cambridge University, 1996).

Sung, Y.

Y. Sung, W. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Optical diffraction tomography for high resolution live cell imaging,” Opt Express 17, 266–277 (2009).
[Crossref] [PubMed]

Teitell, M. A.

T. A. Zangle and M. A. Teitell, “Live-cell mass profiling: an emerging approach in quantitative biophysics,” Nature Methods 11, 1221–1228 (2014).
[Crossref] [PubMed]

Thibault, P.

M. Dierolf, A. Menzel, P. Thibault, P. Schneider, C. M. Kewish, R. Wepf, O. Bunk, and F. Pfeiffer, “Ptychographic x-ray computed tomography at the nanoscale,” Nature 467, 436–440 (2010).
[Crossref] [PubMed]

P. Thibault, M. Dierolf, A. Menzel, O. Bunk, C. David, and F. Pfeiffer, “High-resolution scanning x-ray diffraction microscopy,” Science 321, 379–382 (2008).
[Crossref] [PubMed]

Tian, L.

Tiberio, R.

R. Oldenbourg, S. Inoué, R. Tiberio, A. Stemmer, G. Mei, and M. Skvarla, “Standard test targets for high resolution light microscopy,” in Nanofabrication and Biosystems: Integrating Materials Science, Engineering, and Biology, H. C. Hoch, L. W. Jelinski, and H. G. Craighead, eds. (Cambridge University, 1996).

Toy, F.

Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, “Marker-free phase nanoscopy,” Nature Photonics 7, 113–117 (2013).
[Crossref]

Turcatti, G.

B. Rappaz, B. Breton, E. Shaffer, and G. Turcatti, “Digital Holographic Microscopy: A Quantitative Label-Free Microscopy Technique for Phenotypic Screening,” Combinatorial Chemistry & High Throughput Screening 17, 80–88, (2014).
[Crossref]

Unarunotai, S.

Z. Wang, L. Millet, M. Mir, H. Ding, S. Unarunotai, J. Rogers, M. U. Gillette, and G. Popescu, “Spatial light interference microscopy (SLIM),” Opt Express 19, 1016–1026 (2011).
[Crossref] [PubMed]

Veetil, S. P.

Z. Jiang, S. P. Veetil, J. Cheng, C. Liu, L. Wang, and J. Zhu, “High-resolution digital holography with the aid of coherent diffraction imaging,” Opt Express 23, 20916–20924 (2015).
[Crossref] [PubMed]

Waller, L.

R. Horstmeyer, R. Heintzmann, G. Popescu, L. Waller, and C. Yang, “Standardizing the resolution claims for coherent microscopy,” Nature Photonics 10, 68–71 (2016).
[Crossref]

L. Tian and L. Waller, “3D intensity and phase imaging from light field measurements in an LED array microscope,” Optica 2, 104–111 (2015).
[Crossref]

Wang, L.

Z. Jiang, S. P. Veetil, J. Cheng, C. Liu, L. Wang, and J. Zhu, “High-resolution digital holography with the aid of coherent diffraction imaging,” Opt Express 23, 20916–20924 (2015).
[Crossref] [PubMed]

Wang, Z.

Z. Wang, L. Millet, M. Mir, H. Ding, S. Unarunotai, J. Rogers, M. U. Gillette, and G. Popescu, “Spatial light interference microscopy (SLIM),” Opt Express 19, 1016–1026 (2011).
[Crossref] [PubMed]

Wattellier, B.

P. Bon, G. Maucort, B. Wattellier, and S. Monneret, “Quadriwave lateral shearing interferometry for quantitative phase microscopy of living cells,” Opt Express 17, 13080–13094 (2009).
[Crossref] [PubMed]

Wax, A.

H. Iwai, C. Fang-Yen, G. Popescu, A. Wax, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Quantitative phase imaging using actively stabilized phase-shifting low-coherence interferometry,” Optics Letters 29, 2399–2401 (2004).
[Crossref] [PubMed]

Wepf, R.

M. Dierolf, A. Menzel, P. Thibault, P. Schneider, C. M. Kewish, R. Wepf, O. Bunk, and F. Pfeiffer, “Ptychographic x-ray computed tomography at the nanoscale,” Nature 467, 436–440 (2010).
[Crossref] [PubMed]

Witte, S.

D. W. E. Noom, K. S. E. Eikema, and S. Witte, “Lensless phase contrast microscopy based on multiwavelength Fresnel diffraction,” Optics Letters 39, 193–196 (2014).
[Crossref] [PubMed]

Yang, C.

R. Horstmeyer, R. Heintzmann, G. Popescu, L. Waller, and C. Yang, “Standardizing the resolution claims for coherent microscopy,” Nature Photonics 10, 68–71 (2016).
[Crossref]

G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nature Photonics,  7, 739–745 (2013).
[Crossref]

Yoon, J.

Y. Kim, H. Shim, K. Kim, H. Park, Ji H. Heo, J. Yoon, C. Choi, S. Jang, and Y. Park, “Common-path diffraction optical tomography for investigation of three-dimensional structures and dynamics of biological cells,” Opt Express 22, 10398–10407 (2014).
[Crossref] [PubMed]

Zalevsky, Z.

L. Camacho, V. Micó, Z. Zalevsky, and J. García, “Quantitative phase microscopy using defocusing by means of a spatial light modulator,” Opt Express 18, 6755–6764 (2010).
[Crossref] [PubMed]

Zangle, T. A.

T. A. Zangle and M. A. Teitell, “Live-cell mass profiling: an emerging approach in quantitative biophysics,” Nature Methods 11, 1221–1228 (2014).
[Crossref] [PubMed]

Zernike, F.

F. Zernike, “Phase-contrast, a new method for microscopic observation of transparent objects,” Physica Part I. 9, 686–698 (1942).

Zhang, B.

Zhang, F.

Zheng, G.

G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nature Photonics,  7, 739–745 (2013).
[Crossref]

Zhou, R.

T. Kim, R. Zhou, M. Mir, S. D. Babacan, P. S. Carney, L. L. Goddard, and G. Popescu, “White-light diffraction tomography of unlabelled live cells,” Nature Photonics 8, 256–263 (2014).
[Crossref]

T. Kim, R. Zhou, L. L. Goddard, and G. Popescu, “Breakthroughs in Photonics 2013: Quantitative Phase Imaging: Metrology Meets Biology,” IEEE Photonics Journal 6, 0700909 (2013).

Zhu, J.

Z. Jiang, S. P. Veetil, J. Cheng, C. Liu, L. Wang, and J. Zhu, “High-resolution digital holography with the aid of coherent diffraction imaging,” Opt Express 23, 20916–20924 (2015).
[Crossref] [PubMed]

Zhu, Y.

R. Shang, S. Chen, C. Li, and Y. Zhu, “Spectral modulation interferometry for quantitative phase imaging,” Biomedical Optics Express 6, 473–479 (2015).
[Crossref] [PubMed]

Biomedical Optics Express (2)

R. Shang, S. Chen, C. Li, and Y. Zhu, “Spectral modulation interferometry for quantitative phase imaging,” Biomedical Optics Express 6, 473–479 (2015).
[Crossref] [PubMed]

K. Creath and G. Goldstein, “Dynamic quantitative phase imaging for biological objects using a pixelated phase mask,” Biomedical Optics Express 3, 2866–2880 (2012).
[Crossref] [PubMed]

Combinatorial Chemistry & High Throughput Screening (1)

B. Rappaz, B. Breton, E. Shaffer, and G. Turcatti, “Digital Holographic Microscopy: A Quantitative Label-Free Microscopy Technique for Phenotypic Screening,” Combinatorial Chemistry & High Throughput Screening 17, 80–88, (2014).
[Crossref]

IEEE Photonics Journal (1)

T. Kim, R. Zhou, L. L. Goddard, and G. Popescu, “Breakthroughs in Photonics 2013: Quantitative Phase Imaging: Metrology Meets Biology,” IEEE Photonics Journal 6, 0700909 (2013).

J. Opt. Soc. Am. A (1)

J. Phys. Radium (1)

G. Nomarski, “Differential microinterferometer with polarized waves,” J. Phys. Radium 16(9), 9S11S (1955).

Journal of Microscopy (1)

A. Mölder, M. Sebesta, M. Gustafsson, L. Gisselson, A. Gjörloff Wingren, and K. Alm, Non-invasive, label-free cell counting and quantitative analysis of, adherent cells using digital holography, Journal of Microscopy 232, 240247 (2008).
[Crossref]

Meas. Sci. Technol. (2)

R. K. Leach, C. L. Giusca, and K. Naoi, “Development and characterization of a new instrument for the traceable measurement of areal surface texture,” Meas. Sci. Technol. 20, 125102 (2009).
[Crossref]

C. L Giusca, R. K. Leach, F. Helary, T. Gutauskas, and L. Nimishakavi, “Calibration of the scales of areal surface topography-measuring instruments: part 1. Measurement noise and residual flatness,” Meas. Sci. Technol. 23, 3 (2012).

Nature (1)

M. Dierolf, A. Menzel, P. Thibault, P. Schneider, C. M. Kewish, R. Wepf, O. Bunk, and F. Pfeiffer, “Ptychographic x-ray computed tomography at the nanoscale,” Nature 467, 436–440 (2010).
[Crossref] [PubMed]

Nature Methods (2)

T. A. Zangle and M. A. Teitell, “Live-cell mass profiling: an emerging approach in quantitative biophysics,” Nature Methods 11, 1221–1228 (2014).
[Crossref] [PubMed]

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nature Methods 4, 717–719 (2007).
[Crossref] [PubMed]

Nature Photonics (4)

Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, “Marker-free phase nanoscopy,” Nature Photonics 7, 113–117 (2013).
[Crossref]

G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nature Photonics,  7, 739–745 (2013).
[Crossref]

T. Kim, R. Zhou, M. Mir, S. D. Babacan, P. S. Carney, L. L. Goddard, and G. Popescu, “White-light diffraction tomography of unlabelled live cells,” Nature Photonics 8, 256–263 (2014).
[Crossref]

R. Horstmeyer, R. Heintzmann, G. Popescu, L. Waller, and C. Yang, “Standardizing the resolution claims for coherent microscopy,” Nature Photonics 10, 68–71 (2016).
[Crossref]

Nature Scientific Reports (2)

J. Marrison, L. Raty, P. Marriott, and P. O’Toole, “Ptychography a label free, high-contrast imaging technique for live cells using quantitative phase information,” Nature Scientific Reports 3, 1–7 (2013).

A. M. Maiden, M. C. Sarahan, M. D. Stagg, S. M. Schramm, and M. J. Humphry, “Quantitative electron phase imaging with high sensitivity and an unlimited field of view,”, Nature Scientific Reports 5, 1460 (2015).

Opt Express (12)

P. Kolman and R. Chmelík, “Coherence-controlled holographic microscope,” Opt Express 18, 21990–22003 (2010).
[Crossref] [PubMed]

T. Slabý, P. Kolman, Z. Dostál, M. Antoš, M Lošt’ák, and R. Chmelík, “Off-axis setup taking full advantage of incoherent illumination in coherence-controlled holographic microscope,” Opt Express 21, 14747–14762 (2013).
[Crossref] [PubMed]

Y. Park, G. Popescu, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Diffraction phase and fluorescence microscopy,” Opt Express 14, 8263–8268 (2006).
[Crossref] [PubMed]

C. Edwards, B. Bhaduri, T. Nguyen, B. G. Griffin, H. Pham, T. Kim, G. Popescu, and L. L. Goddard, “Effects of spatial coherence in diffraction phase microscopy,” Opt Express 22, 5133–5146 (2014).
[Crossref] [PubMed]

Y. Kim, H. Shim, K. Kim, H. Park, Ji H. Heo, J. Yoon, C. Choi, S. Jang, and Y. Park, “Common-path diffraction optical tomography for investigation of three-dimensional structures and dynamics of biological cells,” Opt Express 22, 10398–10407 (2014).
[Crossref] [PubMed]

Z. Wang, L. Millet, M. Mir, H. Ding, S. Unarunotai, J. Rogers, M. U. Gillette, and G. Popescu, “Spatial light interference microscopy (SLIM),” Opt Express 19, 1016–1026 (2011).
[Crossref] [PubMed]

J. A. Rodrigo, T. Alieva, G. Cristóbal, and M. L. Calvo, “Wavefield imaging via iterative retrieval based on phase modulation diversity,” Opt Express 19, 18621–18635 (2011).
[Crossref] [PubMed]

L. Camacho, V. Micó, Z. Zalevsky, and J. García, “Quantitative phase microscopy using defocusing by means of a spatial light modulator,” Opt Express 18, 6755–6764 (2010).
[Crossref] [PubMed]

S. Bernet, A. Jesacher, S. Füurhapter, C. Maurer, and M. Ritsch-Marte, “Quantitative imaging of complex samples by spiral phase contrast microscopy,” Opt Express 14, 3792–3805 (2006).
[Crossref] [PubMed]

Y. Sung, W. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Optical diffraction tomography for high resolution live cell imaging,” Opt Express 17, 266–277 (2009).
[Crossref] [PubMed]

Z. Jiang, S. P. Veetil, J. Cheng, C. Liu, L. Wang, and J. Zhu, “High-resolution digital holography with the aid of coherent diffraction imaging,” Opt Express 23, 20916–20924 (2015).
[Crossref] [PubMed]

P. Bon, G. Maucort, B. Wattellier, and S. Monneret, “Quadriwave lateral shearing interferometry for quantitative phase microscopy of living cells,” Opt Express 17, 13080–13094 (2009).
[Crossref] [PubMed]

Opt. Lett. (1)

Optica (2)

Optics Letters (2)

H. Iwai, C. Fang-Yen, G. Popescu, A. Wax, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Quantitative phase imaging using actively stabilized phase-shifting low-coherence interferometry,” Optics Letters 29, 2399–2401 (2004).
[Crossref] [PubMed]

D. W. E. Noom, K. S. E. Eikema, and S. Witte, “Lensless phase contrast microscopy based on multiwavelength Fresnel diffraction,” Optics Letters 39, 193–196 (2014).
[Crossref] [PubMed]

Optometry and Vision Science (1)

S. Plainis, D. A. Atchinson, and W. N. Charman, “Power Profiles of Multifocal Contact Lenses and Their Interpretation,” Optometry and Vision Science 90, 1066–1077 (2013).
[Crossref] [PubMed]

Phil. Trans. R. Soc. Lond. A (1)

J. M. Rodenburg and R. H. T. Bates, “The theory of super-resolution electron microscopy via Wigner-distribution deconvolution,” Phil. Trans. R. Soc. Lond. A 339, 521 (1992).
[Crossref]

Phys. Rev. Lett. (1)

H. M. L. Faulkner and J. M. Rodenburg, “Movable aperture lensless transmission microscopy: a novel phase retrieval algorithm,” Phys. Rev. Lett. 93, 023903 (2004).
[Crossref] [PubMed]

Physica Part I. (1)

F. Zernike, “Phase-contrast, a new method for microscopic observation of transparent objects,” Physica Part I. 9, 686–698 (1942).

Polymer (1)

M. Anderson and S. Nir, “Van der Waals parameters, refractive indices and dispersion equations of spectrin, actin and other mammalian proteins,” Polymer 18, 867–870 (1977).
[Crossref]

Proc. SPIE (1)

R. K. Leach and C. L. Giusca, “Determination of the metrological characteristics of optical surface topography measuring instruments,” Proc. SPIE 8430, Optical Micro- and Nanometrology IV 84300Q (2012).
[Crossref]

Science (1)

P. Thibault, M. Dierolf, A. Menzel, O. Bunk, C. David, and F. Pfeiffer, “High-resolution scanning x-ray diffraction microscopy,” Science 321, 379–382 (2008).
[Crossref] [PubMed]

Ultramicroscopy (1)

A. M. Maiden and J.M. Rodenburg, “An improved ptychographical phase retrieval algorithm for diffractive imaging,” Ultramicroscopy 109, 1256–1262 (2009).
[Crossref] [PubMed]

Other (4)

R. Oldenbourg, S. Inoué, R. Tiberio, A. Stemmer, G. Mei, and M. Skvarla, “Standard test targets for high resolution light microscopy,” in Nanofabrication and Biosystems: Integrating Materials Science, Engineering, and Biology, H. C. Hoch, L. W. Jelinski, and H. G. Craighead, eds. (Cambridge University, 1996).

G. Arfken, Mathematical Methods for Physicists (Orlando Academic3rd ed, 1985).

ISO 5436-1:2000, “Geometrical Product Specifications (GPS) - Surface texture: Profile method; Measurement standards - Part 1: Material measures”

The specimens are available upon request.

Supplementary Material (1)

NameDescription
» Visualization 1: AVI (10122 KB)      Movie illustrating ultra-wide field of view modulus and phase reconstruction of the phase target.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Configuration of the ptychographic microscope. The specimen is translated laterally (x, y) with a positioning stage in the path of a collimated laser. MO: microscope objective lens, BS: beam splitter; L1 and L2 : identical tube lenses. MO and lenses L1 and L2 form two arms of a conventional optical microscope. Diffracted light from a localized area of the image of the specimen constrained by the aperture is recorded by CCD2 at a distance CL. A typical diffraction pattern is shown at the plane of CCD2.

Fig. 2
Fig. 2

Phase target layout and large area ptychographic scans. (a) Lithographic mask design for the phase target. Each group of the target (GRP) contains 6 elements (labelled by numbers), each with three horizontal and vertical features of varying size. The largest width of the features (120 μm) is in GRP 2, and the smallest in GRP 9 (2 μm). (b) Ptychographic reconstruction of the modulus of one of the tiles (etch depth 127 nm) showing the metallic markers used for navigation. (c) Ptychographic reconstruction of the same area showing the depth obtained from the phase shift. The images cover an area of a 4 mm by 4 mm, forming an approximately 40 Megapixel image.

Fig. 3
Fig. 3

Example AFM, coherence scanning interferometry and phase images. (a) AFM surface plot of GRP 9 (trench widths (2 − 3) μm). (b) Surface plot of a phase image of the same group. (c) coherence scanning interferometry image of GRP 6 (trench widths 10 μm to 15 μm, etch depth 600 nm). (d) Depth map of the same area obtained from the ptychographic phase image

Fig. 4
Fig. 4

Histograms of etch depth values values for 3 tiles and three different scan groups obtained with a 10× objective lens. The histograms for the different tiles are offset vertically for clarity.

Fig. 5
Fig. 5

(a) Line profiles across groups 2 to 7 for three different etch depths (black red blue). Inset: line profiles across group 6 with fits to square wave. (b) Normalized power spectrum showing disk up to diffraction limited resolution of the 10× objective

Tables (1)

Tables Icon

Table 1 Etch depths obtained from the histogram method. The mean depth, d, across all feature sizes of the tiles labeled 2 through 4 are compared to those obtained by coherence scanning interferometry (CSI) for the magnifications 10× and 20× for an expanded uncertainty of k = 2. The full width at half maximum (FWHM) of the histograms of depth values are shown for the background peak, BG, which is centered about T = 0 nm, and the etch peak, which is centered about the etch depth.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

X = D M ( k ( N 1 ) ) + 1 )

Metrics